

inside front cover

 [image:]

 NET MAUI is built bottom-up, and each layer provides APIs used to build the APIs in the layer above. The bottom layer is the platforms themselves (Android, iOS, macOS, and Windows). The next layer is the .NET run time for each platform (WinRT on Windows, Mono on everything else) built on the platforms' APIs. Above this is the .NET Base Class Library (BCL), and built upon that is the .NET abstraction of each platform's APIs available for use in .NET apps. For example, .NT for Android contains .NET abstractions of Android's APIs, usually consumed in Java or Kotlin. The .NET MAUI API is a cross-platform layer that you can use to write apps that will run on any of the supported platforms, and Handlers map the cross-platform controls and APIs to their platform-specific counterparts at build time. Meanwhile, your code is written top-down; you write a .NET MAUI app, and the architecture takes care of encapsulating it for lower layers.

 [image:]

 .NET MAUI in Action

 Matt Goldman

 Foreword by Kym Phillpotts

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Connor O’Brien

 	
 Technical development editor:

 	
 Gerald Versluis

 	
 Review editor:

 	
 Aleks Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Alisa Larson

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Allan Makura

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439405

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Introducing .NET MAUI

 1 Introducing .NET MAUI

 1.1 How did we get here?

 1.2 What is .NET MAUI?

 1.3 Cross-platform vs. “native” apps

 1.4 .NET MAUI and the .NET ecosystem

 1.5 .NET MAUI development paradigms

 2 Building a .NET MAUI app

 2.1 Saying “Aloha, World!” with .NET MAUI

 Visual Studio 2022

 .NET CLI overview

 .NET CLI in action

 2.2 Running and debugging your app

 Visual Studio for Windows

 Visual Studio for Mac

 .NET CLI

 2.3 Anatomy of a .NET MAUI app

 2.4 Seeing real-time changes with Hot Reload

 Visual Studio for Windows

 Visual Studio for Mac

 3 Making .NET MAUI apps interactive

 3.1 Using OS and device features

 Android metadata

 iOS metadata

 Windows metadata

 3.2 The FindMe! UI

 3.3 Persisting data on your user’s device

 3.4 Data binding: Connecting the UI to the code

 View-to-view bindings

 Collections and bindings in code

 ItemsSource bindings in XAML

 Part 2. Views, layouts, and controls

 4 Controls

 4.1 What do we mean by “views”?

 4.2 Cross-platform controls

 Displaying information

 Accepting input

 Accepting commands

 Displaying graphics

 4.3 Displaying lists and collections

 CollectionView

 ListView

 CarouselView and IndicatorView

 TableView

 4.4 Common properties and control modifiers

 Height and Width

 Clipping

 Borders

 Shadows

 Gesture recognizers

 RefreshView

 SwipeView

 5 Layouts

 5.1 Grid

 Grid basics

 Building MauiCalc

 Row and column sizing

 5.2 ScrollView

 5.3 HorizontalStackLayout and VerticalStackLayout

 5.4 FlexLayout

 6 Advanced layout concepts

 6.1 Thinking in grids

 6.2 BindableLayout

 Creating the MauiMovies MainPage

 Creating the popup pages

 Showing the popup pages

 6.3 Absolute layout

 6.4 Putting it all together

 Adding the app’s shared resources

 Defining the UI as a Grid

 Creating the title bar with FlexLayout

 Creating the filter bar with FlexLayout

 Using Grid to create a FAB

 Building a tab bar with Grid

 Populating dummy data

 Displaying the messages with CollectionView

 7 Pages and navigation

 7.1 ContentPage

 7.2 Common page properties

 IconImageSource

 Background Images

 Padding

 Title

 MenuBarItems

 7.3 Common page lifecycle methods

 OnAppearing

 OnDisappearing

 OnNavigatedTo and OnNavigatedFrom

 OnSizeAllocated

 BackButtonPressed

 7.4 Navigation in .NET MAUI

 Scenario: The MauiStockTake app

 Features of the MauiStockTake app

 Hierarchical navigation

 Flyout navigation

 Tabbed navigation

 7.5 Introducing Shell

 The flyout menu

 Tabs

 Getting started with MauiStockTake

 Routes and navigation

 Route parameters

 Part 3. Enterprise development patterns and practices

 8 Enterprise app development

 8.1 Moving logic to services

 Defining requirements

 Implementing the authentication service

 8.2 Using the generic host builder and dependency injection

 Registering resources, services, and other dependencies

 Consuming services

 8.3 Consuming web services

 Adding the client project

 Using a delegating handler

 Using IHttpClientFactory

 Adding the remaining MauiStockTake services

 8.4 Full-stack app architecture

 Project Organization

 Sharing code between projects in the solution

 Sharing code between solutions

 9 The MVVM Pattern

 9.1 Refactoring the MauiTodo app for MVVM

 9.2 Using behaviors to augment your controls

 9.3 What is MVVM?

 The Model

 The View

 The ViewModel

 Binding from Views to ViewModels

 Putting it all together

 9.4 The MauiStockTake app without MVVM

 9.5 The MauiStockTake app in MVVM

 The Model

 The ViewModel

 The View

 Adding the Search functionality

 Adding the inventory functionality

 9.6 Reviewing the MauiStockTake app so far

 10 Styles, themes, and multiplatform layouts

 10.1 Creating a consistent look and feel

 Styles

 Themes

 10.2 Responding to state changes

 Triggers

 Visual state manager

 10.3 Multiplatform Apps

 Adding the report page

 Multiplatform layouts

 Features of desktop apps

 11 Beyond the basics: Custom controls

 11.1 Using ContentView

 Building the custom stepper layout

 Improving the custom stepper’s UX

 11.2 Bindable properties

 Adding the Value property

 Adding the IsEnabled property

 11.3 Modifying platform controls with handlers

 Handler architecture

 Overriding handler mappings

 Implementing custom handler logic

 Updating the custom stepper

 11.4 Creating and sharing control libraries

 12 Deploying apps to production with GitHub Actions

 12.1 App icons, splash screens, and app identifiers

 Replacing the default app icon

 App icon composition

 App icon resizing

 Replacing the default splash screen

 Application identifiers and version numbers

 12.2 Deploying apps with GitHub Actions

 Setting up the workflow

 Build and sign the Android job

 Build and sign iOS job

 Deploy to stores job

 12.3 Next steps

 Appendix A. Setting up your environment for .NET MAUI development

 Appendix B. Upgrading a Xamarin.Forms app to .NET MAUI

 index

 front matter

foreword

 In today’s highly competitive market, cross-platform app development has become a fundamental component for businesses of all industries to stay ahead of the game. Companies are now digital first, and leveraging cross-platform app development to create customized applications that can run seamlessly on multiple platforms is an essential practice.

 As a .NET developer, you may already be familiar with Xamarin.Forms, which allows you to build mobile apps for Android and iOS using C# and the .NET framework. Now with the introduction of .NET Multi-platform App UI (MAUI), the evolution of Xamarin.Forms, there has never been a better time to expand your skills and start building cross-platform apps.

 As an instructor at Xamarin University, I spent several years helping developers worldwide learn cross-platform development. One of the biggest challenges faced by students, particularly beginners, was navigating the extensive background knowledge and tools necessary for building apps across various platforms. That’s why this book by Matt Goldman is so important. It provides a highly accessible guide to getting started with cross-platform development, regardless of your experience level or iOS/Android development background. The book emphasizes making this technology more approachable to .NET developers, enabling them to use their existing skills and apply them to cross-platform app development.

 It goes without saying that a single book cannot transform you from a novice to an expert. However, this book emphasizes empowering developers to be self-sufficient and continue their .NET MAUI learning journey beyond the book’s contents. The book achieves this by emphasizing best practices and offering practical tips, which equip readers with the skills and knowledge necessary to improve as cross-platform developers.

 This book stands apart by boldly exploring critical enterprise application development principles like authentication, security, services, and full-stack architecture patterns that are suitable for .NET MAUI. Moreover, the book does not neglect topics such as MVVM architecture patterns, advanced UI concepts, and Github Actions to deploy apps to stores, which makes it an ideal resource for anyone seeking an on-ramp to these subjects.

 My compliments to Matt for producing an outstanding book on .NET MAUI cross-platform app development. The book’s structure is well-organized and easily digestible, and it is filled with useful examples that readers can effortlessly follow. Whether you are an experienced .NET developer or a novice starting out, this book is a valuable reference for anyone who wants to be successful with .NET MAUI development.

 —Kym Phillpotts, Senior Technical Program Manager, Microsoft

preface

 As a teenager making games on my Amiga in the 1990s, I was captivated by the shareware games in the Public Domain catalog and the idea that people could make money from something I did for fun. Better yet were the breakaway indie hits that turned a hobby into a full-time career, the most famous being the turn-based artillery game Worms.

 Today, apart from rare indie success stories, most apps and games are made by huge games studios or development companies. But, for a brief time at the start of the consumer smartphone revolution, when small apps made by indie solo devs filled the first iteration of the App Store, it looked like the era of solo devs had returned.

 A level playing field where indie developers could make it big got me interested in smartphone development. And when Xamarin came along, it seemed like an efficient way to build apps for mobile platforms using my existing .NET skills.

 Unlike many I admire, I didn’t come to cross-platform .NET development as an iOS or Android (or both) expert wanting to use the .NET abstractions in Xamarin. Rather, I was a .NET developer who wanted to build iOS and Android apps. Unfortunately, I underestimated the learning curve, and it took me a lot of time and frustration to get comfortable with Xamarin, including realizing that it was a .NET tool for iOS and Android developers rather than an iOS and Android tool for .NET developers.

 One of the goals of .NET MAUI, and this book, is to change that. .NET MAUI in Action is written specifically for .NET developers with no previous mobile or desktop experience who want to build cross-platform mobile and desktop apps. While I still champion the dream of the solo dev, it’s primarily written for enterprise app development and specifically the discipline and methodology of an enterprise software development team, which will serve you well as a solo dev, too.

 As a .NET developer, you’re already a nascent .NET MAUI developer, as I hope you’ll have fun discovering with this book. I can’t wait to see what you build!

acknowledgments

 It feels like this book has been dominating my life for as long as I can remember. There’s been a huge amount of effort that’s gone into it from several people, and while I can’t possibly thank them all here, I’m going to at least try.

 First, I’d like to thank Connor, my editor. Your input and guidance along the way were invaluable, as were your support and encouragement. You also patiently listened during some of my rants, which I sincerely appreciate!

 I’d also like to thank Gerald Versluis, the book’s technical editor. Gerald is a Senior Software Engineer at Microsoft working on .NET MAUI in addition to a variety of projects, ranging from frontend to backend and anything in between that involves Azure, ASP.NET, and other .NET technologies. Gerald, thank you for your technical input over the last year; it’s given me a lot of confidence having you check the accuracy of everything. And with that, I’d also like to thank the rest of the .NET MAUI team for the incredible work they continually put into this product.

 Next, I’d like to say thank you to the team at Manning for making this book a reality and for the awesome work that’s gone into everything around this book, from start to finish. In no particular order, thank you, Brian, Charlotte, Stjepan, and Aira. And my sincere thanks (and humble apologies) to anyone else I’ve neglected to name.

 I also want to thank my colleagues at SSW for their support, input, and encouragement while I’ve been writing this book. I’d name everyone here if I could, but given the limited space, I’ll just say a special thanks to Adam for your ongoing support, to Luke for your technical assistance, and to Camilla and the SSW TV team for all your help promoting this book as well as .NET MAUI.

 I also need to thank Stephanie, my mum, for your invaluable assistance with editing and vocabulary.

 To all the reviewers: Aleksander Rokic, Allan Makura, Ashley Eatly, Carsten Jørgensen, Chriss Jack Barnard, Dan Sheikh, Darrin Bishop, David M. Williams, David Paccoud, Emanuele Origgi, Grant Cooley, Henrique Fleury Cusinato, Jason Hales, Jeelani Shaik, Jeffrey Shergalis, Joe Cuevas, Joel Kotarski, John Gibbs, Juan Luis, Karthikeyarajan Rajendran Lakshminarayanan as, Mario De Ghetto, Mario Solomou, George Onofrei, Paul Brown, Randall Kenner, Renato Gentile, Richard Young, Rohit sharma, Samuel Bosch, Santosh Shanbhag, Timo Salomäki, Timo Steigerwald, Werner Nindl, and Wes Shaddix, your suggestions helped make this a better book.

 Finally, and most importantly, I want to thank Megan. Thank you for putting up with me all this time while I’ve focused almost exclusively on the book. Thank you for keeping our home running, and thanks also for your help with the book itself when I asked. Your name belongs on the cover almost as much as mine does; in a way, we’re both the authors. But in another, more accurate way, I’m the author.

about this book

 In New South Wales where I live, riding a motorcycle requires taking a two-day pre-learner course, after which you’re allowed to ride a relatively small one with L plates. They don’t actually teach you to ride a motorcycle; instead, they teach you enough to learn safely on your own. Even after you graduate to a full license, there’s always more to learn.

 This book is a little like a pre-learner course for .NET MAUI. It’s too big of a topic for everything to be included in a volume of this size, but it gives you all you need to know to go out into the world and confidently hone your skills as a .NET MAUI developer. By the end of the book, you’ll not only be able to comfortably build apps with .NET MAUI but also know how to teach yourself what isn’t covered here when you’re ready to go further.

Who should read this book?

 .NET MAUI in Action is written for .NET developers who want to explore this new technology to build mobile and desktop apps. You won’t need any previous experience, although some experience building UI apps of any kind, even web, will be beneficial for some of the more abstract concepts.

 If you’ve previously worked with Xamarin.Forms, you’ll immediately appreciate how much easier .NET MAUI is, and this book will walk you through all the differences in one concise, procedural volume (rather than having to wade through piecemeal docs or blog posts).

 While you don’t need to know anything about mobile or desktop development, the book focuses on using existing C# and .NET skills, so you should be comfortable building software in C# already. By the end of the book, you’ll be comfortable building mobile and desktop apps too.

How this book is organized: A roadmap

 The book has three sections that cover 12 chapters.

 Part 1 introduces .NET MAUI and walks you through building some simple apps:

 	
 Chapter 1 explains what .NET MAUI is, where it came from, and introduces the technology and some of the concepts you’ll use to build apps.

 	
 Chapter 2 walks you through building your first .NET MAUI app and explains the tools used to build them.

 	
 Chapter 3 is where we roll up our sleeves and start making real apps. We start using mobile- and desktop-specific functionality that makes the technology distinct from other areas of .NET development. Data binding, one of the core concepts in .NET MAUI, is also introduced.

 Part 2 is all about the UI, the part of .NET MAUI that makes it what it is:

 	
 Chapter 4 introduces the cross-platform controls we use in .NET MAUI apps. We explore some of the terminology around UI development and look at ways to present information to, and get input from, our users.

 	
 Chapter 5 covers one of the most important topics in UI development: layout. We look at the different ways .NET MAUI supports creating any design.

 	
 Chapter 6 expands upon the work in chapter 5 by explaining some of .NET MAUI’s more advanced layout techniques and shows you how to replicate a well-known mobile app in .NET MAUI.

 	
 Chapter 7 is about pages and navigation. Pages are the building blocks of an app, and equally important is how to get your user between those pages.

 Part 3 is about advanced app development. It covers enterprise architecture patterns, targeting multiple platforms, mobile development patterns and antipatterns, and professional deployment and distribution.

 	
 Chapter 8 shows how to develop a .NET MAUI app as part of a full-stack enterprise solution.

 	
 Chapter 9 introduces the MVVM pattern, the de-facto standard for building apps with .NET MAUI.

 	
 Chapter 10 covers multiplatform layouts. It shows how to tailor your app to different platforms and different idioms (mobile, desktop, and tablet).

 	
 Chapter 11 is about breaking out of the box and creating controls beyond what .NET MAUI provides. This chapter covers componentization as well as customizing the way .NET MAUI implements controls on each platform.

 	
 Chapter 12 is the final piece of the puzzle and shows you how to add professional finishing touches to your app. It rounds out the book by showing you how to deploy your app to the stores using GitHub Actions, although the workflows used should translate to whichever CI/CD platform you use.

 If you are new to .NET MAUI, I recommend reading through the book from start to finish. If you’re comfortable skipping the basics, part 2 can serve as a reference, but part 3 should be read in order as each chapter builds on the previous.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/dot-net-maui-in-action. The complete code for the examples in the book is available for download from the Manning website at www.manning.com.

 Apart from chapter 1, every chapter in this book has code samples available online from Manning. Some chapters have a Resources folder, where you can find things like images and other assets referred to in the text. In most cases, the code represents the completed code at the end of the chapter. For later chapters, there are two folders: one called chapter-start and another called chapter-complete. Chapter-complete shows the code you will have written by the end of the chapter, and chapter-start contains the code to start from (and will be identical to the chapter-complete folder for the previous chapter).

 NOTE All the screenshots in the book show the code running in light mode (except for the themes in chapter 10). If you are running in dark mode, you’ll see slightly different results. This won’t be because you’ve done anything wrong, and you can switch to light mode to double-check.

liveBook discussion forum

 Purchase of .NET MAUI in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/dot-net-maui-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

Other online resources

 Not only is .NET MAUI under continual development, but it’s open source, and the team is active on GitHub. The GitHub repo should be your first port of call for any problems or questions you may have. You can find it here: https://github.com/dotnet/maui/. If you encounter any problems, either with code samples in the book or with your own code, a great place to start is the Issues tab in the official repo; you’ll likely find the problem has already been reported and that work is underway, and you’ll often find a workaround that people have shared.

 NOTE Any known problems at the time of writing may not be accommodated in the text, but if a workaround is known, it is included in the code samples. You should check these, too, when encountering any problems.

 The .NET MAUI team is also active in many online communities, and the communities themselves are also a great source of support. One awesome active .NET MAUI community is Twitter, which you can find here: https://twitter.com/hashtag/dotnetmaui?src=hashtag_click. Another is Reddit, and you can find the .NET MAUI sub-reddit here: https://www.reddit.com/r/dotnetMAUI/.

 For a one-stop shop to find all the best online .NET MAUI resources, Javier Suarez aggregates everything he can find into a GitHub repo called Awesome .NET MAUI. You can find it here: https://github.com/jsuarezruiz/awesome-dotnet-maui. It’s open source, and Javier accepts community contributions.

 Finally, you can find me in many online communities, but the best place to start is probably GitHub, as my profile includes links to all my other accounts. You can find it here: https://github.com/matt-goldman.

about the author

 [image:]

 Matt Goldman is a solution architect at SSW. He has built a number of consumer and enterprise apps for a range of national and multinational customers, as well as for the Australian government. Matt is a regular speaker at user groups and conferences and maintains open-source libraries for use in .NET MAUI apps.

about the cover illustration

 The figure on the cover of .NET MAUI in Action, titled “Spahis,” is taken from a book by Louis Curmer published in 1841. Each illustration is finely drawn and colored by hand. Spahis were light-cavalry regiments of the French army who were primarily recruited from the Arab and Berber populations of Algeria, Tunisia, and Morocco.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1. Introducing .NET MAUI

 Software development is rare among professional occupations in that we get to create something tangible. It’s satisfying to see the fruits of our efforts, but building mobile and desktop apps, in my opinion, takes that tangibility to a new level.

 In this part, we’ll get to know .NET MAUI, and we’ll experience that tangibility firsthand as we literally hold our first app in our hands. We’ll discover the fundamentals of building mobile and desktop apps with this new technology and explore the anatomy of a .NET MAUI app and start to gain an appreciation for the process of using it to build products.

1 Introducing .NET MAUI

 This chapter covers

 	
What .NET MAUI is

 	
How MAUI fits into .NET

 	
Why you would use .NET MAUI to build desktop and mobile apps

 	
Writing cross-platform UIs

 .NET MAUI is here, and if you’re reading this book, you already know a thing or two about it. But how does it work, and how did we get here? In this chapter, we look at the architecture of .NET MAUI and get an overview of how it works. We also see how to use it to build cross-platform mobile and desktop apps. To begin, let’s look at the history of cross-platform development and see how .NET MAUI is the fulfilment of a dream at Microsoft over 20 years in the making.

1.1 How did we get here?

 The dream of write once, run anywhere (WORA) cross-platform software began in earnest in 1996 with the release of the first version of Java by Sun Microsystems. Before Java, software developers could only write their code against APIs provided by the operating system. Java was different—not only was it a new programming language, but it was also a runtime with its own set of APIs, allowing developers to ignore the target platform or operating system. Sun provided a runtime for nearly every available operating system (called the Java Virtual Machine, or JVM), which meant developers didn’t have to worry about whether they were building a Windows application, a Unix application, a Linux application, or a Mac application. They were building a Java application.

 Microsoft started its own journey toward a cross-platform runtime shortly afterward, releasing the first public version of the .NET Framework in 2000. It wasn’t cross-platform, but the development paradigm was similar—developers no longer had to write code against Windows APIs; they used the .NET Base Class Library (BCL) to write code using the .NET APIs. Like the JVM, the .NET Framework was a runtime installed independently of the operating system, so developers didn’t have to worry about what version of Windows their users had installed; they just needed to ensure that users had the right version of the .NET Framework, as summarized in figure 1.1.

 [image:]

 Figure 1.1 Legacy applications are built directly on top of operating system APIs. Java and .NET provide their own APIs for developers to use and runtimes that hide the platform APIs.

 But this approach still had one problem: the .NET Framework was Windows-only. Developers writing .NET applications couldn’t target macOS or Linux, both of which were gaining momentum. This didn’t change (at least, from Microsoft’s perspective) until 2016, with the release of .NET Core. .NET Core diverged from .NET Framework in a few ways, most critically by stripping out key Windows dependencies and abstractions for Windows APIs. Unlike .NET Framework, which had to be installed and would only work on Windows, .NET Core is a truly portable runtime that can be shipped alongside the code it executes and runs on Windows, Mac, and Linux.

 While this was a huge step closer to the WORA dream, UI applications were still missing from the picture. .NET Core applications are command-line-only (this includes web servers and other services). .NET Framework provided platforms for developing UI applications for Windows, initially with Windows Forms and later with the Windows Presentation Foundation (WPF). While these were ported to .NET Core (and later versions), they are still Windows-only.

 Outside of Microsoft, the journey toward cross-platform UI applications in .NET took on a life of its own. Within a year of the release of the first version of the .NET Framework, the .NET specification became an open standard. Open standards drive the modern web and enable the development of competing or complementary runtimes. For example, because HTML, JavaScript, and CSS are open standards, anyone can build a web browser, and developers and users can choose which technologies to use. While the journey to .NET being fully open was by no means a straight line or without bumps, opening the .NET standard enabled Miguel de Icaza (who was working at Novell at the time) to release an open source .NET compiler for Linux called Mono.

 By the end of the 2000s, the iOS and Android operating systems and, more importantly, their application distribution platforms (the iOS App Store and Google Play store, respectively), had become well established, and any discussion around cross-platform UI applications became dominated by mobile. iOS and Android use different languages and paradigms for app development, and while it’s possible to learn both, most developers prefer not to write and maintain multiple versions of their software if they don’t have to.

 Mono was ported to iOS in MonoTouch and to Android in MonoDroid. These eventually evolved into Xamarin, which provided not only a .NET compiler for iOS and Android but also a complete abstraction of the iOS and Android APIs in .NET. Using Xamarin, you still had to learn the iOS and Android APIs, but you wrote your code in a .NET language like C# instead of a vendor-provided language (like Objective-C or Swift for iOS or Kotlin for Android). Using Xamarin, you could also share your non-UI code between the two platforms, so any business logic or code for communicating with a backend could be written once and used in a Xamarin.iOS project and a Xamarin.Android project.

 In 2014, Xamarin introduced Xamarin.Forms, which provided an API for writing cross-platform UI code using an extensible application markup language (XAML)—the markup language originally introduced in WPF. This allowed developers to share both business logic and UI across iOS, Android, and the Universal Windows Platform (UWP) (and, at the time, Windows Phone). Like the other abstractions, the UI code you write in XAML is an abstraction; when you compile your app for iOS, your XAML code is interpreted into iOS’s native UI, and when you compile for Android, the XAML is compiled to native Android UI code.

 Xamarin was acquired by Microsoft in 2016 and has been under active development there ever since. Xamarin.Forms is now a stable and mature product used to build many successful enterprise and consumer applications. But the current version, Xamarin.Forms 5, will be the last. Coming in its place is .NET MAUI, which Microsoft describes as the next evolution of Xamarin.Forms. While .NET MAUI shares a lot of its DNA with Xamarin and Xamarin.Forms, it is an entirely new platform built from the ground up to usher in a new era of truly cross-platform WORA applications written in .NET. It’s an exciting time to be a .NET developer.

1.2 What is .NET MAUI?

 The .NET Multiplatform App UI (MAUI) is a new framework from Microsoft for building cross-platform UI applications that target Windows, macOS, iOS, and Android. With .NET MAUI, you can build a rich, interactive, native UI application that runs on any of these platforms. With a single code base, you can build an application that supports all the platforms and share 100% of the code between them. In short, you write an application in a .NET language, and it runs without any changes on any of the target platforms. All your logic can be written in a .NET language, and your UI can be defined in either XAML or your .NET language of choice.

 .NET MAUI development languages

 You can write .NET MAUI apps in C# and use either XAML or C# to define your UI. It’s technically possible to use other languages, but they are not officially supported. In this book, we use C# to write our logic and XAML to define our UI (although there are some exceptions), as these are the most common approaches.

 Figure 1.2 shows the architecture of a .NET MAUI application. Let’s examine the layers and steps to see how a .NET MAUI application comes together.

 [image:]

 Figure 1.2 .NET MAUI is built bottom-up. Each platform provides APIs, and there is a .NET runtime for each platform (WinRT on Windows, Mono on everything else) built on these APIs. Each layer provides APIs used to build the APIs in the layer above. Meanwhile, your code is written top-down: you write a .NET MAUI app, and the architecture encapsulates it for lower layers.

 At the bottom is the target operating system (Android, iOS, macOS, or Windows). The next layer up shows the .NET runtime that will execute the .NET MAUI app on each target OS. For Android, iOS, and macOS, this runtime is Mono; for Windows, it is WinRT.

 The next layer up is the first abstraction: the .NET BCL. It provides access to all the common language features we expect—such as lists and generics—that don’t form part of .NET’s primitives. From .NET 5 onward, .NET (without Core or Framework) has become the new standard, also replacing the .NET Standard. From a developer perspective, .NET versions 5 and onward have become target frameworks, with (for example) net7.0 replacing netcoreapp or netstandard. When writing a .NET MAUI app, you have access to the BCL across all platforms.

 The next layer, which sits on top of the BCL, provides access to abstractions for platform-specific APIs. .NET for Android and .NET for iOS are the next iterations of Xamarin.Android and Xamarin.iOS, respectively. These are bindings to the platform APIs, using the same types and namespaces used by Objective-C, Swift, Java, or Kotlin developers. .NET for Mac is new but operates the same way, and the WinUI API is used for Windows. This includes everything available in each platform’s API, from simple layouts and controls like buttons and text entry fields to more sophisticated APIs like ARKit on iOS and ARCore on Android, for developing augmented reality (AR) applications.

 The last abstraction is .NET MAUI. This is a unified API that provides UI elements common to all supported platforms. It includes views (like layouts, buttons, text, and entry fields), navigation APIs, and many more. You can also access common hardware features such as Bluetooth, location services, and device storage.

 While we looked at the layers bottom-up, the philosophy of building a .NET MAUI app is very much considered top-down:

 	
 Build a cross-platform application by writing .NET MAUI code (rather than, say, iOS or Android code).

 	
 If you want to, you can write platform- or OS-specific code in your application, but you don’t have to.

 	
 .NET MAUI compiles your code for the target platform. Understanding how .NET MAUI builds your application for various platforms is not necessary to build a .NET MAUI application, although having a good understanding of these platforms is beneficial: you’ll be better able to troubleshoot OS- or platform-specific errors, and you’ll open up the entire spectrum of platform APIs, not just those exposed in top-level .NET MAUI wrappers. We’ll cover some platform-specific aspects of .NET MAUI development as we go.

 .NET MAUI is much more than just the next version of Xamarin.Forms. Whereas Xamarin was a software development kit (SDK) that you installed independently of .NET, MAUI is a workload, meaning it is a part of .NET, just like ASP.NET or console app development. This approach provides a few benefits, which we cover later; most importantly, it demonstrates Microsoft’s commitment to the future of .NET MAUI and its inclusion as a core part of .NET.

1.3 Cross-platform vs. “native” apps

 When you decide to build an application, either as an independent developer or as part of an enterprise development team, you must ask a few questions and make some decisions:

 	
 Will you build an installable, native binary executable application? Or will you build a web app?

 	
 If you build a web app, will you use a single-page application (SPA) framework (such as Angular or Blazor), or will you use a traditional server-generated page framework (like ASP.NET Core or PHP)?

 	
 If you build an installable app, will you build one for each platform where you want your users to run it, or will you build a single app that runs on every platform?

 These are just some of the questions and decisions you need to resolve. Your decision process might look something like figure 1.3.

 [image:]

 Figure 1.3 Assuming you are a .NET developer, the biggest decision to make is whether you want to build a web app or an installable/executable app. If you choose to build an executable, .NET MAUI is a no-brainer.

 To help with this decision, it’s important to understand something (and potentially dispel a myth): apps built with .NET MAUI are native apps. That is to say, any app you write with .NET MAUI compiles to a native binary executable for each target platform. The same is true on iOS as if it were written in Swift and on Android as if it were written in Kotlin (although .NET code is still just-in-time [JIT] compiled by default, you can enable ahead-of-time [AOT]).

 With that in mind, perhaps a bigger decision than whether to use a cross-platform framework such as .NET MAUI or vendor-provided languages is whether to build a binary application as opposed to a web app (although with .NET MAUI Blazor, you get the best of both worlds, as we’ll see in section 1.4). That decision is up to you and/or your team and depends on many factors. Both approaches have pros and cons; and while web app development has advantages for many situations, there are compelling reasons to choose a binary application instead:

 	
 Multithreading—Applications running in a web browser can only use one thread at a time. Depending on your performance requirements, this may not be a problem.

 	
 Encryption—Web applications use encryption to communicate with backend services, but you can’t securely store data offline in a web browser.

 	
 Access to device hardware features—Many hardware features are available to browsers now, such as camera and location services and even Bluetooth. Other features, such as telephony or (SMS) messaging, are difficult or impossible to access from a browser app. But providing access to them consistently and reliably is much easier using an installed binary application.

 	
 Access to platform APIs—You may want to access certain platform features such as ARKit on iOS or ARCore on Android, which will influence your decision to choose an installed binary application rather than a web app.

 This is by no means an exhaustive list. Several factors may influence your decision to choose one approach rather than the other. However, all other things being equal, perhaps the most compelling reason to build an installable app rather than a web app is branding. Having an app store presence is considered critical for most businesses that wish to reach a broad sector of the market, and store presence provides a level of trust to your users that, rightly or wrongly, may not be there with a web app alone. My clients often reveal the desire to have a presence in the App Store and Google Play store as a motivating factor when I ask them why they want a mobile app.

 Nevertheless, the reasons listed earlier can be compelling. Multithreading can be important for performance-intensive applications. Browser-based apps can simulate multithreading, but in a binary app running on hardware with a multicore CPU, those threads can actually run simultaneously, meaning background processes don’t lock up the UI.

 Being able to encrypt data at rest as well as in motion can be an important consideration if security is a chief concern or feature of your app, and this requirement rules out building a browser-based app. Additional platform features, such as biometric identification, add an extra layer of security (as well as convenience) to binary apps.

 Verinote, an app built in Xamarin.Forms and currently being upgraded to .NET MAUI, takes advantage of these security features (see figure 1.4). Designed for law enforcement (or any regulated industry), Verinote lets users in the field capture notes with photographs, audio recordings, and sketches and syncs the notes back to a cloud service. It needs to work offline as well as online, so if no connection is available, data is cached locally until the cloud service can be reached. Due to the highly sensitive nature of the information users of this app work with, security is a paramount concern. Verinote encrypts cached data (as well as all data in motion) and uses platform-provided biometric authentication to secure access to the app. Because of these dependencies on security features provided by native platform APIs, Verinote could not have been built as a web app (Verinote also has a web app component, but it does not, and cannot, store any data offline).

 [image:]

 Figure 1.4 The Verinote mobile app was built for security from the ground up. Data captured on the device is encrypted until it can be synced with a cloud service. This would not have been achievable with a web app.

 Device features and platform APIs unlock almost limitless possibilities for mobile and desktop developers. I mentioned ARKit and ARCore earlier (the iOS and Android augmented reality [AR] libraries, respectively), which you can use to build rich, compelling experiences and products for users. Some examples include the proliferation of AR measuring apps and awesome new retail experiences like Ikea’s mobile app. My toddler is particularly fond of the My Very Hungry Caterpillar app, which puts the caterpillar from Eric Carle’s Very Hungry Caterpillar into your space and lets you feed and interact with it (see figure 1.5). These kinds of apps are a little beyond the scope of this book but are nevertheless very achievable with .NET MAUI.

 [image:]

 Figure 1.5 The Very Hungry Caterpillar enjoying a snack on my keyboard. Making augmented reality apps like this for mobile devices is simplified through the use of APIs provided by Apple and Google. Building a similar experience in a web browser would be extremely difficult, if not impossible.

 If you’ve decided to build a binary, installable application, the next decision is whether to build multiple versions of the app—one for each platform—or to build your product using a single cross-platform code base. This decision may seem like a no-brainer, and in most cases it probably is. There may be some niche scenarios where your requirements are specifically for only one platform or you want to build different versions for different platforms (although you can still do this with .NET MAUI), but most of the time it makes sense to use a cross-platform framework and build a single app that can be deployed to multiple target platforms.

 A cross-platform developer today has the luxury of choice in this respect. A popular approach is to build a web app and wrap it in an installable binary. Options include Ionic for Angular apps or Electron for anything web-based. This is an attractive option for some people, but while it can give you full access to native platform APIs, it has some limitations. Chief among these is that you are still using a web view to render and run your code, which carries with it all the performance and threading limitations of a web app.

 The alternative approach is to use a single code base that can be built as a native app for each target platform. This is the approach used by .NET MAUI, as well as some other options such as React Native and Flutter, and it provides several advantages. These include multithreading and other performance benefits as well as full access to all native platform APIs—in the case of .NET MAUI, guaranteed on the day of release. With web-app wrappers, you are often dependent on plugins to provide this functionality, and there are no guarantees that the features you need access to are available.

 The key distinction between .NET MAUI and other frameworks in this category is that the UI you build in .NET MAUI is an abstraction of the platform’s native UI. This means when an application built in .NET MAUI runs on iOS, it looks like an iOS application; when it runs on Windows, it looks like a Windows application; and the same for the other supported platforms, as shown in figure 1.6.

 [image:]

 Figure 1.6 A .NET MAUI DatePicker control running in the same application on Android (left) and Windows (right). Both versions are running from the same code without any additional modification required to make them feel part of the platform they are running on.

 Of course, you can customize your UI to not use the native look and feel and instead use a fully custom UI that looks the same no matter where you run it. Many people prefer this approach, and it takes no more effort in .NET MAUI than in other cross-platform frameworks. However, building an application that looks consistent but not identical on each platform while also remaining consistent with the platform requires no extra effort at all. Achieving this with React Native or Flutter would require multiple implementations of the same control—one for each platform.

 This “consistent but not identical” approach is the preferred way of building applications for many vendors. Let’s look at Microsoft Word as an example (see figure 1.7).

 [image:]

 Figure 1.7 Microsoft Word running on macOS (top) and Windows (bottom). Each version remains consistent with its platform while retaining the product’s brand and UX.

 On macOS, MS Word looks like a macOS application. On Windows, it looks like a Windows application. But both are consistent, and the branding, navigation, and UX are as familiar and comfortable to a user of one platform as they are to a user of another.

 The truth is, all the available options are good. They are well established and mature and have their share of supporters and detractors. Some provide a better approach to particular aspects of cross-platform software development, while others provide a better approach in different areas. Choosing one framework over another will likely depend on which is most squarely in your comfort zone; the key factors are generally the primary backer of the framework and the primary development language. If you love Microsoft and are an experienced C# developer, .NET MAUI is your obvious choice. If you’re a Google fan and are comfortable with Dart, you’ll probably choose Flutter.

 We’re lucky to have so many options. With the advent of NodeJS, a JavaScript developer who was previously confined to web UI development can now build a full-stack application in their favorite language. You may not think it’s the best fit, but there are advantages to be gained from consistency across the stack. More importantly, the developer has a choice.

 As .NET developers, we have this choice, too. As I said earlier, it’s a great time to be a .NET developer. You can write server and cloud applications in ASP.NET Core, web apps with Blazor, and native desktop and mobile apps with .NET MAUI. And better yet, you can share code between all of them.

1.4 .NET MAUI and the .NET ecosystem

 Writing a cross-platform application in .NET MAUI is a great option for .NET developers. You can use your favorite language and developer tools and continue to use the skills and experience you have built up as a .NET developer. You have access to all the same resources you use in other .NET projects, including your existing support networks, packages, and patterns (although there are some new patterns to learn for mobile development). As .NET MAUI apps are .NET projects, many, if not all, of your favorite NuGet packages are available to use in your .NET MAUI apps (whether these packages are suitable for mobile development is another matter—some are not), as are many specifically tailored to mobile and cross-platform UI development.

 [image:]

 Figure 1.8 You can build full-stack cloud, web, and desktop/mobile applications with all the components sharing a single code base.

 If you are building a full-stack solution, you get the benefit of being able to share code between the different layers (see figure 1.8). This may not always be applicable, as different layers usually have very different responsibilities, but it’s an excellent option. For example, if you are building a chat app with an ASP.NET Core web API with SignalR running in Azure, a Blazor web UI, and a .NET MAUI mobile and desktop UI, you can share the logic and connectivity that links the UI to the web API across your Blazor and .NET MAUI apps and (in some cases) use the same NuGet packages in both your client and server applications. If you make changes to your API, you can update the client code once and have the change automatically reflected across all your client UI applications.

 As mentioned in section 1.2, because .NET MAUI is a core part of .NET and a workload rather than an SDK, you can use all your familiar development tools. If it works with .NET, it works with .NET MAUI. This includes Visual Studio (Mac or Windows), Visual Studio Code and the .NET CLI (although Visual Studio will provide a first-class experience), any build or DevOps tools, NuGet packages, and anything else you can think of. The various components that make up your .NET developer experience—and the .NET ecosystem as a whole—are at your disposal as a .NET MAUI developer.

 .NET MAUI isn’t an add-on; it is .NET. That means if it works with .NET, it works with .NET MAUI—which counts for your skills as much as any other tool.

1.5 .NET MAUI development paradigms

 XAML is the de facto choice for building applications in .NET MAUI. As mentioned in section 1.1, Microsoft created XAML for WPF, but it has since been used for Silverlight (in fact, Silverlight was specifically a XAML renderer plugin for web browsers), Windows Phone, UWP, Xamarin.Forms, and now .NET MAUI.

 XAML is a good choice for most people. It’s an XML-based markup language for defining a UI, the same as HTML, or the plain XML used for building Android UIs, so it is usually comfortable and quick to learn for people coming from Angular, plain HTML, or Android—especially those with XAML experience (WPF or Xamarin.Forms). The different “flavors” of XAML can sometimes trip people up—there are subtle differences between WPF, Xamarin.Forms, and .NET MAUI XAML—but these differences are easy to learn, and the excellently overhauled XAML IntelliSense that you get with Visual Studio 2022 makes it even easier.

 Complementary to XAML is the Model-View-ViewModel (MVVM) pattern (see figure 1.9). With MVVM, your XAML-defined UI is called the View. The View consists of anything the app needs to display things onscreen according to your design, including UI controls and any code required to change how they are displayed. The ViewModel represents the state of your View and contains logic for interacting with the Model. The ViewModel responds to events in the View, passes data to the Model, and changes the state of the View when the Model provides information that requires the View state to change. The Model, consisting of objects and services that represent the problem your app solves, contains business logic. The MVVM pattern is covered in more depth in chapter 9.

 [image:]

 Figure 1.9 The MVVM pattern. The Model is the representation of the problem your app solves and consists of entities and services. The ViewModel represents the state of your View and contains logic for updating the Model in response to changes in the View (user input) and updating the View in response to changes in the Model. The View contains logic for displaying the app onscreen, including definitions of the UI and any logic for changing how the UI is rendered.

 But XAML isn’t your only choice. You can also declare your UI in code rather than in markup. This means declaring an instance of the class representing the UI control or view you want to display onscreen and specifying its properties. Some people prefer this approach, but personally, I prefer to define my UI in XAML—probably because the code approach evokes memories of drawing buttons onscreen by specifying the coordinates to draw a white line for the top and left borders and a black line for the bottom and right borders (and then inverting them when the user clicked on the button). I didn’t have access to a UI library back then and had to draw all my controls by hand.

 In addition to declaring your UI in code, you can use the Model-View-Update (MVU) paradigm instead of MVVM (see figure 1.10). (At the time of writing, MVU support is experimental in .NET MAUI.) MVU, also known as the Elm Architecture, differs from MVVM in two key ways: the Model is immutable, and data flows in only one direction. This means you can’t change the Model in response to UI changes (user input), because doing so would violate both rules. Instead, changes in the View flow to an Update, which generates a new Model. The View then changes in response to the new Model.

 [image:]

 Figure 1.10 In the MVU pattern, the Model represents the whole-application state. Changes in the Model are sent to the View, which changes what is displayed when the Model is updated. Changes in the View are dispatched to an Update function, which generates a new Model.

 MVU will be familiar to people coming from a native iOS development (Objective-C or Swift) background or React developers (the React virtual DOM is a version of the MVU pattern). In .NET MAUI, you need to bring in a library to support this pattern (Comet for C# and Fabulous for F#). Xamarin.Forms had tighter coupling between the Xamarin.Forms API and the underlying platforms, so providing these kinds of patterns was more difficult. In .NET MAUI, abstractions provide a clean separation between the layers of the model (shown in figure 1.2), allowing different implementations to be brought in at any layer. This makes these MVU libraries “first-class citizens” in the .NET MAUI ecosystem, and Microsoft fully endorses them.

 MVU is not covered in this book because we have limited space and the focus is on the core way of doing things. But if you are interested in MVU, there are plenty of resources online and a thriving community of .NET MVU enthusiasts.

 .NET MAUI also gives you another option: building your UI using Blazor. Blazor is an SPA framework created by Microsoft that lets you build applications that run client-side in web browsers using .NET rather than JavaScript or TypeScript. To learn more about Blazor, check out Blazor in Action by Chris Sainty (Manning 2022, www.manning.com/books/blazor-in-action).

 This approach may seem similar to the web app wrapping solutions mentioned in section 1.3, and in many ways it is. It lets you write a web app in a SPA framework (Blazor) and use a wrapper (.NET MAUI) to bundle that web app into an installable binary executable targeted at multiple platforms.

 .NET MAUI Blazor uses a web view to render the UI, just like Electron, Ionic, or Cordova. The key difference is that the C# code you write in a .NET MAUI Blazor app is run as .NET managed code, just like in a XAML MAUI app, rather than being run by the scripting engine in the web view, which is what you get with a web wrapper like Cordova, Ionic, or Electron. Additionally, with a .NET MAUI Blazor app, you get access to all the platform APIs that are exposed via .NET abstractions (as shown in figure 1.2).

 With .NET MAUI, you can build a full-stack application using .NET at every layer. You can use ASP.NET Core for your API, Blazor for your web app, and .NET MAUI for your mobile and desktop clients. If you choose to use .NET MAUI Blazor, you can even place your views in a Razor class library to share Blazor-compatible UIs across different web, mobile, and desktop projects.

 .NET MAUI with Blazor may be a good option in a lot of cases. However, this book focuses on .NET MAUI development with XAML and the MVVM pattern because the purpose is to teach you .NET MAUI, not Blazor; and as mentioned earlier, XAML with MVVM is the de facto choice for .NET MAUI apps. Even if you go on to learn other approaches, to fully understand .NET MAUI, you should learn this approach first.

Summary

 	
 .NET MAUI is a cross-platform, write once, run anywhere (WORA) UI application platform. You can build just one .NET MAUI app, and it will run on multiple platforms without further modification.

 	
 You can write native apps with .NET MAUI. .NET MAUI apps are native apps.

 	
 You can build apps in .NET MAUI with functional, performance, and security advantages over web apps.

 	
 You can use the entire .NET ecosystem to build .NET MAUI apps. This includes all your favorite NuGet packages and your existing skills as a .NET developer.

 	
 You can write .NET MAUI app UIs in XAML, C#, F#, or Blazor (we use XAML in this book).

2 Building a .NET MAUI app

 This chapter covers

 	
An introduction to Visual Studio for macOS and Windows and the .NET CLI

 	
Creating a cross-platform mobile and desktop app with .NET MAUI

 	
Running a .NET MAUI app and seeing changes in real time with Hot Reload

 I work with .NET developers all day, every day. Most are full-stack developers and work with a web UI framework like Angular or React. But I often hear them say things like “I don’t know mobile development” or “I don’t know native desktop development.” This is a misconception and couldn’t be further from the truth.

 Any .NET developer can build mobile or desktop UI apps with .NET MAUI. There’s a small learning curve to get to grips with some of the UI- and markup-specific syntax and the design patterns—and that’s what this book is for. Anyone with experience with a web UI framework (especially Angular) should feel very comfortable working in .NET MAUI, although prior experience is not necessary for this book. In this chapter, we see just how easy it is for .NET developers to get started building mobile and desktop UI apps with .NET MAUI.

2.1 Saying “Aloha, World!” with .NET MAUI

 In this section, we build our first .NET MAUI App: Aloha, World! We look at the tools and templates available to developers for building .NET MAUI apps and talk about some of the pros and cons of each approach.

 Which approach you choose is up to you and depends on your comfort, experience, and workflow. Regardless of the approach you prefer, I recommend walking through using both Visual Studio (for either Windows or macOS, depending on what you have available) and the command line so you at least gain familiarity with both approaches.

 Which option should I choose?

 It’s up to you to decide whether to use Visual Studio or the .NET CLI. Whether you choose Visual Studio for Mac or Visual Studio for Windows will depend on what hardware and operating system you have available.

 Visual Studio, on both macOS and Windows, includes sophisticated development features that you don’t get with the CLI. For example, the XAML Live Preview in Visual Studio can give you real-time feedback on design changes (see section 2.4 for more information). Visual Studio also has powerful IntelliSense, and now IntelliCode—code-completion features that can be indispensable when writing .NET MAUI apps—not to mention mature testing and debugging features.

 Another advantage of using Visual Studio is that it’s easy to choose your target platform; you simply use a drop-down built into the Run button. Using the .NET CLI is a little more complicated; and, perhaps more importantly, the .NET CLI doesn’t support targeting Windows (you can still build and run .NET MAUI apps on Windows using a command prompt, but you have to use MSBuild rather than the .NET CLI).

 Visual Studio is a great option for .NET developers and, except where I’m explicitly demonstrating the .NET CLI, is used in the examples and screenshots throughout this book (although all the samples also work fine with the .NET CLI). But Visual Studio is not without its detractors. For many people, Visual Studio is too powerful, and some prefer a lightweight alternative. This is where the .NET CLI comes in.

 The primary benefit of any GUI is discoverability; it’s much easier to click around in Visual Studio than to delve into the documentation of the .NET CLI to figure out how to do this or that. But while a CLI may have a steeper learning curve, there’s no question that an adept CLI user can see significant productivity and efficiency gains over their GUI-using counterpart.

 Entering the following commands takes a second or two:

 mkdir AlohaWorld
cd AlohaWorld
dotnet new blankmaui

 It takes the .NET CLI about 0.4 seconds to build a new .NET MAUI app from the template; the equivalent in Visual Studio can take significantly longer. In addition to the efficiency gains, using the .NET CLI may seem more familiar to developers coming from other frameworks. The Angular CLI, for example, has commands with many analogs in the .NET CLI.

 If you choose to use the .NET CLI, you will still need to use software to edit your code. Visual Studio Code, a text editor with developer-focused features such as syntax highlighting, is a popular choice for many developers and has a rich community-supported extension ecosystem. But you can use anything you like—essentially, a .NET MAUI app is a collection of text files (until you execute dotnet build to compile them), so any software capable of editing text files will work. But using a developer-centric text editor like Visual Studio Code will vastly simplify your development experience.

 Personally, I like to use a combination of Visual Studio and the .NET CLI. I find the .NET CLI much quicker for some tasks and Visual Studio indispensable for others (such as debugging). Most of my .NET MAUI development takes place in Visual Studio, but you should find the most comfortable mode of working for you. Whichever you choose, it’s worth at least learning the fundamentals of all the tools at your disposal.

 Ensure that you have the .NET MAUI workload installed via the Visual Studio installer or the .NET CLI. We’re also using a blank .NET MAUI project template that you need to install separately. If you are unsure whether you are ready to proceed, see appendix A to get set up with all the right tools. Once you’re ready, dive in to create your first .NET MAUI app.

 Note .NET MAUI technically supports .NET 6 onward. However, .NET 7 is the minimum version used for this book. Be sure you select .NET 7 when prompted in wizards (and select .NET 8 when it ships).

2.1.1 Visual Studio 2022

 Visual Studio is the primary first-party tool provided by Microsoft for developing apps with .NET MAUI. The latest version, 2022, is the minimum required version for .NET MAUI and has built-in support for a lot of features that make developing .NET MAUI apps more efficient. We’ll see some of these features, like XAML Live Preview and .NET Hot Reload (covered later in this chapter), as we progress through the book.

 Visual Studio is available for Windows and macOS, with different editions ranging from the free Community edition to the top-tier Enterprise edition. .NET MAUI works with all of them. Everything covered in this book can be done with the Community edition, although if you already have a Visual Studio subscription, you can use it for .NET MAUI. For more information, see appendix A.

 Mac

 To get started, open Visual Studio 2022 and click New. The next screen asks you to choose a template. Scroll down the list on the left to the Multiplatform section. Here, click App to bring up the .NET MAUI templates. Choose Blank .NET MAUI Template from the list (see figure 2.1), and click the Continue button.

 [image:]

 Figure 2.1 Find App in the Multiplatform section on the left. This shows the available .NET MAUI templates; choose Blank .NET MAUI Template to generate a new blank app.

 Enter AlohaWorld as the project name. By default, the solution name is set to the same name as the project name. Leave it as is for now; it makes sense for these to be different when building complex, multiproject solutions, which we’re not doing here. Visual Studio will suggest a default location to save the app; feel free to select a location of your choice. You’re also given options for version control; we’re not using version control for this app, but if you’re a Git user and want to use it for this app, feel free to leave it selected.

 Visual Studio will take a short time to create the new solution based on the .NET MAUI app template. When it’s complete, you should see a collection of files and folders in Solution Explorer, as shown in figure 2.2.

 [image:]

 Figure 2.2 The files in the newly created AlohaWorld .NET MAUI app. We talk about these files in section 2.3.

 We look at these files in section 2.3 and see how .NET MAUI starts and launches an app. Your .NET MAUI app has been created from the template and is ready for you to work on.

 Windows

 To get started, open Visual Studio and click Create a New Project. Visual Studio shows you a list of available project templates, with the most recently used templates on the left and all project templates on the right. Select Blank .NET MAUI Template from the list. If you can’t see it, you can use the filtering features (use the drop-down boxes to filter by language, platform, or project type), although I often find that they don’t limit the results much. To make it easier, you can enter the search term maui in the search box to filter the available templates (see figure 2.3). With Blank .NET MAUI Template selected, click Next.

 [image:]

 Figure 2.3 You can filter project templates in Visual Studio using the language, platform, and project type drop-downs, but the free text filter is the quickest way to find what you’re looking for. In this example, we’ve entered maui as a search term and narrowed the list of project templates to .NET MAUI projects.

 Choose a folder to save your project into (or use the default location), and enter AlohaWorld as the project name. Then click Create. Visual Studio will take a short time to create the new solution based on the .NET MAUI app template. When it’s complete, you should see a collection of files and folders in Solution Explorer, as shown in figure 2.4.

 [image:]

 Figure 2.4 The AlohaWorld solution in Visual Studio Solution Explorer. We talk about these files in section 2.3.

 We look at these files in section 2.3 and see how .NET MAUI starts and launches an app. For now, your.NET MAUI app has been created from the template and is ready for you to work on.

2.1.2 .NET CLI overview

 The .NET CLI is a comfortable and familiar tool for most .NET developers. Some people prefer to remain strictly in the GUI, and that’s fine. The .NET CLI is easy to use, though—the only thing you really need to learn is how to use the interactive help. The commands are deliberately discoverable, and once you learn them, they can make your development experience much more efficient.

 As .NET MAUI is a .NET workload rather than an external package, the project templates work the same way as all other .NET templates and accept the same inputs and switches. These are covered in the Microsoft documentation and are also discoverable via online help, which can be accessed by adding --help after any dotnet command.

 Let’s start by looking at the available templates. Open your command prompt of choice, and enter dotnet new list. You should see a list of templates available to the .NET CLI tool—conveniently, the .NET MAUI templates are at the top. Table 2.1 briefly explains these templates and their use cases.

 .Table 2.1 A summary of the .NET MAUI templates

 	
 Template name

 	
 Short name

 	
 Description

 	
 .NET MAUI App

 	
 maui

 	
 The main template used to create new .NET MAUI apps.

 	
 .NET MAUI Blazor App

 	
 maui-blazor

 	
 Used to create a new .NET MAUI app that uses Blazor to define its UI.

 	
 .NET MAUI Class Library

 	
 mauilib

 	
 Creates a new class library for sharing code between different .NET MAUI projects.

 	
 .NET MAUI ContentPage (C#)

 	
 maui-page-csharp

 	
 Creates a new .NET MAUI application page (see section 1.3) with the UI defined declaratively in C#.

 	
 .NET MAUI ContentPage

 	
 maui-page-xaml

 	
 Creates a new .NET MAUI application page with the UI defined in XAML markup (and a corresponding C# code-behind file).

 	
 .NET MAUI ContentView (C#)

 	
 maui-view-csharp

 	
 Creates a new .NET MAUI content view (a reusable UI component that can be used in .NET MAUI application pages) with the UI defined declaratively in C#.

 	
 .NET MAUI ContentView

 	
 maui-view-xaml

 	
 Creates a new .NET MAUI content view with the UI defined in XAML markup (and a corresponding C# code-behind file).

 	
 .NET MAUI ResourceDictionary (XAML)

 	
 maui-dict-xaml

 	
 Creates a new .NET MAUI resource dictionary in XAML. This allows you to define and name colors, styles, and templates that can be referenced by name for reuse throughout your app.

 	
 Blank .NET MAUI template

 	
 blankmaui

 	
 An additional template that I provide. It is the same as the default template (maui), except the default template uses Shell (which we won’t talk about until chapter 5). This template does not use Shell, so it should be easier to work with for the first few chapters.

 The .NET CLI has some conventions that make it easy to use. For example, if you use the dotnet new command with a template of your choice without specifying any other parameters, the .NET CLI creates a new solution based on your selected template, using all the default options and using the name of the containing folder as the solution name.

 Overriding default values

 To override the default behavior, you can specify additional command-line parameters to the .NET CLI. For example, you can specify a different output directory or solution name (or both) using the available command-line switches. If we wanted to call our application HelloWorld instead of AlohaWorld and build it in a directory called Code at the root of our hard drive, we could do so with the following command:

 dotnet new blankmaui -n HelloWorld -o C:\code\HelloWorld

 For more information about all the available command-line switches, use the online help (dotnet new --help) or consult the documentation.

 We’re going to take advantage of this simplicity to create a brand-new .NET MAUI app.

2.1.3 .NET CLI in action

 Create a folder called AlohaWorld. You can use your operating system’s file browser (Explorer on Windows or Finder on macOS) or the command line. Then, using your command-line terminal of choice, navigate into that folder.

 In the new folder you created, enter the command

 dotnet new blankmaui

 and press Enter. If the command executes successfully, you’ll see a message saying

 The template "Blank .NET MAUI template" was created successfully.

 You can now examine the folder’s contents to see the files created by this template. Use your operating system’s file browser or the command line to show the contents of the folder (in figure 2.5, we use the command line). This creates a new .NET MAUI app which is now ready to work on.

 [image:]

 Figure 2.5 The .NET MAUI template generates solution files to use, shown here listed in the terminal.

2.2 Running and debugging your app

 Now that we’ve created our first .NET MAUI app, let’s see it in action! The following sections guide you through the steps of running your brand-new .NET MAUI app, depending on your chosen development approach.

 Single project solutions

 If you are coming from Xamarin.Forms, you’ll notice some differences. In Xamarin.Forms, we had a project for each platform (e.g., MyApp for the shared logic and UI, MyApp.Android for Android, and MyApp.iOS for iOS) and set the project for the target platform we wanted to run our app on as the startup project. In .NET MAUI, we have a single project solution and use multitargeting to choose where to run it. We can add class libraries or other projects if we wish, but this is not necessary for targeting different platforms.

2.2.1 Visual Studio for Windows

 The following steps guide you through building and running your .NET MAUI app. You see how to choose Windows as your target platform and run AlohaWorld as a Windows app. You can also run the app on Android or iOS from Visual Studio for Windows—for steps to do this, see appendix A.

 Use the drop-down on the Run button in the toolbar. From the menu, choose the Framework submenu, and choose Net7.0-windows[your windows build version] as the target (see figure 2.6).

 [image:]

 Figure 2.6 Use the drop-down to select a target platform.

 Windows Developer Mode

 Note that you must enable Developer Mode on Windows if you have not already done so. Developer Mode lets you run unsigned apps on Windows. By default, executables that are not signed by a trusted authority are blocked from running. When you develop apps in .NET MAUI, they are unsigned, so Developer Mode is required; but you should consider disabling it while you’re not actively using it, to help to keep your system secure.

 You can do this in the built-in Settings app. Press the Windows key, and start typing settings. The app will appear in your search results, and you can press Enter to open it.

 [image:]

 Enable Developer Mode in Windows to run unsigned .NET MAUI apps.

 You can now run your app on Windows by clicking the Run button on the toolbar. You could also choose to run the app on Android; we cover targeting different platforms in chapter 10.

 The app should run, as shown in figure 2.7. The next section goes through what you see onscreen; for now, click the Click Me button and see what happens. Have fun with your first .NET MAUI app!

 [image:]

 Figure 2.7 The AlohaWorld app running on Windows. Click the Click Me button to see changes.

2.2.2 Visual Studio for Mac

 Visual Studio 2022 for Mac makes it easy to run and debug .NET MAUI apps on macOS or iOS. Near the top-left corner of the screen is a Run button (see figure 2.8); to the right of it is the profile (Release or Debug) and then the target (by default, My Mac).

 [image:]

 Figure 2.8 The Run button in Visual Studio 2022 for Mac, with the profile and target next to it

 Clicking My Mac drops down a list of all the target devices you can run your .NET MAUI app on. This includes the Mac you are running Visual Studio on and any currently supported iOS device simulators. For more about setting up an iOS device for .NET MAUI development, see http://mng.bz/V19x.

 Leave My Mac selected, and click the Run button. Your app runs, as shown in figure 2.9. The next section goes through what you see onscreen; for now, click the Click Me button and see what happens.

 [image:]

 Figure 2.9 The AlohaWorld .NET MAUI app running on macOS

2.2.3 .NET CLI

 Using your terminal console of choice, navigate to your solution folder and enter the Run command corresponding to your target platform. The target platform is the platform on which you want to run your .NET MAUI app, not the platform you have developed it on. Use the reference guide in table 2.2 to choose the right target platform.

 The Run command is

 dotnet build -t:Run -f:net7.0-[target platform]

 .Table 2.2 NET MAUI target platforms

 	
 Operating system

 	
 Target platform

 	
 Notes

 	
 macOS

 	
 Mac Catalyst

 	
 Mac Catalyst is a bridge that lets you run apps built for iOS on macOS. .NET MAUI uses Mac Catalyst to run apps on macOS. You can only target macOS when developing on macOS.

 	
 iOS

 	
 iOS

 	
 You can target iOS when developing on either macOS or Windows (although a macOS computer is required to publish .NET MAUI apps to the App Store).

 	
 Android

 	
 Android

 	
 You can target Android when developing on either macOS or Windows.

 NOTE While Windows is a target platform for .NET MAUI, it’s missing from table 2.2 because you can’t build .NET MAUI apps for Windows with the .NET CLI. It’s best to stick to Visual Studio, although you can use MSBuild if you want to use a command terminal.

