

 [image: cover]

BDD in Action: Behavior-Driven Development for the whole software lifecycle

 John Ferguson Smart

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Dan Maharry
Technical development editor Ray Lugo
Copyeditor: Benjamin Berg
Proofreaders: Andy Carroll, Melody Dolab
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617291654

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Deliberate Discovery—A “Sonnet”

 Foreword

 Preface

 Acknowledgements

 About this Book

 About the Cover Illustration

 1. First steps

 Chapter 1. Building software that makes a difference

 Chapter 2. BDD—the whirlwind tour

 2. What do I want? Defining requirements using BDD

 Chapter 3. Understanding the business goals: Feature Injection and related techniques

 Chapter 4. Defining and illustrating features

 Chapter 5. From examples to executable specifications

 Chapter 6. Automating the scenarios

 3. How do I build it? Coding the BDD way

 Chapter 7. From executable specifications to rock-solid automated acceptance tests

 Chapter 8. Automating acceptance criteria for the UI layer

 Chapter 9. Automating acceptance criteria for non-UI requirements

 Chapter 10. BDD and unit testing

 4. Taking BDD Further

 Chapter 11. Living Documentation: reporting and project management

 Chapter 12. BDD in the build process

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Deliberate Discovery—A “Sonnet”

 Foreword

 Preface

 Acknowledgements

 About this Book

 About the Cover Illustration

 1. First steps

 Chapter 1. Building software that makes a difference

 1.1. BDD from 50,000 feet

 1.2. What problems are you trying to solve?

 1.2.1. Building the software right

 1.2.2. Building the right software

 1.2.3. The knowledge constraint—dealing with uncertainty

 1.3. Introducing Behavior-Driven Development

 1.3.1. BDD was originally designed as an improved version of TDD

 1.3.2. BDD also works well for requirements analysis

 1.3.3. BDD principles and practices

 1.4. Benefits of BDD

 1.4.1. Reduced waste

 1.4.2. Reduced costs

 1.4.3. Easier and safer changes

 1.4.4. Faster releases

 1.5. Disadvantages and potential challenges of BDD

 1.5.1. BDD requires high business engagement and collaboration

 1.5.2. BDD works best in an Agile or iterative context

 1.5.3. BDD doesn’t work well in a silo

 1.5.4. Poorly written tests can lead to higher test-maintenance costs

 1.6. Summary

 Chapter 2. BDD—the whirlwind tour

 2.1. Introducing the train timetable application

 2.2. Determining the value proposition of the application

 2.3. Requirements analysis: discovering and understanding features

 2.3.1. Describing features

 2.3.2. Breaking features down into stories

 2.3.3. Illustrating the stories with examples

 2.4. Implementation: building and delivering features

 2.4.1. Going from examples to acceptance criteria

 2.4.2. Setting up Maven and Git

 2.4.3. Executable specifications: automating the acceptance criteria

 2.4.4. Automated tests: implementing the acceptance criteria

 2.4.5. Tests as living documentation

 2.5. Maintenance

 2.6. Summary

 2. What do I want? Defining requirements using BDD

 Chapter 3. Understanding the business goals: Feature Injection and related techniques

 3.1. Introducing Flying High Airlines

 3.2. Feature Injection

 3.2.1. Hunt the value

 3.2.2. Inject the features

 3.2.3. Spot the examples

 3.2.4. Putting it all together

 3.3. What do you want to achieve? Start with a vision

 3.3.1. The vision statement

 3.3.2. Using vision statement templates

 3.4. How will it benefit the business? Identify the business goals

 3.4.1. Writing good business goals

 3.4.2. Show me the money—business goals and revenue

 3.4.3. Popping the “why stack”: digging out the business goals

 3.5. Impact Mapping: a visual approach

 3.6. Who will benefit? Identify stakeholders and their needs

 3.7. What do you need to build? Identify capabilities

 3.8. What features will provide the most ROI? The Purpose-Based Alignment Model

 3.8.1. Differentiating features

 3.8.2. Parity features

 3.8.3. Partner features

 3.8.4. Minimum impact

 3.9. Summary

 Chapter 4. Defining and illustrating features

 4.1. What is a “feature”?

 4.1.1. Features deliver capabilities

 4.1.2. Features can be broken down into more manageable chunks

 4.1.3. A feature can be described by one or more user stories

 4.1.4. A feature is not a user story

 4.1.5. Epics are really big user stories

 4.1.6. Not everything fits into a hierarchy

 4.2. Illustrating features with examples

 4.3. Real Options: don’t make commitments before you have to

 4.3.1. Options have value

 4.3.2. Options expire

 4.3.3. Never commit early unless you know why

 4.4. Deliberate Discovery

 4.5. From examples to working software: the bigger picture

 4.6. Summary

 Chapter 5. From examples to executable specifications

 5.1. Turning concrete examples into executable scenarios

 5.2. Writing executable scenarios

 5.2.1. A feature file has a title and a description

 5.2.2. Describing the scenarios

 5.2.3. The “Given ... When ... Then” structure

 5.2.4. Ands and buts

 5.2.5. Comments

 5.3. Using tables in scenarios

 5.3.1. Using tables in individual steps

 5.3.2. Using tables of examples

 5.4. Expressive scenarios: patterns and anti-patterns

 5.4.1. Writing expressive Given steps

 5.4.2. Writing expressive When steps

 5.4.3. Writing expressive Then steps

 5.4.4. Providing background and context

 5.4.5. Avoid dependencies between scenarios

 5.5. Organizing your scenarios using feature files and tags

 5.5.1. The scenarios go in a feature file

 5.5.2. A feature file can contain one or more scenarios

 5.5.3. Organizing the feature files

 5.5.4. Annotating your scenarios with tags

 5.6. Summary

 Chapter 6. Automating the scenarios

 6.1. Introduction to automating scenarios

 6.1.1. Step definitions interpret the steps

 6.1.2. Keep the step definition methods simple

 6.2. Implementing step definitions: general principles

 6.2.1. Installing BDD tools

 6.2.2. Implementing step definitions

 6.2.3. Passing parameters to step implementations

 6.2.4. Maintaining state between steps

 6.2.5. Using table data from step definitions

 6.2.6. Implementing example-based scenarios

 6.2.7. Understanding scenario outcomes

 6.3. Implementing BDD more effectively with Thucydides

 6.4. Automating scenarios in Java with JBehave

 6.4.1. Installing and setting up JBehave

 6.4.2. JBehave step definitions

 6.4.3. Sharing data between steps

 6.4.4. Passing tables to steps

 6.4.5. Step definitions for tables of examples

 6.4.6. Pattern variants

 6.4.7. Failures and errors in the scenario outcomes

 6.5. Automating scenarios in Java using Cucumber-JVM

 6.5.1. Cucumber-JVM project setup and structure

 6.5.2. Cucumber-JVM step definitions

 6.5.3. Pattern variants

 6.5.4. Passing tables to steps

 6.5.5. Step definitions for tables of examples

 6.5.6. Sharing data between steps

 6.5.7. Pending steps and step outcomes

 6.6. Automating scenarios in Python with Behave

 6.6.1. Installing Behave

 6.6.2. The Behave project structure

 6.6.3. Behave step definitions

 6.6.4. Combining steps

 6.6.5. Step definitions using embedded tables

 6.6.6. Step definitions for tables of examples

 6.6.7. Running scenarios in Behave

 6.7. Automating scenarios in .NET with SpecFlow

 6.7.1. Setting up SpecFlow

 6.7.2. Adding feature files

 6.7.3. Running scenarios

 6.7.4. SpecFlow step definitions

 6.7.5. Sharing data between steps

 6.7.6. Step definitions using example tables

 6.8. Automating scenarios in JavaScript with Cucumber-JS

 6.8.1. Setting up Cucumber-JS

 6.8.2. Writing feature files in Cucumber-JS

 6.8.3. Implementing the steps

 6.8.4. Running the scenarios

 6.9. Summary

 3. How do I build it? Coding the BDD way

 Chapter 7. From executable specifications to rock-solid automated acceptance tests

 7.1. Writing industrial-strength acceptance tests

 7.2. Automating your test setup process

 7.2.1. Initializing the database before each test

 7.2.2. Initializing the database at the start of the test suite

 7.2.3. Using initialization hooks

 7.2.4. Setting up scenario-specific data

 7.2.5. Using personas and known entities

 7.3. Separating the what from the how

 7.3.1. The Business Rules layer describes the expected outcomes

 7.3.2. The Business Flow layer describes the user’s journey

 7.3.3. The Technical layer interacts with the system

 7.3.4. How many layers?

 7.4. Summary

 Chapter 8. Automating acceptance criteria for the UI layer

 8.1. When and how should you test the UI?

 8.1.1. The risks of too many web tests

 8.1.2. Web testing with headless browsers

 8.1.3. How much web testing do you really need?

 8.2. Automating web-based acceptance criteria using Selenium WebDriver

 8.2.1. Getting started with WebDriver in Java

 8.2.2. Identifying web elements

 8.2.3. Interacting with web elements

 8.2.4. Working with asynchronous pages and testing AJAX applications

 8.2.5. Writing test-friendly web applications

 8.3. Using page objects to make your tests cleaner

 8.3.1. Introducing the Page Objects pattern

 8.3.2. Writing well-designed page objects

 8.3.3. Using libraries that extend WebDriver

 8.4. Summary

 Chapter 9. Automating acceptance criteria for non-UI requirements

 9.1. Balancing UI and non-UI acceptance tests

 9.2. When to use non-UI acceptance tests

 9.3. Types of non-UI automated acceptance tests

 9.3.1. Testing against the controller layer

 9.3.2. Testing business logic directly

 9.3.3. Testing the service layer

 9.4. Defining and testing nonfunctional requirements

 9.5. Discovering the design

 9.6. Summary

 Chapter 10. BDD and unit testing

 10.1. BDD, TDD, and unit testing

 10.1.1. BDD is about writing specifications, not tests, at all levels

 10.1.2. BDD builds on established TDD practices

 10.1.3. BDD unit-testing tools are there to help

 10.2. Going from acceptance criteria to implemented features

 10.2.1. BDD favors an outside-in development approach

 10.2.2. Start with a high-level acceptance criterion

 10.2.3. Automate the acceptance criteria scenarios

 10.2.4. Implement the step definitions

 10.2.5. Understand the domain model

 10.2.6. Write the code you’d like to have

 10.2.7. Use the step definition code to specify and implement the application code

 10.2.8. How did BDD help?

 10.3. Exploring low-level requirements, discovering design, and implementing more complex functionality

 10.3.1. Use step definition code to explore low-level design

 10.3.2. Working with tables of examples

 10.3.3. Discover new classes and services as you implement the production code

 10.3.4. Implement simple classes or methods immediately

 10.3.5. Use a minimal implementation

 10.3.6. Use stubs and mocks to defer the implementation of more complex code

 10.3.7. Expand on low-level technical specifications

 10.4. Tools that make BDD unit testing easier

 10.4.1. Practicing BDD with traditional unit-testing tools

 10.4.2. Writing specifications, not tests: the RSpec family

 10.4.3. Writing more expressive specifications using Spock or Spec2

 10.5. Using executable specifications as living documentation

 10.5.1. Using fluent coding to improve readability

 10.5.2. Fluent assertions in JavaScript

 10.5.3. Fluent assertions in static languages

 10.6. Summary

 4. Taking BDD Further

 Chapter 11. Living Documentation: reporting and project management

 11.1. Living documentation: a high-level view

 11.2. Are we there yet? Reporting on feature readiness and feature coverage

 11.2.1. Feature readiness: what features are ready to deliver

 11.2.2. Feature coverage: what requirements have been built

 11.3. Integrating a digital product backlog

 11.4. Organizing the living documentation

 11.4.1. Organizing living documentation by high-level requirements

 11.4.2. Organizing living documentation using tags

 11.4.3. Living documentation for release reporting

 11.5. Providing more free-form documentation

 11.6. Technical living documentation

 11.6.1. Unit tests as living documentation

 11.6.2. Living Documentation for legacy applications

 11.7. Summary

 Chapter 12. BDD in the build process

 12.1. Executable specifications should be part of an automated build

 12.1.1. Each specification should be self-sufficient

 12.1.2. Executable specifications should be stored under version control

 12.1.3. You should be able to run the executable specifications from the command line

 12.2. Continuous integration speeds up the feedback cycle

 12.3. Continuous delivery: any build is a potential release

 12.4. Continuous integration used to deploy living documentation

 12.4.1. Publishing living documentation on the build server

 12.4.2. Publishing living documentation to a dedicated web server

 12.5. Faster automated acceptance criteria

 12.5.1. Running parallel acceptance tests within your automated build

 12.5.2. Running parallel tests on multiple machines

 12.5.3. Running parallel web tests using Selenium Grid

 12.6. Summary

 12.7. Final words

 Index

 List of Figures

 List of Tables

 List of Listings

Deliberate Discovery—A “Sonnet”

 Uncertainty’s the muse of all that’s new,
And ignorance the space in which she plays;
A year’s enough to prove a vision true,
But we could prove it false in only days.
We dream, and chase our dream, and never fear
To fail, and fail. Up, up! And on again,
But ask us to pursue another’s goals
And failure makes us mice where we were men.
Ah, best laid plans! Where were you at the end
Who chained us and constrained us from the start?
We knew you made a fickle, fragile friend;
You tricked us when you claimed you had a heart!
We thought less travelled roads would see us winning
In places other fools had feared to stray—
If only we had known from the beginning
The ignorance we found along the way.
And yet, a list of dangers and disasters
Filled out, and scanned, and added to some more
Would still have left out some of what we mastered—
We didn’t know we didn’t know before.

 We planned our way with maps we’d made already
Assuming the terrain would be the same,
Expecting well-paved roads to keep us steady
And any local creatures to be tame.
We loaded up our caravans and wagons
With good advice, best practices and tools
But didn’t spot the legend—“Here be dragons!”
So we got burnt, again. They say that fools
Rush in, and yet we count ourselves as wise,
We praise each other’s skill and raise a glass
To intellect—ignoring the demise
Of expeditions just as skilled as ours.
When they return, worn out, their pride in shreds,
We laugh and say, “A death march! You expect
Such things to fail.” And in our clever heads
It’s obvious—at least in retrospect.
The dragons of our ignorance will slay us
If we don’t slay them first. We could be brave
And work for kings who don’t refuse to pay us
When we’re delayed because we found their cave.

 They say that matter cannot be created,
A fundamental principle and law,
While dragons keep emerging, unabated;
As many as you slay, there’s still one more.
Our ignorance is limitless—be grateful,
Or else we’d find we’ve nothing left to learn;
To be surprised by dragons may be fateful,
But truth be told, it’s best laid plans that burn.
We could seek out the dragons in their dungeons
And tread there softly, ready to retreat;
We could seek other roads, postponing large ones,
And only fight the ones we might defeat.
The world could be a world of dragon slayers
And stand as men and women, not as mice;
The joy that comes from learning more should sway us;
The fiercest dragons won’t surprise us twice.
Discover tiny dragons, be they few,
And all the mightiest, with equal praise—
Uncertainty’s our muse of all that’s new,
And ignorance the space in which she plays.

 —Liz Keogh

Foreword

 Since its modest beginnings as a coaching experiment over a decade ago, Behavior-Driven Development (BDD) has taken off in
 a way I never would have imagined. I’d like to tell you how it started, and why I believe it is more relevant today than it
 has ever been.

 When I first started working on BDD back in 2003, the software industry was going through a revolution. It was a time of possibility,
 with everything I knew about enterprise software delivery open to question. Two years earlier, a group of software professionals
 had come together to formulate the Agile Manifesto, and the year after that, in 2002, I was fortunate enough to join some
 of the pioneers of this new movement. In April of that year, I was hired in the newly opened London office of ThoughtWorks,
 Inc., a software consulting company at the forefront of the agile movement. Their chief scientist Martin Fowler was one of
 the signatories of the Agile Manifesto and a few years earlier had written Refactoring (Addison-Wesley Professional, 1999), which had a profound effect on how I thought about software. He was also on the first
 XP project at Chrysler with Kent Beck and Ward Cunningham. It is safe to say his agile credentials are pretty solid, and he
 had joined the team at ThoughtWorks because they worked in a way that resonated with those values.

 At this point I was over ten years into my career and I thought I was a decent programmer. That didn’t last very long. I was
 constantly amazed by the talent of the people I was working with and the game-changing nature of the things I was encountering,
 things we now take for granted. My first tech lead turned out to have invented continuous integration, which would have been
 even more intimidating if he hadn’t been such a thoroughly nice guy. That seemed to be a common theme among the early agilists.
 They were without exception generous with their knowledge, generous with their time, and humble about their discoveries and
 achievements.

 I had some great mentors in my early years at ThoughtWorks. I was encouraged to try things I’d never done before—coaching
 skeptical programmers, reaching out to anxious testers, and engaging with suspicious business folks. This, then, was the context
 in which BDD was born. It was a response to a triple conundrum: programmers didn’t want to write tests; testers didn’t want
 programmers writing tests; and business stakeholders didn’t see any value in anything that wasn’t production code. I didn’t
 think I was inventing a methodology—I was just trying to teach TDD to a bunch of programmers without scaring off the testers.

 I started by changing the words, moving from “tests” to “behavior.” This seemed to have a profound effect. Then I wrote some
 software to explore the idea (I registered the jbehave.org domain on Christmas Eve 2003, much to my wife’s dismay), and, the
 following year, developed the Given-When-Then vocabulary of scenarios with business analyst Chris Matts.

 Now it’s over a decade later and BDD has gone in some surprising directions. Liz Keogh integrated it with complexity theory;
 Chris Matts and Olav Maassen evolved it into RealOptions; and, of course, it has spawned a plethora of tools in multiple languages.
 It even has its own conference!

 Given all this, I’m delighted to see the arrival of a comprehensive BDD book. John Smart has taken on a large, fast-moving
 space and produced a book that is everything I would want it to be. He has managed to capture the essence of what I was driving
 at with BDD while acknowledging the many others who have been part of the journey. As well as a solid theoretical foundation,
 BDD in Action delivers a thorough treatment of the current state of BDD tools, along with general structural and automation guidance that
 will most likely outlive many of them.

 Other authors and practitioners have covered various aspects of BDD—the RSpec and Cucumber books provide a good background
 but are necessarily tool-oriented. Gojko Adzic’s Specification by Example (Manning, 2011) is a masterful treatment of the living documentation aspect of BDD and its intersection with acceptance test-driven
 development. But this is the first time I’ve seen all the pieces brought together into a cohesive whole.

 The last decade has seen agile methods move into the mainstream, which means the relationship between delivery teams and their
 stakeholders, and the feedback and communication involved in that, can be the difference between success and failure. BDD
 provides a means to develop and support that relationship, and BDD in Action is a great handbook for technical and non-technical participants alike.

 I would like to finish on a cautionary note. BDD is a mechanism for fostering collaboration and discovery through examples.
 The goal isn’t generating acceptance criteria or feature files; it isn’t automation; it isn’t testing; although BDD contains
 elements of all of these. I see teams obsessing about the number or density of feature files, or the degree of automation,
 or debating the merits of one tool over another. All of this is beside the point. The examples and scenarios of BDD are simply
 a form of documentation. More documentation isn’t better—better documentation is better! Don’t lose sight of the real goal,
 which is to use software to create business impact. BDD is just one way of staying focused on that goal, and is only useful
 to the extent that it helps with this. It isn’t an end in itself.

 It is exciting to see an idea you had brought to life articulated in someone else’s words, and I am grateful to John for his
 comprehensive analysis of the many facets of BDD in this book. I hope you enjoy reading it as much as I did, and that it helps
 you in your efforts to deliver software that matters.

 DAN NORTH
CREATOR OF BDD

Preface

 When I finally sat down to write about the origins of this book, I realized that my involvement with Behavior-Driven Development
 goes back much further than I thought.

 My first foray into the world of executable specifications was in 2001, though at the time, I didn’t know it by that name.
 In fact, at the time, I didn’t know it had a name. I was working on a project to write a pricing algorithm for an insurance
 company. Along with a hefty 200-page Word document, the client kindly provided us with an Excel spreadsheet containing 6,000
 or so rows of sample data that he used to check pricing changes. It was an afterthought: the idea was that we might find the
 spreadsheet handy to check our pricing application manually. I found it more convenient to set up a test harness to load the
 Excel data, run it against our pricing algorithm, and check the outcomes. While I was at it, I got the test harness to write
 an updated version of the spreadsheet—but with extra columns for the calculated values, highlighted in green if they matched,
 and red if they didn’t.

 At first nothing passed, and the spreadsheet was solid red. Then, I implemented the application bit by bit, following the
 large formal specifications document provided by our client, and, gradually, more and more of the spreadsheet went green.
 We even found a number of errors in the specifications along the way! The resulting code had a near-zero defect rate, and
 a delighted customer, and my first experiment with what would now be called Acceptance Test Driven Development and Living
 Documentation was a hit.

 I didn’t actually hear the term “Behavior-Driven Development” for another six years or so. While I was working on the Java
 Power Tools book in 2007, my good friend Andy Glover added an offhand question in one of his emails: “Quick question—what
 are your thoughts on BDD?” “Bee what?” I thought to myself, before running off to read Dan North’s seminal article on the
 topic.[1] And it immediately clicked. Dan had crystalized what I thought the next steps in testing practices should be.

 1 http://dannorth.net/introducing-bdd/, first published in March 2006

 I soon became involved in the BDD community, contributing to Andy’s BDD tool for Groovy, easyb,[2] and experimenting with other BDD tools and approaches, and BDD soon became an invaluable part of my tool kit when helping
 teams out with their agile adoption.

 2 http://easyb.org/

 Fast-forward four years: on a sunny summer day in January 2011, I met Andrew Walker in a cafe opposite Hyde Park in Sydney
 to discuss helping to get his teams started with TDD, BDD, and test automation. Andrew became a good friend, and we had many
 fascinating discussions, particularly around the ideas of Agile requirements management, executable specifications, and living
 documentation.

 The Thucydides[3] project was born of these conversations and from an idea—would it be possible to produce meaningful living documentation
 by observing the execution of automated acceptance tests as they run?

 3 http://thucydides.info

 Andrew was also the one to point out that I should write a book on the topic. In early 2013, I finally got in touch with the
 folks at Manning with the idea of a book on BDD. They were interested, and so a new book project was launched!

 This book is a labor of love about a topic I hold close to my heart. I regularly see confusion and misunderstanding in the
 community about what BDD is (and isn’t). One of the goals of this book is to give the broader software development community
 a better understanding of what BDD is, where it can be used, and how it can help. My hope is that you will find as many benefits
 in practicing BDD as I have.

Acknowledgements

 A little like a film, a book has a cast of hundreds, from minor roles to people whose contributions made this book possible.

 My thanks go to the dedication, professionalism, and attention to detail of all the folks at Manning: Michael Stephens, Maureen
 Spencer, Ozren Harlovic, Andy Carroll, Rebecca Rinehart, and many others. Dan Maharry, my development editor, was unflagging,
 courteous, and helpful—all the way to the final chapter in his drive to push this book into production. And thanks to Doug
 Warren, who did an exemplary job as a technical proofreader and came up with some great suggestions along the way.

 The reviewers also deserve special mention—this book would not be what it is without their help: David Cabrero, Dror Helper,
 Ferdinando Santacroce, Geraint Williams, Giuseppe Maxia, Gregory Ostermayr, Karl Metivier, Marc Bluemner, Renzo Kottmann,
 and Stephen Abrams.

 Thanks to Andrew Gibson, whose thorough and well-thought-out criticism was a major driver in making the book a much better
 one than it would have been otherwise. And special thanks to Liz Keogh, who provided invaluable feedback on many key parts
 of the book. Her “Deliberate Discovery” sonnet at the start of the book manages to capture many of the essential ideas behind BDD.

 I owe much of what I know about BDD to the BDD community: Gojko Adzic, Nigel Charman, Andrew Glover, Liz Keogh, Chris Matts,
 Dan North, Richard Vowles, and many others. Not to mention the broader Agile and open source communities: Dan Allen, John
 Hurst, Paul King, Aslak Knutsen, Bartosz Majsak, Alex Soto, Renee Troughton, and more. Thanks for so many fruitful conversations,
 email exchanges, pair coding sessions, and Skype chats! And special thanks to Dan North for contributing the foreword to the
 book.

 Much of the contents of the book is inspired by work done and conversations held over the years with clients, friends, and
 colleagues in many different organizations: Parikshit Basrur, Tom Howard, Ray King, Ian Mansell, Peter Merel, Michael Rembach,
 Simeon Ross, Trevor Vella, Gordon Weir, and many others.

 Finally, a very special thanks to my dedicated spouse, Chantal, and my boys, James and William, without whose patience, endurance,
 support, and encouragement this book would simply not have been possible.

About this Book

 The goal of this book is to help get teams up and running with effective BDD practices. It aims to give you a complete picture
 of how BDD practices apply at all levels of the software development process, including discovering and defining high-level
 requirements, implementing the application features, and writing executable specifications in the form of automated acceptance
 and unit tests.

Audience

 This book has a broad audience. It’s aimed both at teams who are completely new to BDD, and at teams who are already trying
 to roll out BDD or related practices, like Acceptance-Test-Driven Development or Specification by Example. It’s for teams
 who struggle with misaligned and changing requirements, time wasted due to defects and rework, and product quality. It’s for
 practitioners whose job is to help these teams, and it’s for everyone who shares a passion for discovering better ways to
 build and deliver software.

 Different people will get different things out of this book:

 	
Business analysts and testers will learn more effective ways of discovering requirements in collaboration with users, and of communicating these requirements
 to development teams.

 	
Developers will learn how to write higher-quality, more maintainable code with fewer bugs, how to focus on writing code that delivers
 real value, and how to build automated test suites that provide documentation and feedback for the whole team.

 	
Project managers and business stakeholders will learn how to help teams build better, more valuable software for the business.

How the book is organized

 The book is divided into four parts, each addressing different aspects of BDD:

 	
Part 1 presents the motivations, origins, and general philosophy of BDD, and concludes with a quick practical introduction to what
 BDD looks like in the real world.

 	
Part 2 discusses how BDD practices can help teams analyze requirements more effectively in order to discover and describe what features
 will deliver real value to the organization. This section lays the conceptual foundation for the rest of the book and presents
 a number of important requirements-analysis techniques.

 	
Part 3 provides more technical coverage of BDD practices. We’ll look at techniques for automating acceptance tests in a robust and
 sustainable way, study a number of BDD tools for different languages and frameworks, and see how BDD helps developers write
 cleaner, better-designed, higher-quality code. This section is hands-on and practical.

 	
Part 4 looks the broader picture of BDD in the context of project management, product documentation, reporting, and integration
 into the build process.

 Many of the practical examples in the book will use JVM-based languages and tools, but we’ll also look at examples of BDD
 tools for .NET, Ruby, Python, and JavaScript. The approaches I’ll describe will be generally applicable to any language.

 Because of the broad focus of the book, you may find different sections more or less applicable to your daily work. For example,
 business analysts might find the material on requirements analysis more relevant than the chapters on coding practices. Table 1 presents a (very) rough guide to the sections various readers might find particularly useful.

 Table 1. A rough indicator of the target audience for each section of this book

 	
 	
 Business analyst

 	
 Tester

 	
 Developer

 	
 Project manager

 	Part 1
 	
[image:] [image:] [image:]

 	
[image:] [image:] [image:]

 	
[image:] [image:] [image:]

 	
[image:] [image:] [image:]

 	Part 2
 	
[image:] [image:] [image:]

 	
[image:] [image:] [image:]

 	
[image:] [image:]

 	
[image:] [image:] [image:]

 	Part 3
 	[image:]
 	
[image:] [image:]

 	
[image:] [image:] [image:]

 	[image:]

 	Part 4
 	
[image:] [image:] [image:]

 	
[image:] [image:] [image:]

 	
[image:] [image:]

 	
[image:] [image:]

Prerequisites

 The prerequisites for BDD in Action will vary depending on the parts of the book being read.

 Parts 1 and 2 (high-level BDD)—These sections require little technical knowledge—they are aimed at all team members, and introduce general principles of
 BDD. A basic understanding of Agile development practices will be helpful.

 Part 3 (low-level BDD/TDD)—This section requires programming knowledge. Many examples are Java-based, but there are also examples in C#, Python, and
 JavaScript. The general approach is to illustrate concepts and practices with working code, rather than to document any one
 technology exhaustively. Different technology sections will benefit from a working knowledge of the following technologies:

 	
Maven —The Java/JVM code samples use Maven, though only a superficial knowledge (the ability to build a Maven project) is required.

 	
HTML/CSS —The sections on UI testing using Selenium/WebDriver need a basic understanding of how HTML pages are built, what a CSS selector
 looks like, and, optionally, some familiarity with XPath.

 	
Restful web services —The sections on testing web services need some understanding of how web services are implemented, and in particular how web
 service clients are implemented.

 	
JavaScript —The section on testing JavaScript and JavaScript applications requires a reasonable understanding of JavaScript programming.

 Part 4 (Taking BDD further)—This section is general, and has no real technical requirements.

Code conventions

 This book contains many source code examples illustrating the various tools and techniques discussed. Source code in listings
 or in the text appears in a fixed-width font like this. Other related concepts that appear in the text, such as class or variable names, also appear in this font.

 Because this book discusses many languages, I’ve made a special effort to keep all of the listings readable and easy to follow,
 even if you’re not familiar with the language being used. Most of the listings are annotated to make the code easier to follow,
 and some also have numbered cueballs, indicating particular lines of code that are discussed in the text that follows.

Source code downloads

 This book contains many source code examples in a variety of languages. The source code for these examples is available for
 download on GitHub at https://github.com/bdd-in-action, with a separate subdirectory for each chapter. Some examples are discussed across several chapters—in these cases, each
 chapter contains the version of the source code discussed in that chapter. The source code can also be downloaded from the
 publisher’s website at www.manning.com/BDDinAction.

 The source code projects don’t contain IDE-specific project files, but they’re laid out in such a way as to make it easy to
 import them into an IDE.

Solutions to exercises and other resources

 There are a number of exercises throughout this book. While they’re primarily designed to get you thinking about the topics
 under discussion, sample solutions are available on the book’s website at http://bdd-in-action.com. This site also contains links to the tools and libraries used in the book, and other useful related resources

Author Online

 Purchase of BDD in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/smart.

 This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum. Manning’s commitment to our readers is to provide a venue where a meaningful dialog between
 individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation
 on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author
 some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of BDD in Action is captioned “A Medieval Knight.” The illustration by Paolo Mercuri (1804–1884)is taken from “Costumes Historiques,” a multivolume
 compendium of historical costumes from the twelfth, thirteenth, fourteenth, and fifteenth centuries assembled and edited by
 Camille Bonnard and published in Paris in the 1850s or 1860s. The nineteenth century saw an increased interest in exotic locales
 and in times gone by, and people were drawn to collections such as this one to explore the world they lived in—as well as
 the world of the distant past.

 The colorful variety of Mercuri’s illustrations in this historical collection reminds us vividly of how culturally apart the
 world’s towns and regions were a few hundred years ago. In the streets or in the countryside people were easy to place—sometimes
 with an error of no more than a dozen miles—just by their dress. Their station in life, as well as their trade or profession,
 could be easily identified. Dress codes have changed over the centuries, and the diversity by region, so rich at one time,
 has faded away. Today, it is hard to tell apart the inhabitants of one continent from another, let alone the towns or countries
 they come from, or their social status or profession. Perhaps we have traded cultural diversity for a more varied personal
 life—certainly a more varied and faster-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of many centuries ago, brought back to life
 by Mercuri’s pictures.

Part 1. First steps

 Welcome to the world of BDD! The aim of part 1 of this book is to give you both a 50,000-foot-high view of the world of Behavior-Driven Development, and also a first taste
 of what BDD looks like in the field.

 In chapter 1, you’ll learn about the motivations and origins of Behavior-Driven Development and where it sits with regard to Agile and
 other software development approaches. You’ll discover the broad scope of BDD, learning how it applies at all levels of software
 development, from high-level requirements discovery and specification to detailed low-level coding. And you’ll learn how important
 it is not only to build the software right, but also to build the right software.

 As practitioners, we like to keep things grounded in real-world examples, so in chapter 2 you’ll see what BDD looks like in a real project, all the way from discovering the requirements and automating the high-level
 acceptance criteria to building and verifying the design and implementation, through to producing accurate and up-to-date
 technical and functional documentation.

 By the end of part 1, you should have a good grasp of the motivations and overall broad scope of BDD, as well as an idea of what it looks like
 in practice at different levels of the software development process.

Chapter 1. Building software that makes a difference

 This chapter covers

 	The problems that Behavior-Driven Development addresses

 	General principles and origins of Behavior-Driven Development

 	Activities and outcomes seen in a Behavior-Driven Development project

 	The pros and cons of Behavior-Driven Development

 This book is about building and delivering better software. It’s about building software that works well and is easy to change
 and maintain, but more importantly, it’s about building software that provides real value to its users. We want to build software
 well, but we also need to build software that’s worth building.

 In 2012, the U.S. Air Force decided to ditch a major software project that had already cost over $1 billion USD. The Expeditionary
 Combat Support System was designed to modernize and streamline supply chain management in order to save billions of dollars
 and meet new legislative requirements. But after seven years of development, the system had still “not yielded any significant
 military capability.”[1] The Air Force estimated that an additional $1.1 billion USD would be required to deliver just a quarter of the original scope,
 and that the solution could not be rolled out until 2020, three years after the legislative deadline of 2017.

 1 Chris Kanaracus, “Air Force scraps massive ERP project after racking up $1 billion in costs,” CIO, November 14, 2012, http://www.cio.com/article/2390341.

 This happens a lot in the software industry. According to a number of studies, around half of all software projects fail to
 deliver in some significant way. The 2011 edition of the Standish Group’s annual CHAOS Report found that 42% of projects were delivered late, ran over budget, or failed to deliver all of the requested features,[2] and 21% of projects were cancelled entirely. Scott Ambler’s annual survey on IT project success rates uses a more flexible
 definition of success, but still found a 30–50% failure rate, depending on the methodologies used.[3] This corresponds to billions of dollars in wasted effort, writing software that ultimately won’t be used or that doesn’t
 solve the business problem it was intended to solve.

 2 Whether these figures reflect more on our ability to build and deliver software or on our ability to plan and estimate is
 a subject of some debate in the Agile development community—see Jim Highsmith’s book Agile Project Management: Creating Innovative Products, second edition (Addison-Wesley Professional, 2009).

 3 Scott Ambler, Surveys Exploring the Current State of Information Technology Practices, http://www.ambysoft.com/surveys/.

 What if it didn’t have to be this way? What if we could write software in a way that would let us discover and focus our efforts
 on what really matters? What if we could objectively learn what features will really benefit the organization and the most
 cost-effective way to implement them? What if we could see beyond what the user asks for and build what the user actually
 needs?

 There are organizations discovering how to do just that. Many teams are successfully collaborating to build and deliver more
 valuable, more effective, and more reliable software. And they’re learning to do this faster and more efficiently. In this
 book, you’ll see how—we’ll explore a number of methods and techniques, grouped under the general heading of Behavior-Driven Development (BDD).

 BDD helps teams focus their efforts on identifying, understanding, and building valuable features that matter to businesses,
 and it makes sure that these features are well designed and well implemented.

 BDD practitioners use conversations around concrete examples of system behavior to help understand how features will provide
 value to the business. BDD encourages business analysts, software developers, and testers to collaborate more closely by enabling
 them to express requirements in a more testable way, in a form that both the development team and business stakeholders can
 easily understand. BDD tools can help turn these requirements into automated tests that help guide the developer, verify the
 feature, and document what the application does.

 BDD isn’t a software development methodology in its own right. It’s not a replacement for Scrum, XP, Kanban, RUP, or whatever
 methodology you’re currently using. As you’ll see, BDD incorporates, builds on, and enhances ideas from many of these methodologies.
 And no matter what methodology you’re using, there are ways that BDD can help make your life easier.

1.1. BDD from 50,000 feet

 So what does BDD bring to the table? Here’s a (slightly oversimplified) perspective. Let’s say Chris’s company needs a new
 module for its accounting software. When Chris wants to add a new feature, the process goes something like this (see figure 1.1):

 1. Chris tells a business analyst how he would like the feature to work.

 2. The business analyst translates Chris’s requests into a set of requirements for the developers, describing what the software
 should do. These requirements are written in English and stored in a Microsoft Word document.

