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   preface
 

  
 

   

   We hope readers will learn about both finance and Python by reading the book. It isn’t intended to teach either of those topics from the ground up—we expect that readers will have a basic understanding of probability and statistics, financial concepts, and Python programming—but accessibility is important to us.
 

  
 

   

   The balance of theory and implementation varies by chapter. Some chapters are very financially focused, and the Python content is limited to showing how a few functions from existing libraries can be used to perform certain calculations or accomplish desired tasks. In other chapters, there aren’t any existing Python libraries we can use. These chapters are much more code-heavy, and we essentially build new Python libraries implementing the concepts they cover. We know reading code isn’t always easy, so we show example usages of new code whenever possible to aid understanding.
 

  
 

   

   Much of the content related to laws or regulations, specific financial products, or types of retirement accounts is United States–focused. We’ve spent our careers in the United States, and the specifics we cover are what we know. However, the concepts we discuss should apply no matter where you live. Often there are non-US equivalents of topics we discuss—for example, a self-invested pension plan (SIPP) is essentially the United Kingdom’s version of a self-directed IRA in the United States.
 

  
 

   

   Your feedback is essential, and we invite you to send us an email at pythonroboadvisor@gmail.com or leave comments in the LiveBook discussion forum. Also, Rob plans to periodically write blog posts on the intersection of finance and Python on his website, pynancial.com. He looks forward to seeing comments and questions, sharing ideas, and collaborating there as well. We appreciate your interest and have done our best to produce the best book possible for you.
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   about this book
 

  
 

   

   In Build a Robo-Advisor with Python (From Scratch), you’ll design and develop a working financial advisor that can manage a real investing strategy. You’ll add new features to your advisor chapter by chapter, including determining the optimal weight of cryptocurrency in your portfolio, rebalancing to keep your investments on target while minimizing taxes, and using reinforcement learning to find a “glide path” that can maximize how long your money will last in retirement. Best of all, the skills you learn in reinforcement learning, convex optimization, and Monte Carlo methods can be applied to numerous lucrative fields beyond the domain of finance.
 

  
 

   

   Who should read this book
 

  
 

   

   Our target audience is anyone who is interested in finance and investments, who has some familiarity with Python, and who is interested in learning about how Python can be used to automate investment processes. You may be looking to apply the tools you’ll learn for your own finances or professionally, whether you’re interested in jobs in this area or you’re a financial advisor who wants to automate parts of your business.
 

  
 

   

   How this book is organized: A roadmap
 

  
 

   

   The book is organized into four parts.
 

  
 

   

   	
Part One: Basic Tools and Building Blocks starts in chapter 1 by covering the robo-advisory landscape and what robo-advisors do. We then introduce some of the basic tools and concepts used in the financial industry: plots of risk versus (expected) reward and the efficient frontier (chapter 2); methods for estimating expected future returns, volatilities, and correlations (chapter 3); and evaluating the exchange-traded funds that are typically used to construct a portfolio of assets (chapter 4).
 

   	
Part Two: Financial Planning Tools shows how to automate some of the financial planning services offered by advisors. Chapter 5 introduces Monte Carlo simulations and how to model various sources of risk to estimate the probability of running out of money in retirement. In chapter 6, we describe reinforcement learning and demonstrate, through several examples, how it can be applied to solving financial planning problems. Next, chapter 7 cover various methods for measuring returns when there are inflows and outflows and how to use risk-adjusted returns to evaluate the performance of investment managers. Chapters 8 and 9 discuss methods to reduce taxes. The first, asset location, involves strategically placing different types of assets in specific types of accounts to optimize tax efficiency. The second method analyzes various strategies for sequencing withdrawals during the decumulation phase of retirement when investors must draw down their savings to pay for expenses.
 

   	
Part Three: Portfolio Construction teaches methods for determining portfolio weights. In chapter 10, we show how to use inputs like expected returns, volatilities, and correlations, as well as constraints or other considerations, to build “optimal” portfolios. We also highlight some of the pitfalls associated with using optimization to build portfolios. Then we discuss two methodologies designed to address these pitfalls: risk parity (chapter 11) and the Black–Litterman model (chapter 12).
 

   	
Part Four: Portfolio Management discusses how to manage a real portfolio over time after the target weights have been determined. Chapter 13 details several approaches to portfolio rebalancing (making trades to bring a portfolio’s weights in line with their targets), ranging from very simple to (somewhat) complex. Finally, in chapter 14, we discuss tax-loss harvesting, a way for investors to lower their taxes by opportunistically selling assets that have declined in value.
 

  
 

   

   Parts 2–4 can be read in any order, but we recommend starting with part 1.
 

  
 

   

   about the code
 

  
 

   

   This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.
 

  
 

   

   In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (↪). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.
 

  
 

   

   All the chapters contain examples in Python, and many include function and class definitions. These can be found on the book’s website (www.manning.com/books/build-a-robo-advisor-with-python-from-scratch) and the GitHub repository for this book (https://github.com/robreider/robo-advisor-with-python). Filenames correspond to chapter numbers.
 

  
 

   

   In each chapter, later code builds on earlier code. For example, a code section in the middle of a chapter may rely on a function defined earlier or a package imported earlier. Additionally, class definitions with many methods may be broken into multiple code sections. We recommend copying or importing the code from the website or GitHub rather than straight from the text if you are working in Python while reading an electronic version of the book.
 

  
 

   

   You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/build-a-robo-advisor-with-python-from-scratch. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/build-a-robo-advisor-with-python-from-scratch.
 

  
 

   

   LiveBook Discussion Forum
 

  
 

   

   Purchase of Build a Robo-Advisor with Python (From Scratch) includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/build-a-robo-advisor-with-python-from-scratch/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.
 

  
 

   

   Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contributions to the forum remain voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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   Rob Reiderhas been a quantitative hedge fund portfolio manager for over 15 years. He holds a PhD in finance from The Wharton School and is an adjunct professor at NYU, where he teaches a graduate course in the Math-Finance department called “Time series analysis and statistical arbitrage.” He has built asset-allocation models, financial planning tools, and optimal tax strategies for a robo-advisor.
 

  
 

   

   Rob has given numerous lectures that combine Python with finance and has developed an online course entitled “Time series analysis in Python.” As a hedge fund manager, Rob has been involved in all aspects of the investment process, from discovering new trading strategies to backtesting, executing, and managing risk.
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    Part 1  Basic tools and building blocks 
 

  
 

   

   Our book begins with a discussion of what robo-advisors do, both generally and through a comparison of some of the best-known robo-advisors in the market. We also outline some of the advantages of robo-advising, including low fees, tax savings, and avoiding behavioral biases.
 

  
 

   

   Chapter 2 explains some of the basic tools and concepts used in the financial industry. We show how to construct a portfolio of assets and how some asset allocations can give higher expected returns for the same amount of risk, which leads to the concept of the efficient frontier. The chapter ends by showing some of the questions robo-advisors use to help guide their clients into an appropriate portfolio.
 

  
 

   

   Chapter 3 discusses how to estimate some important quantities: the expected returns and volatilities of individual assets and the correlations between pairs of assets. These are essential for calculating the expected return and volatility of a portfolio and for building portfolios using mathematical optimization.
 

  
 

   

   Chapter 4 covers exchange-traded funds (ETFs). We’ll discuss how ETFs work, why they’re widely preferred over mutual funds by robo-advisors, and how to evaluate multiple ETFs competing in the same market segment.
 

  


 

   

    1  The rise of robo-advisors 
 

  
 

   

   This chapter covers
 

    

    	The increasing popularity of robo-advisors
 

    	Key features and a comparison of popular robo-advisors
 

    	Python in the context of robo-advising
 

   
 

  
 

   

   
1.1 What are robo-advisors?
 

  
 

   

   Robo-advisors have become a popular alternative to human financial advisors. Historically, financial advisors met with clients, discussed their goals, created a financial plan, and then managed their clients’ money over time. In exchange for this personal attention, they charged clients fees, often in excess of 1% per year of their assets under management. Numerous companies have been trying to disrupt this business through online platforms that provide automated, algorithmic investment services similar to those of a financial advisor. Some of these automated systems “advise” clients through algorithmic implementations of modern portfolio theory, based on the Nobel Prize–winning work of Harry Markowitz in the 1950s, and others use optimization techniques borrowed from other disciplines. These companies have collectively become known as robo-advisors.
 

  
 

   

   In this book, we show how anyone with a basic understanding of Python can build their own robo-advisor. We hope this will be useful for anyone who wants to work in this area, apply these algorithms to their own portfolio, or advise others.
 

  
 

   

   
1.1.1 Key features of robo-advisors
 

  
 

   

   The most basic feature provided by robo-advisors is personalized asset allocation: a portfolio of investments designed to match the level of riskiness suitable for the client. The core asset allocations offered by different robo-advisors vary in their choice of asset classes but usually contain a diversified mix of stocks and bonds. Some advisors may choose to include more non-US assets in their allocations or an allocation that’s more heavily weighted to growth or value stocks, but, in essentially all cases, the instruments that robo-advisors invest in are liquid and traded on exchanges and not things like venture capital, private equity, or real estate.
 

  
 

   

   Aside from the core asset allocation, robo-advisors provide a handful of features. We will cover most of these in more detail later in the book; here we only provide a high-level description of each one:
 

  
 

   

   	
Rebalancing—A client’s portfolio starts with weights close to the target allocation at the time of the initial investment, but differences in returns will cause the portfolio to drift away from the target over time. Rebalancing may be drift-based, meaning the portfolio is rebalanced whenever it deviates from the targets by a prespecified amount, or time-based, meaning rebalancing occurs on a fixed schedule. Additionally, rebalancing may or may not be tax-aware. In tax-aware rebalancing, some appreciated positions may not be sold if doing so would involve a high expected tax cost. In some cases, the robo-advisor may be able to keep the portfolio “on track” simply by intelligently directing dividends and deposits toward assets that have drifted below their target weights.
 

   	
Financial projections—A key question for most individual investors is “When can I retire?” Robo-advisors may offer tools that show projections of the client’s net worth over time based on assumptions for income, spending, inflation, and investment returns. By varying these assumptions, clients can assess the feasibility of retirement at different ages.
 

   	
Tax-loss harvesting—The basic idea of tax-loss harvesting is to reduce the investor’s current tax burden by opportunistically realizing losses in assets that have declined in value. The realized losses can be used to offset realized gains or some income. Tax-loss harvesting is a common feature offered by robo-advisors but is tricky to understand properly. We will discuss the true economic benefit and the implementation of tax-loss harvesting strategies later.
 

   	
Glide paths—As clients age and approach retirement, the amount of risk that they should take in their investments decreases. A glide path is a series of portfolios or asset allocations that gradually decrease riskiness over time. By the time a client reaches retirement and gives up their employment income, the glide path will assign a low-risk portfolio. Although some robo-advisors use glide paths in their investment process, others let the client control how much risk they are willing to take throughout the lifetime of their investments.
 

  
 

   

   Aside from these important features, robo-advisors vary in two additional dimensions: their management fee and the minimum account size. Although there is some dispersion in these values, both are usually low compared to traditional investment advisors, making most robo-advisors accessible to clients in the earliest stages of their careers.
 

  
 

   

   
1.1.2 Comparison of robo-advisors
 

  
 

   

   As of 2020, there were over 200 robo-advisors based in the United States alone. Table 1.1 compares the feature sets of some of the largest and best-known. Many of the advisors in this sample offer varying levels of service—for example, access to a human advisor for an additional fee. For simplicity, we show pricing for the most basic levels of service.
 

  
 

   

   
Table 1.1 Features of various robo-advisors
 

    

     

      

      	Name 

      	Advisory fee 

      	Minimum account size 

      	Tax-aware rebalancing 

      	Tax-loss harvesting 

     
 

      

      	SoFi 

      	None 

      	$1 

      	No 

      	No 

     
 

      

      	M1 

      	None 

      	$100 

      	No 

      	No 

     
 

      

      	Acorns 

      	$3 to $9 monthly 

      	$0 

      	No 

      	No 

     
 

      

      	Ellevest 

      	0.25% 

      	$0 

      	No 

      	No 

     
 

      

      	E*Trade 

      	0.30% 

      	$500 

      	No 

      	No 

     
 

      

      	Vanguard 

      	0.20% to 0.25% 

      	$3,000 

      	No 

      	Yes 

     
 

      

      	Betterment 

      	0.25% 

      	$10 

      	Yes 

      	Yes 

     
 

      

      	Ally Invest 

      	0.30% 

      	$100 

      	No 

      	No 

     
 

      

      	Wealthfront 

      	0.25% 

      	$500 

      	Yes 

      	Yes 

     
 

      

      	Charles Schwab 

      	None 

      	$5,000 

      	Yes 

      	Yes 

     
 

      

      	Fidelity 

      	0.35% 

      	$0 

      	No 

      	No 

     
 

     

   
 

  
 

   

   
1.1.3 Things robo-advisors don’t do
 

  
 

   

   Software is useful for performing simple, repeatable tasks very quickly. Even the most complex-looking algorithms are just sequences of straightforward conditions and steps. The examples given so far are naturally suited to be accomplished using software. However, traditional advisors perform some services that software can’t replicate. These are generally infrequent or one-time events that may require detailed personal information. Examples of services that are (for now) best accomplished by human advisors include estate planning, management of nontraditional assets like art and real estate, and specialized tax advice for things like stock options.
 

  
 

   

   This is not to say that robo-advisors can’t expand into areas that have traditionally been the domain of human advisors. For example, financial advisors are often called on to help retirees with defined-benefit pension plans decide whether to take a lump sum or monthly payments for life. The same Python programs used to analyze Social Security can be adapted to analyze pensions. Of course, there are some things that robo-advisors will never be able to do—software will never get you basketball tickets (no matter how large your account is) or treat you to dinner.
 

  
 

   

   
1.2 Advantages of robo-advisors
 

  
 

   

   Using a robo-advisor offers several advantages over either using a human advisor or do-it-yourself investing. We highlight three of those advantages here.
 

  
 

   

   
1.2.1 Low fees
 

  
 

   

   Surveys show that about 30% of Americans use a financial advisor of some kind. Fee-based financial advisors charge fees based on a percentage of assets under management (AUM), an annual retainer, or an hourly charge, and sometimes a combination of these. In addition to fee-based financial advisors, some advisors follow a commission-based model, where they are compensated by charging commissions on financial transactions and products like life insurance or annuities. For those that charge an AUM fee, which is the largest category, the average fee is about 1% per year. Robo-advisor fees are a fraction of that (see table 1.1). In addition, robo-advisors usually have much lower minimum account sizes than financial advisors. Even small savings, when accumulated over decades, can make a big difference. A 1% annual fee charged by a traditional human advisor may not seem like much, but the cost compounds over time. Imagine starting with a $100,000 investment, which earns a 7% return each year before fees. The 1% fee charged by a traditional advisor reduces the return to 6% annually. This means after 30 years, the $100,000 investment would grow to about $570,000. Not bad, but let’s compare this to a typical robo-advisor charging 0.25% per year. With the robo-advisor, the investment would grow to about $710,000—almost 25% more!
 

  
 

   

   
1.2.2 Tax savings
 

  
 

   

   In several chapters, we describe various tax-saving strategies that could be automated by a robo-advisor. How much money can people save through tax strategies with robo-advisors? It’s difficult to give an exact number because it’s different for each individual, depending on their circumstances. For example, someone who has only taxable accounts and no retirement accounts like an IRA or 401(k) will not benefit from several of the automated robo-advisor functions we talk about. But with the tools covered in this book, you will be able to estimate, through Monte Carlo simulations, the amount of savings for a specific set of circumstances. And the savings can be significant.
 

  
 

   

   To give one example, consider a topic we will cover in detail in chapter 9: the optimal sequencing of withdrawals. As a brief introduction—we will cover this in detail later in the book—during the retirement stage of life, when people are “decumulating” assets instead of accumulating, numerous options are available for withdrawing assets. For example, you can take money out of your taxable accounts first, and when those are depleted, start taking money out of retirement assets (taxable first). You can also switch the order and take money from retirement accounts first (IRA first). A third strategy is to take money out of retirement accounts each year up to the top of the nearest tax bracket so that future IRA withdrawals don’t push you into a higher tax bracket (IRA fill bracket). Finally, the fourth strategy is similar to the third, but you convert your IRA distribution into a Roth IRA (Roth conversion).
 

  
 

   

   To illustrate how consequential those decisions can be and how much you can save by employing the best strategy for a given set of circumstances, figure 1.1 shows how long your money will last with those four strategies. The specific set of assumptions and the details of the strategy will be covered later, but the point is that it makes a big difference. The optimal strategy can extend your assets by many years.
 

  
 

    

   [image: figure] 

   
Figure 1.1 Decumulating tax-efficiently can make your money last longer.


  
 

   

   
1.2.3 Avoiding behavioral biases
 

  
 

   

   It is well-documented that investors are subject to numerous behavioral biases, many of which can be avoided by algorithm-based automated trading:
 

  
 

   

   	
Disposition effect—Studies have shown that investors tend to hold onto losing stocks, hoping to get back to break-even. However, robo-advisors realize it’s often useful to sell losing stocks to harvest tax losses.
 

   	
Herd behavior—Investors tend to be influenced by others, which explains why they dive into stocks during bubbles and panic during crashes. Herding might have conferred benefits when fleeing predators in prehistoric times, but it is not a great investment strategy. Robo-advisors, on the other hand, unemotionally rebalance gradually toward stocks during crashes and away from stocks during bubbles.
 

   	
Overtrading—Several studies on overtrading have all reached the same conclusion: the more active a retail investor tends to be, the less money they make. Individual investors may incorrectly assume that if they are not paying brokerage commissions, there is no cost to frequent trading. However, commissions are only one cost. The bid/ask spread, the difference between the price for which you can buy a stock and sell a stock on an exchange, is a significant component of trading costs. Also, frequent trading leads to short-term capital gains, which is not tax-efficient. Robo-advisors methodically factor these costs into account when they make trades.
 

  
 

   

   
1.2.4 Saving time
 

  
 

   

   By automating simple tasks associated with investing, a robo-advisor can save investors huge amounts of time compared to a “do it yourself” approach. Monitoring the portfolio for drift away from its targets or tax-loss harvesting opportunities and placing trades to rebalance, harvest losses, or invest deposits isn’t especially difficult, but it isn’t especially fun, either. Robo-advisors automate these tasks, leaving investors time for more enjoyable pursuits.
 

  
 

   

   
1.3 Example: Social Security benefits
 

  
 

   

   One thing that gets us excited about this topic is that robo-advising is still in its infancy. Consider one example: the important decision of when to claim Social Security benefits. For many Americans, their Social Security check can be considered among their most valuable assets, in many cases worth more than half a million dollars on a present-value basis. People must elect when they want to start receiving or claiming their Social Security payments, which can be anytime between ages 62 and 70, and the longer you wait, the larger your payment will be. It is one of many important retirement decisions that are consequential and mostly irreversible. So what kind of advice exists about when to claim Social Security? If you do a Google search on this topic, you’ll find numerous calculators that mostly do the same thing. They usually do a simple break-even analysis like that shown in figure 1.2. (You can see a similar one, offered by Charles Schwab, at https://mng.bz/2yJN.)
 

  
 

    

   [image: figure] 

   
Figure 1.2 Break-even analysis on the age to start claiming Social Security


  
 

   

   In this break-even analysis, the x axis represents the age you expect to die, and the y axis represents the present value of your Social Security payments until death. As you can see from the graph in this simple analysis that compares claiming at 62 versus 70, if you expect to live past 82, you are better off waiting until 70 to claim Social Security, and if you expect to die before 82, you are better off claiming at 62. As the chart shows, if you live to 90 and claim at 70, the present value of all payments is about $500,000.
 

  
 

   

   What is this analysis missing, and how can Python be used to improve it? First, the analysis becomes exponentially more complicated when spouses are considered, and the Social Security rules can be very complicated. Although the break-even analysis in figure 1.2 can be done in a spreadsheet, taking into account couples and all the Social Security rules would overwhelm a spreadsheet and must be coded in a computer language like Python.
 

  
 

   

   To accurately predict Social Security benefits, an estimate must be made for the trajectory of future income up to retirement. Python has several libraries for forecasting a time series like income. An accurate forecast requires an earnings history for the investor, which can be downloaded from the Social Security website; then, Python can be used to scrape the file.
 

  
 

   

   Our example break-even analysis is not customized in any way, and Python can help here, too. Because Social Security benefits are similar to an asset like a bond, they should be incorporated into an investor’s asset allocation—larger Social Security payments would mean even a conservative investor could hold fewer bonds. The break-even analysis also ignores taxes on Social Security income, as well as Social Security benefits that may be withheld when someone’s income exceeds a threshold while collecting benefits. The analysis can therefore be extended to include an investor’s particular tax situation.
 

  
 

   

   An important and often-overlooked shortcoming of the break-even approach is that it doesn’t take risk into account. In this case, the risk is longevity risk—the chance that you survive beyond your life expectancy and outlive your money. Social Security benefits, as well as defined-benefit pension plans and annuities, reduce that risk by guaranteeing lifetime benefits. In chapter 6 on AI, we show how to take risk into account with examples in Python.
 

  
 

   

   Throughout the book, we aim to not only explain what robo-advisors currently do but also introduce various tools that few, if any, advisors currently use. We already mentioned the chapter on using AI to solve financial planning problems. We also have a chapter on asset location, which involves strategically distributing different types of assets among existing taxable, tax-deferred, and tax-exempt accounts to minimize taxes. Whereas asset allocation involves tradeoffs between risk and reward, asset location is close to a free lunch. However, the strategy can be complex, perhaps explaining why it has not been widely adopted.
 

  
 

   

   
1.4 Python and robo-advising
 

  
 

   

   The designers of Python intended the language to be fast, powerful, and fun. We think they succeeded. Python is easy to start with—the classic “Hello World” program is not much harder than just typing the words “Hello World”—and easy to learn. Python’s documentation is extensive, and its wide adoption means it’s usually possible to find solutions to tricky problems—chances are, someone has run into them already. Finally, Python is flexible—although it supports some more sophisticated features of lower-level languages like Java, Python doesn’t require them. If you want to use Python in an object-oriented way, you can—but you don’t have to. Likewise, you can add “hints” for data types in Python functions, but they aren’t required. Python lets you choose.
 

  
 

   

   These qualities make Python easy to learn and work with for any programmer. But what makes Python a good language for robo-advising? As Python’s popularity has grown, the number of mathematical and statistical packages has grown as well. Applications in this book will lean heavily on preexisting packages, including these:
 

  
 

   

   	
numpy—A general-purpose package for numerical computing that provides tools ranging from the basics (basic vector and matrix operations and least-squares solutions to linear systems) to the complex (such as random number generation and matrix factorizations). The numpy package achieves high speed by implementing many numerical subroutines in C.
 

   	
scipy—Provides algorithms for numerical problems, including optimization, integration, and root-finding. Also includes a large library of statistical functions. Like numpy, scipy uses subroutines written in low-level languages like Fortran and C to improve speed.
 

   	
pandas—Adds a level of abstraction on top of arrays and matrices to make data manipulation effortless. Developed at AQR Capital Management starting in 2008 and made open source in 2009.
 

   	
cvxpy—A mathematical modeling language allowing users to formulate and solve convex optimization problems using a natural and easy-to-read syntax.
 

   	
statsmodels—One of several libraries in Python that can perform a linear regression with just a few lines of code.
 

  
 

   

   We should also talk about what Python isn’t. Python’s interpreted nature means it will never be as fast as low-level compiled languages like C and Fortran. If your application requires top speed, a compiled language may be a better choice. This also means bugs only appear when code is run and won’t be found during compilation. Overall, we still think that despite these limitations, Python is a great choice for this book. Robo-advising doesn’t require lightning speed, and we think the ease of use and extensive libraries and documentation outweigh any disadvantages in execution speed.
 

  
 

   

   This book does not assume that readers are Python experts but will assume a basic familiarity with Python. For an introduction to programming in Python, we recommend Naomi Ceder’s The Quick Python Book.
 

  
 

   

   All the chapters after this one contain examples in Python, and many include function and class definitions. These can be found on the book’s website (www.manning.com/books/build-a-robo-advisor-with-python-from-scratch) and the GitHub page for this book (https://github.com/robreider/robo-advisor-with-python). Filenames correspond to chapter numbers. Within each chapter, later code builds on earlier code. For example, a code section in the middle of a chapter may rely on a function defined earlier or a package imported earlier. Additionally, class definitions with many methods may be broken into multiple code sections. We recommend copying or importing code from the book’s website or GitHub rather than straight from the text if you are working in Python while reading an electronic version of the book.
 

  
 

   

   In some chapters, we have moved the longer, complicated code online, and the shorter code that relies on simplifying assumptions is placed in the body of the chapter. Also, we have a section on the website and GitHub for “extras” that don’t fit easily into any chapter. For example, in the “extras” section, you will find the code for scraping the earnings history from a Social Security statement using the Python library BeautifulSoup. This code can be expanded into a full Social Security calculator in Python and incorporated into several other chapters on wealth planning.
 

  
 

   

   
1.5 Who might be interested in learning about robo-advising?
 

  
 

   

   Several groups of people might be interested in the topics covered in this book:
 

  
 

   

   	
You want to better understand personal finance to help you with your own finances. There is no shortage of books on personal finance for do-it-yourself investors, but this book focuses on topics that can save you money and goes into them in depth. You won’t see chapters found in other personal finance books, like “Live within your means” or “Don’t buy complex financial products.” Even if you have no interest in applying these techniques in Python, the book is written so that you can skip the Python examples and still understand the principles behind what the algorithms do.
 

   	
You are interested in working for a financial advisor or wealth manager. As we mentioned, the number of robo-advisors is growing, and the incumbents are also getting into robo-advising. Traditional wealth managers are using the same techniques for their clients. A quick search on indeed.com for jobs as a “financial advisor” currently lists over 20,000. This book provides relevant skills that are used in the industry.
 

   	
You are a financial advisor and would like to provide your clients with a larger set of tools. According to the Bureau of Labor Statistics, as of 2022, there were 283,000 financial advisors in the United States. The financial advisory business is obviously very competitive, and providing sophisticated services gives a firm a competitive advantage. Advisors can differentiate themselves in this crowded field and create a competitive advantage by offering more advanced tools like those described in this book. A financial advisor who can automate guidance can service many more clients while still providing customized advice.
 

   	
You are interested in useful, practical applications of Python. There is no better way to learn Python than by applying it to interesting, practical problems and observing intuitive results. This book will use numerous Python libraries to solve wealth management problems. We will use a convex optimization library and a hierarchical tree-clustering library to perform asset allocation, a statistical and random number library for Monte Carlo simulations, and a root-finding library for measuring portfolio performance. If you’re interested in learning about AI, chapter 6 provides several fully worked examples, from start to finish, of how you can apply AI to solve financial planning problems.
 

  
 

   

   Throughout the book, you may find that certain rules, regulations, investment vehicles, or account types are specific to investors in the United States. In most cases, however, the concepts discussed should apply to investors outside of the United States, even if the specifics of some rules or assumptions need to be modified.
 

  
 

   

   Summary
 

  
 

   

   	Robo-advisors use algorithms to automate some of the functions of human financial advisors.
 

   	Robo-advisors have several advantages over human advisors: they have lower fees, they can save a considerable amount of money using tax strategies, and they can help investors avoid some well-documented behavioral biases that detract from performance.
 

   	Python, with its extensive libraries, can be used to implement many of the functions of a robo-advisor, from asset allocation to tax loss optimization to Monte Carlo simulations for financial planning.
 

  


 

   

    2  An introduction to portfolio construction 
 

  
 

   

   This chapter covers
 

    

    	Creating risk–reward plots
 

    	Using matrix operations to compute portfolio returns and volatilities
 

    	Calculating, plotting, and deriving the math behind the efficient frontier
 

    	A risk-free asset and the capital allocation line
 

   
 

  
 

   

   One of the primary functions of a robo-advisor is to construct a well-diversified portfolio of assets. This chapter will provide the theoretical foundation for portfolio construction and some building blocks we will use later. We will also start using Python in our examples. Later in the book, we will delve deeper into the topic of portfolio construction, including some problems with the traditional methods that are covered in this chapter.
 

  
 

   

   
2.1 A simple example with three assets
 

  
 

   

   Let’s start with a simple example with only three assets: First Energy (FE), Walmart (WMT), and Apple (AAPL). The analysis that follows can always be generalized to include as many assets as you would like. In this example, the assets are individual stocks, but they could easily be bonds, exchange-traded funds (ETFs), commodities, cryptocurrencies, or even hedge funds. The problem we want to address is this: What are the optimal weights to assign to these three assets? We will begin by taking the approach of the Nobel Prize–winning work of Harry Markowitz. The Markowitz approach recognizes that investors have two conflicting objectives: they want high returns, but they also want low risk. In the last section of this chapter, we discuss how to balance these competing objectives.
 

  
 

   

   Suppose we knew these three assets’ expected returns, variances, and correlations to each other. Of course, we do not know things like the expected return of a stock, but for now, let’s suspend disbelief for the purposes of this discussion. Let’s say the annual expected returns for FE, WMT, and AAPL are 4%, 9%, and 12%, respectively. We can represent this as a vector:
 

  
 

   

   [image: equation image]
 

  
 

   

   Let’s say the annual standard deviation of returns, or volatility of returns (we will use these two terms interchangeably), for FE, WMT, and AAPL are 15%, 20%, and 35%, respectively. We can also represent this as a vector:
 

  
 

   

   [image: equation image]
 

  
 

   

   We can plot these three stocks in mean–standard deviation space, which some call a risk–reward plot, using the following code.
 

  
 

   

   
Listing 2.1 Plotting points in mean–standard deviation space
 

    

    import pandas as pd

import numpy as np

import matplotlib.pyplot as plt



stocks = ['FE', 'WMT', 'AAPL']

mu = [0.04, 0.09, 0.12]

sigma = [0.15, 0.20, 0.35]



def plot_points(mu, sigma, stocks):

    plt.figure(figsize=(8,6))

    plt.scatter(sigma, mu, c='black')  #1

    plt.xlim(0,0.45)

    plt.ylim(0,0.25)

    plt.ylabel('Mean')

    plt.xlabel('Standard Deviation')

    for i, stock in enumerate(stocks):

        plt.annotate(stock, (sigma[i], mu[i]), ha='center', 

                     va='bottom', weight='bold')  #2

        

plot_points(mu, sigma, stocks)

plt.show()
 

    

     #1 Generates a scatter plot

     
#2 Places ticker symbol labels above the points

     


    
 

   
 

  
 

   

   Figure 2.1 shows the risk–reward plot when we run the code in listing 2.1.
 

  
 

    

   [image: figure] 

   
Figure 2.1 Example of the risk–reward plot for three stocks


  
 

   

   
2.2 Computing a portfolio’s expected return and standard deviation
 

  
 

   

   Our goal is to find the most efficient way to weight these assets by constructing portfolios with the highest expected return for a given standard deviation. We will see in this section that calculating the mean and standard deviation of a portfolio of assets involves summations and double summations. We will introduce matrix multiplication to perform these operations, which is preferred to using for loops in terms of computational efficiency, readability, and availability of libraries. For those who are not familiar with the field of linear algebra, don’t worry: you only need to be aware that there are efficient, one-line commands in Python to perform these matrix operations, which we will demonstrate in the listings.
 

  
 

   

   Suppose we represent the weights for FE, WMT, and AAPL as [image: equation image], [image: equation image], and [image: equation image], respectively. In that case, we can again write this in vector notation: [image: equation image]
 

  
 

   

   The return on this portfolio, [image: equation image], is [image: equation image]
 

  
 

   

   and the expected return on the portfolio is just the weighted average of the expected returns on the three assets that make up the portfolio: [image: equation image]
 

  
 

   

   We can write this in vector notation as the dot product of vectors [image: equation image] and [image: equation image]: [image: equation image]
 

  
 

   

   There are several ways to do this calculation using Python and NumPy (see the sidebar “Delving into some finer points of matrix multiplication in Python"). In this and the following chapters, we’ll use the matrix multiplication operator @, which has a clear and concise syntax that makes the code more readable. The next listing demonstrates how to use the operator @ to compute the expected returns of a portfolio given the weights and expected returns of each asset. If you run this listing, the portfolio’s expected return is 9.5%.
 

  
 

   

   
Listing 2.2 Computing expected portfolio returns
 

    

    w = np.array([0.2, 0.3, 0.5])

mu_p = mu @ w.T

print('Expected portfolio return: ', mu_p)
  

   
 

  
 

   

    

    Delving into some finer points of matrix multiplication in Python
 

   
 

    

     The second line of code in listing 2.2 is all you really need to know about performing matrix multiplication using the @ operator, but in case you’re interested in getting deeper in the weeds, a few additional remarks are in order:
 

   
 

    

    	In listing 2.2, we transpose the second vector of weights, not the first vector of means. Whereas in mathematics, we assume vectors are column vectors, in Python, when you create a list or a one-dimensional NumPy array, it is assumed to be a row vector. Also note that to take the transpose of a vector, it has to be a NumPy array and not a list, so you would have to create the vector of weights using, for example, w = np.array([0.2, 0.3, 0.5]) rather than using a list, such as w = [0.2, 0.3, 0.5].
 

    	When using the @ operator for matrix multiplication, the NumPy library automatically applies broadcasting rules, which makes it unnecessary in many cases to transpose one of the arrays. In other words, you can simplify the dot product in listing 2.2 by using mu_p = mu @ w instead of mu_p = mu @ w.T. But if you do that, be careful that the broadcasting rules are working the way you think they should be working.
 

    	The operator *, when applied to arrays, does element-by-element multiplication rather than matrix multiplication (multiplying entire rows in the first matrix by entire columns in the second matrix). If we used the element-by-element multiplication mu * w instead of the matrix multiplication w @ mu in listing 2.2, it would return not the weighted sum of expected returns for the three stocks, which is a scalar, but rather a one-dimensional array with three elements.
 

    	To make things even more complicated, NumPy has a data structure called a NumPy matrix, which differs from a NumPy array. If you convert the NumPy arrays to NumPy matrices, the * operator does true matrix multiplication, not element-by-element multiplication.
 

    	The NumPy function np.dot() is equivalent to the matrix multiplication operator @ for 1D and 2D arrays and can be used interchangeably with @. However, @ is preferred for readability.
 

   
 

  
 

   

   Unfortunately, the standard deviation of the portfolio is not simply the weighted average of the individual stock standard deviations. The pairwise correlations between the assets play an important role. To illustrate with just two assets, the standard deviation of the portfolio is [image: equation image]
 

  
 

   

   Instead of working with the correlations and individual stock volatilities, it is often more convenient to deal with covariances, which combine correlations and volatilities. The covariance between assets [image: equation image] and [image: equation image] is [image: equation image]
 

  
 

   

   and if [image: equation image] and [image: equation image] are the same, it’s just the variance of the asset: [image: equation image]
 

  
 

   

   The following listing converts a correlation matrix and a vector of individual volatilities into a covariance matrix using the previous formula. We need to convert the vector of volatilities into a diagonal matrix to scale the correlations by the corresponding volatilities.
 

  
 

   

   
Listing 2.3 Computing the covariance matrix from volatilities and correlations
 

    

    Corr = [[ 1.  ,  0.1 ,  0.17],

        [ 0.1 ,  1.  ,  0.26],

        [ 0.17,  0.26,  1.  ]]



Cov = np.diag(sigma) @ Corr @ np.diag(sigma)  #1

print('Covariance matrix: \n', Cov)
 

    

     #1 np.diag(sigma) converts the vector of volatilities into a diagonal matrix.

     


    
 

   
 

  
 

   

   This will output
 

  
 

   

    

    Covariance matrix: 

 [[0.0225   0.003    0.008925]

  [0.003    0.04     0.0182  ]

  [0.008925 0.0182   0.1225  ]]
  

   
 

  
 

   

   For [image: equation image] assets instead of two, and writing each term in terms of covariances, we can generalize the volatility of a portfolio as a double summation [image: equation image]
 

  
 

   

   or using matrix notation [image: equation image]
 

  
 

   

   where [image: equation image] is called the variance-covariance matrix, or covariance matrix for short. The covariance matrix is a square, symmetrical matrix with the variances along the diagonal and covariances on the off-diagonal elements. The next listing computes a portfolio’s standard deviation from the assets’ weights and the covariance matrix. If you run this listing, the portfolio’s volatility is 20.7%.
 

  
 

   

   
Listing 2.4 Computing the standard deviation of a portfolio
 

    

    sigma_p = (w @ Cov @ w.T) ** 0.5

print('Portfolio standard deviation: ', sigma_p)
  

   
 

  
 

   

   Now that we have gone through the code for finding the mean and standard deviation of a portfolio, we can use Python to gain some further intuition about the portfolio construction process.
 

  
 

   

   
2.3 An illustration with random weights
 

  
 

   

   In later chapters, we will show how to use a Python library to perform numerous optimizations to find the best weights under various assumptions, objectives, and constraints. But just to illustrate how some weights are better than others, we can generate many completely random weights in Python and plot the results. We will eventually compare these random weights with optimal ones. The function in listing 2.5 uses NumPy’s standardized normal random number generator to generate random weights for each asset. We then normalize the weights by dividing by their sum, guaranteeing that the normalized weights sum to 1. For now, the random weights can be negative (in practice, a negative position is referred to as a short). Later, we will constrain all the weights to be positive.
 

  
 

   

   
Listing 2.5 Generating random portfolio weights
 

    

    def random_weights(n_assets):

    k = np.random.randn(n_assets)

    return k / sum(k)

print(random_weights(3))
  

   
 

  
 

   

   Our output is as follows. Your output will differ with a different set of random numbers, but your weights should sum to 1 like these do:
 

  
 

   

    

    [ 0.45991849 -0.0659656   0.60604711 ]
  

   
 

  
 

   

   The next function takes a vector of weights as well as the means and covariance matrix as arguments and returns the expected return of the portfolio, [image: equation image], and the standard deviation of the portfolio, [image: equation image], using the earlier equations.
 

  
 

   

   
Listing 2.6 Computing portfolio mean and standard deviation from weights
 

    

    def mu_sigma_portfolio(weights, means, Cov):

    mu_p = np.dot(weights, means)

    sigma_p = (weights @ Cov @ weights) ** 0.5

    return mu_p, sigma_p
  

   
 

  
 

   

   With these functions to compute random weights and then taking those random weights and computing the mean and standard deviation of the portfolio associated with the random weights, we are ready to add random portfolios to the risk–reward plot, as shown in the following listing.
 

  
 

   

   
Listing 2.7 Risk–reward plots using random portfolio weights
 

    

    def plot_random_portfolios(mu, Cov, n_simulations):

    n_assets = len(mu)

    mu_p_sims = []

    sigma_p_sims = []

    for i in range(n_simulations):

        w = random_weights(n_assets)  #1

        mu_p, sigma_p = mu_sigma_portfolio(w, mu, Cov)  #2

        mu_p_sims.append(mu_p)

        sigma_p_sims.append(sigma_p)

    plt.scatter(sigma_p_sims, mu_p_sims, s=12)



plot_points(mu, sigma, stocks)



n_simulations = 1000

plot_random_portfolios(mu, Cov, n_simulations)    

plt.show();
 

    

     #1 Uses the function in listing 2.5 to generate random weights

     
#2 Uses the function in listing 2.6 to compute the mean and standard deviation of the portfolio

     


    
 

   
 

  
 

   

   Figure 2.2 shows the risk–reward plot when we run the code in listing 2.7 for 1,000 randomly weighted portfolios. From this plot, it is apparent that there is a pattern to the lowest possible portfolio volatility for a given level of portfolio expected return. It turns out that in the simple example we have described so far, there is a mathematical formula for the set of optimal portfolios called the minimum-variance frontier.
 

  
 

    

   [image: figure] 

   
Figure 2.2 Risk–reward plot for 1,000 random portfolios of three stocks


  
 

   

   The next listing adds the minimum-variance frontier to the risk–reward plot. (For those interested in the math, the mathematical formula is derived in the chapter’s appendix, but it is not necessary to understand the derivation for anything we do later.)
 

  
 

   

   
Listing 2.8 Adding minimum-variance frontier to risk–reward plot
 

    

    def plot_min_var_frontier(mu, Cov):  #1

    A,B,C = compute_ABC(mu, Cov)

    y = np.linspace(0,B/A,100)   #2

    x = np.sqrt((A*y*y-2*B*y+C)/(A*C-B*B))   #2

    plt.plot(x,y, color='black', lw=2.5, linestyle='--')  #2



    y = np.linspace(B/A,.45,100)  #3

    x = np.sqrt((A*y*y-2*B*y+C)/(A*C-B*B))  #3

    plt.plot(x,y, color='black', lw=2.5, label='Efficient Frontier')  #3

    plt.legend()





def compute_ABC(mu, Cov):  #4

    Cov_inv = np.linalg.inv(Cov)

    ones = np.ones(n_assets)

    A = ones @ Cov_inv @ ones

    B = ones @ Cov_inv @ mu

    C = mu @ Cov_inv @ mu

    return A,B,C



plot_points(mu, sigma, stocks)

plot_random_portfolios(mu, Cov, n_simulations)    

plot_min_var_frontier(mu, Cov)

plt.show()
 

    

     #1 The formulas used in this function are derived in the appendix.

     
#2 Plots the bottom half of the minimum variance frontier (dashed line)

     
#3 Plots the top half of the minimum variance frontier (solid line)

     
#4 Computes constants A,B,C (derived in the appendix) that are needed to plot the minimum-variance frontier

     


    
 

   
 

  
 

   

   Figure 2.3 shows the risk–reward plot when we run the code in listing 2.8, which now superimposes the minimum-variance frontier. The top half of the curve (the solid line) is referred to as the efficient frontier. Any portfolio on the lower portion of the minimum-variance frontier (the dashed line) is inefficient because there is a portfolio with the same volatility but a higher expected return on the upper side of the curve.
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Figure 2.3 Risk–reward plot with minimum-variance frontier


  
 

   

   In the next section, we will see how the portfolio problem changes when we add a risk-free asset.
 

  
 

   

   
2.4 Introducing a risk-free asset
 

  
 

   

   Suppose we introduce one more asset, which is a risk-free asset. To be precise, the risk-free asset is not simply any government bond that is free of credit risk; the maturity of the bond exactly matches the investment horizon, and there are no intermediate coupons that might introduce reinvestment risk. For example, if you have a one-month horizon, a one-month government bond (known as a one-month Treasury Bill, or T-Bill for short) is a risk-free asset. You know the exact amount you will be receiving in a month. Therefore, this risk-free asset has zero volatility, and on the mean–standard deviation plot, it is located on the y-axis with a mean return of the risk-free rate. In contrast, if you buy a 10-year government bond and sell it in a month, there could be capital gains or losses, which introduces some volatility.
 

  
 

   

   With a risk-free asset, we can actually do better than the previous efficient frontier. As figure 2.4 shows, the line that connects the risk-free asset to a tangent portfolio represents any feasible portfolio and lies above the efficient frontier. The line that goes from the risk-free rate to the tangent portfolio is sometimes referred to as the capital allocation line.
 

  
 

    

   [image: figure] 

   
Figure 2.4 Risk–reward plot with a capital allocation line


  
 

   

   Economists take this a step further and argue that if all investors have the same information and the same expectations, they will hold securities in the same weights, and in equilibrium, the tangent portfolio will be the market portfolio. In this case, the line that goes from the risk-free rate to the market portfolio is referred to as the capital market line rather than the capital allocation line. These assumptions are rather unrealistic, and, for generality, we will continue to use the term capital allocation line and not assume the tangent portfolio is necessarily the market portfolio.
 

  
 

   

   Any point between the risk-free rate and the tangent point can be achieved by a combination of the two assets: the tangent portfolio and the risk-free asset. A portfolio that consists of 70% of the tangent portfolio and 30% of the risk-free asset lies 70% toward the tangent portfolio. A more risk-averse investor might want 70% of the risk-free asset and 30% of the tangent portfolio.
 

  
 

   

   An investor can achieve points beyond the tangent portfolio using leverage. For example, an investor with $1 million in assets can borrow $500,000 and invest $1.5 million in the tangent portfolio. We assume, for simplicity, that an investor can borrow at the risk-free rate, although that assumption can easily be relaxed. If the borrowing cost were higher than the risk-free rate, the capital allocation line would be kinked at the tangent point.
 

  
 

   

   The code that generates the capital allocation line in figure 2.4 is shown in the following listing. The mathematical derivation for the capital allocation line can be found in the appendix if you’re interested in the math, but it is only included for completeness and is not necessary for understanding the portfolio construction process.
 

  
 

   

   
Listing 2.9 Plotting the capital allocation line
 

    

    def plot_Capital_Allocation_Line(rf, mu, Cov):  #1

    A,B,C = compute_ABC(mu, Cov)

    x = np.linspace(0,.45,100)

    y = rf + x*(C-2*B*rf+A*rf**2)**0.5

    plt.plot(x,y, color='black', lw=2.5)



plot_points(mu, sigma, stocks)

plot_random_portfolios(mu, Cov, n_simulations)    

plot_min_var_frontier(mu, Cov)



rf = 0.02

plot_Capital_Allocation_Line(rf, mu, Cov)

plt.show()
 

    

     #1 The formulas used in this function are derived in the appendix.

     


    
 

   
 

  
 

   

   As this section illustrates, we can separate the portfolio construction process into two steps:
 

  
 

   

   	Select the optimal composition of risky assets that lies on the tangent of the efficient frontier.
 

   	Decide how much to invest in the tangent portfolio versus the risk-free asset.
 

  
 

   

   The first step involves only math once the expected returns and covariance matrices have been estimated. We will talk more about estimating the parameters used in the first step in chapter 3. The second step, which arguably has a much larger effect on investment returns, depends on an investor’s personal preferences about the tradeoff between risk and returns, which is the topic in the next section.
 

  
 

   

   
2.5 Risk tolerance
 

  
 

   

   People inherently have different tolerances for risk, and part of the task of a robo-advisor is to figure out where along the risk–reward curve an investor should be. Robo-advisors usually ask a series of about 6–12 questions to gauge an investor’s tolerance for risk and then map those answers into a stock–bond portfolio. Many of these questionnaires can be found on the internet, and they all ask similar types of questions.
 

  
 

   

   As an example, consider a few of the 13 questions from the risk-tolerance scale developed, tested, and published by Grable and Lytton, which is widely used by financial advisors (the full questionnaire can be found at www.kitces.com/wp-content/uploads/2019/11/Grable-Lytton-Risk-Assessment.pdf):
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