
 [image: cover]

 Grokking Algorithms: An illustrated guide for programmers and other curious people

 Aditya Y. Bhargava

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road, PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
Shelter Island, NY 11964

 Development editor: Jennifer Stout
Technical development editor: Damien White
Project manager: Tiffany Taylor
Copyeditor: Tiffany Taylor
Technical proofreader: Jean-François Morin
Typesetter: Leslie Haimes
Cover and interior design: Leslie Haimes
Illustrations by the author

 ISBN: 9781617292231

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

 For my parents, Sangeeta and Yogesh

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Chapter 1. Introduction to Algorithms

 Chapter 2. Selection Sort

 Chapter 3. Recursion

 Chapter 4. Quicksort

 Chapter 5. Hash Tables

 Chapter 6. Breadth-first Search

 Chapter 7. Dijkstra’s algorithm

 Chapter 8. Greedy algorithms

 Chapter 9. Dynamic programming

 Chapter 10. K-nearest neighbors

 Chapter 11. Where to go next

 Answers to Exercises

 Index

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Chapter 1. Introduction to Algorithms

 Introduction

 What you’ll learn about performance

 What you’ll learn about solving problems

 Binary search

 A better way to search

 Exercises

 Running time

 Big O notation

 Algorithm running times grow at different rates

 Visualizing different Big O run times

 Big O establishes a worst-case run time

 Some common Big O run times

 Exercises

 The traveling salesperson

 Recap

 Chapter 2. Selection Sort

 How memory works

 Arrays and linked lists

 Linked lists

 Arrays

 Terminology

 Exercise

 Inserting into the middle of a list

 Deletions

 Exercises

 Selection sort

 Example Code Listing

 Recap

 Chapter 3. Recursion

 Recursion

 Base case and recursive case

 The stack

 The call stack

 Exercise

 The call stack with recursion

 Exercise

 Recap

 Chapter 4. Quicksort

 Divide & conquer

 Exercises

 Quicksort

 Big O notation revisited

 Merge sort vs. quicksort

 Average case vs. worst case

 Exercises

 Recap

 Chapter 5. Hash Tables

 Hash functions

 Exercises

 Use cases

 Using hash tables for lookups

 Preventing duplicate entries

 Using hash tables as a cache

 Recap

 Collisions

 Performance

 Load factor

 A good hash function

 Exercises

 Recap

 Chapter 6. Breadth-first Search

 Introduction to graphs

 What is a graph?

 Breadth-first search

 Finding the shortest path

 Queues

 Exercises

 Implementing the graph

 Implementing the algorithm

 Running time

 Exercise

 Recap

 Chapter 7. Dijkstra’s algorithm

 Working with Dijkstra’s algorithm

 Terminology

 Trading for a piano

 Negative-weight edges

 Implementation

 Exercise

 Recap

 Chapter 8. Greedy algorithms

 The classroom scheduling problem

 The knapsack problem

 Exercises

 The set-covering problem

 Approximation algorithms

 Exercises

 NP-complete problems

 Traveling salesperson, step by step

 How do you tell if a problem is NP-complete?

 Exercises

 Recap

 Chapter 9. Dynamic programming

 The knapsack problem

 The simple solution

 Dynamic programming

 Knapsack problem FAQ

 What happens if you add an item?

 Exercise

 What happens if you change the order of the rows?

 Can you fill in the grid column-wise instead of row-wise?

 What happens if you add a smaller item?

 Can you steal fractions of an item?

 Optimizing your travel itinerary

 Handling items that depend on each other

 Is it possible that the solution will require more than two sub-knapsacks?

 Is it possible that the best solution doesn’t fill the knapsack completely?

 Exercise

 Longest common substring

 Making the grid

 Filling in the grid

 The solution

 Longest common subsequence

 Longest common subsequence—solution

 Exercise

 Recap

 Chapter 10. K-nearest neighbors

 Classifying oranges vs. grapefruit

 Building a recommendations system

 Feature extraction

 Exercises

 Regression

 Picking good features

 Exercise

 Introduction to machine learning

 OCR

 Building a spam filter

 Predicting the stock market

 Recap

 Chapter 11. Where to go next

 Trees

 Inverted indexes

 The Fourier transform

 Parallel algorithms

 MapReduce

 Why are distributed algorithms useful?

 The map function

 The reduce function

 Bloom filters and HyperLogLog

 Bloom filters

 HyperLogLog

 The SHA algorithms

 Comparing files

 Checking passwords

 Locality-sensitive hashing

 Diffie-Hellman key exchange

 Linear programming

 Epilogue

 Answers to Exercises

 Chapter 1

 Chapter 2

 Chapter 3

 Chapter 4

 Chapter 5

 Chapter 6

 Chapter 7

 Chapter 8

 Chapter 9

 Chapter 10

 Index

Preface

 [image:]

 I first got into programming as a hobby. Visual Basic 6 for Dummies taught me the basics, and I kept reading books to learn more. But the subject of algorithms was impenetrable for me. I remember savoring the table of contents of my first algorithms book, thinking “I’m finally going to understand these topics!” But it was dense stuff, and I gave up after a few weeks. It wasn’t until I had my first good algorithms professor that I realized how simple and elegant these ideas were.

 A few years ago, I wrote my first illustrated blog post. I’m a visual learner, and I really liked the illustrated style. Since then, I’ve written a few illustrated posts on functional programming, Git, machine learning, and concurrency. By the way: I was a mediocre writer when I started out. Explaining technical concepts is hard. Coming up with good examples takes time, and explaining a difficult concept takes time. So it’s easiest to gloss over the hard stuff. I thought I was doing a pretty good job, until after one of my posts got popular, a coworker came up to me and said, “I read your post and I still don’t understand this.” I still had a lot to learn about writing.

 Somewhere in the middle of writing these blog posts, Manning reached out to me and asked if I wanted to write an illustrated book. Well, it turns out that Manning editors know a lot about explaining technical concepts, and they taught me how to teach. I wrote this book to scratch a particular itch: I wanted to write a book that explained hard technical topics well, and I wanted an easy-to-read algorithms book. My writing has come a long way since that first blog post, and I hope you find this book an easy and informative read.

Acknowledgments

 Kudos to Manning for giving me the chance to write this book and letting me have a lot of creative freedom with it. Thanks to publisher Marjan Bace, Mike Stephens for getting me on board, Bert Bates for teaching me how to write, and Jennifer Stout for being an incredibly responsive and helpful editor. Thanks also to the people on Manning’s production team: Kevin Sullivan, Mary Piergies, Tiffany Taylor, Leslie Haimes, and all the others behind the scenes. In addition, I want to thank the many people who read the manuscript and offered suggestions: Karen Bensdon, Rob Green, Michael Hamrah, Ozren Harlovic, Colin Hastie, Christopher Haupt, Chuck Henderson, Pawel Kozlowski, Amit Lamba, Jean-François Morin, Robert Morrison, Sankar Ramanathan, Sander Rossel, Doug Sparling, and Damien White.

 Thanks to the people who helped me reach this point: the folks on the Flaskhit game board, for teaching me how to code; the many friends who helped by reviewing chapters, giving advice, and letting me try out different explanations, including Ben Vinegar, Karl Puzon, Alex Manning, Esther Chan, Anish Bhatt, Michael Glass, Nikrad Mahdi, Charles Lee, Jared Friedman, Hema Manickavasagam, Hari Raja, Murali Gudipati, Srinivas Varadan, and others; and Gerry Brady, for teaching me algorithms. Another big thank you to algorithms academics like CLRS, Knuth, and Strang. I’m truly standing on the shoulders of giants.

 Dad, Mom, Priyanka, and the rest of the family: thank you for your constant support. And a big thank you to my wife Maggie. There are many adventures ahead of us, and some of them don’t involve staying inside on a Friday night rewriting paragraphs.

 Finally, a big thank you to all the readers who took a chance on this book, and the readers who gave me feedback in the book’s forum. You really helped make this book better.

About this Book

 This book is designed to be easy to follow. I avoid big leaps of thought. Any time a new concept is introduced, I explain it right away or tell you when I’ll explain it. Core concepts are reinforced with exercises and multiple explanations so that you can check your assumptions and make sure you’re following along.

 I lead with examples. Instead of writing symbol soup, my goal is to make it easy for you to visualize these concepts. I also think we learn best by being able to recall something we already know, and examples make recall easier. So when you’re trying to remember the difference between arrays and linked lists (explained in chapter 2), you can just think about getting seated for a movie. Also, at the risk of stating the obvious, I’m a visual learner. This book is chock-full of images.

 The contents of the book are carefully curated. There’s no need to write a book that covers every sorting algorithm—that’s why we have Wikipedia and Khan Academy. All the algorithms I’ve included are practical. I’ve found them useful in my job as a software engineer, and they provide a good foundation for more complex topics. Happy reading!

Roadmap

 The first three chapters of this book lay the foundations:

 	
Chapter 1—You’ll learn your first practical algorithm: binary search. You also learn to analyze the speed of an algorithm using Big O notation. Big O notation is used throughout the book to analyze how slow or fast an algorithm is.

 	
Chapter 2—You’ll learn about two fundamental data structures: arrays and linked lists. These data structures are used throughout the book, and they’re used to make more advanced data structures like hash tables (chapter 5).

 	
Chapter 3—You’ll learn about recursion, a handy technique used by many algorithms (such as quicksort, covered in chapter 4).

 In my experience, Big O notation and recursion are challenging topics for beginners. So I’ve slowed down and spent extra time on these sections.

 The rest of the book presents algorithms with broad applications:

 	
Problem-solving techniques— Covered in chapters 4, 8, and 9. If you come across a problem and aren’t sure how to solve it efficiently, try divide and conquer (chapter 4) or dynamic programming (chapter 9). Or you may realize there’s no efficient solution, and get an approximate answer using a greedy algorithm instead (chapter 8).

 	
Hash tables— Covered in chapter 5. A hash table is a very useful data structure. It contains sets of key and value pairs, like a person’s name and their email address, or a username and the associated password. It’s hard to overstate hash tables’ usefulness. When I want to solve a problem, the two plans of attack I start with are “Can I use a hash table?” and “Can I model this as a graph?”

 	
Graph algorithms— Covered in chapters 6 and 7. Graphs are a way to model a network: a social network, or a network of roads, or neurons, or any other set of connections. Breadth-first search (chapter 6) and Dijkstra’s algorithm (chapter 7) are ways to find the shortest distance between two points in a network: you can use this approach to calculate the degrees of separation between two people or the shortest route to a destination.

 	
K-nearest neighbors (KNN)— Covered in chapter 10. This is a simple machine-learning algorithm. You can use KNN to build a recommendations system, an OCR engine, a system to predict stock values—anything that involves predicting a value (“We think Adit will rate this movie 4 stars”) or classifying an object (“That letter is a Q”).

 	
Next steps— Chapter 11 goes over 10 algorithms that would make good further reading.

How to use this book

 The order and contents of this book have been carefully designed. If you’re interested in a topic, feel free to jump ahead. Otherwise, read the chapters in order—they build on each other.

 I strongly recommend executing the code for the examples yourself. I can’t stress this part enough. Just type out my code samples verbatim (or download them from www.manning.com/books/grokking-algorithms or https://github.com/egonschiele/grokking_algorithms), and execute them. You’ll retain a lot more if you do.

 I also recommend doing the exercises in this book. The exercises are short—usually just a minute or two, sometimes 5 to 10 minutes. They will help you check your thinking, so you’ll know when you’re off track before you’ve gone too far.

Who should read this book

 This book is aimed at anyone who knows the basics of coding and wants to understand algorithms. Maybe you already have a coding problem and are trying to find an algorithmic solution. Or maybe you want to understand what algorithms are useful for. Here’s a short, incomplete list of people who will probably find this book useful:

 	Hobbyist coders

 	Coding boot camp students

 	Computer science grads looking for a refresher

 	Physics/math/other grads who are interested in programming

Code conventions and downloads

 All the code examples in this book use Python 2.7. All code in the book is presented in a fixed-width font like this to separate it from ordinary text. Code annotations accompany some of the listings, highlighting important concepts.

 You can download the code for the examples in the book from the publisher’s website at www.manning.com/books/grokking-algorithms or from https://github.com/egonschiele/grokking_algorithms.

 I believe you learn best when you really enjoy learning—so have fun, and run the code samples!

About the author

 Aditya Bhargava is a software engineer at Etsy, an online marketplace for handmade goods. He has a master’s degree in computer science from the University of Chicago. He also runs a popular illustrated tech blog at adit.io.

Author Online

 Purchase of Grokking Algorithms includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/books/grokking-algorithms. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the author can take place. It isn’t a commitment to any specific amount of participation on the part of the author, whose contribution to Author Online remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 Chapter 1. Introduction to Algorithms

 [image:]

 In this chapter

 	You get a foundation for the rest of the book.

 	You write your first search algorithm (binary search).

 	You learn how to talk about the running time of an algorithm (Big O notation).

 	You’re introduced to a common technique for designing algorithms (recursion).

Introduction

 An algorithm is a set of instructions for accomplishing a task. Every piece of code could be called an algorithm, but this book covers the more interesting bits. I chose the algorithms in this book for inclusion because they’re fast, or they solve interesting problems, or both. Here are some highlights:

 	
Chapter 1 talks about binary search and shows how an algorithm can speed up your code. In one example, the number of steps needed goes from 4 billion down to 32!

 	A GPS device uses graph algorithms (as you’ll learn in chapters 6, 7, and 8) to calculate the shortest route to your destination.

 	You can use dynamic programming (discussed in chapter 9) to write an AI algorithm that plays checkers.

 In each case, I’ll describe the algorithm and give you an example. Then I’ll talk about the running time of the algorithm in Big O notation. Finally, I’ll explore what other types of problems could be solved by the same algorithm.

What you’ll learn about performance

 The good news is, an implementation of every algorithm in this book is probably available in your favorite language, so you don’t have to write each algorithm yourself! But those implementations are useless if you don’t understand the trade-offs. In this book, you’ll learn to compare trade-offs between different algorithms: Should you use merge sort or quicksort? Should you use an array or a list? Just using a different data structure can make a big difference.

What you’ll learn about solving problems

 You’ll learn techniques for solving problems that might have been out of your grasp until now. For example:

 	If you like making video games, you can write an AI system that follows the user around using graph algorithms.

 	You’ll learn to make a recommendations system using k-nearest neighbors.

 	Some problems aren’t solvable in a timely manner! The part of this book that talks about NP-complete problems shows you how to identify those problems and come up with an algorithm that gives you an approximate answer.

OEBPS/OEBPS/Images/common02.jpg

OEBPS/OEBPS/Images/common.jpg

OEBPS/OEBPS/Images/logo.jpg

OEBPS/OEBPS/Images/common01.jpg

OEBPS/OEBPS/Images/cover.jpg

