

 Praise for the first edition

 “Like all the other great in Action titles from Manning, this book gives you everything you need to become productive quickly.”

 —Kevin Orr, Sumus Solutions

 “Kotlin is fun and easy to learn when you have this book to guide you!”

 —Filip Pravica, Info.nl

 “Thorough, well written, and easily accessible.”

 —Jason Lee, NetSuite

 “Complete introduction guide on the concepts and the paradigms of the Kotlin programming language.”

 —Ronald Tischliar, system architect, WWK Insurance

 “Kotlin is an exciting yet pragmatic language that every Java programmer should learn, and this is the only book they’ll need to learn Kotlin well.”

 —Tim Lavers, senior software engineer, Pacific Knowledge Systems

 “With deep knowledge shown by the authors, it’s clear they can convey that material to readers.”

 —Dylan Scott, software developer, Shred Code

 “A perfect and unique book to start learning the Kotlin language, written by two awesome developers from the Kotlin team in JetBrains.”

 —Paweł Gajda, Android developer, EL Passion

 [image:]

 Kotlin in Action

 Second Edition

 Sebastian Aigner, Roman Elizarov, Svetlana Isakova, Dmitry Jemerov

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Marina Michaels

 	
 Technical development editor:

 	
 Robert Wenner

 	
 Review editors:

 	
 Aleksandar Dragosavljević and Radmila Ercegovac

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Christian Berk

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Igor Wojda

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617299605

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1 Introducing Kotlin

 1 Kotlin: What and why

 1.1 A taste of Kotlin

 1.2 Kotlin’s primary traits

 Kotlin use cases: Android, server side, anywhere Java runs, and beyond

 Static typing makes Kotlin performant, reliable, and maintainable

 Combining functional and object-oriented programming makes Kotlin safe and flexible

 Concurrent and asynchronous code becomes natural and structured with coroutines

 Kotlin can be used for any purpose: It’s free, open source, and open to contributions

 1.3 Areas in which Kotlin is often used

 Powering backends: Server-side development with Kotlin

 Mobile Development: Android is Kotlin first

 Multiplatform: Sharing business logic and minimizing duplicate work on iOS, JVM, JS, and beyond

 1.4 The philosophy of Kotlin

 Kotlin is a pragmatic language

 Kotlin is concise

 Kotlin is safe

 Kotlin is interoperable

 1.5 Using the Kotlin tools

 Setting up and running the Kotlin code

 Compiling Kotlin code

 2 Kotlin basics

 2.1 Basic elements: Functions and variables

 Writing your first Kotlin program: “Hello, world!”

 Declaring functions with parameters and return values

 Making function definitions more concise by using expression bodies

 Declaring variables to store data

 Marking a variable as

 read only or reassignable

 Easier string formatting: String templates

 2.2 Encapsulating behavior and data: Classes and properties

 Associating data with a class and making it accessible: Properties

 Computing properties instead of storing their values: Custom accessors

 Kotlin source code layout: Directories and packages

 2.3 Representing and handling choices: Enums and when

 Declaring enum classes and enum constants

 Using the when expression to deal with enum classes

 Capturing the subject of a when expression in a variable

 Using the when expression with arbitrary objects

 Using the when expression without an argument

 Smart casts: Combining type checks and casts

 Refactoring: Replacing an if with a when expression

 Blocks as branches of if and when

 2.4 Iterating over things: while and for loops

 Repeating code while a condition is true: The while loop

 Iterating over numbers: Ranges and progressions

 Iterating over maps

 Using in to check collection and range membership

 2.5 Throwing and catching exceptions in Kotlin

 Handling exceptions and recovering from errors: try, catch, and finally

 Using try as an expression

 3 Defining and calling functions

 3.1 Creating collections in Kotlin

 3.2 Making functions easier to call

 Named arguments

 Default parameter values

 Getting rid of static utility classes: Top-level functions and properties

 3.3 Adding methods to other people’s classes: Extension functions and properties

 Imports and extension functions

 Calling extension functions from Java

 Utility functions as extensions

 No overriding for extension functions

 Extension properties

 3.4 Working with collections: varargs, infix calls, and library support

 Extending the Java collections API

 Varargs: Functions that accept an arbitrary number of arguments

 Working with pairs: Infix calls and destructuring declarations

 3.5 Working with strings and regular expressions

 Splitting strings

 Regular expressions and triple-quoted strings

 Multiline triple-quoted strings

 3.6 Making your code tidy: Local functions and extensions

 4 Classes, objects, and interfaces

 4.1 Defining class hierarchies

 Interfaces in Kotlin

 Open, final, and abstract modifiers: Final by default

 Visibility modifiers: Public by default

 Inner and nested classes: Nested by default

 Sealed classes: Defining restricted class hierarchies

 4.2 Declaring a class with nontrivial constructors or properties

 Initializing classes: Primary constructor and initializer blocks

 Secondary constructors: Initializing the superclass in different ways

 Implementing properties declared in interfaces

 Accessing a backing field from a getter or setter

 Changing accessor visibility

 4.3 Compiler-generated methods: Data classes and class delegation

 Universal object methods

 Data classes: Autogenerated implementations of universal methods

 Class delegation: Using the by keyword

 4.4 The object keyword: Declaring a class and creating an instance, combined

 Object declarations: Singletons made easy

 Companion objects: A place for factory methods and static members

 Companion objects as regular objects

 Object expressions: Anonymous inner classes rephrased

 4.5 Extra type safety without overhead: Inline classes

 5 Programming with lambdas

 5.1 Lambda expressions and member references

 Introduction to lambdas: Blocks of code as values

 Lambdas and collections

 Syntax for lambda expressions

 Accessing variables in scope

 Member references

 Bound callable references

 5.2 Using Java functional interfaces: Single abstract methods

 Passing a lambda as a parameter to a Java method

 SAM constructors: Explicit conversion of lambdas to functional interfaces

 5.3 Defining SAM interfaces in Kotlin: fun interfaces

 5.4 Lambdas with receivers: with, apply, and also

 Performing multiple operations on the same object: with

 Initializing and configuring objects: The apply function

 Performing additional actions with an object: also

 6 Working with collections and sequences

 6.1 Functional APIs for collections

 Removing and transforming elements: filter and map

 Accumulating values for collections: reduce and fold

 Applying a predicate to a collection: all, any, none, count, and find

 Splitting a list into a pair of lists: partition

 Converting a list to a map of groups: groupBy

 Transforming collections into maps: associate, associateWith, and associateBy

 Replacing elements in mutable collections: replaceAll and fill

 Handling special cases for collections: ifEmpty

 Splitting collections: chunked and windowed

 Merging collections: zip

 Processing elements in nested collections: flatMap and flatten

 6.2 Lazy collection operations: Sequences

 Executing sequence operations: Intermediate and terminal operations

 Creating sequences

 7 Working with nullable values

 7.1 Avoiding NullPointerExceptions and handling the absence of values: Nullability

 7.2 Making possibly null variables explicit with nullable types

 7.3 Taking a closer look at the meaning of types

 7.4 Combining null checks and method calls with the safe call operator: ?.

 7.5 Providing default values in null cases with the Elvis operator: ?:

 7.6 Safely casting values without throwing exceptions: as?

 7.7 Making promises to the compiler with the non-null assertion operator: !!

 7.8 Dealing with nullable expressions: The let function

 7.9 Non-null types without immediate initialization: Late-initialized properties

 7.10 Extending types without the safe-call operator: Extensions for nullable types

 7.11 Nullability of type parameters

 7.12 Nullability and Java

 Platform types

 Inheritance

 8 Basic types, collections, and arrays

 8.1 Primitive and other basic types

 Representing integers, floating-point numbers, characters, and Booleans with primitive types

 Using the full bit range to represent positive numbers: Unsigned number types

 Nullable primitive types: Int?, Boolean?, and more

 Kotlin makes number conversions explicit

 Any and Any?: The root of the Kotlin type hierarchy

 The Unit type: Kotlin’s void

 The Nothing type: “This function never returns”

 8.2 Collections and arrays

 Collections of nullable values and nullable collections

 Read-only and mutable collections

 Kotlin collections and Java collections are deeply related

 Collections declared in Java are seen as platform types in Kotlin

 Creating arrays of objects and primitive types for interoperability and performance reasons

 Part 2 Embracing Kotlin

 9 Operator overloading and other conventions

 9.1 Overloading arithmetic operators makes operations for arbitrary classes more convenient

 Plus, times, divide, and more: Overloading binary arithmetic operations

 Applying an operation and immediately assigning its value: Overloading compound assignment operators

 Operators with only one operand: Overloading unary operators

 9.2 Overloading comparison operators makes it easy to check relationships between objects

 Equality operators: equals (==)

 Ordering operators: compareTo (<, >, ⇐, and >=)

 9.3 Conventions used for collections and ranges

 Accessing elements by index: The get and set conventions

 Checking whether an object belongs to a collection: The in convention

 Creating ranges from objects: The rangeTo and rangeUntil conventions

 Making it possible to loop over your types: The iterator convention

 9.4 Making destructuring declarations possible with component functions

 Destructuring declarations and loops

 Ignoring destructured values using the _ character

 9.5 Reusing property accessor logic: Delegated properties

 Basic syntax and inner workings of delegated properties

 Using delegated properties: Lazy initialization and by lazy()

 Implementing your own delegated properties

 Delegated properties are translated to hidden properties with custom accessors

 Accessing dynamic attributes by delegating to maps

 How a real-life framework might use delegated properties

 10 Higher-order functions: Lambdas as parameters and return values

 10.1 Declaring functions that return or receive other functions: Higher-order functions

 Function types specify the parameter types and return values of a lambda

 Calling functions passed as arguments

 Java lambdas are automatically converted to Kotlin function types

 Parameters with function types can provide defaults or be nullable

 Returning functions from functions

 Making code more reusable by reducing duplication with lambdas

 10.2 Removing the overhead of lambdas with inline functions

 Inlining means substituting a function body to each call site

 Restrictions on inline functions

 Inlining collection operations

 Deciding when to declare functions as inline

 Using inlined lambdas for resource management with withLock, use, and useLines

 10.3 Returning from lambdas: Control flow in higher-order functions

 Return statements in lambdas: returning from an enclosing function

 Returning from lambdas: Return with a label

 Anonymous functions: Local returns by default

 11 Generics

 11.1 Creating types with type arguments: Generic type parameters

 Functions and properties that work with generic types

 Generic classes are declared with the angle bracket syntax

 Restricting the type a generic class or function can use: Type parameter constraints

 Excluding nullable type arguments by explicitly marking type parameters as non-null

 11.2 Generics at run time: Erased and reified type parameters

 Limitations to finding type information of a generic class at run time: Type checks and casts

 Functions with reified type parameters can refer to actual type arguments at run time

 Avoiding java.lang.Class parameters by replacing class references with reified type parameters

 Declaring accessors with reified type parameters

 Reified type parameters come with restrictions

 11.3 Variance describes the subtyping relationship between generic arguments

 Variance determines whether it is safe to pass an argument to a function

 Understanding the differences between classes, types, and subtypes

 Covariance preserves the subtyping relation

 Contravariance reverses the subtyping relation

 Specifying variance for type occurrences via use-site variance

 Star projection: Using the * character to indicate a lack of information about a generic argument

 Type aliases

 12 Annotations and reflection

 12.1 Declaring and applying annotations

 Applying annotations to mark declarations

 Specifying the exact declaration an annotation refers to: Annotation targets

 Using annotations to customize JSON serialization

 Creating your own annotation declarations

 Meta-annotations: Controlling how an annotation is processed

 Passing classes as annotation parameters to further control behavior

 Generic classes as annotation parameters

 12.2 Reflection: Introspecting Kotlin objects at run time

 The Kotlin reflection API: KClass, KCallable, KFunction, and KProperty

 Implementing object serialization using reflection

 Customizing serialization with annotations

 JSON parsing and object deserialization

 The final step of deserialization: callBy() and creating objects using reflection

 13 DSL construction

 13.1 From APIs to DSLs: Creating expressive custom code structures

 Domain-specific languages

 Internal DSLs are seamlessly integrated into the rest of your program

 The structure of DSLs

 Building HTML with an internal DSL

 13.2 Building structured APIs: Lambdas with receivers in DSLs

 Lambdas with receivers and extension function types

 Using lambdas with receivers in HTML builders

 Kotlin builders: Enabling abstraction and reuse

 13.3 More flexible block nesting with the invoke convention

 The invoke convention: Objects callable as functions

 The invoke convention in DSLs: Declaring dependencies in Gradle

 13.4 Kotlin DSLs in practice

 Chaining infix calls: The should function in test frameworks

 Defining extensions on primitive types: Handling dates

 Member extension functions: Internal DSL for SQL

 Part 3 Concurrent programming with coroutines and flows

 14 Coroutines

 14.1 Concurrency vs. parallelism

 14.2 Concurrency the Kotlin way: Suspending functions and coroutines

 14.3 Comparing threads and coroutines

 14.4 Functions that can pause: Suspending functions

 Code written with suspending functions looks sequential

 14.5 Comparing coroutines to other approaches

 Calling a suspending function

 14.6 Entering the world of coroutines: Coroutine builders

 From regular code into the realm of coroutines: The runBlocking function

 Creating start-and-forget coroutines: The launch function

 Awaitable computations: The async builder

 14.7 Deciding where your code should run: Dispatchers

 Choosing a dispatcher

 Passing a dispatcher to a coroutine builder

 Using withContext to switch the dispatcher within a coroutine

 Coroutines and dispatchers aren’t a magical fix for thread-safety concerns

 14.8 Coroutines carry additional information in their coroutine context

 15 Structured concurrency

 15.1 Coroutine scopes establish structure between coroutines

 Creating a coroutine scope: The coroutineScope function

 Associating coroutine scopes with components: CoroutineScope

 The danger of GlobalScope

 Coroutine contexts and structured concurrency

 15.2 Cancellation

 Triggering cancellation

 Invoking cancellation automatically after a time limit has been exceeded

 Cancellation cascades through all children

 Cancelled coroutines throw CancellationExceptions in special places

 Cancellation is cooperative

 Checking whether a coroutine has been cancelled

 Letting other coroutines play: The yield function

 Keep cancellation in mind when acquiring resources

 Frameworks can perform cancellation for you

 16 Flows

 16.1 Flows model sequential streams of values

 Flows allow you to work with elements as they are emitted

 Different types of flows in Kotlin

 16.2 Cold flows

 Creating a cold flow with the flow builder function

 Cold flows don’t do any work until collected

 Cancelling the collection of a flow

 Cold flows under the hood

 Concurrent flows with channel flows

 16.3 Hot flows

 Shared flows broadcast values to subscribers

 Keeping track of state in your system: State flow

 Comparing state flows and shared flows

 Hot, cold, shared, state: When to use which flow

 17 Flow operators

 17.1 Manipulating flows with flow operators

 17.2 Intermediate operators are applied to an upstream flow and return a downstream flow

 Emitting arbitrary values for each upstream element: The transform function

 The take operator family can cancel a flow

 Hooking into flow phases with onStart, onEach, onCompletion, and onEmpty

 Buffering elements for downstream operators and collectors: The buffer operator

 Throwing away intermediate values: The conflate operator

 Filtering out values on a timeout: The debounce operator

 Switching the coroutine context on which a flow is executed: The flowOn operator

 17.3 Creating custom intermediate operators

 17.4 Terminal operators execute the upstream flow and may compute a value

 Frameworks provide custom operators

 18 Error handling and testing

 18.1 Handling errors thrown inside coroutines

 18.2 Error propagation in Kotlin coroutines

 Coroutines cancel all their children when one child fails

 Structured concurrency only affects exceptions thrown across coroutine boundaries

 Supervisors prevent parents and siblings from being cancelled

 18.3 CoroutineExceptionHandler: The last resort for processing exceptions

 Differences when using CoroutineExceptionHandler with launch or async

 18.4 Handling errors in flows

 Processing upstream exceptions with the catch operator

 Retry the collection of a flow if predicate is true: The retry operator

 18.5 Testing coroutines and flows

 Making tests using coroutines fast: Virtual time and the test dispatcher

 Testing flows with Turbine

 appendix A Building Kotlin projects

 appendix B Documenting Kotlin code

 appendix C The Kotlin ecosystem

 index

front matter

preface

 The idea for Kotlin was conceived at JetBrains in 2010. By that time, JetBrains was an established vendor of development tools for many languages, including Java, C#, JavaScript, Python, Ruby, and PHP. IntelliJ IDEA, the Java IDE that is our flagship product, also included plugins for Groovy and Scala.

 The experience of building the tooling for such a diverse set of languages gave us a unique understanding of and perspective on the language design space as a whole. And yet the IntelliJ Platform-based IDEs, including IntelliJ IDEA, were still being developed in Java.

 We were somewhat envious of our colleagues on the .NET team who were developing in C#, a modern, powerful, and rapidly evolving language. But we didn’t see any language we could use in place of Java. What were our requirements for such a language?

 The first and most obvious requirement was static typing. We don’t know any other way to develop a multimillion-line codebase over many years without going crazy. Second, we needed full compatibility with the existing Java code. That codebase is a hugely valuable asset for JetBrains, and we couldn’t afford to lose it or devalue it through difficulties with interoperability. Third, we didn’t want to accept any compromises in terms of tooling quality. Developer productivity is the most important value to JetBrains, and great tooling is essential to achieving that. Finally, we needed a language that was easy to learn and reason about.

 When we see an unmet need for our company, we know there are other companies in similar situations, and we expect our solution to find many users outside of JetBrains. With this in mind, we decided to embark on the project of creating a new language: Kotlin.

 As it happens, the project took longer than we expected, and Kotlin 1.0 came out more than five years after the first commit to the repository. Since then, the language has found its audience, grown into a wonderful ecosystem of its own, and is here to stay.

 Kotlin is named after an island near St. Petersburg, Russia. In using the name of an island, we followed the precedent established by Java and Ceylon. (In English, the name is usually pronounced “cot-lin,” not “coat-lin” or “caught-lin.”)

 As the language was approaching release, we realized it would be valuable to have a book about Kotlin, written by people who were involved in making design decisions for the language and who could confidently explain why things are the way they are in Kotlin. This book is a result of that effort, and we hope it will help you learn and understand the Kotlin language. Good luck, and may you always develop with pleasure!

acknowledgments

 First of all, we’d like to thank Sergey Dmitriev and Max Shafirov for believing in the idea of a new language and deciding to invest JetBrains’ resources. Without them, neither the language nor this book would exist.

 We would especially like to acknowledge Andrey Breslav, who is the main person to blame for designing a language that’s a pleasure to write about (and to code in). Andrey, despite having to lead the continuously growing Kotlin team, was able to give us a lot of helpful feedback for the first edition of this book, which we greatly appreciate.

 We’re grateful to the team at Manning, who guided us through the process of writing this book and helped make the text readable and well structured—particularly our development editors, Dan Maharry and Marina Michaels, who bravely strove to find time to talk despite our busy schedules, as well as Michael Stephens, Helen Stergius, Kevin Sullivan, Tiffany Taylor, Elizabeth Martin, and Marija Tudor. In addition, we thank the rest of the production staff who helped format this book.

 The feedback from our technical reviewers, Igor Wojda and Brent Watson, was also invaluable, as were the comments of the reviewers who read the manuscript during the development process: Robert Wenner, Alessandro Campeis, Amit Lamba, Angelo Costa, Boris Vasile, Brendan Grainger, Calvin Fernandes, Christopher Bailey, Christopher Bortz, Conor Redmond, Dylan Scott, Filip Pravica, Jason Lee, Justin Lee, Kevin Orr, Nicolas Frankel, Paweł Gajda, Ronald Tischliar, and Tim Lavers.

 Thanks also go to everyone who submitted feedback during the MEAP program and in the book’s forum; we’ve improved the text based on your comments: Alessandro Campeis, Bob Resendes, Didier Garcia, Haim Raman, James Watson, João Miguel Pires Dias, Jorge Ezequiel Bo, Mark Kotyk, Md Shahriar Anwar, Mikael Dautrey, Nitin Gode, Peter Szabo, Phillip Sorensen, Rani Sharim, Richard Meinsen, Sergio Britos, Simeon Leyzerzon, Steve Prior, Walter Alexander Mata López, and William Morgan.

 We’re grateful to the entire Kotlin team, who had to listen to frequent reports like, “One more section is finished!” throughout the time we spent writing this book. We want to thank our colleagues who helped us plan the book and gave feedback on its drafts, especially Ilya Ryzhenkov, Michael Glukhikh, Ilya Gorbunov, Vsevolod Tolstopyatov, Dmitry Khalanskiy, and Hadi Hariri. We’d also like to thank our friends who not only were supportive but also had to read the text and provide feedback (sometimes in ski resorts during vacations): Lev Serebryakov, Pavel Nikolaev, Alex Semin, and Alisa Afonina.

 Finally, we’d like to thank our families and cats for making this world a better place.

about this book

 The second edition of Kotlin in Action teaches you the Kotlin programming language and how to use it to build applications running on the Java virtual machine (JVM) and Android. It starts with the basic features of the language and proceeds to cover the more distinctive aspects of Kotlin, such as its support for building high-level abstractions and domain-specific languages. The book also provides the information you need to integrate Kotlin with existing Java projects and helps you introduce Kotlin into your current working environment.

 The book covers Kotlin 2.0. For ongoing updates about the new features and changes, please refer to the online documentation at https://kotlinlang.org.

Who should read this book

 Kotlin in Action, Second Edition, is primarily focused on developers with some level of Java experience. Kotlin builds on many concepts and techniques from Java, and the book strives to get you up to speed quickly by using your existing knowledge.

 If you’re experienced with other programming languages such as C# or JavaScript, you may need to refer to other sources of information to understand the more intricate aspects of Kotlin’s interaction with the JVM, but you’ll still be able to learn Kotlin using this book. We focus on the Kotlin language as a whole and not on a specific problem domain, so the book should be equally useful for server-side developers, Android developers, and everyone else who builds projects targeting the JVM.

How this book is organized: A road map

 The book is divided into three parts. Part 1 explains how to get started using Kotlin together with existing libraries and APIs:

 	
 Chapter 1 talks about the key goals, values, and areas of application for Kotlin, and it shows you the different ways to run Kotlin code.

 	
 Chapter 2 explains the essential elements of any Kotlin program, including control structures and variable and function declarations.

 	
 Chapter 3 goes into detail about how functions are declared in Kotlin and introduces the concept of extension functions and properties.

 	
 Chapter 4 is focused on class declarations and introduces the concepts of data classes and companion objects.

 	
 Chapter 5 introduces the use of lambdas in Kotlin and showcases a number of Kotlin standard library functions using lambdas.

 	
 Chapter 6 gives an overview of how you work with collections in Kotlin as well as their lazy counterpart: sequences.

 	
 Chapter 7 familiarizes you with the concept of nullability.

 	
 Chapter 8 describes the Kotlin type system, including an additional focus on collections.

 Part 2 teaches you how to build your own APIs and abstractions in Kotlin and covers some of the language’s deeper features:

 	
 Chapter 9 talks about the principle of conventions, which assigns special meaning to methods and properties with specific names, and it introduces the concept of delegated properties.

 	
 Chapter 10 shows how to declare higher-order functions—functions that take other functions and parameters or return them. It also introduces the concept of inline functions.

 	
 Chapter 11 is a deep dive into the topic of generics in Kotlin, starting with the basic syntax and going into more advanced areas, such as reified type parameters and variance.

 	
 Chapter 12 covers the use of annotations and reflection and is centered around JKid, a small, real-life JSON serialization library that makes heavy use of those concepts.

 	
 Chapter 13 introduces the concept of domain-specific languages, describes Kotlin’s tools for building them, and demonstrates many DSL examples.

 Part 3 covers coroutines and flows, the approach to performing concurrent programming in Kotlin:

 	
 Chapter 14 provides an overview of Kotlin’s concurrency model, including suspending functions, coroutines, and the basic mechanics of writing concurrent code.

 	
 Chapter 15 talks about the concept of structured concurrency, which helps you manage concurrent tasks and introduces the mechanisms required for cancellation and error handling.

 	
 Chapter 16 introduces flows, the coroutine-based abstraction used for modeling sequential streams of values over time.

 	
 Chapter 17 covers flow operators, which can be used to transform Kotlin flows, in more detail.

 	
 Chapter 18 dives deeper into the subject of error handling and testing your concurrent code.

 The book also features three appendixes:

 	
 Appendix A explains how to build Kotlin code with Gradle and Maven.

 	
 Appendix B focuses on writing documentation comments and generating API documentation for Kotlin modules.

 	
 Appendix C is a guide for exploring the Kotlin ecosystem and finding the latest online information.

 The book works best when you read it all the way through, but you’re also welcome to refer to individual chapters covering specific subjects you’re interested in and to follow the cross-references if you run into an unfamiliar concept.

About the code

 The following typographical conventions are used throughout this book:

 	
 Italic font is used to introduce new terms.

 	
 Fixed-width font is used to denote code samples, as well as function names, classes, and other identifiers.

 Code annotations accompany many of the code listings and highlight important concepts. Where necessary, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥).

 Many source listings in the book show code together with its output. In those cases, we show the output of the code as a line comment following the line that produces the output or below the snippet, like this:

 fun main() {
 println("Hello World")
 // Hello World
}

 Some of the examples are intended to be complete runnable programs, whereas others are snippets used to demonstrate certain concepts and may contain omissions (indicated with ...) or syntax errors (described in the book text or in the examples themselves). The runnable examples can be downloaded as a zip file from the publisher’s website at https://www.manning.com/books/kotlin-in-action-second-edition.

liveBook discussion forum

 Purchase of Kotlin in Action, Second Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/ book/kotlin-in-action-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 Kotlin has a lively online community, so if you have questions or want to chat with fellow Kotlin users, you can use the following resources:

 	
 The Kotlin Slack—https://slack-chats.kotlinlang.org/

 	
 The official Kotlin forums—https://discuss.kotlinlang.org

 	
 The Kotlin tag on Stack Overflow—http://stackoverflow.com/questions/tagged/kotlin

 	
 Kotlin Reddit—www.reddit.com/r/Kotlin

about the authors

 Sebastian Aigner is a developer advocate at JetBrains. He regularly speaks at conferences and gives workshops on Kotlin-related subjects. Sebastian is a host on the Talking Kotlin podcast and creates videos for the official Kotlin YouTube channel. As a member of the Kotlin Foundation, he helps maintain the ecosystem’s growth and sustainability.

 Roman Elizarov was the project lead for Kotlin at JetBrains and focused on the design of the Kotlin language in the role of lead language designer for seven years. He previously designed and developed high-performance trading software for leading brokerage firms and market data delivery services that routinely handle millions of events per second. While working on Kotlin at JetBrains, he contributed to the design of Kotlin coroutines and the development of the Kotlin coroutines library.

 Svetlana Isakova began as a member of the Kotlin compiler team and is now a developer advocate for JetBrains. She teaches Kotlin and speaks at conferences worldwide. She is a cocreator of the course Kotlin for Java Developers at Coursera and is a coauthor of the book Atomic Kotlin (Mindview LLC, 2021).

 Dmitry Jemerov was one of the initial developers working on Kotlin as the project began. He’s deeply familiar with the design of the language and the reasons for the decisions made during its development. During his tenure at JetBrains, Dmitry worked on various Kotlin-related subjects, including the IntelliJ IDEA plug-in for Kotlin and the Kotlin documentation.

about the cover illustration

 The figure on the cover of Kotlin in Action, Second Edition, “Habit of a Russian Lady at Valday in 1764,” is taken from a book by Thomas Jefferys, published between 1757 and 1772.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Introducing Kotlin

 The goal of this part of the book is to get you productive writing Kotlin code that uses existing APIs. Chapter 1 will introduce you to the general traits of Kotlin.

 In chapters 2-4, you’ll learn how basic programming concepts—statements, functions, classes, and types—map to Kotlin code and how Kotlin enriches them to make programming more pleasant. You’ll be able to rely on your existing knowledge of other object-oriented languages, like Java, as well as tools, such as IDE coding-assistance features and the Java-to-Kotlin converter, to get up to speed quickly. In chapter 5, you’ll find out how lambdas help you avoid repetition and effectively solve common programming tasks. Chapter 6 teaches you how Kotlin allows you to elegantly modify collections using a functional programming approach. In chapter 7, you’ll become familiar with one of the key Kotlin specialties: its support for dealing with null values. In chapter 8, you’ll take a closer look at the basics of Kotlin’s type system, from basic numbers to the special Any and Nothing types. You’ll also learn more about collection types, including their read-only and mutable versions, and get introduced to arrays.

1 Kotlin: What and why

 This chapter covers

 	
A basic demonstration of Kotlin

 	
The main traits of the Kotlin language

 	
Possibilities for server-side and Android development

 	
A glimpse into Kotlin Multiplatform

 	
What distinguishes Kotlin from other languages

 	
Writing and running code in Kotlin

 Kotlin is a modern programming language on the Java virtual machine (JVM) and beyond. It’s a general-purpose, concise, safe, and pragmatic language. Independent programmers, small software shops, and large enterprises all have embraced Kotlin: millions of developers are now using it to write mobile apps, build server-side applications, and create desktop software, among several other applications.

 Kotlin started as a “better Java”—a language with improved developer ergonomics that prevents common categories of errors and embraces modern language design paradigms, all while maintaining the ability to be used everywhere Java was used. Over the last decade, Kotlin has managed to prove itself to be a pragmatic fit for many types of developers, projects, and platforms. Android is now Kotlin first, meaning most of the Android development is done in Kotlin. For server-side development, Kotlin makes a strong alternative to Java, with native and well-documented Kotlin support in prevalent frameworks, like Spring, and pure Kotlin frameworks exploiting the full potential of the language, like Ktor.

 Kotlin combines ideas from existing languages that work well but also brings innovative approaches, such as coroutines for asynchronous programming. Despite beginning with a JVM-only focus, Kotlin grew significantly beyond that, providing more “targets” to run on, including technology to create cross-platform solutions. In this chapter, we’ll take a detailed look at Kotlin’s main traits.

1.1 A taste of Kotlin

 Let’s start with a small example to demonstrate what Kotlin looks like. Even in this first, short code snippet, you can see a lot of interesting features and concepts in Kotlin—all of which will be discussed in detail throughout the book:

 	
 Defining a Person data class with properties without the need to specify a body

 	
 Declaring read-only properties (name and age) with the val keyword

 	
 Providing default values for arguments

 	
 Explicit work with nullable values (Int?) in the type system, avoiding the “billion-dollar mistake” of NullPointerExceptions

 	
 Top-level function definitions without nesting them inside classes

 	
 Named arguments when invoking functions and constructors

 	
 Using trailing commas

 	
 Using collection operations with lambda expressions

 	
 Providing fallback values when a variable is null via the Elvis operator (?:)

 	
 Using string templates as an alternative to manual concatenation

 	
 Using autogenerated functions for data classes, such as toString

 The code is explained briefly, but don’t worry if something isn’t clear right away. We will take plenty of time to discuss each and every detail of this code listing throughout the book, so you’ll be able to confidently write code just like this yourself.

 Listing 1.1 An early taste of Kotlin

 data class Person(❶
 val name: String, ❷
 val age: Int? = null ❸
)

fun main() { ❹
 val persons = listOf(
 Person("Alice", age = 29), ❺
 Person("Bob"), ❻
)
 val oldest = persons.maxBy { ❼
 it.age ?: 0 ❽
 }
 println("The oldest is: $oldest") ❾
}

// The oldest is: Person(name=Alice, age=29) ❿

 ❶ Data class

 ❷ Read-only property

 ❸ Nullable type (Int?)—the default value for the argument

 ❹ Top-level function

 ❺ Named argument

 ❻ Trailing comma

 ❼ Lambda expression

 ❽ Null-coalescing Elvis operator

 ❾ String template

 ❿ Autogenerated toString

 Our first Kotlin code snippet demonstrates how to create a collection in Kotlin, fill it with some Person objects, and then find the oldest person in the collection, using default values where no age is specified. When creating the list of people, it omits Bob’s age, so null is used as a default value. To find the oldest person in the list, the maxBy function is used. The lambda expression passed to the function takes one parameter, implicitly named it by default (although you can assign other names to the parameter, as well). The Elvis operator (?:) returns zero if age is null. Because Bob’s age isn’t specified, the Elvis operator replaces it with zero, so Alice wins the prize for being the oldest person.

 You can also try to run this example on your own. The easiest option to do so is to use the online playground at https://play.kotlinlang.org/. Type in the example and click the Run button, and then the code will be executed.

 Do you like what you’ve seen? Read on to learn more and become a Kotlin expert. We hope that soon you’ll see such code in your own projects, not only in this book.

1.2 Kotlin’s primary traits

 Kotlin is a multiparadigm language. It is statically typed, meaning many errors can be caught at compile time instead of at run time. It combines ideas from object-oriented and functional languages, which helps you write elegant code and make use of additional powerful abstractions. It provides a powerful way to write asynchronous code, which is important in many development areas.

 Just based on these short descriptions, you maybe already have an intuitive idea of the type of language Kotlin is. Let’s look at these key attributes in greater detail. First, let’s see what kinds of applications you can build with Kotlin.

1.2.1 Kotlin use cases: Android, server side, anywhere Java runs, and beyond

 Kotlin’s target is quite broad. The language doesn’t focus on a single problem domain or address a single type of challenge faced by software developers today. Instead, it provides across-the-board productivity improvements for all tasks that come up during the development process and aims for an excellent level of integration with libraries that support specific domains or programming paradigms.

 Common Kotlin use cases include the following:

 	
 Building mobile applications that run on Android devices

 	
 Building server-side code (typically, backends of web applications)

 The initial goal of Kotlin was to provide a more concise, more productive, safer alternative to Java that’s suitable in all contexts Java can be used. That includes a broad variety of environments, from running small edge devices to the largest data centers. In all these use cases Kotlin fits perfectly, and developers can do their job with less code and fewer annoyances along the way.

 But Kotlin works in other contexts as well. Using Kotlin Multiplatform, you can create cross-platform applications for desktop, iOS, and Android—and even run Kotlin in the browser. This book is focused mainly on the language itself and intricacies of the JVM target. You can find extensive information about other Kotlin applications on the Kotlin website: https://kotl.in/. Next, let’s look at the key qualities of Kotlin as a programming language.

1.2.2 Static typing makes Kotlin performant, reliable, and maintainable

 Statically typed programming languages come with several advantages, such as performance, reliability, maintainability, and tool support. The key advantage of a statically typed language is that the type of every expression in a program is known at compile time. Kotlin is a statically typed programming language; the Kotlin compiler can validate that the methods and fields you’re trying to access on an object actually exist. This helps eliminate an entire class of bugs—rather than crash at run time, if a field is missing or the return type of a function call isn’t as expected, you will see these problems at compile time, allowing you to fix them earlier in the development cycle.

 The following are some benefits of static typing:

 	
 Performance—Calling methods is faster because there’s no need to determine which method needs to be called at run time.

 	
 Reliability—The compiler uses types to verify the consistency of the program, so there are fewer chances for crashes at run time.

 	
 Maintainability—Working with unfamiliar code is easier because you can see what kind of types the code is working with.

 	
 Tool support—Static typing enables reliable refactorings, precise code completion, and other IDE features.

 This is in contrast to dynamically typed programming languages, like Python or JavaScript. Those languages let you define variables and functions that can store or return data of any type and resolve the method and field references at run time. This allows for shorter code and greater flexibility in creating data structures, but the downside is that problems like misspelled names or invalid parameters passed to functions can’t be detected during compilation and can lead to run-time errors.

 While the type of every expression in your program needs to be known at compile time, Kotlin doesn’t require you to specify the type of every variable explicitly in your source code. In many cases, the type of a variable can automatically be determined from the context, allowing you to omit the type declaration. Here’s the simplest possible example of this:

 val x: Int = 1 ❶
val y = 1 ❷

 ❶ You can specify the variable type explicitly.

 ❷ But often, you don’t have specify it.

 You’re declaring a variable, and because it’s initialized with an integer value, Kotlin automatically determines that its type is Int. The ability of the compiler to determine types from context is called type inference. Type inference in Kotlin means most of the extra verbosity associated with static typing disappears because you don’t need to declare types explicitly.

 If you look at the specifics of Kotlin’s type system, you’ll find many concepts familiar from other object-oriented programming languages. Classes and interfaces, for example, work as you may expect. And if you happen to be a Java developer, your knowledge transfers especially easily to Kotlin, including topics like generics.

 Something that may stand out to you is Kotlin’s support for nullable types, which enables you to write more reliable programs by detecting possible null pointer exceptions at compile time, rather than experience them in the form of crashes at run time. We’ll return to the topic of nullable types in section 1.4.3 and discuss them in detail in chapter 7, where we’ll also contrast them with other approaches for null values you might be familiar with.

 Kotlin’s type system also has first-class support for function types. To see what this is about, let’s look at the main ideas of functional programming to determine how it’s supported in Kotlin.

1.2.3 Combining functional and object-oriented programming makes Kotlin safe and flexible

 As a multiparadigm programming language, Kotlin combines the object-oriented approach with the functional programming style. The key concepts of functional programming are as follows:

 	
 First-class functions—You work with functions (pieces of behavior) as values. You can store them in variables, pass them as parameters, or return them from other functions.

 	
 Immutability—You work with immutable objects, which guarantees their state can’t change after their creation.

 	
 No side effects—You write pure functions, functions that return the same result given the same inputs and don’t modify the state of other objects or interact with the outside world.

 What benefits can you gain from writing code in the functional style? First, there is the benefit of conciseness. Functional code can be more elegant and succinct when compared to its imperative counterpart: instead of mutating variables and relying on loops and conditional branching, working with functions as values gives you much more power of abstraction.

 Applying a functional programming style also lets you avoid duplication in your code. If you have similar code fragments that implement a similar task but differ in some smaller details, you can easily extract the common part of the logic into a function and pass the differing parts as arguments. Those arguments might themselves be functions. In Kotlin, you can express those using a concise syntax for lambda expressions.

 The second benefit of functional code is safe concurrency. One of the biggest sources of errors in multithreaded programs is modification of the same data from multiple “actors” (often multiple threads) without proper synchronization. If you use immutable data structures and pure functions, you can be sure that such unsafe modifications won’t happen, and you don’t need to come up with complicated synchronization schemes.

 Finally, functional programming means easier testing. Functions without side effects can be tested in isolation without requiring a lot of setup code to construct the entire environment they depend on. When your functions don’t interact with the outside world, you’ll also have an easier time reasoning about your code and validating its behavior without having to keep a larger, complex system in your head at all times.

 Generally, a functional programming style can be used with many programming languages, and many of its parts are advocated as good programming style. But not all languages provide the syntactic and library support required to use it effortlessly. Kotlin has a rich set of features to support functional programming from the get-go. These include the following:

 	
 Function types—Allowing functions to receive other functions as arguments or return other functions

 	
 Lambda expressions—Letting you pass around blocks of code with minimum boilerplate

 	
 Member references—Allowing you to use functions as values and, for instance, pass them as arguments

 	
 Data classes—Providing a concise syntax for creating classes that can hold immutable data

 	
 Standard library APIs—A rich set in the standard library for working with objects and collections in the functional style

 The following snippet demonstrates a chain of actions to be performed with an input sequence. Having a given sequence of messages, the code finds “all unique senders of non-empty unread messages sorted by their names”:

 messages
 .filter { it.body.isNotBlank() && !it.isRead }
 .map(Message::sender)
 .distinct()
 .sortedBy(Sender::name)

 The Kotlin standard library defines functions like filter, map, and sortedBy for you to use. The Kotlin language supports lambda expressions and member references (like Message::sender) so that the arguments passed to these functions are very concise.

 When writing code in Kotlin, you can combine both object-oriented and functional approaches and use the tools that are most appropriate for the problem you’re solving; you get the full power of functional-style programming in Kotlin, and when you need it, you can work with mutable data and write functions with side effects, all without jumping through extra hoops. And, of course, working with frameworks based on interfaces and class hierarchies is just as easy as you would expect it to be.

1.2.4 Concurrent and asynchronous code becomes natural and structured with coroutines

 Whether you’re building an application running on a server, a desktop machine, or a mobile phone, concurrency—running multiple pieces of your code at the same time—is a topic that’s almost unavoidable. User interfaces need to remain responsive while long-running computations are running in the background. When interacting with services on the internet, applications often need to make more than one request at a time. Likewise, server-side applications are expected to keep serving incoming requests, even when a single request is taking much longer than usual. All of these applications need to operate concurrently, working on more than one thing at a time.

 There have been many approaches to concurrency, including threads, callbacks, futures, promises, reactive extensions, and more. Kotlin approaches the problem of concurrent and asynchronous programming using suspendable computations called coroutines, where code can suspend its execution and resume its work at a later point.

 In this example, you define a function processUser making three network calls by calling authenticate, loadUserData, and loadImage:

 suspend fun processUser(credentials: Credentials) {
 val user = authenticate(credentials) ❶
 val data = loadUserData(user) ❷
 val profilePicture = loadImage(data.imageID) ❸
 // ...
}

suspend fun authenticate(c: Credentials): User { /* ... */ } ❹
suspend fun loadUserData(u: User): Data { /* ... */ }
suspend fun loadImage(id: Int): Image { /* ... */ }

 ❶ Even long-running operations . . .

 ❷ . . . can be specified sequentially, top down . . .

 ❸ . . . without blocking the application.

 ❹ The suspend keyword makes it possible.

 A network call may take arbitrarily long. When performing each network request, the execution of the processUser function is suspended while waiting for the result. However, the thread this code is running on (and, by extension, the application itself) isn’t blocked; while waiting for the result of processUser, it can do other tasks in the meantime, such as responding to user inputs. (You’ll learn the details of suspending functions in section 14.1.)

 You won’t be able to write this code sequentially in an imperative fashion, one call after another, without blocking the underlying threads. On the other hand, if you use callbacks or reactive streams, such simple consecutive logic becomes much more complicated.

 In the following example, you load two images concurrently using async (which you will explore in section 14.6.3) and then wait for the loading to be completed via await, returning the combination of the images (e.g., one overlaid on the other) as the result:

 suspend fun loadAndOverlay(first: String, second: String): Image =
 coroutineScope {
 val firstDeferred = async { loadImage(first) } ❶
 val secondDeferred = async { loadImage(second) } ❷
 combineImages(firstDeferred.await(), secondDeferred.await()) ❸
 }

 ❶ Starts loading the first image in a new coroutine

 ❷ Starts loading the second image in yet another coroutine

 ❸ When both images are loaded, it overlays them and returns the resulting image.

 Structured concurrency, the subject of chapter 15, helps you manage the lifetime of your coroutines. In this example, two loading processes are started in a structured way (from the same coroutine scope). This guarantees that if one loading fails, the second one gets automatically canceled.

 Coroutines are also a very lightweight abstraction, meaning you can launch millions of concurrent jobs without significant performance penalties. Together with abstractions, like cold and hot flows, covered in chapter 16, Kotlin coroutines become a powerful tool for building concurrent applications.

 The entire third part of this book is dedicated to learning the ins and outs of coroutines, and understanding how you can best apply them for your use cases.

1.2.5 Kotlin can be used for any purpose: It’s free, open source, and open to contributions

 The Kotlin language, including the compiler, libraries, and all related tooling, is entirely open source and free to use for any purpose. It’s available under the Apache 2 license; development happens in the open on GitHub (http://github.com/jetbrains/kotlin). There are many ways to contribute to the development of Kotlin and its community:

 	
 The project welcomes code contributions for new features and fixes associated with the Kotlin compiler and its associated tooling.

 	
 By providing bug reports and feedback, you can help improve the experience for everyone when developing with Kotlin.

 	
 Potential new language features are discussed at length in the Kotlin community, and input from Kotlin developers like yourself plays a big role in driving forward and evolving the language.

 You also have a choice of multiple open source IDEs for developing your Kotlin applications: IntelliJ IDEA Community Edition and Android Studio are fully supported. (Of course, IntelliJ IDEA Ultimate works as well.) Now that you understand what kind of language Kotlin is, let’s see how the benefits of Kotlin work in specific practical applications.

1.3 Areas in which Kotlin is often used

 As mentioned earlier, two of the main areas in which Kotlin is often used are server-side and Android development. Let’s look at those areas in turn and see why Kotlin is a good fit for them.

1.3.1 Powering backends: Server-side development with Kotlin

 Server-side programming is a fairly broad concept. It encompasses all the following types of applications and much more:

 	
 Web applications that return HTML pages to a browser

 	
 Backends for mobile or single-page applications that expose a JSON API over HTTP

 	
 Microservices that communicate with other microservices over an RPC protocol or message bus

 Developers have been building these kinds of applications on the JVM for many years and have accumulated a huge stack of frameworks and technologies to help build them. Such applications usually aren’t developed in isolation or started from scratch. There’s almost always an existing system that is being extended, improved, or replaced, and new code must integrate with existing parts of the system, which may have been written many years ago.

 In this environment especially, Kotlin profits from its seamless interoperability with existing Java code. Regardless of whether you’re writing a new component or migrating the code of an existing service to Kotlin, Kotlin will fit right in. You won’t run into problems when you need to extend Java classes in Kotlin or annotate the methods and fields of a class in a certain way. The benefits are that the code of your system will be more compact, more reliable, and easier to maintain.

 Another big advantage of using Kotlin is better reliability for your application. Kotlin’s type system, with its precise tracking of null values, makes the problem of null pointer exceptions much less pressing. Most of the code that would lead to a NullPointerException at run time in Java fails to compile in Kotlin, ensuring that you fix the error before the application gets to the production environment.

 Modern frameworks, such as Spring (https://spring.io/), provide first-class support for Kotlin out of the box. Beyond the seamless interoperability, these frameworks include additional extensions and make use of techniques that make it feel as if they were designed for Kotlin in the first place.

 In this example, you’re defining a simple Spring Boot application, which serves a list of Greeting objects, consisting of an ID and some text, as JSON via HTTP, as seen in figure 1.1. Concepts from the Spring framework transfer directly to Kotlin: you use the same annotations (@SpringBootApplication, @RestController, @GetMapping) as you would when using Java, as shown in the following listing.

 Listing 1.2 Writing Spring Boot applications in Kotlin

 @SpringBootApplication ❶
class DemoApplication

fun main(args: Array<String>) {
 runApplication<DemoApplication>(*args)
}

@RestController
class GreetingResource {
 @GetMapping
 fun index(): List<Greeting> = listOf(❷
 Greeting(1, "Hello!"),
 Greeting(2, "Bonjour!"),
 Greeting(3, "Guten Tag!"),
)
}

data class Greeting(val id: Int, val text: String) ❷

 ❶ Use framework functionality like annotations . . .

 ❷ . . . while using the expressive power of Kotlin.

 [image: CH01_F01_Isakova]

 Figure 1.1 By combining Kotlin with industry-proven frameworks, like Spring, writing an application that serves JSON via HTTP only takes two dozen lines of code.

 Check the Kotlin or Spring websites to find more information about using Spring with Kotlin (https://kotlinlang.org/docs/jvm-get-started-spring-boot.html).

 Kotlin also enjoys an ever-growing ecosystem of its own libraries, including server-side frameworks. As an example, Ktor (https://ktor.io/) is a connected applications framework for Kotlin, built by JetBrains, which can be used to build server-side applications and make network requests in client and mobile applications. It powers products like JetBrains Space (https://jetbrains.space) and Toolbox (https://jetbrains.com/toolbox) and has been adopted by companies like Adobe.

 As a Kotlin framework, Ktor makes full use of the capabilities of the language. For example, it defines a custom domain-specific language (DSL) to declare how HTTP requests are routed through the application. Rather than configuring your application using annotations or XML files, you can use a DSL from Ktor to configure the routing of your server-side application, with constructs that look like they are a part of the Kotlin language but are completely custom for the framework—something you’ll learn how to do yourself in chapter 13.

 In the example shown in the following listing, you’re defining three routes, /world, /greet, and /greet/{entityId}, using the get, post, and route DSL constructs from Ktor.

 Listing 1.3 A Ktor app uses a DSL to route HTTP requests

 fun main() {
 embeddedServer(Netty, port = 8000) {
 routing { ❶
 get ("/world") { ❷
 call.respondText("Hello, world!")
 }
 route("/greet") {
 get { /* . . . */ }
 post("/{entityId}") { /* . . . */ } ❸
 }
 }
 }.start(wait = true)
}

 ❶ Defines how Ktor handles incoming HTTP requests . . .

 ❷ . . . using a DSL that looks like it is built-in Kotlin functionality . . .

 ❸ . . . and that is easily composable

 DSLs flexibly combine Kotlin language features and are often used for configuration; the construction of complex objects; or object-relational mapping (ORM) tasks, translating objects into their database representation and vice versa.

 Other Kotlin server-side frameworks, like http4k (https://http4k.org/), strongly embrace the functional nature of Kotlin code and provide simple and uniform abstractions for requests and responses. In short, whether you’re looking to use a battle-tested industry standard framework for your next large project or need a lightweight framework for your next microservice, you can rest assured there’s a framework waiting for you in Kotlin’s extensive ecosystem.

1.3.2 Mobile Development: Android is Kotlin first

 The most-used mobile operating system in the world, Android, started officially supporting Kotlin as a language for building apps in 2017. Only 2 years later, in 2019, after a lot of positive feedback from developers, Android became Kotlin first, making it the default choice for new apps. Since then, Google’s development tools, Jetpack libraries (https://developer.android.com/jetpack), samples, documentation, and training content all primarily focus on Kotlin.

 Kotlin is a good fit for mobile apps: these types of applications usually need to be delivered quickly while ensuring reliable operation on a large variety of devices. Kotlin’s language features turn Android development into a much more productive and pleasant experience. Common development tasks can be accomplished with much less code. The Android KTX library (https://developer.android.com/kotlin/ktx), built by the Android team, improves your experience even further by adding Kotlin-friendly adapters around many standard Android APIs.

 Google’s Jetpack Compose toolkit (https://developer.android.com/jetpack/compose) for building native user interfaces for Android is also designed for Kotlin from the ground up. It embraces Kotlin’s language features and gives you the ability to write less, simpler, and easier-to-maintain code when building the UI of your mobile applications.

 Here’s an example of Jetpack Compose, just to give you a taste of what Android development with Kotlin feels like. The following code shows the message and expands or hides the details on click:

 @Composable
fun MessageCard(modifier: Modifier, message: Message) {
 var isExpanded by remember { mutableStateOf(false) } ❶
 Column(modifier.clickable { isExpanded = !isExpanded }) { ❷
 Text(message.body) ❸
 if (isExpanded) { ❹
 MessageDetails(message) ❺
 }
 }
}

@Composable
fun MessageDetails(message: Message) { /* ... */ }

 ❶ Remembering whether the message card should be expanded

 ❷ Expands or hides the card details on click

 ❸ Composes a library function to show text

 ❹ Regular Kotlin syntax

 ❺ A custom composable function

 You can write the whole UI in Kotlin and use the regular Kotlin syntax, like if expressions or loops. In this example, we show a UI element representing additional details only if the user clicked on the card to get the expanded view. With Kotlin, you can extract custom logic representing different parts of the UI into functions, like MessageDetails, having more elegant code as a result.

 Embracing Kotlin on Android also means more reliable code, fewer NullPointerExceptions, and fewer messages that read “Unfortunately, process has stopped.” As an example, Google managed to reduce the number of NullPointerException crashes in their Google Home app by 30% after switching the development of new features to Kotlin.

 Using Kotlin doesn’t introduce any new compatibility concerns or performance disadvantages to your apps, either. Kotlin is fully compatible with Java 8 and above, and the code generated by the compiler is executed efficiently. The runtime used by Kotlin is fairly small, so you won’t experience a large increase in the size of the compiled application package. And when you use lambdas, many of the Kotlin standard library functions will inline them. Inlining lambdas ensures no new objects will be created and the application won’t suffer from extra GC pauses. You’ll benefit from all the cool new language features of Kotlin, and your users will still be able to run your application on their devices, even if they don’t run the latest version of Android.

1.3.3 Multiplatform: Sharing business logic and minimizing duplicate work on iOS, JVM, JS, and beyond

 Kotlin is also a multiplatform language. In addition to the JVM, Kotlin supports the following targets:

 	
 It can be compiled to JavaScript, allowing you to run Kotlin code in the browser and runtimes such as Node.js.

 	
 With Kotlin/Native, you can compile Kotlin code to native binaries, allowing you to target iOS and other platforms with self-contained programs.

 	
 Kotlin/Wasm, a target that is still being developed at the time of writing, will make it possible for you to compile your Kotlin code to the WebAssembly binary instruction format, allowing you to run your code on the WebAssembly virtual machines that ship in modern browsers and other runtimes.

 Kotlin also lets you specify which parts of your software should be shared between different targets and which parts have a platform-specific implementation, on a very fine-grained level. Because this control is very fine-grained, you can mix and match the best combination of common and platform-specific code. This mechanism, which Kotlin calls expect/actual, allows you to take advantage of platform-specific functionality from your Kotlin code. This effectively mitigates the classic problem of “targeting the lowest common denominator” that cross-platform toolkits usually face, wherein you are limited to a subset of operations available on all platforms you target.

 A major use case we have seen for code sharing is mobile applications targeting both Android and iOS. With Kotlin Multiplatform, you only have to write your business logic once, but you can use it in both iOS and Android targets in a completely native fashion and even make use of the respective APIs, toolkits, and capabilities these platforms offer. Similarly, sharing code between a server-side service and a JavaScript application running in the browser helps you reduce duplicate work, keep validation logic in sync, and more.

 If you want to learn more about the specifics of these additional platforms, as well as Kotlin’s support for sharing code and multiplatform programming, please refer to “Kotlin Multiplatform” on the Kotlin website (https://kotlinlang.org/docs/multiplatform.html). Now that we’ve looked at a selection of things that make Kotlin great, let’s examine Kotlin’s philosophy—the main characteristics that distinguish Kotlin from other languages.

1.4 The philosophy of Kotlin

 When we talk about Kotlin, we like to say that it’s a pragmatic, concise, and safe language with a focus on interoperability. What exactly do we mean by each of those words? Let’s look at each of them in turn.

1.4.1 Kotlin is a pragmatic language

 Being pragmatic has a simple meaning to us: Kotlin is a practical language designed to solve real-world problems. Its design is based on many years of industry experience creating large-scale systems, and its features are chosen to address use cases encountered by many software developers. Moreover, developers worldwide have been using Kotlin for roughly a decade now. Their continued feedback has shaped each released version of the language, which makes us confident saying Kotlin helps solve problems in real projects.

 Kotlin also is not a research language. It mostly relies on features and solutions that have already appeared in other programming languages and have proven to be successful. This reduces the complexity of the language and makes it easier to learn by letting you rely on familiar concepts. When new features are introduced, they remain in an experimental state for quite a long time. This makes it possible for the language design team to gather feedback and allows the final design of a feature to be tweaked and fine-tuned before it is added as a stable part of the language.

 Kotlin doesn’t enforce using any particular programming style or paradigm. As you begin to study the language, you can use the style and techniques familiar to you. Later, you’ll gradually discover the more powerful features of Kotlin, such as extension functions (section 3.3), its expressive type system (chapters 7 and 8), higher-order functions (chapter 10), and many more. You will learn to apply them in your own code, which will make it concise and idiomatic.

 Another aspect of Kotlin’s pragmatism is its focus on tooling. A smart development environment is just as essential for a developer’s productivity as a good language, and because of that, treating IDE support as an afterthought isn’t an option. In the case of Kotlin, the IntelliJ IDEA plug-in is developed in lockstep with the compiler, and language features are always designed with tooling in mind.

 The IDE support also plays a major role in helping you discover the features of Kotlin. In many cases, the tools will automatically detect common code patterns that can be replaced by more concise constructs and offer to fix the code for you. By studying the language features used by the automated fixes, you can learn to apply those features in your own code as well.

1.4.2 Kotlin is concise

 It’s common knowledge that developers spend more time reading existing code than writing new code. Imagine you’re a part of a team developing a big project, and you need to add a new feature or fix a bug. What are your first steps? You look for the exact section of code that you need to change, and only then do you implement a fix. You read a lot of code to find out what you have to do. This code might have been written recently by your colleagues or by someone who no longer works on the project—or by you, long ago. Only after understanding the surrounding code can you make the necessary modifications.

 The simpler and more concise the code is, the faster you’ll understand what’s going on. Of course, good design plays a significant role here, and so does the choice of expressive names, ensuring your variables, functions, and classes are accurately described by their names. But the choice of the language and its conciseness are also important. The language is concise if its syntax clearly expresses the intent of the code you read and doesn’t obscure it with boilerplate required to specify how the intent is accomplished.

 Kotlin tries hard to ensure all the code you write carries meaning and isn’t just there to satisfy code structure requirements. A lot of the standard boilerplate of object-oriented languages, such as getters, setters, and the logic for assigning constructor parameters to fields, is implicit in Kotlin and doesn’t clutter your source code. Semicolons can also be omitted in Kotlin, removing a bit of extra clutter from your code, and its powerful type inference spares you from explicitly specifying types where the compiler can deduce them from the context.

 Kotlin has a rich standard library that lets you replace these long, repetitive sections of code with library method calls. Kotlin’s support for lambdas and anonymous functions (function literals that are used like expressions) makes it easy to pass small blocks of code to library functions. This lets you encapsulate all the common parts in the library and keep only the unique, task-specific portion in the user code.

 At the same time, Kotlin doesn’t try to collapse the source code to the smallest number of characters possible. For example, Kotlin supports overloading a fixed set of operators, meaning you can provide custom implementations for +, -, in, or []. However, users can’t define their own custom operators. This prevents developers from replacing method names with cryptic punctuation sequences, which would be harder to read and more difficult to find in documentation systems than using expressive names.

 More concise code takes less time to write and, more important, less time to read and comprehend. This improves your productivity and empowers you to get things done faster.

1.4.3 Kotlin is safe

 In general, when we speak of a programming language as safe, we mean its design prevents certain kinds of errors in a program. Of course, this isn’t an absolute quality; no language prevents all possible errors. Additionally, preventing errors usually comes at a cost. You need to give the compiler more information about the intended operation of the program, so the compiler can then verify that the information matches what the program does. Because of that, there’s always a tradeoff between the level of safety you get and the loss of productivity required to put in more detailed annotations.

 Running on the JVM already provides many safety guarantees—for example, memory safety, preventing buffer overflows, and other problems caused by incorrect use of dynamically allocated memory. As a statically typed language on the JVM, Kotlin also ensures the type safety of your applications. And Kotlin goes further: it makes it easy to define read-only variables (via the val keyword) and quick to group them in immutable (data) classes, resulting in additional safety for multithreaded applications.

 Beyond that, Kotlin aims to prevent errors happening at run time by performing checks during compile time. Most important, Kotlin strives to remove the NullPointerException from your program. Kotlin’s type system tracks values that can and can’t be null and forbids operations that can lead to a NullPointerException at run time. The additional cost required for this is minimal—marking a type as nullable takes only a single character, a question mark at the end:

 fun main() {
 var s: String? = null ❶
 var s2: String = "" ❷

 println(s.length) ❸
 println(s2.length) ❹
}

 ❶ May be null

 ❷ May not be null

 ❸ Won’t compile, saving you from a crash

 ❹ Will work as expected

 To complement this, Kotlin provides many convenient ways to handle nullable data. This helps greatly in eliminating application crashes.

 Another type of exception Kotlin helps avoid is the class cast exception, which happens when you cast an object to a type without first checking that it has the right type. Kotlin combines check and cast into a single operation. That means once you’ve checked the type, you can refer to members of that type without any additional casts, redeclarations, or checks.

 In this example, is performs a type check on the value variable, which may be of Any type. The compiler knows that in the true branch of the conditional, value must be of type String, so it can safely permit the usage of methods from that type (a so-called smart-cast, which we’ll get to know in greater detail in section 2.3.6).

 fun modify(value: Any) {
 if (value is String) { ❶
 println(value.uppercase()) ❷
 }
}

 ❶ Checks the type

 ❷ Uses a method callable on String without further casts

 Next, let’s talk specifically about Kotlin for JVM targets. Kotlin provides seamless interoperability with Java.

1.4.4 Kotlin is interoperable

 Regarding interoperability, your first concern probably is, “Can I use my existing libraries?” With Kotlin, the answer is, “Yes, absolutely.” Regardless of the kind of APIs the library requires, you can work with them from Kotlin. You can call Java methods, extend Java classes and implement interfaces, apply Java annotations to your Kotlin classes, and so on.

 Unlike some other JVM languages, Kotlin goes even further with interoperability, making it effortless to call Kotlin code from Java as well. No tricks are required; Kotlin classes and methods can be called exactly like regular Java classes and methods. This gives you the ultimate flexibility to mix Java and Kotlin code anywhere in your project. When you start adopting Kotlin in your Java project, you can run the Java-to-Kotlin converter on any single class in your codebase, and the rest of the code will continue to compile and work without any modifications. This works regardless of the role of the class you’ve converted—something we’ll take a closer look at in section 1.5.1.

 Another area where Kotlin focuses on interoperability is its use of existing Java libraries to the largest degree possible. For example, Kotlin’s collections rely almost entirely on Java standard library classes, extending them with additional functions for more convenient use in Kotlin. (We’ll look at the mechanism for this in greater detail in section 3.3.) This means you never need to wrap or convert objects when you call Java APIs from Kotlin, or vice versa. All the API richness provided by Kotlin comes at no cost at run time.

 The Kotlin tooling also provides full support for cross-language projects. It can compile an arbitrary mix of Java and Kotlin source files, regardless of how they depend on each other. IDE features inside IntelliJ IDEA and Android Studio work across languages as well, allowing you to do the following:

 	
 Navigate freely between Java and Kotlin source files

 	
 Debug mixed-language projects and step between code written in different languages

 	
 Refactor your Java methods and have their use in Kotlin code correctly updated, and vice versa

 As an example, figure 1.2 shows how finding usages across a mixed Kotlin and Java codebase works in IntelliJ IDEA.

 [image: CH01_F02_Isakova]

 Figure 1.2 When using the Find Usages action in IntelliJ IDEA, it finds results across Kotlin and Java files in the same project. Other IDE features, such as refactorings and navigation, work just as smoothly across both languages.

 Hopefully, by now, we’ve convinced you to give Kotlin a try. But how can you start using it? In the next section, we’ll discuss the process of compiling and running Kotlin code, both from the command line and using different tools.

1.5 Using the Kotlin tools

 Let’s examine an overview of the Kotlin tools. First, we’ll discuss how to set up your environment to run the Kotlin code.

1.5.1 Setting up and running the Kotlin code

 You can run small snippets online or install an IDE. You’ll get the best experience with IntelliJ IDEA or Android Studio. We provide the basic information here, but the best up-to-date tutorials are available on the Kotlin website. If you need the detailed information about getting your environment set up or information about different compilation targets, please refer to the Getting Started section of the Kotlin website (https://kotlinlang.org/docs/getting-started.html).

 Try Kotlin without installation with the Kotlin online playground

 The easiest way to try Kotlin doesn’t require any installation or configuration. At https://play.kotlinlang.org/, you can find an online playground, where you can write, compile, and run small Kotlin programs. The playground has code samples demonstrating the features of Kotlin as well as a series of exercises for learning Kotlin interactively. Alongside it, the Kotlin documentation (https://kotlinlang.org/docs) also has several interactive samples you can run right in the browser.

 These are the quickest ways to run short snippets of Kotlin, but they provides less assistance and guidance. It’s a very minimal development environment that is missing several convenient features, such as autocomplete or inspections that can tell you how to improve your Kotlin code. The web version also doesn’t support user interactions via the standard input stream or working with files and directories; however, these features are all conveniently available inside IntelliJ IDEA and Android Studio.

 Plug-in for IntelliJ IDEA and Android Studio

 The IntelliJ IDEA plug-in for Kotlin has been developed in parallel with the language, and it’s a full-featured development environment for Kotlin. It’s mature and stable, and it provides a complete set of tools for Kotlin development.

 The Kotlin plug-in is included out of the box with IntelliJ IDEA and Android Studio, so no additional setup is necessary. You can use either the free, open source IntelliJ IDEA Community Edition or Android Studio, or the commercial IntelliJ IDEA Ultimate. In IntelliJ IDEA, select Kotlin in the New Project dialog, and you’re good to go. In Android Studio, you simply need to create a new project to immediately start writing Kotlin. You can also check the “Get started with Kotlin/JVM” tutorial with detailed instructions and screenshots on how to create a project in IntelliJ IDEA: https://kotlinlang.org/docs/jvm-get-started.html.

 The Java-to-Kotlin converter

 Getting up to speed with a new language is never effortless. Fortunately, we’ve built a nice little shortcut that lets you speed up your learning and adoption by relying on your existing knowledge of Java. This tool is the automated Java-to-Kotlin converter.

 As you start learning Kotlin, the converter can help you express something when you don’t remember the exact syntax. You can write the corresponding snippet in Java and then paste it into a Kotlin file, and the converter will automatically offer to translate the code into Kotlin. The result won’t always be the most idiomatic, but it will be working code, and you’ll be able to make progress with your task.

 The converter is also great for introducing Kotlin into an existing Java project. When you need to write a new class, you can do it in Kotlin right from the beginning. However, if you need to make significant changes to an existing class, you may also want to use Kotlin in the process. That’s where the converter comes into play: you convert the class into Kotlin first, and then you add the changes, using all the benefits of a modern language.

 Using the converter in IntelliJ IDEA is extremely easy. You can either copy a Java code fragment and paste it into a Kotlin file or invoke the Convert Java File to Kotlin File action if you need to convert an entire file.

1.5.2 Compiling Kotlin code

 Kotlin is a compiled language, which means before you can run Kotlin code, you need to compile it. As we discussed in section 1.3.3, the Kotlin code can be compiled to different targets:

 	
 JVM bytecode (stored in .class files) to run on the JVM

 	
 JVM bytecode to be further transformed and run on Android

 	
 Native targets to run natively on different operating systems

 	
 JavaScript (and WebAssembly) to run in a browser

 For the Kotlin compiler, it’s not important whether the produced JVM bytecode runs on JVM or is further transformed and runs on Android. Android Runtime (ART) transforms the JVM bytecode to Dex bytecode and runs it instead. For more details on how it works on Android, please refer to the documentation: https://source.android.com/devices/tech/dalvik.

 Since the main target for this book is Kotlin/JVM, let’s discuss how the compilation process works there in greater detail. You can find information about other targets on the Kotlin website.

 The compilation process for Kotlin/JVM

 Kotlin source code is normally stored in files with the extension .kt. When compiling Kotlin code for the JVM target, the compiler analyzes the source code and generates .class files, just like the Java compiler does. The generated .class files are then packaged and executed using the standard procedure for the type of application you’re working on.

 In the simplest case, you can use the kotlinc command to compile your code from the command line and use the java command to execute your code:

 kotlinc <source file or directory> -include-runtime -d <jar name>
java -jar <jar name>

 A JVM can run .class files compiled from the Kotlin code without knowing whether they were written initially in Java or in Kotlin. Kotlin built-in classes and their APIs, however, differ from those in Java, and to correctly run the compiled code, JVM needs the additional information as a dependency: the Kotlin runtime library. When compiling code from the command line, we explicitly invoked -include-runtime to include this runtime library into the resulting JAR file.

 The Kotlin runtime library, which must be distributed with your application, contains the definitions of Kotlin’s basic classes, like Int and String, and some extensions Kotlin adds to the standard Java APIs. A simplified description of the Kotlin build process is shown in figure 1.3.

 [image: CH01_F03_Isakova]

 Figure 1.3 Kotlin build process

 In addition, you need the Kotlin standard library included as a dependency in your application. In theory, you can write the Kotlin code without it, but in practice, you never need to do so. The standard library contains the definitions of such fundamental classes as List, Map, and Sequence as well as many methods for working with them. We discuss the most important classes and their APIs in detail in this book.

 In most real-life cases, you’ll be using a build system such as Gradle or Maven to compile your code. Kotlin is compatible with these build systems. All of those build systems also support mixed-language projects that combine Kotlin and Java in the same codebase. Maven and Gradle take care of including both the Kotlin runtime library and (for the latest versions) Kotlin standard library as dependencies of your application, so you don’t need to include them explicitly.

 The best and most up-to-date way to check the details of how to set up the project with the build system of your choice is reviewing the following sections of the Kotlin documentation: https://kotlinlang.org/docs/gradle.html and https://kotlinlang.org/docs/maven.html. For a quick start, you don’t need to know all the peculiarities; you can simply create a new project, and the correct build file with the necessary dependencies will be generated for you.

Summary

 	
 Kotlin is statically typed and supports type inference, allowing it to maintain correctness and performance while keeping the source code concise.

 	
 Kotlin supports both object-oriented and functional programming styles, enabling higher-level abstractions through first-class functions and simplifying testing and multithreaded development through the support of immutable values.

 	
 Coroutines are a lightweight alternative to threads and help make asynchronous code feel natural by allowing you to write logic that looks similar to sequential code and structure concurrent code in parent-child relationships.

 	
 Kotlin works well for server-side applications, with Kotlin-first frameworks like Ktor and http4k, as well as fully supports all existing Java frameworks, like Spring Boot.

 	
 Android is Kotlin first, with development tools, libraries, samples, and documentation all primarily focused on Kotlin.

 	
 Kotlin Multiplatform brings your Kotlin code to targets beyond the JVM, including iOS and the web.

 	
 Kotlin is free and open source, and it supports multiple build systems and IDEs.

 	
 IntelliJ IDEA and Android Studio allow you to navigate smoothly across code written in both Kotlin and Java.

 	
 The Kotlin playground (https://play.kotlinlang.org) is a fast way to try Kotlin without any setup.

 	
 The automated Java-to-Kotlin converter allows you to bring your existing code and knowledge to Kotlin.

 	
 Kotlin is pragmatic, safe, concise, and interoperable, meaning it focuses on using proven solutions for common tasks, preventing common errors, such as NullPointerExceptions; supporting compact and easy-to-read code; and providing unrestricted integration with Java.

2 Kotlin basics

 This chapter covers

 	
Declaring functions, variables, classes, enums, and properties

 	
Control structures in Kotlin

 	
Smart casts

 	
Throwing and handling exceptions

 In this chapter, you’ll learn the basics of the Kotlin language required to write your first working Kotlin programs. These include basic building blocks that you encounter all throughout Kotlin programs, like variables and functions. You’ll also get acquainted with different ways of representing data in Kotlin via enums as well as classes and their properties.

 The control structures you’ll learn throughout this chapter will give you the tools needed to use conditional logic in your programs as well as iterate using loops. You will also learn what makes these constructs special compared to other languages, like Java.

 We’ll also introduce the basic mechanics of types in Kotlin, starting with the concept of a smart cast, an operation that combines a type check and a cast into one operation. You’ll see how this helps you remove redundancy from your code without sacrificing safety. We’ll also briefly talk about exception handling and Kotlin’s philosophy behind it. By the end of this chapter, you’ll already be able to combine these basic bits and pieces of the Kotlin language to write your own working Kotlin code, even if it might not be the most idiomatic.

 What’s idiomatic Kotlin?

 When discussing Kotlin code, a certain phrase often reoccurs: idiomatic Kotlin. You’ll certainly hear this phrase throughout this book, but you might also hear it when talking to your colleagues, when attending community events, or at conferences. Clearly, it’s worth understanding what this means.

 Simply put, idiomatic Kotlin is how a “native Kotlin speaker” writes code, using language features and syntactic sugar where appropriate. Such code is made up of idioms—recognizable structures that address problems you’re trying to solve in “the Kotlin way.” Idiomatic code fits in with the programming style generally accepted by the community and follows the recommendations of the language designers.

 Like any skill, learning to write idiomatic Kotlin takes time and practice. As you progress through this book, inspect the provided code samples, and write your own code, you will gradually develop an intuition for what idiomatic Kotlin code looks and feels like and will gain the ability to independently apply these learnings in your own code.

2.1 Basic elements: Functions and variables

 This section introduces you to the basic elements every Kotlin program consists of: functions and variables. You’ll write your very first Kotlin program, see how Kotlin lets you omit many type declarations, and learn how it encourages you to avoid using mutable data where possible—and why that’s a good thing.

2.1.1 Writing your first Kotlin program: “Hello, world!”

 Let’s start our journey into the world of Kotlin with a classical example: a program that prints “Hello, world!” In Kotlin, it’s just one function (figure 2.1).

 [image: CH02_F01_Isakova]

 Figure 2.1 “Hello World!” in Kotlin

 We can observe several features and elements of the language syntax in this simple code snippet already:

 	
 The fun keyword is used to declare a function. Programming in Kotlin is lots of fun, indeed!

 	
 The function can be declared at the top level of any Kotlin file; you don’t need to put it in a class.

 	
 You can specify the main function as the entry point for your application at the top level and without additional arguments (other languages may require you to always accept an array of command-line parameters, for example).

 	
 Kotlin emphasizes conciseness: you just write println to display your text in the console. The Kotlin standard library provides many wrappers around standard Java library functions (e.g., System.out.println) with more concise syntax, and println is one of them.

 	
 You can (and should) omit the semicolon from the end of a line, just as in many other modern languages.

 So far, so good! We’ll discuss some of these topics in more detail later. Now, let’s explore the function declaration syntax.

2.1.2 Declaring functions with parameters and return values

 The first function you wrote didn’t actually return any meaningful values. However, the purpose of functions is often to compute and subsequently return some kind of result. For example, you may want to write a simple function max that takes two integer numbers a and b and returns the larger of the two. So what would that look like?

 The function declaration starts with the fun keyword followed by the function name: max, in this case. It’s followed by the parameter list in parentheses. Here, we declare two parameters, a and b, both of type Int. In Kotlin, you first specify the parameter name, and then you specify the type, separated by a colon. The return type comes after the parameter list, separated from it by a colon:

 fun max(a: Int, b: Int): Int {
 return if (a > b) a else b
}

 Figure 2.2 shows you the basic structure of a function. Note that in Kotlin, if is an expression with a result value. You can think of if as returning a value from either of its branches. This makes it similar to the ternary operator in other languages, like Java, where the same construct might look like (a > b) ? a : b.

 [image: CH02_F02_Isakova]

 Figure 2.2 A Kotlin function is introduced with the fun keyword. Parameters and their types follow in parentheses, each annotated with a name and a type, separated by a colon. Its return type is specified after the end of the parameter list. Functions just like this one are basic building blocks of any Kotlin program.

 You can then call your function by using its name, providing the arguments in parentheses. You’ll learn about different ways for calling Kotlin functions in section 3.2.1:

 fun main() {
 println(max(1, 2))
 // 2
}

 Parameters and return type of the main function

 As you already saw in the “Hello, World!” example, the entry point of every Kotlin program is its main function. This function can either be declared with no parameters or with an array of strings as its arguments (args: Array<String>). In the latter case, each element in the array corresponds to a command-line parameter passed to your application. In any case, the main function does not return any value.

 The difference between expressions and statements

 In Kotlin, if is an expression, not a statement. The difference between an expression and a statement is that an expression has a value, which can be used as part of another expression, whereas a statement is always a top-level element in its enclosing block and doesn’t have its own value. In Kotlin, most control structures, except the loops (for, while, and do/while), are expressions, which sets it apart from other languages, like Java. Specifically, the ability to combine control structures with other expressions lets you express many common patterns concisely, as you’ll see later in the book. As a sneak peek, here are some snippets that are valid in Kotlin:

 val x = if (myBoolean) 3 else 5
val direction = when (inputString) {
 "u" -> UP
 "d" -> DOWN
 else -> UNKNOWN
}
val number = try {
 inputString.toInt()
} catch (nfe: NumberFormatException) {
 -1
}

 On the other hand, Kotlin enforces assignments to always be statements—that is, when assigning a value to a variable, this assignment operation doesn’t itself return a value.

 This helps avoid confusion between comparisons and assignments, which is a common source of mistakes in languages that treat them as expressions, such as Java or C/C++. That means the following isn’t valid Kotlin code:

 val number: Int
val alsoNumber = i = getNumber()
// ERROR: Assignments are not expressions,
// and only expressions are allowed in this context

2.1.3 Making function definitions more concise by using expression bodies

 In fact, you can make your max function even more concise. Since its body consists of a single expression (if (a > b) a else b), you can use that expression as the entire body of the function, removing the curly braces and the return statement. Instead, you can place the single expression right after an equals sign (=):

 fun max(a: Int, b: Int): Int = if (a > b) a else b

 If a function is written with its body in curly braces, we say that this function has a block body. If it returns an expression directly, it has an expression body.

 Converting between expression body and block body in IntelliJ IDEA and Android Studio

 IntelliJ IDEA and Android Studio provide intention actions to convert between the two styles of functions: Convert to Expression Body and Convert to Block Body. You can find them via the lightbulb icon when your cursor is placed on the function or the Alt-Enter (or Option-Return on macOS) keyboard shortcut.

 [image: CH02_F02_Isakova_UN01_Isakova]

 [image: CH02_F02_Isakova_UN02_Isakova]

 Functions that have an expression body are a frequent occurrence in Kotlin code. You’ve already seen that they are quite convenient when your function happens to be a trivial one-liner that intends to give a conditional check or an often-used operation a memorable name. But they also find use when functions evaluate a single, more complex expression, such as if, when, or try. You’ll see such functions later in this chapter, when we talk about the when construct.

 You could simplify your max function even more and omit the return type:

 fun max(a: Int, b: Int) = if (a > b) a else b

 At first sight, this might seem puzzling to you. How can there be functions without return-type declarations? You’ve already learned that Kotlin is a statically typed language—so doesn’t it require every expression to have a type at compile time?

 Indeed, every variable and every expression has a type, and every function has a return type. But for expression-body functions, the compiler can analyze the expression used as the body of the function and use its type as the function return type, even when it’s not specified explicitly. This type of analysis is usually called type inference.

 Note that omitting the return type is allowed only for functions with an expression body. For functions with a block body that return a value, you must specify the return type and write the return statements explicitly. That’s a conscious choice. Oftentimes, real-world functions are long and contain several return statements; having the return type and the return statements written explicitly helps you quickly grasp what can be returned. Let’s look at the syntax for variable declarations next.

 Keep your return types explicit when writing a library

 If you are authoring libraries other developers depend upon, you may want to refrain from using inferred return types for functions that are part of your public API. By explicitly specifying the types of your functions, you can avoid accidental signature changes that could cause errors in the code of your library’s consumers. In fact, Kotlin provides tooling in the form of compiler options that can automatically check that you’re explicitly specifying return types. You’ll learn more about this explicit API mode in section 4.1.3.

2.1.4 Declaring variables to store data

 Another basic building block you’ll commonly use in all your Kotlin programs is variables, which allow you to store data. A variable declaration in Kotlin starts with a keyword (val or var), followed by the name for the variable. While Kotlin lets you omit the type for many variable declarations (thanks to its powerful type inference, which you’ve already seen in section 2.1.3), you can always explicitly put the type after the variable name. For example, if you need to store one of the most famous questions and its respective answer in a Kotlin variable, you could do so by specifying two variables, question and answer, with their explicit types—String for the textual question and Int for the integer answer:

 val question: String =
 "The Ultimate Question of Life, the Universe, and Everything"
val answer: Int = 42

 You can also omit the type declarations, making the example a bit more concise:

 val question =
 "The Ultimate Question of Life, the Universe, and Everything"
val answer = 42

 As with expression-body functions, if you don’t specify the type, the compiler analyzes the initializer expression and uses its type as the variable type. In this case, the initializer, 42, is of type Int, so the variable answer will have the same type.

 If you use a floating-point constant, the variable will have the type Double:

 val yearsToCompute = 7.5e6 ❶

 ❶ 7.5 × 10^6 = 7,500,000.0

 The number types, along with other basic types, are covered in greater depth in section 8.1.

 If you’re not initializing your variable immediately, and instead assigning it at a later point, the compiler won’t be able to infer the type for the variable. In this case, you need to specify its type explicitly:

 fun main() {
 val answer: Int
 answer = 42
}

2.1.5 Marking a variable as read only or reassignable

 To control when a variable can be assigned a new value, Kotlin provides you with two keywords, val and var, for declaring variables:

 	
 val (from value) declares a read-only reference. A variable declared with val can be assigned only once. After it has been initialized, it can’t be reassigned a different value. (For comparison, in Java, this would be expressed via the final modifier.)

 	
 var (from variable) declares a reassignable reference. You can assign other values to such a variable, even after it has been initialized. (This behavior is analogous to a regular, non-final variable in Java.)

 By default, you should strive to declare all variables in Kotlin with the val keyword; change it to var only if necessary. Using read-only references, immutable objects, and functions without side effects allows you to take advantage of the benefits offered by the functional programming style. We briefly touched on its advantages in section 1.2.3, and we’ll return to this topic in chapter 5.

 A val variable must be initialized exactly once during the execution of the block where it’s defined. However, you can initialize it with different values depending on some condition, as long as the compiler can ensure only one of the initialization statements will be executed.

 You may find yourself in a situation in which you want to assign the contents of a result variable that depends on the return value of another function, like canPerformOperation. Because the compiler is smart enough to know that exactly one of the two potential assignments will be executed, you can still specify result as a read-only reference using the val keyword:

 fun canPerformOperation(): Boolean {
 return true
}

fun main() {
 val result: String
 if (canPerformOperation()) {
 result = "Success"
 } else {
 result = "Can't perform operation"
 }
}

 Note that, even though a val reference is itself read only and can’t be changed once it has been assigned, the object it points to may be mutable. For example, adding an element to a mutable list, which is referenced by a read-only reference, is perfectly okay:

 fun main() {
 val languages = mutableListOf("Java") ❶
 languages.add("Kotlin") ❷
}

 ❶ Declares a read-only reference

 ❷ Mutates the object pointed to by the reference by adding an element

OEBPS/OEBPS/Images/CH02_F02_Isakova_UN02_Isakova.png
LRI R NN

fun max(a: Int, b: Int): Int = if (a > b) a else b

Remove explicit type specification >
Convert to block body
Create test

Press F1to toggle preview

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F01_Isakova.png
[XN) localhost:8080/ x | +

< C O localhost:3080 > »
JSON Raw Data Headers

Save Copy Pretty Print

"Hello!"},{"id":"2","text":"Bonjour!"},
:"Guten Tag!"}]

OEBPS/OEBPS/Images/CH01_F02_Isakova.png
eoe example v Version control v Current File v g & Q &
(hm} Project - @ Carkt x : ﬂ
v Djava 1 data class Car(v ®
=} p N
& @© Carlnspector 2 val tires: Int = 4
. © CarManufacturer B)]
~ [kotlin
@cCar &
[< CarAnnouncer.kt @
Find Car in Project and Libraries = A

Q
e
®
T

v [gexample.main 4 results
[CarAnnouncer.kt 1result
~ (D announce 1result
v ®c Tresult
2 fun announce(c: Car) {

& « >0

v (© % Carlnspector 1 result

0]

)

v @ - inspect(Car) 1result
?—9 > 3 void inspect(Car c) {

Oexample > src > omain > java > (© Carlnspector

1M & LF UTF-8 4spaces & ©

OEBPS/OEBPS/Images/CH01_F03_Isakova.png
*kt

Kotlin
compiler

*java

Kotlin
runtime

Java
compiler

OEBPS/cover.jpeg
IN ACT

SECOND EDITION

Sebastian Aigner
Roman Hlizarov

Svetlana Isakova
Dmitry Jemerov.

/ll MANNING

OEBPS/OEBPS/Images/CH02_F01_Isakova.png
Entry point

Declares a arguments
function can be omitted.
fSta"d.ard |I|?I’I:ry‘\ fun main(N icol
unctions wit| — Pnntln (“Hello, worldiw) «— Nosemicolon
required

concise syntax }

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH02_F02_Isakova.png
Function Return
name Parameters type

fun max(a: Int, b: Int): Int {
return if (a > b) a else b
}oL : |

Function body

OEBPS/OEBPS/Images/CH02_F02_Isakova_UN01_Isakova.png
© N o oo~ ow

v fun max(a: Int, b: Int): Int {
eturn if (a > b) a else b

Convert to expres:
Replace return with

n body
expression >

Press F1to toggle preview

