

 [image: cover]

Solr in Action

 Trey Grainger and Timothy Potter

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher

 Photographs in this book were created by Martin Evans and Jordan Hochenbaum, unless otherwise noted. Illustrations were created
 by Martin Evans, Joshua Noble, and Jordan Hochenbaum. Fritzing (fritzing.org) was used to create some of the circuit diagrams.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editors: Elizabeth Lexleigh, Susan Conant
Copyeditor: Melinda Rankin
Proofreader: Elizabeth Martin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617291029

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Meet Solr

 Chapter 1. Introduction to Solr

 Chapter 2. Getting to know Solr

 Chapter 3. Key Solr concepts

 Chapter 4. Configuring Solr

 Chapter 5. Indexing

 Chapter 6. Text analysis

 2. Core Solr capabilities

 Chapter 7. Performing queries and handling results

 Chapter 8. Faceted search

 Chapter 9. Hit highlighting

 Chapter 10. Query suggestions

 Chapter 11. Result grouping/field collapsing

 Chapter 12. Taking Solr to production

 3. Taking Solr to the next level

 Chapter 13. SolrCloud

 Chapter 14. Multilingual search

 Chapter 15. Complex query operations

 Chapter 16. Mastering relevancy

 Appendix A. Working with the Solr codebase

 Appendix B. Language-specific field type configurations

 Appendix C. Useful data import configurations

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Meet Solr

 Chapter 1. Introduction to Solr

 1.1. Why do I need a search engine?

 1.1.1. Managing text-centric data

 1.1.2. Common search-engine use cases

 1.2. What is Solr?

 1.2.1. Information retrieval engine

 1.2.2. Flexible schema management

 1.2.3. Java web application

 1.2.4. Multiple indexes in one server

 1.2.5. Extendable (plugins)

 1.2.6. Scalable

 1.2.7. Fault-tolerant

 1.3. Why Solr?

 1.3.1. Solr for the software architect

 1.3.2. Solr for the system administrator

 1.3.3. Solr for the CEO

 1.4. Features overview

 1.4.1. User-experience features

 1.4.2. Data-modeling features

 1.4.3. New features in Solr 4

 1.5. Summary

 Chapter 2. Getting to know Solr

 2.1. Getting started

 2.1.1. Installing Solr

 2.1.2. Starting the Solr example server

 2.1.3. Understanding Solr home

 2.1.4. Indexing the example documents

 2.2. Searching is what it’s all about

 2.2.1. Exploring Solr’s query form

 2.2.2. What comes back from Solr when you search

 2.2.3. Ranked retrieval

 2.2.4. Paging and sorting

 2.2.5. Expanded search features

 2.3. Tour of the Solr administration console

 2.4. Adapting the example to your needs

 2.5. Summary

 Chapter 3. Key Solr concepts

 3.1. Searching, matching, and finding content

 3.1.1. What is a document?

 3.1.2. The fundamental search problem

 3.1.3. The inverted index

 3.1.4. Terms, phrases, and Boolean logic

 3.1.5. Finding sets of documents

 3.1.6. Phrase queries and term positions

 3.1.7. Fuzzy matching

 3.1.8. Quick recap

 3.2. Relevancy

 3.2.1. Default similarity

 3.2.2. Term frequency

 3.2.3. Inverse document frequency

 3.2.4. Boosting

 3.2.5. Normalization factors

 3.3. Precision and Recall

 3.3.1. Precision

 3.3.2. Recall

 3.3.3. Striking the right balance

 3.4. Searching at scale

 3.4.1. The denormalized document

 3.4.2. Distributed searching

 3.4.3. Clusters vs. servers

 3.4.4. The limits of Solr

 3.5. Summary

 Chapter 4. Configuring Solr

 4.1. Overview of solrconfig.xml

 4.1.1. Common XML data-structure and type elements

 4.1.2. Applying configuration changes

 4.1.3. Miscellaneous settings

 4.2. Query request handling

 4.2.1. Request-handling overview

 4.2.2. Search handler

 4.2.3. Browse request handler for Solritas: an example

 4.2.4. Extending query processing with search components

 4.3. Managing searchers

 4.3.1. New searcher overview

 4.3.2. Warming a new searcher

 4.4. Cache management

 4.4.1. Cache fundamentals

 4.4.2. Filter cache

 4.4.3. Query result cache

 4.4.4. Document cache

 4.4.5. Field value cache

 4.5. Remaining configuration options

 4.6. Summary

 Chapter 5. Indexing

 5.1. Example microblog search application

 5.1.1. Representing content for searching

 5.1.2. Overview of the Solr indexing process

 5.2. Designing your schema

 5.2.1. Document granularity

 5.2.2. Unique key

 5.2.3. Indexed fields

 5.2.4. Stored fields

 5.2.5. Preview of schema.xml

 5.3. Defining fields in schema.xml

 5.3.1. Required field attributes

 5.3.2. Multivalued fields

 5.3.3. Dynamic fields

 5.3.4. Copy fields

 5.3.5. Unique key field

 5.4. Field types for structured nontext fields

 5.4.1. String fields

 5.4.2. Date fields

 5.4.3. Numeric fields

 5.4.4. Advanced field type attributes

 5.5. Sending documents to Solr for indexing

 5.5.1. Indexing documents using XML or JSON

 5.5.2. Using the SolrJ client library to add documents from Java

 5.5.3. Other tools for importing documents into Solr

 5.6. Update handler

 5.6.1. Committing documents to the index

 5.6.2. Transaction log

 5.6.3. Atomic updates

 5.7. Index management

 5.7.1. Index storage

 5.7.2. Segment merging

 5.8. Summary

 Chapter 6. Text analysis

 6.1. Analyzing microblog text

 6.2. Basic text analysis

 6.2.1. Analyzer

 6.2.2. Tokenizer

 6.2.3. Token filter

 6.2.4. StandardTokenizer

 6.2.5. Removing stop words with StopFilterFactory

 6.2.6. LowerCaseFilterFactory—lowercase letters in terms

 6.2.7. Testing your analysis with Solr’s analysis form

 6.3. Defining a custom field type for microblog text

 6.3.1. Collapsing repeated letters with PatternReplaceCharFilterFactory

 6.3.2. Preserving hashtags, mentions, and hyphenated terms

 6.3.3. Removing diacritical marks using ASCIIFoldingFilterFactory

 6.3.4. Stemming with KStemFilterFactory

 6.3.5. Injecting synonyms at query time with SynonymFilterFactory

 6.3.6. Putting it all together

 6.4. Advanced text analysis

 6.4.1. Advanced field attributes

 6.4.2. Per-language text analysis

 6.4.3. Extending text analysis using a Solr plugin

 6.5. Summary

 2. Core Solr capabilities

 Chapter 7. Performing queries and handling results

 7.1. The anatomy of a Solr request

 7.1.1. Request handlers

 7.1.2. Search components

 7.1.3. Query parsers

 7.2. Working with query parsers

 7.2.1. Specifying a query parser

 7.2.2. Local params

 7.3. Queries and filters

 7.3.1. The fq and q parameters

 7.3.2. Handling expensive filters

 7.4. The default query parser (Lucene query parser)

 7.4.1. Lucene query parser syntax

 7.5. Handling user queries (eDisMax query parser)

 7.5.1. eDisMax query parser overview

 7.5.2. eDisMax query parameters

 7.5.3. Searching across multiple fields

 7.5.4. Boosting queries and phrases

 7.5.5. Field aliasing

 7.5.6. User-accessible fields

 7.5.7. Minimum match

 7.5.8. eDisMax benefits and drawbacks

 7.6. Other useful query parsers

 7.6.1. Field query parser

 7.6.2. Term and Raw query parsers

 7.6.3. Function and Function Range query parsers

 7.6.4. Nested queries and the Nested query parser

 7.6.5. Boost query parser

 7.6.6. Prefix query parser

 7.6.7. Spatial query parsers

 7.6.8. Join query parser

 7.6.9. Switch query parser

 7.6.10. Surround query parser

 7.6.11. Max Score query parser

 7.6.12. Collapsing query parser

 7.7. Returning results

 7.7.1. Choosing a response format

 7.7.2. Choosing fields to return

 7.7.3. Paging through results

 7.8. Sorting results

 7.8.1. Sorting by fields

 7.8.2. Sorting by functions

 7.8.3. Fuzzy sorting

 7.9. Debugging query results

 7.9.1. Returning debug information

 7.10. Summary

 Chapter 8. Faceted search

 8.1. Navigating your content at a glance

 8.2. Setting up test data

 8.3. Field faceting

 8.4. Query faceting

 8.5. Range faceting

 8.6. Filtering upon faceted values

 8.6.1. Applying filters to your facets

 8.6.2. Safely filtering on faceted values

 8.7. Multiselect faceting, keys, and tags

 8.7.1. Keys

 8.7.2. Tags, excludes, and multiselect faceting

 8.8. Beyond the basics

 8.9. Summary

 Chapter 9. Hit highlighting

 9.1. Overview of hit highlighting

 9.2. How highlighting works

 9.2.1. Set up a new Solr core for UFO sightings

 9.2.2. Preprocess UFO sightings before indexing

 9.2.3. Exploring the UFO sightings dataset

 9.2.4. Hit highlighting out of the box

 9.2.5. Nuts and bolts

 9.2.6. Refining highlighter results

 9.3. Improving performance using FastVectorHighlighter

 9.4. PostingsHighlighter

 9.5. Summary

 Chapter 10. Query suggestions

 10.1. Spell-check

 10.1.1. Indexing Wikipedia articles

 10.1.2. Spell-check example

 10.1.3. Spell-check search component

 10.2. Autosuggesting query terms

 10.2.1. Autosuggest request handler

 10.2.2. Autosuggest search component

 10.3. Suggesting document field values

 10.3.1. Using n-grams for suggestions

 10.3.2. N-gram-driven request handler

 10.4. Suggesting queries based on user activity

 Schema design

 Find most popular query

 Boosting more recent popularity

 10.5. Summary

 Chapter 11. Result grouping/field collapsing

 11.1. Result grouping vs. field collapsing

 11.2. Skipping duplicate documents

 11.3. Returning multiple documents per group

 11.4. Grouping by functions and queries

 11.4.1. Grouping by function

 11.4.2. Grouping by query

 11.5. Paging and sorting grouped results

 11.6. Grouping gotchas

 11.6.1. Faceting upon result groups

 11.6.2. Distributed result grouping

 11.6.3. Returning a flat list

 11.6.4. Grouping on multivalued and tokenized fields

 11.6.5. Grouping performance

 11.7. Efficient field collapsing with the Collapsing query parser

 11.8. Summary

 Chapter 12. Taking Solr to production

 12.1. Developing a Solr distribution

 12.2. Deploying Solr

 12.2.1. Building your Solr distribution

 12.2.2. Embedded Solr

 12.3. Hardware and server configuration

 12.3.1. RAM and SSDs

 12.3.2. JVM settings

 12.3.3. The index shuffle

 12.3.4. Useful system tricks

 12.4. Data acquisition strategies

 Update Formats, Indexing Time, and Batching

 Data Import Handler

 Extracting text from files with Solr Cell

 12.5. Sharding and replication

 12.5.1. Choosing to shard

 12.5.2. Choosing to replicate

 12.6. Solr core management

 Defining cores

 Creating cores through the Core Admin API

 Reloading cores

 Renaming and swapping cores

 Unloading and deleting cores

 Splitting and merging indexes

 Getting the status of cores

 12.7. Managing clusters of servers

 12.7.1. Load balancers and Solr health check

 12.7.2. Generic vs. customized configuration

 12.8. Querying and interacting with Solr

 12.8.1. REST API

 12.8.2. Available Solr client libraries

 12.8.3. Using SolrJ from Java

 12.9. Monitoring Solr’s performance

 12.9.1. Solr’s Plugins / Stats page

 12.9.2. Solr cache performance

 12.9.3. Pulling stats from request handlers and MBeans

 12.9.4. External monitoring options

 12.9.5. Solr logs

 12.9.6. Load testing

 12.10. Upgrading between Solr versions

 12.11. Summary

 3. Taking Solr to the next level

 Chapter 13. SolrCloud

 13.1. Getting started with SolrCloud

 13.1.1. Starting Solr in cloud mode

 13.1.2. Motivation behind the SolrCloud architecture

 13.2. Core concepts

 13.2.1. Collections vs. cores

 13.2.2. ZooKeeper

 13.2.3. Choosing the number of shards and replicas

 13.2.4. Cluster-state management

 13.2.5. Shard-leader election

 13.2.6. Important SolrCloud configuration settings

 13.3. Distributed indexing

 13.3.1. Document shard assignment

 13.3.2. Adding documents

 13.3.3. Near real-time search

 13.3.4. Node recovery process

 13.4. Distributed search

 13.4.1. Multistage query process

 13.4.2. Distributed search limitations

 13.5. Collections API

 13.5.1. Create a collection

 13.5.2. Collection aliasing

 13.6. Basic system-administration tasks

 13.6.1. Configuration updates

 13.6.2. Rolling restart

 13.6.3. Restarting a failed node

 13.6.4. Is node X active?

 13.6.5. Adding a replica

 13.6.6. Offsite backup

 13.7. Advanced topics

 13.7.1. Custom hashing

 13.7.2. Shard splitting

 13.8. Summary

 Chapter 14. Multilingual search

 14.1. Why linguistic analysis matters

 14.2. Stemming vs. lemmatization

 14.3. Stemming in action

 14.4. Handling edge cases

 14.4.1. KeywordMarkerFilterFactory

 14.4.2. StemmerOverrideFilterFactory

 14.5. Available language libraries in Solr

 14.5.1. Language-specific analyzer chains

 14.5.2. Dictionary-based stemming (Hunspell)

 14.6. Searching content in multiple languages

 14.6.1. Separate field per language

 14.6.2. Separate index per language

 14.6.3. Multiple languages in one field

 14.6.4. Creating a field type to handle multiple languages per field

 14.7. Language identification

 14.7.1. Update processors for language identification

 14.7.2. Dynamically assigning detected language analyzers within a field

 14.8. Summary

 Chapter 15. Complex query operations

 15.1. Function queries

 15.1.1. Function syntax

 15.1.2. Searching on functions

 15.1.3. Returning functions like fields

 15.1.4. Sorting on functions

 15.1.5. Available functions in Solr

 15.1.6. Implementing a custom function

 15.2. Geospatial search

 15.2.1. Searching near a single point

 15.2.2. Advanced geospatial search

 15.3. Pivot faceting

 Pivot-faceting limitations

 Future improvements to pivot faceting

 15.4. Referencing external data

 Using Solr’s ExternalFileField

 15.5. Cross-document and cross-index joins

 Cross-document joins

 Cross-core joins

 15.6. Big data analytics with Solr

 15.7. Summary

 Chapter 16. Mastering relevancy

 16.1. The impact of relevancy tuning

 16.2. Debugging the relevancy calculation

 16.3. Relevancy boosting

 16.3.1. Per-field boosting

 16.3.2. Per-term boosting

 16.3.3. Payload boosting

 16.3.4. Function boosting

 16.3.5. Term-proximity boosting

 16.3.6. Elevating the relevancy of important documents

 16.4. Pluggable Similarity class implementations

 16.5. Personalized search and recommendations

 16.5.1. Search vs. recommendations

 16.5.2. Attribute-based matching

 16.5.3. Hierarchical matching

 16.5.4. More Like This

 16.5.5. Concept-based matching

 16.5.6. Geographical matching

 16.5.7. Collaborative filtering

 16.5.8. Hybrid approaches

 16.6. Creating a personalized search experience

 16.7. Running relevancy experiments

 16.8. Summary

 Appendix A. Working with the Solr codebase

 A.1. Pulling the right version of Solr

 A.2. Setting up Solr in your IDE

 Importing Lucene/Solr into Eclipse

 Importing Lucene/Solr into IntelliJ IDEA

 A.3. Debugging Solr code

 Attaching your IDE to a running Solr instance

 A.4. Downloading and applying Solr patches

 A.5. Contributing patches

 Appendix B. Language-specific field type configurations

 Appendix C. Useful data import configurations

 C.1. Indexing Wikipedia

 C.2. Indexing Stack Exchange

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Solr has had a long and successful history, but a major new chapter began recently with the advent of Solr 4 and SolrCloud.
 This is the perfect time for Solr in Action. With clear examples, enlightening diagrams, and coverage from key concepts through the newest features, Solr in Action will have you successfully using Solr in no time!

 Solr was born out of necessity in 2004, at CNET Networks (now CBS Interactive), to replace a commercial search engine being
 discontinued by the vendor. Even though I had no formal search background when I started writing Solr, it felt like a very
 natural fit, because I have always enjoyed making software “go fast.” I viewed Solr more as an alternate type of datastore
 designed around an inverted index than as a full-text search engine, and that has helped Solr extend beyond the legacy enterprise
 search market.

 By the end of 2005, Solr was powering the search and faceted navigation of a number of CNET sites, and soon it was made open
 source. Solr was contributed to the Apache Software Foundation in January 2006 and became a subproject of the Lucene PMC (with
 Lucene Java as its sibling). There had always been a large degree of overlap with Lucene (the core full-text search library
 used by Solr) committers, and in 2010 the projects were merged. Separate Lucene and Solr downloads would still be available,
 but they would be developed by a single unified team. Solr’s version number jumped to match that of Lucene, and the releases
 have since been synchronized.

 The recent Solr 4 release is a major milestone, adding SolrCloud—the set of highly scalable features including distributed
 indexing with no single points of failure. The NoSQL feature set was also expanded to include transaction logs, update durability,
 optimistic concurrency, and atomic updates. Solr in Action, written by longtime Solr power users and community members, Trey and Timothy, covers these important recent Solr features
 and provides an excellent starting point for those new to Solr.

 Solr is now used in more places than I could ever have imagined—from integrated library systems to e-commerce platforms, analytics
 and business intelligence products, content-management systems, internet searches, and more. It’s been rewarding to see Solr
 grow from a few early adopters to a huge global community of helpful users and active volunteers cooperatively pushing development
 forward.

 Solr in Action gives you the knowledge and techniques you need to use Solr’s features that have been under development since 2004. With
 Solr in Action in hand, you too are now well equipped to join the global community and help take Solr to new heights!

 YONIK SEELEY

 CREATOR OF SOLR

Preface

 In 2008, I was asked to take over leadership of CareerBuilder’s search technology team. We were using the Microsoft FAST search
 platform at the time, but realized that search was too important to the success of our business for us to continue relying
 on a commercial vendor instead of developing the domain expertise internally. I immediately began investigating open source
 alternatives such as Solr, which seemed to provide most of the key features needed for our products. By the summer of 2009,
 we decided that we were ready to bring our search expertise in-house and convert our systems to Solr.

 The timing was great. Lucene, the open source search library upon which Solr is built, had become a full top-level Apache
 project in February 2005, and Solr, which had been contributed to the Apache Software Foundation in 2006, had become a top-level
 Apache project in January of 2007. Both technologies were reaching critical mass and would soon be merged (in March 2010)
 into a unified project.

 By the summer of 2010, our entire platform was converted to Solr. In the process, we increased the speed of our searches,
 significantly reduced the number of servers necessary to support our search infrastructure, dropped expensive licensing fees,
 increased platform stability, and in-sourced much of the search expertise for which we had previously been dependent on a
 commercial vendor.

 Little did we know at that time how much additional value we would gain by bringing search in-house. We have been able to
 build entirely new suites of search-based products—from traditional keyword and semantic search, to big data analytics products,
 to real-time recommendation engines—utilizing Solr as a scalable search architecture to handle billions of documents and millions
 of queries an hour across hundreds of servers. We have entered the era of cloud services, elastic scalability, and an explosion
 of data that we strive to make meaningful for society, and with Solr we are able to tackle each of these challenges head-on.

 When Manning approached me about writing Solr in Action, I was hesitant because I knew it would be a large undertaking. My one requirement was that I needed a strong coauthor, and
 that is exactly what I found in Timothy Potter. Tim also has years of experience developing search-based solutions with Lucene
 and Solr. He has a wealth of expertise building text analysis systems for social data and architecting real-time analytics
 solutions using Solr and other cutting-edge big data technologies. With both of us having received so much help from the Solr
 community over the years and with such a clear need for an example-driven guide to Solr, Tim and I are excited to be able
 to provide Solr in Action to help the next generation of search engineers. It’s the book we wish we’d had five years ago when we started with Solr,
 and we hope that you find it to be useful, whether you are just getting introduced to Solr or are looking to take your knowledge
 to the next level.

 TREY GRAINGER

Acknowledgments

 Much like Solr, this book would not have been possible without the support of a large community of dedicated people:

 	Lucene/Solr committers who not only write amazing code but also provide invaluable expertise and advice, all the while demonstrating
 patience with new members of the community

 	Active Lucene/Solr community members who contribute code, update the wiki and other documentation, and answer questions on
 the Lucene and Solr mailing lists

 	Yonik Seeley, original creator of Solr, who contributed the foreword to our book

 	Our Manning Early Access Program (MEAP) readers who posted comments in the Author Online forum

 	The reviewers who provided valuable feedback throughout the development process: Alexandre Madurell, Ammar Alrashed, Brandon
 Harper, Chris Nauroth, Craig Smith, Edward Welker, Gregor Zurowski, John Viviano, Leo Cassarani, Robert Petersen, Scott Anthony,
 Sopan Shewale, and Uma Maheshwar Rao Gunuganti

 	Ivan Todorović and John Guthrie who provided a detailed technical proofread of the manuscript shortly before it went into
 production

 	Our Manning editors, Elizabeth Lexleigh, Susan Conant, Melinda Rankin, Elizabeth Martin, and Janet Vail

 	Bert Bates at Manning for helping us improve the instructional quality of our writing

 	Family and friends who supported us through the many hours of research and writing

Trey Grainger

 First and foremost, I would like to thank my amazing wife, Lindsay, for her support and patience during the many long days
 and nights it took to write this book. Without her understanding and help throughout the journey, this book would have never
 been possible (especially with the birth of our daughter midway through the project).

 I would also like to thank Paula and Steven Woolf for the countless hours they spent watching Melodie so that I could push
 this project to completion. Finally, I would like to thank the team at CareerBuilder—both the company leadership and my Search
 team—for giving me the opportunity to work with such great people and to build a cutting-edge search platform that benefits
 society in such a clear way.

Timothy Potter

 I would like to thank Sharon Russom, my mother, for instilling a love of learning and books early in my childhood, and David
 Potter, my father, for all of his support throughout college and my career. This book would not have been possible without
 the help of Lori Joy. Thank you for your support and for being understanding during the late evenings and missed weekends,
 and for being a sounding board early in the writing process.

 I also thank my former team at the Dachis Group. I could not have done this without their insightful questions about Solr
 and their giving me the opportunity to build a large-scale search solution using Solr.

About this Book

 Whether handling big data, building cloud-based services, or developing multitenant web applications, it’s vital to have a
 fast, reliable search solution. Apache Solr is a scalable and ready-to-deploy open source full-text search engine powered
 by Lucene. It offers key features like multilingual keyword searching, faceted search, intelligent matching, content clustering,
 and relevancy weighting right out of the box.

 Solr in Action is the definitive guide to implementing fast and scalable search using Apache Solr. It uses well-documented examples ranging
 from basic keyword searching to scaling a system for billions of documents and queries. With this book, you’ll gain a deep
 understanding of how to implement core Solr capabilities such as faceted navigation through search results, matched snippet
 highlighting, field collapsing and search results grouping, spell-checking, query autocomplete, querying by functions, and
 more. You’ll also see how to take Solr to the next level, with deep coverage of large-scale production use cases, sophisticated
 multilingual search, complex query operations, and advanced relevancy tuning strategies.

Roadmap

 Solr in Action is divided into three parts: “Meet Solr,” “Core Solr capabilities,” and “Taking Solr to the next level.” If you are new to Solr and to search in general, we strongly recommend that you read
 the chapters in part 1 in order, as many of the concepts presented in these chapters build on each other.

 The concepts covered in part 2 were chosen because they are common features of most search applications. You can safely skip any chapter in part 2 that may not apply to your current needs. For example, result grouping is a common feature in many search engines, but if
 your data doesn’t require grouping, then you can safely skip chapter 11.

 The four chapters (13–16) in part 3 are the most challenging as they introduce advanced topics, including multilingual search, running Solr in a large-scale
 cluster environment, advanced data operations, and relevancy tuning.

 Most of the chapters use hands-on activities to help you work through the material. Our goal for each example was that it
 be easy to use but cover the chapter topic thoroughly. In many examples, we used data from real-world datasets so that you
 would get exposure to working with realistic use cases.

 Chapter 1 introduces the type of data and use cases Solr was designed to handle. You’ll learn about the kinds of problems you can solve
 with Solr and gain an overview of its key features. Solr 4 is a significant milestone for the Lucene/Solr project, so even
 if you’re an expert on previous versions of Solr, we encourage you to read chapter 1 to get a sense for all the new and exciting features in Solr 4.

 Chapter 2 shows how to install and run Solr on your local workstation. After starting Solr, we demonstrate how to index and query a
 set of example documents that ship with Solr. We also take a brief tour of Solr’s web-based administration console.

 Chapter 3 introduces general search theory and how Solr implements that theory in practice. Most interestingly, this chapter covers
 the inverted search index and how relevancy scoring works to present the most relevant documents at the top of search results.
 Even if you have worked with Solr in the past, we recommend reading this chapter to refresh your understanding of the fundamental
 operations in a search engine.

 Chapter 4 shows the basics of Solr’s configuration, primarily focused on Solr’s main configuration file: solrconfig.xml. Our aim in this chapter is to introduce the most important configuration settings for Solr, particularly those that impact
 how Solr processes requests from client applications. The knowledge you gain in this chapter will be applied throughout the
 rest of the book.

 Chapter 5 teaches how Solr indexes documents, starting with a discussion of another important configuration file: schema.xml. You’ll learn how to define fields to represent structured data like numbers, dates, prices, and unique identifiers. We also
 cover how update requests are processed and configured using solrconfig.xml.

 Chapter 6 builds on the material in chapter 5 by showing how to index text fields using text analysis. Solr was designed to efficiently search and rank documents requiring
 full-text search. Text analysis is an important part of the search process in that it removes the linguistic variations between
 indexed text and queries.

 At this point in the book, you’ll have a solid foundation and will be ready to put Solr to work on your own search needs.
 As your knowledge of search and Solr grows, so too will your need to go beyond basic keyword searching and implement common
 search features such as advanced query parsing, hit highlighting, spell-checking, autosuggest, faceting, and result grouping.

 In chapter 7, we cover how to construct queries and how they are executed. You’ll learn about Solr’s many query parsers, as well as how
 to sort, format, return, and debug search results.

 In chapter 8, you’ll learn about one of the most powerful and popular features of Solr—faceting. Solr’s faceting provides tools to refine
 search criteria and helps users discover more information by categorizing search results into subgroups.

 Chapter 9 explains how to highlight query terms in search results in order to improve the user experience with your search solution.

 In chapter 10, we cover spell-checking and autosuggestions. Solr’s autosuggest features allow a user to start typing a few characters and
 receive a list of suggested queries as they type.

 Chapter 11 explores Solr’s result grouping and field collapsing support to help you return an optimal mix of search results when your
 index includes many similar documents, such as multiple locations of the same restaurant in a city.

 Chapter 12 helps you prepare to deploy Solr in a production environment. This chapter will help you plan your hardware and resource
 needs, as well as whether you need to consider sharding and replication to handle a large number of documents and query requests.

 Chapter 13 covers a set of distributed features known as SolrCloud. You’ll learn how to run Solr in cloud mode so that you can scale
 your search application to support a large volume of users and documents. You’ll come away from this chapter having a solid
 understanding of how Solr achieves scalability and fault tolerance by distributing indexes across multiple servers.

 Chapter 14 builds upon the text analysis concepts covered in chapter 6 by teaching you how to handle multilingual text in your search engine. If you need to work with non-English text or support
 multiple languages in the same index, this chapter is a must-read.

 Chapter 15 explores advanced query features, including function queries, geospatial search, multilevel faceting, and cross-document
 and cross-index joins.

 In chapter 16, you’ll learn techniques for improving the relevancy of your results, such as boosting, scoring based upon functions, alternate
 similarity algorithms, and debugging relevancy scores. In addition, we provide an in-depth discussion of using Solr for personalized
 search and recommendations.

 There are three appendixes, which cover a number of subtopics from earlier chapters in greater depth. Appendix A focuses on working with the Solr codebase and how you can create your own custom Solr distribution if you need features or
 bug fixes not available in an official release. This is an extension of some of the material from the beginning of chapter 12.

 Appendix B lists, in table format, out-of-the box configurations for many of the languages Solr supports. This material is an extended
 version of the language configurations covered in chapter 14.

 Appendix C highlights the Data Import Handler (DIH) in more detail (extending coverage from chapters 10 and 12), demonstrating the steps necessary for importing a number of large, publicly available datasets.

How to use this book

 Solr in Action is designed to be accessible for any software engineer—no previous experience working with search engines is assumed. The
 topics covered rise in expertise level throughout the book, and even the most seasoned Solr professionals are likely to learn
 something from the last few chapters. The scope of the book is massive—coming in at over 600 pages—but the engaging and practical
 real-world examples and careful balance between theory and practice make the book a real asset to anyone using Solr —whether
 you are just getting started or have years of experience.

 As mentioned above, the chapters in part 1 provide the foundation upon which the rest of the book will be built, and they will be critical for anyone new to Solr. These
 chapters should be read in sequence to give you the best overview of Solr and search in general. If you are new to Solr, chapter 2 will show you how to start and use Solr for the first time, and chapter 3 will provide the key search theory that the rest of the book builds upon. Configuring your Solr server and setting up field
 types to properly analyze your content round out the search topics needed to understand Solr’s fundamentals.

 Many of the chapters in part 2 can be skipped if your work does not include the features discussed. In particular, chapters 9, 10, and 11 are largely standalone topics that are not important for understanding later chapters, so you can skip them if you are not
 planning on implementing hit highlighting, query suggestions, or result grouping/field collapsing any time soon. Chapters 7 and 8 cover some of the most commonly used features of many search applications, so you will want to at least skim through them
 before putting the book away.

 The remaining chapters cover some of the advanced topics surrounding Solr. Tough challenges will be tackled, including scaling
 a cluster of servers, multilingual search, complex query operations, and advanced relevancy techniques. While all chapters
 in parts 2 and 3 build on part 1, chapter 13 (“SolrCloud”) additionally builds on chapter 12 (“Taking Solr to production”), chapter 15 (“Complex query operations”) builds on chapters 7 (“Performing queries and handling results”) and 8 (“Faceted search”), and chapter 16 (“Mastering relevancy”) further builds on chapter 15. In order to get the most benefit out of the book, be mindful not to skip any earlier chapters that provide the necessary
 background for your understanding of these more advanced topics.

 Many of the chapters include executable examples that you can run as you read along. These examples demonstrate new topics
 and provide you with the opportunity for hands-on exploration of Solr’s capabilities—often through just hitting a running
 Solr server from your web browser. While you do not have to run all of the examples and can simply use them as reference configurations
 in many cases, running the examples will provide you with hands-on experience that may help some of the more challenging topics
 sink in.

 Whether you plan to work your way through the whole book—going from first-time Solr user to Solr expert—is up to you. If not,
 you can always refer to the book over time as your interest and need for more advanced Solr capabilities continue to grow.

Code conventions and downloads

 Java code, configuration snippets, executable commands, contents of files, and server requests/responses (subsequently referred
 to as “source code”) in this book are in a fixed-width font, which sets them apart from the surrounding text. In many listings, the source code is annotated to point out the key concepts.
 In some cases, source code is in bold fixed-width font for emphasis. We have tried to format the source code so it fits within the available page space in the book by adding line
 breaks and using indentation carefully. Sometimes, however, very long lines include line-continuation markers like this: [image:].

 Throughout the book you will find references to files that are included with Solr or with the examples that come with the
 book. File names will typically be in italics, except when they are referenced within source code, where they will still use a fixed-width font.

 Source code examples appear throughout this book, with longer listings appearing under clear listing headers and shorter listings
 appearing between lines of text. Source code for all the working examples in the book is available for download from the publisher’s
 website at www.manning.com/SolrinAction or www.manning.com/grainger.

 A README.txt file is provided in the root folder of the accompanying source code, providing details on how to compile and run the examples.
 We chose to use Java as the development language for this book because it is the language used within the Lucene/Solr project,
 and we thought it would be easiest for readers to deal with one, consistent programming language.

 After you download Solr in chapter 2, we will refer to the folder in which you installed Solr as $SOLR_INSTALL in the rest of the book. Similarly, we will refer to the folder into which you download and extract the source code accompanying
 this book as $SOLR_IN_ACTION. Wherever you see either of these, you should substitute the actual folder name on your system.

Author Online

 Purchase of Solr in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your browser
 to www.manning.com/SolrinAction or www.manning.com/grainger. The page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you ask the authors challenging questions lest
 their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the cover illustration

 The figure on the cover of Solr in Action is captioned “A Gothscheer woman,” or a woman from a Gothic tribe. The Goths were a northern people that came from Scandinavia
 to Europe 2000 years ago, and originally settled around the Baltic Sea. They played an important role in the fall of the Roman
 Empire and the emergence of Medieval Europe. They eventually separated into two branches, with the Visigoths becoming federates
 of the Romans and then moving west to France and Spain, and the Ostrogoths moving to northern Italy, the Balkans, and as far
 east as the Black Sea. Over time, their language and culture disappeared as they assimilated in the regions where they had
 settled.

 This illustration is taken from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist
 who spent many years studying the botany, geology, and ethnography of many parts of the Austrian Empire, as well as the Veneto,
 the Julian Alps, and the western Balkans, inhabited in the past by peoples of many different tribes and nationalities. Hand-drawn
 illustrations accompany the many scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the uniqueness and individuality of Alpine
 and Balkan regions just 200 years ago. This was a time when the dress codes of two villages separated by a few miles identified
 people uniquely as belonging to one or the other, and when members of an ethnic tribe, social class, or trade could be easily
 distinguished by what they were wearing. Dress codes have changed since then and the diversity by region, so rich at the time,
 has faded away. It is now often hard to tell the inhabitant of one continent from another, and today’s inhabitants of the
 towns and villages on the shores of the Baltic or Mediterranean or Black Seas are not readily distinguishable from residents
 of other parts of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 costumes from two centuries ago brought back to life by illustrations such as this one.

Part 1. Meet Solr

 Our primary focus in these first six chapters will be to explore Solr’s two most important functions: indexing data and executing
 queries. After reading part 1, you should have a solid understanding of Solr’s query and indexing capabilities, including how to perform analysis of text
 and other data types, and how to execute searches across that data.

 As with every new subject, first we must start with the basics—learning how to install Solr and run it locally.

 If you are new to the full-text search space, some of the terminology may be unfamiliar, so consider chapter 3 a dictionary of sorts. What are the key differentiators between a search engine and a database? What is an inverted index?
 What is relevancy ranking and how does Solr implement it?

 With the basics out of the way, starting with chapter 4, we begin looking under the hood of the Solr engine to see how requests are executed and to get an idea of the configuration
 settings that govern request processing. The main configuration file in Solr, solrconfig.xml, contains numerous settings, some of which (such as cache management settings) are useful when just starting out, while others
 are intended for advanced users.

 A search engine is not very interesting until it has some documents indexed. In chapters 5 and 6, we focus on how documents get indexed, covering document schema design, field types, and text analysis. Understanding these
 core aspects of indexing will help you throughout the rest of the book.

Chapter 1. Introduction to Solr

 This chapter covers

 	Characteristics of data handled by search engines

 	Common search engine use cases

 	Key components of Solr

 	Reasons to choose Solr

 	Feature overview

 With fast-growing technologies such as social media, cloud computing, mobile applications, and big data, these are exciting,
 and challenging, times to be in computing. One of the main challenges facing software architects is handling the massive volume
 of data consumed and produced by a huge, global user base. In addition, users expect online applications to always be available
 and responsive. To address the scalability and availability needs of modern web applications, we’ve seen a growing interest
 in specialized, nonrelational data storage and processing technologies, collectively known as NoSQL (Not only SQL). These
 systems share a common design pattern of matching storage and processing engines to specific types of data rather than forcing
 all data into the once-standard relational model. In other words, NoSQL technologies are optimized to solve a specific class
 of problems for specific types of data. The need to scale has led to hybrid architectures composed of a variety of NoSQL and
 relational databases; gone are the days of the one-size-fits-all data-processing solution.

 This book is about Apache Solr, a specific NoSQL technology. Solr, just as its nonrelational brethren, is optimized for a
 unique class of problems. Specifically, Solr is a scalable, ready-to-deploy enterprise search engine that’s optimized to search
 large volumes of text-centric data and return results sorted by relevance. That was a bit of a mouthful, so let’s break that
 statement down into its basic parts:

 	
Scalable— Solr scales by distributing work (indexing and query processing) to multiple servers in a cluster.

 	
Ready to deploy— Solr is open source, is easy to install and configure, and provides a preconfigured example to help you get started.

 	
Optimized for search— Solr is fast and can execute complex queries in subsecond speed, often only tens of milliseconds.

 	
Large volumes of documents— Solr is designed to deal with indexes containing many millions of documents.

 	
Text-centric— Solr is optimized for searching natural-language text, like emails, web pages, resumes, PDF documents, and social messages
 such as tweets or blogs.

 	
Results sorted by relevance— Solr returns documents in ranked order based on how relevant each document is to the user’s query.

 In this book, you’ll learn how to use Solr to design and implement scalable search solutions. You’ll begin by learning about
 the types of data and use cases Solr supports. This will help you understand where Solr fits into the big picture of modern
 application architectures and which problems Solr is designed to solve.

1.1. Why do I need a search engine?

 Because you’re looking at this book, we suspect that you already have an idea about why you need a search engine. Rather than
 speculate on why you’re considering Solr, we’ll get right down to the hard questions you need to answer about your data and
 use cases in order to decide if a search engine is right for you. In the end, it comes down to understanding your data and
 users and picking a technology that works for both. Let’s start by looking at the properties of data that a search engine
 is optimized to handle.

 1.1.1. Managing text-centric data

 A hallmark of modern application architectures is matching the storage and processing engine to your data. If you’re a programmer,
 you know to select the best data structure based on how you use the data in an algorithm; that is, you don’t use a linked
 list when you need fast random lookups. The same principle applies with search engines. Search engines like Solr are optimized
 to handle data exhibiting four main characteristics:

 	
Text-centric

 	Read-dominant

 	Document-oriented

 	Flexible schema

 A possible fifth characteristic is having a large volume of data to deal with; that is, “big data,” but our focus is on what
 makes a search engine special among other NoSQL technologies. It goes without saying that Solr can deal with large volumes
 of data.

 Although these are the four main characteristics of data that search engines like Solr handle efficiently, you should think
 of them as rough guidelines, not strict rules. Let’s dig into each to see why they’re important for search. For now, we’ll
 focus on the high-level concepts; we’ll get into the “how” in later chapters.

Text-centric

 You’ll undoubtedly encounter the term unstructured used to describe the type of data that’s handled by a search engine. We think unstructured is a little ambiguous because
 any text document based on human language has implicit structure. You can think of unstructured as being from the perspective
 of a computer, which sees text as a stream of characters. The character stream must be parsed using language-specific rules
 to extract the structure and make it searchable, which is exactly what search engines do.

 We think text-centric is more appropriate for describing the type of data Solr handles, because a search engine is specifically designed to extract
 the implicit structure of text into its index to improve searching. Text-centric data implies that the text of a document
 contains information that users are interested in finding. Of course, a search engine also supports nontext data such as dates
 and numbers, but its primary strength is handling text data based on natural language.

 The centric part is important because if users aren’t interested in the information in the text, a search engine may not be the best
 solution for your problem. Consider an application in which employees create travel expense reports. Each report contains
 a number of structured data fields such as date, expense type, currency, and amount. In addition, each expense may include
 a notes field in which employees can provide a brief description of the expense. This would be an example of data that contains
 text but isn’t text-centric, in that it’s unlikely that the accounting department needs to search the notes field when generating
 monthly expense reports. Just because data contains text fields doesn’t mean that data is a natural fit for a search engine.

 Think about whether your data is text-centric. The main consideration is whether or not the text fields in your data contain
 information that users will want to query. If yes, then a search engine is probably a good choice. You’ll see how to unlock
 the structure in text by using Solr’s text analysis capabilities in chapters 5 and 6.

Read-dominant

 Another key aspect of data that search engines handle effectively is that data is read-dominant and therefore intended to
 be accessed efficiently, as opposed to updated frequently. Let’s be clear that Solr does allow you to update existing documents
 in your index. Think of read-dominant as meaning that documents are read far more often than they’re created or updated. But don’t take this to mean that you can’t
 write a lot of data or that you have limits on how frequently you can write new data. In fact, one of the key features in
 Solr 4 is near real-time (NRT) search, which allows you to index thousands of documents per second and have them be searchable almost immediately.

 The key point behind read-dominant data is that when you write data to Solr, it’s intended to be read and reread myriad times
 over its lifetime. Think of a search engine as being optimized for executing queries (a read operation), for example, as opposed
 to storing data (a write operation). Also, if you must update existing data in a search engine often, that could be an indication
 that a search engine might not be the best solution for your needs. Another NoSQL technology, like Cassandra, might be a better
 choice when you need fast random writes to existing data.

Document-oriented

 Until now, we’ve talked about data, but in reality, search engines work with documents. In a search engine, a document is a self-contained collection of fields, in which each field only holds data and doesn’t contain nested fields. In other
 words, a document in a search engine like Solr has a flat structure and doesn’t depend on other documents. The flat concept
 is slightly relaxed in Solr, in that a field can have multiple values, but fields don’t contain subfields. You can store multiple
 values in a single field, but you can’t nest fields inside of other fields.

 The flat, document-oriented approach in Solr works well with data that’s already in document format, such as a web page, blog,
 or PDF document, but what about modeling normalized data stored in a relational database? In this case, you need to denormalize
 data spread across multiple tables into a flat, self-contained document structure. We’ll learn how to approach problems like
 this in chapter 3.

 You also want to consider which fields in your documents must be stored in Solr and which should be stored in another system,
 such as a database. A search engine isn’t the place to store data unless it’s useful for search or displaying results; for
 example, if you have a search index for online videos, you don’t want to store the binary video files in Solr. Rather, large
 binary fields should be stored in another system, such as a content-distribution network (CDN). In general, you should store
 the minimal set of information for each document needed to satisfy search requirements. This is a clear example of not treating
 Solr as a general data-storage technology; Solr’s job is to find videos of interest, not to manage large binary files.

Flexible schema

 The last main characteristic of search-engine data is that it has a flexible schema. This means that documents in a search index don’t need to have a uniform structure. In a relational database, every row
 in a table has the same structure. In Solr, documents can have different fields. Of course, there should be some overlap between
 the fields in documents in the same index, but they don’t have to be identical.

 Imagine a search application for finding homes for rent or sale. Listings will obviously share fields like location, number
 of bedrooms, and number of bathrooms, but they’ll also have different fields based on the listing type. A home for sale would
 have fields for listing price and annual property taxes, whereas a home for rent would have a field for monthly rent and pet
 policy.

 To summarize, search engines in general and Solr in particular are optimized to handle data having four specific characteristics:
 text-centric, read-dominant, document-oriented, and flexible schema. Overall, this implies that Solr is not a general-purpose data-storage and processing technology.

 The whole point of having such a variety of options for storing and processing data is that you don’t have to find a one-size-fits-all
 technology. Search engines are good at certain things and quite horrible at others. This means, in most cases, you’re going
 to find that Solr complements relational and NoSQL databases more than it replaces them.

 Now that we’ve talked about the type of data Solr is optimized to handle, let’s think about the primary use cases a search
 engine like Solr is designed for. These use cases are intended to help you understand how a search engine is different than
 other data-processing technologies.

 1.1.2. Common search-engine use cases

 In this section, we look at things you can do with a search engine like Solr. As with our discussion of the types of data
 in section 1.1.1, use these as guidelines, not as strict rules. Before we get into specifics, we should remind you to keep in mind that the
 bar for excellence in search is high. Modern users are accustomed to web search engines like Google and Bing being fast and
 effective at serving modern web-information needs. Moreover, most popular websites have powerful search solutions to help
 people find information quickly. When you’re evaluating a search engine like Solr and designing your search solution, make
 sure you put user experience as a high priority.

Basic keyword search

 It’s almost too obvious to point out that a search engine supports keyword search, as that’s its main purpose, but it’s worth
 mentioning, because keyword search is the most typical way users will begin working with your search solution. It would be
 rare for a user to want to fill out a complex search form initially. Given that basic keyword search will be the most common
 way users will interact with your search engine, it stands to reason that this feature must provide a great user experience.

 In general, users want to type in a few simple keywords and get back great results. This may sound like a simple task of matching
 query terms to documents, but consider a few of the issues that must be addressed to provide a great user experience:

 	Relevant results must be returned quickly, within a second or less in most cases.

 	Spelling correction is needed in case the user misspells some of the query terms.

 	Autosuggestions save keystrokes, particularly for mobile applications.

 	Synonyms of query terms must be recognized.

 	
Documents containing linguistic variations of query terms must be matched.

 	Phrase handling is needed; that is, does the user want documents matching all words or any of the words in a phrase.

 	Queries with common words like “a,” “an,” “of,” and “the” must be handled properly.

 	The user must have a way to see more results if the top results aren’t satisfactory.

 As you can see, a number of issues exist that make a seemingly basic feature hard to implement without a specialized approach.
 But with a search engine like Solr, these features come out of the box and are easy to implement. Once you give users a powerful
 tool to execute keyword searches, you need to consider how to display the results. This brings us to our next use case: ranking
 results based on their relevance to the user’s query.

Ranked retrieval

 A search engine stands alone as a way to return “top” documents for a query. In an SQL query to a relational database, a row
 either matches a query or it doesn’t, and results are sorted based on one or more of the columns. A search engine returns
 documents sorted in descending order by a score that indicates the strength of the match of the document to the query. How
 the strength of the match is calculated depends on a number of factors, but in general a higher score means the document is
 more relevant to the query.

 Ranking documents by relevancy is important for a couple of reasons:

 	Modern search engines typically store a large volume of documents, often millions or billions of documents. Without ranking
 documents by relevance to the query, users can become overloaded with results with no clear way to navigate them.

 	Users are more comfortable with and accustomed to getting results from other search engines using only a few keywords. Users
 are impatient and expect the search engine to “do what I mean, not what I say.” This is true of search solutions backing mobile
 applications in which users on the go will enter short queries with potential misspellings and expect it to simply work.

 To influence ranking, you can assign more weight to, or boost, certain documents, fields, or specific terms. You can boost
 results by their age to help push newer documents toward the top of search results. You’ll learn about ranking documents in
 chapter 3.

Beyond keyword search

 With a search engine like Solr, users can type in a few keywords and get back results. For many users, though, this is only
 the first step in a more interactive session in which the search results give them the ability to keep exploring. One of the
 primary use cases of a search engine is to drive an information-discovery session. Frequently, your users won’t know exactly
 what they’re looking for and typically don’t have any idea what information is contained in your system. A good search engine
 helps users narrow in on their information needs.

 The central idea here is to return documents from an initial query, as well as tools to help users refine their search. In
 other words, in addition to returning matching documents, you also return tools that give your users an idea of what to do
 next. You can, for example, categorize search results using document features to allow users to narrow down their results.
 This is known as faceted search, and it’s one of the main strengths of Solr. You’ll see an example of a faceted search for real estate in section 1.2. Facets are covered in depth in chapter 8.

Don’t use a search engine to ...

 Let’s consider a few use cases in which a search engine wouldn’t be useful. First, search engines are designed to return a
 small set of documents per query, usually 10 to 100. More documents for the same query can be retrieved using Solr’s built-in
 paging support. Consider a query that matches a million documents; if you request all of those documents back at once, you
 should be prepared to wait a long time. The query itself will likely execute quickly, but reconstructing a million documents
 from the underlying index structure will be extremely slow, as engines like Solr store fields on disk in a format from which
 it’s easy to create a few documents, but from which it takes a long time to reconstruct many documents when generating results.

 Another use case in which you shouldn’t use a search engine is deep analytic tasks that require access to a large subset of
 the index (unless you have a lot of memory). Even if you avoid the previous issue by paging through results, the underlying
 data structure of a search index isn’t designed for retrieving large portions of the index at once.

 We’ve touched on this previously, but we’ll reiterate that search engines aren’t the place for querying across relationships
 between documents. Solr does support querying using a parent-child relationship, but doesn’t provide support for navigating
 complex relational structures as is possible with SQL. In chapter 3, you’ll learn techniques to adapt relational data to work with Solr’s flat document structure.

 Also, there’s no direct support in most search engines for document-level security, at least not in Solr. If you need fine-grained
 permissions on documents, then you’ll have to handle that outside of the search engine.

 Now that we’ve seen the types of data and use cases for which a search engine is the right (or wrong) solution, it’s time
 to dig into what Solr does and how it does it on a high level. In the next section, you’ll learn what capabilities Solr provides
 and how it approaches important software-design principles such as integration with external systems, scalability, and high
 availability.

1.2. What is Solr?

 In this section, we introduce the key components of Solr by designing a search application from the ground up. This will help
 you understand what specific features Solr provides and the motivation for their existence. But before we get into the specifics
 of what Solr is, let’s make sure you know what Solr isn’t.

 	Solr isn’t a web search engine like Google or Bing.

 	Solr has nothing to do with search engine optimization (SEO) for a website.

 Now imagine we need to design a real estate search web application for potential homebuyers. The central use case for this
 application will be searching for homes for sale using a web browser. Figure 1.1 depicts a screenshot from this fictitious web application. Don’t focus too much on the layout or design of the UI; it’s only
 a mock-up to give visual context. What’s important is the type of experience that Solr can support.

 Figure 1.1. Mock-up screenshot of a fictitious search application to depict Solr features

 [image:]

 Let’s tour the screenshot in figure 1.1 to illustrate some of Solr’s key features. Starting at the top-left corner, working clockwise, Solr provides powerful features
 to support a keyword search box. As we discussed in section 1.1.2, providing a great user experience with basic keyword search requires complex infrastructure that Solr provides out of the
 box. Specifically, Solr provides spell-checking (suggesting as the user types), synonym handling, phrase queries, and text-analysis
 tools to deal with linguistic variations in query terms, such as buying a house or purchase a home.

 Solr also provides a powerful solution for implementing geospatial queries. In figure 1.1, matching home listings are displayed on a map based on their distance from the latitude/longitude of the center of our fictitious
 neighborhood. With Solr’s geospatial support, you can sort documents by geo distance, limit documents to those within a particular
 geo distance, or even return the geo distance per document from any location. It’s also important that geospatial searches
 are fast and efficient, to support a UI that allows users to zoom in and out and move around on a map.

 Once the user performs a query, the results can be further categorized using Solr’s faceting support to show features of the
 documents in the result set. Facets are a way to categorize the documents in a result set in order to drive discovery and
 query refinement. In figure 1.1, search results are categorized into facets for features, home style, and listing type.

 Now that we have a basic idea of the type of functionality we need to support our real estate search application, let’s see
 how we can implement these features with Solr. To begin, we need to know how Solr matches home listings in the index to queries
 entered by users, as this is the basis for all search applications.

 1.2.1. Information retrieval engine

 Solr is built on Apache Lucene, a popular, Java-based, open source, information retrieval library. We’ll save a detailed discussion
 of what information retrieval is for chapter 3. For now, we’ll touch on the key concepts behind information retrieval, starting with the formal definition taken from one
 of the prominent academic texts on modern search concepts:

 Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies
 an information need from within large collections (usually stored on computers).[1]

 1 Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, Introduction to Information Retrieval (Cambridge University Press, 2008).

 In our example real estate application, the user’s primary need is finding a home to purchase based on location, home style,
 features, and price. Our search index will contain home listings from across the United States, which definitely qualifies
 as a “large collection.” In a nutshell, Solr uses Lucene to provide the core data structures for indexing documents and executing
 searches to find documents.

 Lucene is a Java-based library for building and managing an inverted index, a specialized data structure for matching query terms to text-based documents. Figure 1.2 provides a simplified depiction of a Lucene inverted index for our example real estate search application.

 Figure 1.2. The key data structure supporting information retrieval is the inverted index.

 [image:]

 You’ll learn all about how an inverted index works in chapter 3. For now, it’s sufficient to review figure 1.2 to get a feel for what happens when a new document (#44 in the diagram) is added to the index and how documents are matched
 to query terms using the inverted index.

 You might be thinking that a relational database could easily return the same results using an SQL query, which is true for
 this simple example. But one key difference between a Lucene query and a database query is that in Lucene results are ranked
 by their relevance to a query, and database results can only be sorted by one or more of the table columns. In other words,
 ranking documents by relevance is a key aspect of information retrieval and helps differentiate it from other types of queries.

 	

 Building a web-scale inverted index

 It might surprise you that search engines like Google also use an inverted index for searching the web. In fact, the need
 to build a web-scale inverted index led to the invention of MapReduce.

 MapReduce is a programming model that distributes large-scale data-processing operations across a cluster of commodity servers
 by formulating an algorithm into two phases: map and reduce. With its roots in functional programming, MapReduce was adapted
 by Google for building its massive inverted index to power web search. Using MapReduce, the map phase produces a unique term
 and document ID where the term occurs. In the reduce phase, terms are sorted so that all term/docID pairs are sent to the same reducer process for each unique term. The reducer sums up all term frequencies for each term to
 generate the inverted index.

 Apache Hadoop provides an open source implementation of MapReduce, and it’s used by the Apache Nutch open source project to
 build a Lucene inverted index for web-scale search using Solr. A thorough discussion of Hadoop and Nutch is beyond the scope
 of this book, but we encourage you to investigate these projects if you need to build a web-scale search index.

 	

 Now that we know that Lucene provides the core infrastructure to support search, let’s look at what value Solr adds on top
 of Lucene, starting with how you define your index structure using Solr’s flexible schema.xml configuration document.

 1.2.2. Flexible schema management

 Although Lucene provides the library for indexing documents and executing queries, what’s missing is an easy way to configure
 how you want your index to be structured. With Lucene, you need to write Java code to define fields and how to analyze those
 fields. Solr adds a simple, declarative way to define the structure of your index and how you want fields to be represented
 and analyzed: an XML-configuration document named schema.xml. Under the covers, Solr uses schema.xml to represent all of the possible fields and data types necessary to map documents into a Lucene index. This saves programming
 time and makes your index structure easier to understand and communicate to others. A Solr-built index is 100% compatible
 with a programmatically built Lucene index.

 Solr also adds nice constructs on top of the core Lucene indexing functionality. Specifically, Solr provides copy and dynamic
 fields. Copy fields provide a way to take the raw text contents of one or more fields and have them applied to a different field. Dynamic fields allow you to apply the same field type to many different fields without explicitly declaring them in schema.xml. This is useful for modeling documents that have many fields. We cover schema.xml in depth in chapters 5 and 6.

 In terms of our example real estate application, it might surprise you that we can use the Solr example server out of the
 box without making any changes to schema.xml. This shows how flexible Solr’s schema support is; the example Solr server is designed to support product search, but it
 works fine for our real estate search example.

 At this point, we know that Lucene provides a powerful library for indexing documents, executing queries, and ranking results.
 And, with schema.xml, you have a flexible way to define the index structure using an XML-configuration document instead of having to program to
 the Lucene API. Now you need a way to access these services from the web. In the next section, we learn how Solr runs as a
 Java web application and integrates with other technologies, using proven standards such as XML, JSON, and HTTP.

 1.2.3. Java web application

 Solr is a Java web application that runs in any modern Java Servlet engine, such as Jetty or Tomcat, or a full J2EE application
 server like JBoss or Oracle AS. Figure 1.3 depicts the major software components of a Solr server.

 Figure 1.3. Diagram of the main components of Solr 4

 [image:]

 Admittedly, figure 1.3 is a little overwhelming at first glance. Take a moment to scan the diagram and get a feel for the terminology; don’t worry
 if you’re not familiar with all of the terms and concepts represented in it. After reading this book, you should have a strong
 understanding of all the concepts presented in figure 1.3.

 As we mentioned in the introduction to this chapter, the Solr designers recognized that Solr is best as a complementary technology
 that works within existing architectures. In fact, you’ll be hard put to find an environment in which Solr doesn’t drop right
 in. As you’ll see in chapter 2, you can start the example Solr server in a couple of minutes after you finish the download.

 To achieve the goal of easy integration, Solr’s core services need to be accessible from many different applications and languages.
 Solr provides simple REST-like services based on the proven standards of XML, JSON, and HTTP. As a brief aside, we avoid the
 RESTful label for Solr’s HTTP-based API, as it doesn’t strictly adhere to all REST (Representational State Transfer) principles. For instance, in Solr, you use HTTP POST to delete documents instead of HTTP DELETE.

 A REST-like interface is nice as a foundation, but often developers like to have access to a client library in their language
 of choice to abstract away some of the boilerplate machinery of invoking a web service and processing the response. The good
 news here is that most of the popular languages, including Python, PHP, Java, .NET, and Ruby, have a Solr client library.

 1.2.4. Multiple indexes in one server

 One hallmark of modern application architectures is the need for flexibility in the face of rapidly changing requirements.
 One of the ways Solr helps in this situation is that you don’t have to do all things in Solr with one index, because Solr
 supports running multiple cores in a single engine. In figure 1.3, we’ve depicted multiple cores as separate layers, all running in the same Java web-application environment.

 Think of each core as a separate index and configuration, and there can be many cores in a single Solr instance. This allows
 you to manage multiple cores from one server so that you can share server resources and administration tasks such as monitoring
 and maintenance. Solr provides an API for creating and managing multiple cores, which will be covered in chapter 12.

 One use of Solr’s multicore support is data partitioning, such as having one core for recent documents and another core for
 older documents, known as chronological sharding. Another use of Solr’s multicore support is to support multitenant applications.

 In our real estate application, we might use multiple cores to manage different types of listings that are different enough
 to justify having different indexes for each. Consider real estate listings for rural land instead of homes. Buying rural
 land is a different process than buying a home in a city, so it stands to reason that we might want to manage our land listings
 in a separate core.

 1.2.5. Extendable (plugins)

 Figure 1.3 depicted three main subsystems in Solr: document management, query processing, and text analysis. Of course, these are high-level
 abstractions for complex subsystems in Solr; we’ll learn about each one later in the book. Each system is composed of a modular
 “pipeline” that allows you to plug in new functionality. This means that instead of overriding the entire query-processing
 engine in Solr, you plug a new search component into an existing pipeline. This makes the core Solr functionality easy to
 extend and customize to meet your specific application needs.

 1.2.6. Scalable

 Lucene is an extremely fast search library, and Solr takes full advantage of Lucene’s speed. But regardless of how fast Lucene
 is, a single server will reach its limits in terms of how many concurrent queries from different users it can handle due to
 CPU and I/O constraints.

 As a first step to achieving scalability, Solr provides flexible cache-management features that help your server reuse computationally
 expensive data structures. Specifically, Solr comes preconfigured with a number of caches to save expensive recomputations,
 such as caching the results of a query filter. We’ll learn about Solr’s cache-management features in chapter 4.

 Caching gets you only so far, and at some point you’re going to need to scale out your capacity to handle more documents and
 higher query throughput by adding more servers. For now, let’s focus on the two most common dimensions of scalability in Solr—query
 throughput and the number of documents indexed. Query throughput is the number of queries your engine can support per second.
 Even though Lucene can execute each query quickly, it’s limited in terms of how many concurrent requests a single server can
 handle. For higher query throughput, you add replicas of your index so that more servers can handle more requests. This means
 that if your index is replicated across three servers, you can handle roughly three times the number of queries per second,
 because each server handles one-third of the query traffic. In practice, it’s rare to achieve perfect linear scalability,
 so adding three servers may only allow you to handle two and a half times the query volume of one server.

 The other dimension of scalability is the number of documents indexed. If you’re dealing with large volumes, then you’ll likely
 reach a point at which you have too many documents in a single instance, and query performance will suffer. To handle more
 documents, you split the index into smaller chunks called shards, then distribute the searches across the shards.

 	

 Scaling out with virtualized commodity hardware

 One trend in modern computing is building software architectures that can scale horizontally using virtualized commodity hardware.
 Add more commodity servers to handle more traffic. Fueling this trend toward using virtualized commodity hardware are cloud-computing
 providers such as Amazon EC2. Although Solr will run on virtualized hardware, you should be aware that search is I/O and memory
 intensive. Therefore, if search performance is a top priority for your organization, you should consider deploying Solr on
 higher-end hardware with high-performance disks, ideally solid-state drives (SSDs). Hardware considerations for deploying
 Solr are discussed in chapter 12.

 	

 Scalability is important, but ability to survive failures is also important for a modern system. In the next section, we discuss
 how Solr handles software and hardware failures.

 1.2.7. Fault-tolerant

 Beyond scalability, you need to consider what happens if one or more of your servers fails, particularly if you’re planning
 to deploy Solr on virtualized hardware or commodity hardware. The bottom line is that you must plan for failures. Even the best architectures and the most high-end hardware will experience failures.

 Let’s assume you have four shards for your index, and the server hosting shard2 loses power. At this point, Solr can’t continue
 indexing documents and can’t service queries, so your search engine is effectively down. To avoid this situation, you can
 add replicas of each shard. In this case, when shard2 fails, Solr reroutes indexing and query traffic to the replica, and
 your Solr cluster remains online. The result of this failure is that indexing and queries can still be processed, but they
 may not be as fast because you have one less server to handle requests. We’ll discuss failover scenarios in chapters 12 and 13.

 At this point, you’ve seen that Solr has a modern, well-designed architecture that’s scalable and fault-tolerant. Although
 these are important aspects to consider if you’ve already decided to use Solr, you still might not be convinced that Solr
 is the right choice for your needs. In the next section, we describe the benefits of Solr from the perspective of different
 stakeholders, such as the software architect, system administrator, and CEO.

1.3. Why Solr?

 In this section, we provide key information to help you decide if Solr is the right technology for your organization. Let’s
 begin by addressing why Solr is attractive to software architects.

 1.3.1. Solr for the software architect

 When evaluating new technology, software architects must consider a number of factors including stability, scalability, and
 fault tolerance. Solr scores high marks in all three categories.

 In terms of stability, Solr is a mature technology supported by a vibrant community and seasoned committers. One thing that
 shocks new users to Solr and Lucene is that it isn’t unheard of to deploy from source code pulled directly from the trunk,
 rather than waiting for an official release. We won’t advise you either way on whether this is acceptable for your organization.
 We only point this out because it’s a testament to the depth and breadth of automated testing in Lucene and Solr. If you have
 a nightly build off trunk in which all the automated tests pass, then you can be fairly confident that the core functionality
 is solid.

 We’ve touched on Solr’s approach to scalability and fault tolerance in sections 1.2.6 and 1.2.7. As an architect, you’re probably most curious about the limitations of Solr’s approach to scalability and fault tolerance.
 First, you should realize that the sharding and replication features in Solr have been improved in Solr 4 to be robust and
 easier to manage. The new approach to scaling is called SolrCloud. Under the covers, SolrCloud uses Apache ZooKeeper to distribute
 configurations across a cluster of Solr servers and to keep track of cluster state. Here are highlights of the new SolrCloud
 features:

 	Centralized configuration.

 	Distributed indexing with no single point of failure (SPoF).

 	
Automated failover to a new shard leader.

 	Queries can be sent to any node in a cluster to trigger a full, distributed search across all shards, with failover and load-balancing
 support built in.

 This isn’t to say that Solr scaling doesn’t have room for improvement. SolrCloud still requires manual interaction when modifying
 the size of your search indexes (merging or splitting indexes), and not all Solr features work in a distributed mode. We’ll
 get into all of the specifics of scaling Solr in chapter 12, and the new SolrCloud features in particular in chapter 13, but we want to make sure architects are aware that Solr scaling has come a long way in the past few years and now enables
 robust scaling with no SPoF.

 1.3.2. Solr for the system administrator

 As a system administrator, high among your questions about adopting a new technology like Solr is whether it fits into your
 existing infrastructure. The easy answer is: yes it does. As Solr is Java-based, it runs on any OS platform that has a J2SE
 6.x/7.x JVM. Out of the box, Solr embeds Jetty, the open source Java servlet engine provided by Oracle. Otherwise, Solr is
 a standard Java web application that deploys easily to any Java web application server such as JBoss or Apache Tomcat.

 All access to Solr can be done via HTTP, and Solr is designed to work with caching HTTP reverse proxies like Squid and Varnish.
 Solr also works with JMX, so you can hook it up to your favorite monitoring application, such as Nagios.

 Also, Solr provides a nice administration console for checking configuration settings, viewing statistics, issuing test queries,
 and monitoring the health of SolrCloud. Figure 1.4 is a screenshot of the Solr 4 administration console. We’ll learn more about that in chapter 2.

 Figure 1.4. A screenshot of the Solr 4 administration console, in which you can send test queries, ping the server, view configuration
 settings, and see how your shards and replicas are distributed in a cluster.

 [image:]

 1.3.3. Solr for the CEO

 Although it’s unlikely that many CEOs will be reading this book, here are some key talking points about Solr in case your
 CEO stops you in the hall.

 	Executives like to know that an investment in a technology today is going to pay off in the long term. You can emphasize that
 many companies are still running on Solr 1.4, which was released in 2009; this means that Solr has a successful track record
 and is constantly being improved.

 	CEOs like technologies that are predictable. As you’ll see in the next chapter, Solr “just works,” and you can have it up
 and running in minutes.

 	Solr has a large support community. What happens if the Solr guy walks out the door; will business come to a halt? It’s true
 that Solr is complex technology, but having a vibrant community behind it means that you have help when you need it. You also
 have access to the source code, which means that if something is broken and needs fixing, you can do it yourself. Many commercial
 service providers can also help you plan, implement, and maintain your Solr installation, and many offer training courses
 for Solr.

 	Solr doesn’t require much initial investment to get started. (This one may be an argument of more interest to the CFO.) Without
 knowing the size and scale of your environment, we’re confident in saying that you can start up a Solr server in a few minutes
 and be indexing documents quickly. A modest server running in the cloud can handle millions of documents and many queries
 with subsecond response times.

1.4. Features overview

 Finally, let’s do a quick rundown of Solr’s main features, organized around the following categories:

 	User experience

 	Data modeling

 	New features in Solr 4

 Providing a great user experience with your search solution will be a common theme throughout this book, so let’s start by
 seeing how Solr helps make your users happy.

 1.4.1. User-experience features

 Solr provides a number of important features that help you deliver a search solution that’s easy to use, intuitive, and powerful.
 You should note, however, that Solr only exposes a REST-like HTTP API and doesn’t provide search-related UI components in
 any language or framework. You’ll have to roll up your sleeves and develop your own search UI components that take advantage
 of some of the following user-experience features:

 	Pagination and sorting

 	Faceting

 	
Autosuggest

 	Spell-checking

 	Hit highlighting

 	Geospatial search

Pagination and sorting

 Rather than returning all matching documents, Solr is optimized to serve paginated requests, in which only the top N documents are returned on the first page. If users don’t find what they’re looking for on the first page, you can request
 subsequent pages using simple API request parameters. Pagination helps with two key outcomes: (1) results are returned more
 quickly, because each request only returns a small subset of the entire search results; and (2) it helps you track how many
 queries result in requests for more pages, which may be an indication of a relevance-scoring problem. You’ll learn about paging
 and sorting in chapter 7.

Faceting

 Faceting provides users with tools to refine their search criteria and discover more information by categorizing search results
 into subgroups using facets. In our real estate example (figure 1.1), we saw how search results from a basic keyword search were organized into three facets: features, home style, and listing
 type. Faceting is one of the more popular and powerful features in Solr; we cover it in depth in chapter 8.

Autosuggest

 Most users will expect your search application to “do the right thing,” even if they provide incomplete information. Autosuggest
 allows users to see a list of suggested terms and phrases based on documents in your index. Solr’s autosuggest features allow
 a user to start typing a few characters and receive a list of suggested queries with each keystroke. This reduces the number
 of incorrect queries, particularly because many users may be searching from a mobile device with a small keyboard.

 Autosuggest gives users examples of terms and phrases available in the index. Referring to our real estate example, as a user
 types hig... Solr’s autosuggestion feature can return suggestions like “highlands neighborhood” or “highlands ranch.” We cover autosuggest
 in chapter 10.

Spell-checker

 In the age of mobile devices and people on the go, spelling correction support is essential. Again, users expect the search
 engine to handle misspellings gracefully. Solr’s spell-checker supports two basic modes:

 	
Autocorrect— Solr can make the spell correction automatically, based on whether the misspelled term exists in the index.

 	
Did you mean— Solr can return a suggested query that might produce better results so that you can display a hint to your users, such as
 “Did you mean highlands?” if your user typed in hilands.

 Spelling correction was revamped in Solr 4 to be easier to manage and maintain; we’ll see how this works in chapter 10.

Hit highlighting

 When searching documents that have a significant amount of text, you can display specific sections of each document using
 Solr’s hit-highlighting feature. Most useful for longer format documents, hit highlighting helps users find relevant documents
 by highlighting sections of search results that match the user’s query. Sections are generated dynamically based on their
 similarity to the query. We cover hit highlighting in chapter 9.

Geospatial search

 Geographical location is a first-class concept in Solr 4, in that it has built-in support for indexing latitude and longitude
 values as well as sorting or ranking documents by geographical distance. Solr can find and sort documents by distance from
 a geo location (latitude and longitude). In the real estate example, matching listings are displayed on an interactive map
 in which users, using geospatial search, can zoom in/out and move the map’s center point to find nearby listings.

 Another exciting addition to Solr 4 is that you can index geographical shapes such as polygons, which allows you to find documents
 that intersect geographical regions. This might be useful for finding home listings in specific neighborhoods using a precise
 geographical representation of a neighborhood. We cover Solr’s geospatial search features in chapter 15.

 1.4.2. Data-modeling features

 As we discussed in section 1.1, Solr is optimized to work with specific types of data. In this section, we provide an overview of key features that help
 you model data for search:

 	Result grouping/field collapsing

 	Flexible query support

 	Joins

 	Document clustering

 	Importing rich document formats such as PDF and Word

 	Importing data from relational databases

 	Multilingual support

Result grouping/field collapsing

 Although Solr requires a flat, denormalized document, Solr allows you to treat multiple documents as a group based on some
 common property shared by all documents in the group. Result grouping, also referred to as field collapsing, allows you to
 return unique groups instead of individual documents in the results.

 The classic example of field collapsing is threaded email discussions, in which emails matching a specific query can be grouped
 under the original email message that started the conversation. You’ll learn about result grouping/field collapsing in chapter 11.

Flexible query support

 Solr provides a number of powerful query features, including

 	Conditional logic using AND, OR, and NOT

 	Wildcard matching

 	Range queries for dates and numbers

 	Phrase queries with slop to allow for some distance between terms

 	Fuzzy string matching

 	Regular expression matching

 	Function queries

 We’ll cover these terms in chapter 7.

Joins

 In SQL, you use a join to create a relation by pulling data from two or more tables together using a common property such as a foreign key. In Solr,
 joins are more like SQL subqueries, in that you don’t build documents by joining data from other documents. With Solr joins,
 you can return child documents of parents that match your search criteria. One example in which Solr joins are useful is returning
 all retweets of a Twitter message into a single response. We discuss joins in chapter 15.

Document clustering

 Document clustering allows you to identify groups of documents that are similar, based on the terms present in each document.
 This is helpful to avoid returning many documents containing the same information in search results. For example, if your
 search engine is based on news articles pulled from multiple RSS feeds, it’s likely that you’ll have many documents for the
 same news story. Rather than returning multiple results for the same story, you can use clustering to pick a single representative
 story. Clustering techniques are discussed briefly in chapter 16.

Importing rich document formats such as PDF and Word

 In some cases, you may want to take a bunch of existing documents in common formats like PDF and Word and make them searchable.
 With Solr this is easy, because it integrates with the Apache Tika project that supports most popular document formats. Importing
 rich format documents is covered briefly in chapter 12.

Importing data from relational databases

 If the data you want to search with Solr is in a relational database, you can configure Solr to create documents using an
 SQL query. We cover Solr’s Data Import Handler (DIH) in chapter 12.

Multilingual support

 Solr and Lucene have a long history of working with multiple languages. Solr has language detection built in and provides
 language-specific text-analysis solutions for many languages. We’ll see Solr’s language detection and multilingual text analysis
 in action in chapter 14.

 1.4.3. New features in Solr 4

 Before we wrap up this chapter, let’s look at a few of the exciting new features in Solr 4. In general, Solr 4 is a huge milestone
 for the Apache Solr community, as it addresses many of the major pain points discovered by real users over the past several
 years. We selected a few of the main features to highlight here, but we’ll also point out new features in Solr 4 throughout
 the book.

 	Near real-time search

 	Atomic updates with optimistic concurrency

 	Real-time get

 	Write durability using a transaction log

 	Easy sharding and replication using ZooKeeper

Near real-time search

 Solr’s near real-time (NRT) search feature supports applications that have a high velocity of documents that need to be searchable
 within seconds of being added to the index. With NRT, you can use Solr to search rapidly changing content sources such as
 breaking news and social networks. We cover NRT in chapter 13.

Atomic updates with optimistic concurrency

 The atomic update feature allows a client application to add, update, delete, and increment fields on an existing document
 without having to resend the entire document. If the price of a home in our example real estate application from section 1.2 changes, we can send an atomic update to Solr to change the price field specifically.

 You might be wondering what happens if two different users attempt to change the same document concurrently. Solr guards against
 incompatible updates using optimistic concurrency. In a nutshell, Solr uses a special version field named _version_ to enforce safe update semantics for documents. In the case of two different users trying to update the same document concurrently,
 the user that submits updates last will have a stale version field, so their update will fail. Atomic updates and optimistic
 concurrency are covered in chapter 5.

Real-time get

 At the beginning of this chapter, we stated that Solr is a NoSQL technology. Solr’s real-time get feature definitely fits
 within the NoSQL approach by allowing you to retrieve the latest version of a document using its unique identifier, regardless
 of whether that document has been committed to the index. This is similar to using a key-value store such as Cassandra to
 retrieve data using a row key.

 Prior to Solr 4, a document wasn’t retrievable until it was committed to the Lucene index. With the real-time get feature
 in Solr 4, you can safely decouple the need to retrieve a document by its unique ID from the commit process. This can be useful
 if you need to update an existing document after it’s sent to Solr without having to do a commit first. As we’ll learn in
 chapter 5, commits can be expensive and can impact query performance.

Write durability using a transaction log

 When a document is sent to Solr for indexing, it’s written to a transaction log to prevent data loss in the event of server
 failure. Solr’s transaction log sits between the client application and the Lucene index. It also plays a role in servicing
 real-time get requests, as documents are retrievable by their unique identifier regardless of whether they’re committed to
 Lucene.

 The transaction log allows Solr to decouple update durability from update visibility. This means that documents can be on
 durable storage but not visible in search results yet. This gives your application control over when to commit documents to
 make them visible in search results without risking data loss if a server fails before you commit. We’ll discuss durable writes
 and commit strategies in chapter 5.

Easy sharding and replication using ZooKeeper

 If you’re new to Solr, you may not be aware that scaling previous versions of Solr was a manual and often cumbersome process.
 With SolrCloud, scaling is simple and automated because Solr uses Apache ZooKeeper to distribute configurations and manage
 shard leaders and replicas. The Apache website (http://zookeeper.apache.org) describes ZooKeeper as a “centralized service for maintaining configuration information, naming, providing distributed synchronization,
 and providing group services.”

 In Solr, ZooKeeper is responsible for assigning shard leaders and replicas and keeping track of which servers are available
 to service requests. SolrCloud bundles ZooKeeper, so you don’t need to do any additional configuration or setup to get started
 with SolrCloud. We’ll dig into the details of SolrCloud in chapter 13.

1.5. Summary

 We hope you now have a good sense for what types of data and use cases Solr supports. As you learned in section 1.1, Solr is optimized to handle data that’s text-centric, read-dominant, document-oriented, and has a flexible schema. We also
 learned that search engines like Solr aren’t general-purpose data-storage and processing solutions, but are instead intended
 to power keyword search, ranked retrieval, and information discovery. Using the example of a fictitious real estate search
 application, we saw how Solr builds upon Lucene to add declarative index configuration and web services based on HTTP, XML,
 and JSON. Solr 4 can be scaled in two dimensions to support millions of documents and high-query traffic using sharding and
 replication. Solr 4 has no SPoF when used in a distributed SolrCloud configuration.

 We also touched on reasons to choose Solr based on the perspective of key stakeholders. We saw how Solr addresses the concerns
 of software architects, system administrators, and even the CEO. Lastly, we covered some of Solr’s main features and gave
 you pointers to where to go to learn more about each feature in this book.

 We hope you’re excited to continue learning about Solr; now it’s time to download the software and run it on your local system,
 which is what we’ll do in chapter 2.

Chapter 2. Getting to know Solr

 This chapter covers

 	Downloading and installing Apache Solr 4.7

 	Starting the example Solr server

 	Sorting, paging, and results formatting

 	Exploring the Solritas example search UI

 It’s natural to have a sense of unease when you start using an unfamiliar technology, but you can put your mind at ease with
 Solr, because it is designed to be easy to install and use out of the box. In the spirit of being agile, you can start out
 with the basics and incrementally add complexity to your Solr configuration. For example, Solr allows you to split a large
 index into smaller subsets, called shards, and add replicas to increase your capacity to serve queries. But you don’t need
 to worry about index sharding or replication until you run into scale issues.

 By the end of this chapter, you’ll have Solr running on your computer, know how to start and stop Solr, know your way around
 the web-based administration console, and have a basic understanding of key Solr terminology such as Solr home, core, and
 collection.

 	

 What’s in a name? Solr 4 vs. SolrCloud

 You may have heard of SolrCloud and wondered what the difference is between Solr 4 and SolrCloud. Technically, SolrCloud is
 the code name for a subset of features in Solr 4 that makes it easier to configure and run a scalable, fault-tolerant cluster
 of Solr servers. Think of SolrCloud as a way to configure a distributed installation of Solr 4.

 Also, SolrCloud doesn’t have anything to do with running Solr in a cloud-computing environment like Amazon EC2, although you
 can run Solr in the cloud. We presume that the “cloud” part of the name reflects the underlying goal of the SolrCloud feature
 set to enable elastic scalability, high availability, and the ease of use we’ve all come to expect from cloud-based services.
 We cover SolrCloud in depth in chapter 13.

 	

 Let’s get started by downloading Solr from the Apache website and installing it on your computer.

2.1. Getting started

 Before you can get to know Solr, you have to get it running on your local computer. This starts with downloading the binary
 distribution of Solr 4.7 from Apache and extracting the downloaded archive. Once it’s installed, we’ll show you how to start
 the example Solr server and verify that it’s running by visiting the Solr administration console from your web browser. Throughout
 this process, we assume you’re comfortable executing simple commands from the command line of your chosen OS. There is no
 GUI installer for Solr, but you’ll soon see that the process is so simple that you won’t need one.

 2.1.1. Installing Solr

 Installing Solr is a bit of a misnomer in that all you need to do is download the binary distribution (.zip or .tgz) and extract it. Before you do that, let’s make sure you have the necessary prerequisite Java 1.6 or greater (also known
 as J2SE 6) installed. To verify you have the correct version of Java, open a command line on your computer and enter

 java -version

 You should see output that looks similar to the following:

 java version "1.6.0_24"
Java™ SE Runtime Environment (build 1.6.0_24-b07)
Java HotSpot™ 64-Bit Server VM (build 19.1-b02, mixed mode)

 If you don’t have Java installed, we recommend you use Oracle’s JVM (www.oracle.com/technetwork/java/javase/downloads/index.html). Even though the Solr server requires Java, that doesn’t mean you have to use Java in your application to interact with
 Solr. Client interaction with Solr happens over HTTP, so you can use any language that provides an HTTP client library. In addition, a number of open source client libraries are available for Solr for popular
 languages like .NET, Python, Ruby, PHP, and Java.

 Assuming you’ve got Java installed, you’re ready to install Solr. Apache provides source and binary distributions of Solr;
 for now, we’ll focus on the installation steps using the binary distribution. We cover building Solr from source in chapter 12.

 To download the most recent version of Solr, go to the Solr home page at http://lucene.apache.org/solr and click the Download button for Apache Solr on the right. This will direct you to a mirror site for Apache downloads. (It’s
 advisable to download the current version from a mirror site to avoid overloading the main Apache site.) If you’re on Windows,
 download solr-4.7.0.zip. If you’re on Unix, Linux, or Mac OS X, download solr-4.7.0.tgz. All of the examples in this book will be based upon Solr 4.7.0, so if Solr 4.7.0 is no longer available from the homepage
 and you want to follow the examples as you read, then you can always find Solr 4.7.0 in the Apache Software Foundation archives
 at http://archive.apache.org/dist/lucene/solr/4.7.0/.

 After downloading, move the downloaded file to a permanent location on your computer. On Windows, you could move it to the
 C:\root directory, or on Linux, choose a location like /opt/solr/. For Windows users, we highly recommend that you extract Solr to a directory that doesn’t have spaces in the name; that
 is, avoid extracting Solr into directories like C:\Documents and Settings\ or C:\Program Files\. Your mileage may vary on this, but as Solr is Java-based software, you’re likely to run into issues with paths that contain
 a space.

 No formal installer is needed because Solr is self-contained in a single archive file; all you need to do is extract it. When
 you extract the archive, all files will be created under the solr-4.7.0/ directory. On Windows, you can use the built-in ZIP extraction support or a tool like WinZip. On Unix, Linux, or Mac, run
 tar zxf solr-4.7.0.tgz. This will create the directory structure shown in figure 2.1.

 Figure 2.1. Directory listing of the solr-4.7.0 installation after extracting the downloaded archive on your computer. We’ll refer to
 the top-level directory as $SOLR_INSTALL/ throughout the rest of the book.

 [image:]

 We refer to the location where you extracted the Solr archive (.zip or .tgz) as $SOLR_INSTALL/ throughout the rest of the book. We use this name because, as you’ll see shortly, Solr home will be a different path, so
 we didn’t want to use $SOLR_HOME/ as the alias for the top-level directory in which you extracted Solr. Now that Solr is installed, you’re ready to start
 it up.

 2.1.2. Starting the Solr example server

 To start Solr, open a command line, and enter the following:

 cd $SOLR_INSTALL/example
java -jar start.jar

 Remember that $SOLR_INSTALL/ is the alias we’re using to represent the directory into which you extracted the Solr download archive, such as C:\solr-4.7.0\ on Windows. That’s all there is to starting Solr.

 During initialization, you’ll see some log messages printed to the console. If all goes well, you should see the following
 log message at or near the bottom:

 3504 [main] INFO org.eclipse.jetty.server.AbstractConnector – Started
 SocketConnector@0.0.0.0:8983

What happened?

 That was so easy that you might be wondering what was accomplished. To be clear, you now have a running version of Solr 4.7
 on your computer. You can verify that Solr started correctly by directing your web browser to the Solr administration page
 at http://localhost:8983/solr. Figure 2.2 is a screenshot of the Solr administration console; please take a minute to get acquainted with the layout and navigational tools in the console.

 Figure 2.2. The Solr 4.7 administration console, which provides a wealth of tools for working with your new Solr instance. Click the collection1 link to access more tools, including the query form.

 [image:]

 Behind the scenes, start.jar launched a Java web server named Jetty, listening on port 8983. Solr is a web application running in Jetty. Figure 2.3 illustrates what is now running on your computer.

 Figure 2.3. Solr from a systems perspective showing the Solr web application (solr.war) running in Jetty on top of Java. There is one Solr home directory set per Jetty server, using Java system property solr.solr.home. Solr can host multiple cores per server, and each core has a separate directory (for example, collection1) containing a core-specific configuration and index (data) under Solr home.

 [image:]

Troubleshooting

 Not much can go wrong when starting the example server. The most common issue if the server doesn’t start correctly is that
 the default port 8983 is already in use by another process. If this is the case, you’ll see an error that looks like java.net.BindException: Address already in use. This is easy to resolve by changing the port Solr binds to. Change your start command to specify a different port for Jetty
 to bind to using java -Djetty.port=8080 -jar start.jar. Using this command, Jetty will bind to port 8080 instead of 8983.

 	

 Jetty vs. Tomcat

 We recommend staying with Jetty when first learning Solr. If your organization uses Tomcat or some other Java web-application
 server, such as Resin, you can deploy the Solr WAR file. Because we’re getting to know Solr in this chapter, we’ll refer you
 to chapter 12 to learn how to deploy the Solr WAR file.

 Solr uses Jetty to make the initial setup and configuration process a no-brainer. But this doesn’t mean that Jetty is a bad
 choice for production deployment. If your organization already has a standard Java web-application platform, then Solr will
 work with it. But if you have some choice, then we recommend you try out Jetty. It’s fast, stable, mature, and easy to administer
 and customize. In fact, Google uses Jetty for its App Engine—see www.infoq.com/news/2009/08/google-chose-jetty/—which gives great credibility to Jetty as a solid platform for running Solr in even the most demanding environments!

 	

Stopping Solr

 For local operation, you can kill the Solr server by pressing Ctrl-c in the console window in which you started Solr. Typically,
 this is safe enough for development and testing. Jetty does provide a safer mechanism for stopping the server, which will
 be discussed in chapter 12.

 Now that we have a running server, let’s take a minute to understand where Solr gets its configuration information and where
 it manages its Lucene index. Understanding how the example server you started is configured will help you when you’re ready
 to start configuring a Solr server for your application.

 2.1.3. Understanding Solr home

 In Solr, a core is composed of a set of configuration files, Lucene index files, and Solr’s transaction log. One Solr server running in Jetty
 can host multiple cores. Recall that in chapter 1 we designed a real estate search application that had a core for houses and a separate core for land listings. We used two
 separate cores because the indexed data was different enough to justify having two different index structures. The Solr example
 server you started in section 2.1.2 has a single core named collection1.

 As a brief aside, Solr also uses the term collection, which only has meaning in the context of a Solr cluster in which a single index is distributed across multiple servers.
 Consequently, we feel it’s easier to focus on understanding what a Solr core is for now. We’ll return to the distinction between
 core and collection in chapter 13 when we discuss SolrCloud.

 Solr home is a directory structure that encapsulates one or more cores, which historically were configured by a configuration
 file named solr.xml. But as of Solr 4.4, cores can be autodiscovered and do not need to be defined in solr.xml. Consequently, you can ignore the solr.xml file provided with the example server for now, as it contains advanced options that only apply to running Solr in cloud mode.
 Solr also provides a Core Admin API that allows you to create, update, and delete cores programmatically from your application.
 We cover the Core Admin API in more detail in chapter 12.

 For now, what’s important is to understand that each Solr server has one and only one Solr home directory that contains all
 cores. The global Java system property solr.solr.home sets the location of the Solr home directory. Figure 2.4 shows a directory listing of the default Solr home, solr, for the example server.

 Figure 2.4. Directory listing of the default Solr home directory for the Solr examples. It contains a single core named collection1, which is configured in solr.xml. The collection1 directory corresponds to the core named collection1 and contains core-specific configuration files, the Lucene index, and a transaction log.

 [image:]

 We’ll learn more about the main Solr configuration file for a core, named solrconfig.xml, in chapter 4. Also, schema.xml is the main configuration file that governs index structure and text analysis for documents and queries; you’ll learn all
 about schema.xml in chapter 5. For now, scan figure 2.4 so that you have a sense for the basic structure of a Solr home directory.

 The example directory contains two other Solr home directories for exploring advanced functionality. Specifically, the example/example-DIH/ directory provides a Solr core for learning about the DIH feature in Solr. Also, the example/multicore/ directory provides an example of a multicore configuration. We’ll learn more about these features later in the book. For
 now, let’s continue with the simple example by adding documents to the index, which you’ll need to work through the examples
 in section 2.2.

 2.1.4. Indexing the example documents

 When you first start Solr, there are no documents in the index. It’s an empty server waiting to be filled with data to search.
 We cover indexing in more detail in chapter 5. For now, we’ll gloss over the details in order to get example data into the Solr index so that we can try out some queries.
 Open a new command-line interface and enter the following:

 cd $SOLR_INSTALL/example/exampledocs
java -jar post.jar *.xml

 You should see output that looks like the following:

 SimplePostTool version 1.5
Posting files to base url http://localhost:8983/solr/update using content-
 type application/xml..
POSTing file gb18030-example.xml
POSTing file hd.xml
POSTing file ipod_other.xml
POSTing file ipod_video.xml
POSTing file manufacturers.xml
POSTing file mem.xml
POSTing file money.xml
POSTing file monitor.xml
POSTing file monitor2.xml
POSTing file mp500.xml
POSTing file sd500.xml
POSTing file solr.xml
POSTing file utf8-example.xml
POSTing file vidcard.xml
14 files indexed.
COMMITting Solr index changes to http://localhost:8983/solr/update..

 The post.jar file sends XML documents to Solr using HTTP POST. After all the documents are sent to Solr, the post.jar application issues a commit, which makes the example documents findable in Solr. To verify that the example documents were
 added successfully, go to the Query page in the Solr administration console (http://localhost:8983/solr) and execute the find
 all documents query (*:*). You need to select collection1 in the dropdown box on the left to access the Query page. Figure 2.5 shows what you should see after executing the find all documents query.

 Figure 2.5. A screenshot of the query form on the Solr administration console. You can verify that the example documents were indexed
 correctly by executing the find all documents query.

 [image:]

 At this point, we have a running Solr instance with some example documents loaded.

2.2. Searching is what it’s all about

 Now it’s time to see Solr shine. Without a doubt, Solr’s main strength is powerful query processing. Think about it this way;
 who cares how scalable or fast a search engine is if the results it returns aren’t useful or accurate? In this section, you’ll
 see Solr query processing in action, which we think will help you see why Solr is such a powerful search technology.

 Throughout this section, pay close attention to the link between each query we execute and the documents that Solr returns,
 and particularly the order of the documents in the results. This will help you start thinking like a search engine, which
 will come in handy in chapter 3 when we cover core search concepts.

 2.2.1. Exploring Solr’s query form

 You’ve already used Solr’s query form to execute the find all documents query. Let’s take a quick tour of the other features
 in this form so you get a sense for the types of queries Solr supports. Figure 2.6 provides some annotations of key sections of this form. Take a minute to read through each annotation in the diagram.

 Figure 2.6. An annotated screenshot of Solr’s query form illustrating the main features of Solr query processing, such as filters, results
 format, sorting, paging, and search components

 [image:]

 In figure 2.6, we formulate a query that returns two of the example documents we added in section 2.1.4. Fill out the form and execute the query in your own environment. Do the two documents that Solr returned make sense? Table 2.1 provides an overview of the form fields we’re using for this example.

 Table 2.1. Overview of query parameters from figure 2.6

 	
 Form field

 	
 Value

 	
 Description

 	q
 	iPod
 	Main query parameter; documents are scored by their similarity to terms in this parameter.

 	fq
 	manu:Belkin
 	Filter query; restricts the result set to documents matching this filter but doesn’t affect scoring. In this example, we filter
 results that have manufacturer field manu equal to Belkin.

 	sort
 	price asc
 	Specifies the sort field and sort order; in this case, we want results sorted by the price field in ascending order (asc)
 so that documents with the lowest price are listed first.

 	start
 	0
 	Specifies the starting page for results; because this is our first request, we want the first page to use 0-based indexing.
 Start should be incremented by the page size to advance to the next page.

 	rows
 	10
 	Page size; restricts the number of results returned per page, in this case 10.

 	fl
 	name,price,
 features,
 score

 	List of fields to return for each document in the result set. The score field is a built-in field that holds each document’s
 relevancy score for the query. You have to request the score field explicitly for it to be returned, as is done in this example.

 	df
 	text
 	Default search field for any query terms that don’t specify which field to search on; text is the catch-all field for the
 example server.

 	wt
 	xml
 	Response-writer type; governs the format of the response.

 As we discussed in chapter 1 (section 1.2.3), all interaction with Solr’s core services, such as query processing, is performed with HTTP requests. When you fill out
 the query form, an HTTP GET request is created and sent to Solr. The form field names shown in table 2.1 correspond to parameters passed to Solr in the HTTP GET request. Listing 2.1 shows the HTTP GET request sent to Solr when you execute the query depicted in figure 2.6. Note that the request doesn’t include line breaks between the parameters, which we’ve included here to make it easier to
 see the separate parameters.

 Listing 2.1. Breakdown of the HTTP GET request sent by the query form

 [image:]

 	

 Looking for more example queries?

 We cover queries in more depth in chapter 7. But if you don’t want to wait that long and want to see more queries in action, we recommend looking at the tutorial provided
 with Solr. Open $SOLR_INSTALL/docs/tutorial.html in your web browser and you’ll find additional queries for the example documents you loaded in section 2.1.4.

 	

 We probably don’t have to tell you that this form isn’t designed for end users; Solr provides the query form so that developers
 and administrators have a way to send queries without having to formulate HTTP requests manually or develop a client application
 to send a query to Solr. But let’s be clear that with Solr-based applications, you’re responsible for developing the UI. As we’ll see in section 2.2.5, Solr provides a customizable example search UI, called Solritas, to help you prototype your own awesome search application.

 2.2.2. What comes back from Solr when you search

 We’ve seen what gets sent to Solr, so now let’s learn about what comes back in the results. The key point in this section
 is that Solr returns documents that match the query, as well as additional information that can be processed by your Solr
 client to deliver a quality search experience. The operative phrase being by your Solr client! Solr returns the raw data and features that you need to create a quality search experience for your users.

 Figure 2.7 shows what comes back from the example query we used in section 2.2.1. As you can see, the results are in XML format and are sorted from lowest to highest price. Each document contains the term
 iPod. Paging doesn’t come into play with this result set because there are only two results total.

 Figure 2.7. Solr response in XML format from our sample request in listing 2.1

 [image:]

 So far, we’ve only seen results returned as XML, but Solr also supports other formats such as CSV (comma-separated values),
 JavaScript Object Notation (JSON), and language-specific formats for popular languages. For instance, Solr can return a Python-specific
 format that allows the response to be safely parsed into a Python object tree using the eval function.

 2.2.3. Ranked retrieval

 As we touched upon in chapter 1, the key differentiator between Solr’s query processing and that of a database or other NoSQL data store is ranked retrieval:
 the process of sorting documents by their relevance to a query, in which the most relevant documents are listed first.

 Let’s see ranked retrieval at work with some of the example documents you indexed in section 2.1.4. To begin, enter iPod in the q text box and name,features,score in the fl text field, and click Execute. This should return three documents sorted in descending order by score. Take a moment to scan
 the results and decide if you agree with the ranking for this simple query.

 Intuitively, the ordering makes sense because the query term iPod occurs three times in the first document listed, twice in the name and once in the features; it occurs only once in the other
 documents. The numeric value of the score field isn’t inherently meaningful; it’s only used internally by Lucene to do relative
 ranking and is not comparable across different queries. The key takeaway is that every document that matches a query is assigned
 a relevance score for that specific query, and results are returned in descending order by score; the higher the score, the
 more relevant the document is to the query.

 Next, change your query to iPod power and you’ll see that the same three documents are returned and are in the same order. This is because all three documents
 contain both query terms in either their name or features field. But the scores of the top two documents are much closer:
 1.521 and 1.398 for the second query versus 1.333 and 0.770 (rounded) for the first query. This makes sense because power occurs twice in the second document, so its relevance to the iPod power query is much higher than its relevance to the iPod query.

 Now, change your query to iPod power^2, which boosts the power query term by 2. In a nutshell, this means that the power term is twice as important to this query as the iPod term, which has an implicit boost of 1. Again, the same three documents are returned but in a different order. Now the top
 document in the results is Belkin Mobile Power Cord for iPod w/ Dock, because it contains the term power in the name and features fields, and we told Solr that power is twice as important as iPod for this query.

 Now you have a taste of what ranked retrieval looks like. You’ll learn more about ranked retrieval and boosting in chapters 3, 7, and 16. Let’s move on and see some other features of query processing, starting with how to work with queries that return more than
 three documents using paging and sorting.

 2.2.4. Paging and sorting

 Our example Solr index contains only 32 documents, but a production Solr instance typically has millions of documents. You
 can imagine that in a Solr instance for an electronics superstore, a query for iPod would probably match thousands of products and accessories. To ensure results are returned quickly, particularly on bandwidth-constrained
 mobile devices, you don’t want to return thousands of results at once, even if the most relevant are listed first.

Paging

 The solution is to return a small subset of results called a page, along with navigational tools to allow the user to request more pages if needed. Paging is a first-class concept in Solr query processing, in that every query includes parameters that control the page size (rows) and starting position (start). If not specified in the request, Solr uses a default page size of 10, but you can control that using the rows parameter in the query request. To request the next page in the results, you increment the start parameter by the page size. For example, if you’re on the first page of results (start=0), then to get the next page, you increment the start parameter by the page size: for example, start=10.

 It’s important to use as small a page size as possible to satisfy your requirements, because the underlying Lucene index isn’t
 optimized for returning many documents at once. Rather, Lucene is optimized for query processing, so the underlying data structures
 are designed to maximize matching and scoring documents. Once the search results are identified, Solr must reconstruct each
 document, in most cases by reading data off the disk. It uses intelligent caching to be as efficient as possible, but in comparison
 to query execution, results construction is a slow process, particularly for large page sizes. Consequently, you’ll get much
 better performance from Solr using small page sizes.

OEBPS/01fig03_alt.jpg
Millons of 2 o8 Milions
documents REST-ko web services 202 i
XMUJSONHTTP

k Search

Wutiple .
) —
g Indexing __| Queries coie s
ok enginer spell-checker,
L faceting,
Document mmt | [Query processing ol
addupdateldel ‘and caching o s
~ -~ .
clstering,
Update processors —} w
(deduping, |
language detection) |
L Text anaiysis
i tokerizaton
o con
" |
R - (stop words,
lowercase,
g N . synonyms,
Shard ™ E stemming..)
management \\\ Distributed Lucene index(1...N shards)
\ Shad! Repicaz Shard2 Replicat
y J--- - | ——
add more
i shards for
. % faster queries.
Soft commit and more
(inmemory) documents
near reakime
=
e Cluster of commodity servers Repiication:
add more replicasfor better
roughput (queries/sec)

Hard commit
(fushed o disk)

and faul tolerance.

OEBPS/01fig04_alt.jpg
SOIFNE | i

@ o sy &

Ll st 0

8 consone s 3

Do | S 1

= s ¢

Nosine o v

o] "
o [y
oo Pyv.

B

=

i

e

-

Py
fer ety

S smeon @ T B o oy S G

OEBPS/01fig01_alt.jpg
P Mo
search with
spell-checking
autosuggest,
and synonym
support

Support for
complex queries.
o power
“advanced”
search forms.

Zoom infout with
geospatial search

e
Feorn tomatim LmgToe < |
o) Braks® Puafeeesd)
O} Exsconra)
Aoy () | s dnare() b Cominsten()
e
i [owwer [scen [sozes0 [3 |2
s wyime foemer 1020 |ss27000 [3 f2
CITT I P P e 1
323 hyime [oemer a2 [s3o00 25 f2
vt Jowwe |acen [soasee [2 |2

N

Refine search
criteria using
facets based
on features
of documents
in the search
results

OEBPS/01fig02_alt.jpg
Dictionary of

F title: Charming

Home listing
document to
be indexed.

‘When indexing, Solr defines

an internal document D, for
example, 44, which is used in
the postings lstfor each term.

During indexing, each field
s analyzed to identiy unique.
terms and their frequency in

‘each document

Bungalow in
Denver Highlands
price: $327,500

Lucene inverted index

Title Field(term,

charming,,)
denver o

highlands 5,

oo o)

Postings lst(d0cID) 1y sq)

bungalow,, ———— 97Lm
= 5(::197«:1

Postings lst holds
the docID and term
frequency for each
termin each fieldin
your documents; for
example, “bungalow
occurs twice in doc
with 1D *97.*

unique terms
i the Tite Field.

User query:

Result set wilinclude documents.
Solr query processing

5.44,55,78, and 97 because
of match to terms “denver”
denver highlands.

‘and “highlands.”

OEBPS/common.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/02fig01_alt.jpg
¥ [solr-4.x contrib contains the source code
B CHANGM for extensions, such as clustering
¥ {3 contrib and language detection.
> (i analysis-extras
» [clustering
5 5
& dataimporthandler dist contains JAR files for
> [exraction contrib modules, SolrJ ciient,
>
>

and the Solr WAR.

(& langid
(& uima

> [velocity docs contains HTML documentation
> [dist / for the contrib modules and
» [docs a brief tutorial of Solr.
v [example

» @l cloud-scripts
= e example contains the Solr

example server, which
Smple] we'll be working with in
= example-schemaless. this chapter.
eexampledocs
b
logs
(& multicore

* README.txt Default Solr home
= directory for the
- ;m/ e v

r

(& solr-webapp
13 startjar
> [webapps
" LICENSE.txt

> 8 hcinces \
NOTICE.txt
v
' README.txt License files for all of

| SYSTEM_REQUIREMENTS.txt Solr's dependencies.

YYYYVYYVYY

vvyv

OEBPS/02fig03_alt.jpg
SO OIS CUSGIONF==om per-
Jetty server, set by system property:
-Dsolrsolr home=
$SOLR_INSTALL/example/sor.

example
i Jetty v. 8.1.2 lstening on port: 8983
= solf —————————— " Solr web app (solr.war): serviets, HTML, JS, etc.
[collection
Solr core collectiont
1= conf
Lo data
Each core has its Directory for the collection’ core
own configuration under Solr home: you can have
and indox. ‘more than one core under

e aama didu sy

OEBPS/02fig02_alt.jpg
MaIR Navigation

oobar.
-
Solr -,

olr - popsemeres
@oumwors kel o SlnAcSon sl x/ox.
T e
3 corepamn 0w usetheadusesosltnacionsa-A xives
. : P e
e FLgp—"
i

s

Sl 4 150476 - rome - 2013-07-19 025835
e e
a3 1504775« htows - 2013-07-19 025342

A

3 Runime Al v WS 6484 Sever VM (160,

W s

FUN DNGTRON: DRGS HIOWS IR -Ieve.
system setings for your server.

e Onscrrr ot 1

P

o

1 Documeriaton 8 bsueTacker R RCCrama L Communyfoum 4 ok Quey Sy

Access collection-specifc tools.
such as Solr's query form by selecting
collection in the Core Selector
dropdown selection box.

OEBPS/cover.jpg
Trey Grainger
Ilmolhy Potter
oy Yorik Seeley

| | FTYTHE

OEBPS/02fig05_alt.jpg
‘The find all documents AHOUION TSGR TTON) S
query in Solris *:* the find all documents query.

.§‘,. W e) = s R

olr = ™ <P vereions"1.0" encadiogeGEr-"T>

o =

oo s
S ——

s i
8 csann e s
S e
=) L -

P
vy Pramees &

e\ aiasegzeaz sty rewiy
ws | ks doumest s sy sy (Lrsaisse<lases

e

o i e oot 120 28508 D dekv - 330 3 - A-A33
P
<o a0 ¢ sanmaciene

P————

Open the core-specific
tools for collection’ to find the
link to the query form.

OEBPS/02fig04.jpg
YyvvvvvvvQ

«v

i

& doud-scripts

Example documents to add
to the example index.

I

Defauit Solr home
for examples.

collectiont is a core.

> b conf directory contains
e uwm:—/ configuration for the.
v 8 cont collectont core
« sdmin-extra i

© admin-extramenu-bottom.html

« admin-extamenu-top.him Language-specific files;

) currency.xm for example, stop word lists.
& M
> @ lang

[mapping-FoldToASCILtxt

" mapping-ISOLatinlAccent txt schema.xml is the main
B mrds.m/ configuration file for text
= schemauxm analysis and indexing a specific
5 scripts.conf core; for example, collectiont.
Bt ——
I ol solrconfig xmi is the main
B stopwords.xt configuration file for a
) symomma. specifc core.
@ update-scrptys
» (@ velociy
> s Lucene index fils for
e e et
> i daa
[READMEDXt
' READMEDXt
% solexml

'~ zoo.cfg

OEBPS/037fig01_alt.jpg
Main query
component
Tooking for
documents

containing.
fod.

hetp://1ocalhost :8983/solr/col lect ion1 /select?
geiPods
£qemanu:Belking
sorteprice asce

£1enane, price, features, scores <
at-texti —
weexmle < Default search
srows-10 field s text.
Start at page 0 an Return results

return up to 10 results. in XML format.

Jvokes the select request
handler for the collection’ core.

Filter documents that have
| manu fed equal to Belin.
Rewrnthe | Sortresuts by
name, price, | Pricein scending
Pl order (smalest
and scove o largest).
fieldsin
resuls.

OEBPS/02fig06_alt.jpg
Main query field
(searching for docs
with “Pod” keyword).

(

Sort results by the
price field, ascending
(lowest price on top).

Specifies which fields
1o return for each
document in the results.

Expandable options to
enable advanced features,
such as faceting and
hit highiighting

LI

‘You'll leam about
Request-Handler (q) /— request handlers in
Jselect chapter 4.

~common

a

Pod Filter query
(restrits the result set

o documens that

f have the man field

e setto *Belkin’),

L

orkessc Startat the first page

m— (0 based) and retum

o = 10 results per page.

L >

name,price features,score

Raw Query Parameters.
keyl=val1&key2=val2

w
xmt = Default search field

@ indent

O debugQuery

O dismax

(edismax

Oni

O facet Response-writer

SN v o saon

0 spelicheck

OEBPS/02fig07_alt.jpg
i Main response slement

. — includes the tofal number
== it 2 of documents found and

<int nanes"status">0¢/int> the score of the “best”
<int nase="Tire">1</ 106> ‘document; that s,

<lst naves"parans™> max score.
The response oy
Mt <str names"ds">text</str
ot <str nane="£1">nane, price, features, score</str>

information about the <str nane="sort">price asc</str>

query, such as ime. <str names" indent">true</ate>

o execute (Qtime), <str names"g">Lrode/ate>

and echoes back the <str naes"_">1376584870809</str>

query parameers ol Pl ol

<str nanes" fq'>manusselkin</str>
<ot

</1ae>

<result names"response’ nunFounde":

oo
Documerts matng e e e 6130 (5 WD 2.0 cabto/ate>

the query crieria <arr namee testure

A Rt o
s) e e

s e o smaertoa1 s tone>
Pt cmitpstrt v AN
e
e e s e o (D o
sl ey
e e e

P
i a9 stz
R e

Yoo

B i

Staree"o" maxscores"1.3334373°>

q="iPod’

