

 inside front cover

 [image:]

 An example of a CI/CD pipeline for cloud-native applications

 [image:]

 Pipeline as Code

 Continuous Delivery with Jenkins, Kubernetes, and Terraform

 Mohamed Labouardy

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Karen Miller

 	
 Technical development editor:

 	
 Christopher Haupt

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Sharon Wilkey

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Werner Dijkerman

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617297540

brief contents

 Part 1. Getting started with Jenkins

 1 What’s CI/CD?

 2 Pipeline as code with Jenkins

 Part 2. Operating a self-healing Jenkins cluster

 3 Defining Jenkins architecture

 4 Baking machine images with Packer

 5 Discovering Jenkins as code with Terraform

 6 Deploying HA Jenkins on multiple cloud providers

 Part 3. Hands-on CI/CD pipelines

 7 Defining a pipeline as code for microservices

 8 Running automated tests with Jenkins

 9 Building Docker images within a CI pipeline

 10 Cloud-native applications on Docker Swarm

 11 Dockerized microservices on K8s

 12 Lambda-based serverless functions

 Part 4. Managing, scaling, and monitoring Jenkins

 13 Collecting continuous delivery metrics

 14 Jenkins administration and best practices

contents

 front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Getting started with Jenkins

 1 What’s CI/CD?

 1.1 Going cloud native

 Monolithic

 Microservices

 Cloud native

 Serverless

 1.2 Defining continuous integration

 1.3 Defining continuous deployment

 1.4 Defining continuous delivery

 1.5 Embracing CI/CD practices

 1.6 Using essential CI/CD tools

 Choosing a CI/CD tool

 Introducing Jenkins

 2 Pipeline as code with Jenkins

 2.1 Introducing the Jenkinsfile

 Blue Ocean plugin

 Scripted pipeline

 Declarative pipeline

 2.2 Understanding multibranch pipelines

 2.3 Exploring the GitFlow branch model

 2.4 Test-driven development with Jenkins

 The Jenkins Replay button

 Command-line pipeline linter

 IDE integrations

 Part 2. Operating a self-healing Jenkins cluster

 3 Defining Jenkins architecture

 3.1 Understanding master-worker architecture

 3.2 Managing Jenkins workers

 SSH

 Command line

 JNLP

 Windows service

 3.3 Architecting Jenkins for scale in AWS

 Preparing the AWS environment

 Configuring the AWS CLI

 Creating and managing the IAM user

 4 Baking machine images with Packer

 4.1 Immutable infrastructure

 4.2 Introducing Packer

 How does it work?

 Installation and configuration

 Baking a machine image

 4.3 Baking the Jenkins master AMI

 Configuring Jenkins upon startup

 Discovering Jenkins plugins

 4.4 Baking the Jenkins worker AMI

 5 Discovering Jenkins as code with Terraform

 5.1 Introducing infrastructure as code

 Terraform usage

 5.2 Provisioning an AWS VPC

 AWS VPC

 VPC subnets

 VPC route tables

 VPC bastion host

 5.3 Setting up a self-healing Jenkins master

 5.4 Running Jenkins with native SSL/HTTPS

 5.5 Dynamically autoscaling the Jenkins worker pool

 Launch configuration

 Auto Scaling group

 Autoscaling scaling policies

 Workers CPU utilization load

 6 Deploying HA Jenkins on multiple cloud providers

 6.1 Google Cloud Platform

 Building Jenkins VM images

 Configuring a GCP network with Terraform

 Deploying Jenkins on Google Compute Engine

 Launching automanaged workers on GCP

 6.2 Microsoft Azure

 Building golden Jenkins VM images in Azure

 Deploying a private virtual network

 Deploying a Jenkins master virtual machine

 Applying autoscaling to Jenkins workers

 6.3 DigitalOcean

 Creating Jenkins DigitalOcean Snapshots

 Deploying a Jenkins master Droplet

 Building Jenkins worker Droplets

 Part 3. Hands-on CI/CD pipelines

 7 Defining a pipeline as code for microservices

 7.1 Introducing microservices-based applications

 7.2 Defining multibranch pipeline jobs

 7.3 Git and GitHub integration

 7.4 Discovering Jenkins jobs’ XML configuration

 7.5 Configuring SSH authentication with Jenkins

 7.6 Triggering Jenkins builds with GitHub webhooks

 8 Running automated tests with Jenkins

 8.1 Running unit tests inside Docker containers

 8.2 Automating code linter integration with Jenkins

 8.3 Generating code coverage reports

 8.4 Injecting security in the CI pipeline

 8.5 Running parallel tests with Jenkins

 8.6 Improving quality with code analysis

 8.7 Running mocked database tests

 8.8 Generating HTML coverage reports

 8.9 Automating UI testing with Headless Chrome

 8.10 Integrating SonarQube Scanner with Jenkins

 9 Building Docker images within a CI pipeline

 9.1 Building Docker images

 Using the Docker DSL

 Docker build arguments

 9.2 Deploying a Docker private registry

 Nexus Repository OSS

 Amazon Elastic Container Registry

 Azure Container Registry

 Google Container Registry

 9.3 Tagging Docker images the right way

 9.4 Scanning Docker images for vulnerabilities

 9.5 Writing a Jenkins declarative pipeline

 9.6 Managing pull requests with Jenkins

 10 Cloud-native applications on Docker Swarm

 10.1 Running a distributed Docker Swarm cluster

 10.2 Defining a continuous deployment process

 10.3 Integrating Jenkins with Slack notifications

 10.4 Handling code promotion with Jenkins

 10.5 Implementing the Jenkins delivery pipeline

 11 Dockerized microservices on K8s

 11.1 Setting up a Kubernetes cluster

 11.2 Automating continuous deployment flow with Jenkins

 Migrating Docker Compose to K8s manifests with Kompose

 11.3 Walking through continuous delivery steps

 11.4 Packaging Kubernetes applications with Helm

 11.5 Running post-deployment smoke tests

 11.6 Discovering Jenkins X

 12 Lambda-based serverless functions

 12.1 Deploying a Lambda-based application

 12.2 Creating deployment packages

 Mono-repo strategy

 Multi-repo strategy

 12.3 Updating Lambda function code

 12.4 Hosting a static website on S3

 12.5 Maintaining multiple Lambda environments

 12.6 Configuring email notification in Jenkins

 Part 4. Managing, scaling, and monitoring Jenkins

 13 Collecting continuous delivery metrics

 13.1 Monitoring Jenkins cluster health

 13.2 Centralized logging for Jenkins logs with ELK

 Streaming logs with Filebeat

 Streaming logs with the Logstash plugin

 13.3 Creating alerts based on metrics

 14 Jenkins administration and best practices

 14.1 Exploring Jenkins security and RBAC authorization

 Matrix authorization strategy

 Role-based authorization strategy

 14.2 Configuring GitHub OAuth for Jenkins

 14.3 Keeping track of Jenkins users’ actions

 14.4 Extending Jenkins with shared libraries

 14.5 Backing up and restoring Jenkins

 14.6 Setting up cron jobs with Jenkins

 14.7 Running Jenkins locally as a Docker container

 index

 front matter

preface

 Ten years ago, I wrote my first makefile to automate the testing, building, and deployment of a C++ application. Three years later, while working as a consultant, I came across Jenkins and Docker and discovered how to take my automation skills to the next level with CI/CD principles.

 The beauty of CI/CD is that it’s simply a rigorous way of recording what you’re already doing. It doesn’t fundamentally change how you do something, but it encourages you to record each step in the development process, enabling you and your team to reproduce the entire workflow later at scale. Over the next few months, I started writing blog posts, doing talks, and contributing to CI/CD-related tools.

 However, setting up a CI/CD workflow has always been a very manual process for me. It was done via defining a series of individual jobs for the various pipeline tasks through a graphical interface. Each job was configured via web forms—filling in text boxes, selecting entries from drop-down lists, and so forth. And then the series of jobs were strung together, each triggering the next, into a pipeline. This made the troubleshooting experience a nightmare and reverting to the last known configuration in case of failure a tedious operation.

 A few years later, the pipeline-as-code practice emerged as part of a larger “as code” movement that includes infrastructure as code. I could finally configure builds, tests, and deployment in code that is trackable and stored in a centralized Git repository. All the previous pains were alleviated.

 I became a fan and believer of pipeline as code, as I transitioned from being a software engineer, tech leader, and senior DevOps manager to now co-leading my first startup as CTO. Pipeline as code became an important part of each project I was part of.

 I had the chance to work on different types of architecture—from monolithic, to microservices, to serverless applications—having built and maintained CI/CD pipelines for large-scale applications. Along the way, I accumulated tips and best practices to follow while going through the journey of continuous everything.

 The idea of sharing that experience is what triggered this book. Implementing pipeline as code is challenging for many teams, as they require the use of many tools and processes that all work together. The learning curve takes a lot of time and effort, leading people to wonder whether it’s worth it. This book is a handbook experience on how to build a CI/CD pipeline from scratch, using the most widely adopted CI solution: Jenkins. I hope the result will help you embrace the new paradigm of building CI/CD pipelines.

acknowledgments

 First and foremost, I want to thank my wife, Mounia. You’ve always supported me, always patiently listened while I struggled to get this done, and always made me believe I could finish this. I love you.

 Next, I’d like to acknowledge my editor at Manning, Karen Miller. Thank you for working with me, and thank you more for being patient when things got rough during the pandemic. Your commitment to the quality of this book has made it better for everyone who reads it. Thanks as well to all the other folks at Manning who worked with me on the production and promotion of the book: Deirdre Hiam, my project editor, Sharon Wilkey, my copyeditor, Keri Hales, my proofreader, and Mihaela Batinić, my reviewing editor. It was truly a team effort.

 Finally, I’d like to thank my family, including my parents and brothers, for finding the inner strength to listen to me talk about the book at every gathering.

 To all the reviewers: Alain Lompo, Alex Koutmos, Andrea Carlo Granata, Andres Damian Sacco, Björn Neuhaus, Clifford Thurber, Conor Redmond, Giridharan Kesavan, Gustavo Filipe Ramos Gomes, Iain Campbell, Jerome Meyer, John Guthrie, Kosmas Chatzimichalis, Maciej Drożdżowski, Matthias Busch, Michal Rutka, Michele Adduci, Miguel Montalvo, Naga Pavan Kumar Tikkisetty, Ryan Huber, Satej Kumar Sahu, Simeon Leyzerzon, Simon Seyag, Steve Atchue, Tahir Awan, Theo Despoudis, Ubaldo Pescatore, Vishal Singh, and Werner Dijkerman, your suggestions helped make this a better book.

about this book

 Pipeline as Code was designed to be a hands-on experience through practical examples. It will teach you the ins and outs of Jenkins and be your best companion to build a solid CI/CD pipeline for cloud-native applications.

Who should read this book

 Pipeline as Code is designed for all levels of DevOps and cloud practitioners who want to improve their CI/CD skills.

How this book is organized

 The book has four parts that cover 14 chapters.

 Part 1 takes you through basic CI/CD principles and discusses how Jenkins can help implement them:

 	
 Chapter 1 gives an overview of continuous integration, deployment, and delivery practices. It also discusses how Jenkins can help you in embracing those DevOps practices.

 	
 Chapter 2 introduces the pipeline-as-code approach and how it can be achieved with Jenkins. It also covers the differences between declarative and scripted Jenkins pipelines.

 Part 2 covers how to deploy a self-healing Jenkins cluster on the cloud by using an infrastructure-as-code approach:

 	
 Chapter 3 goes deep into Jenkins distributed builds architecture, with a full example on AWS.

 	
 Chapter 4 introduces the immutable infrastructure approach with HashiCorp Packer, including how to bake a Jenkins machine image with all the needed dependencies to run a Jenkins cluster out of the box.

 	
 Chapter 5 demonstrates how to deploy a secure and scalable Jenkins cluster on AWS with HashiCorp Terraform.

 	
 Chapter 6 describes in deep detail the process of deploying a Jenkins cluster on different cloud providers, including GCP, Azure, and DigitalOcean.

 Part 3 focuses on building CI/CD pipelines from scratch for cloud-native applications, including Dockerized microservices running in Swarm or Kubernetes and Serverless applications:

 	
 Chapter 7 defines the foundation for building a CI workflow for a containerized microservices. It covers how to define a multibranch pipeline on Jenkins and how to trigger the pipeline upon a push event.

 	
 Chapter 8 demonstrates how to run automated tests inside Docker containers. Various tests are described, including UI testing with headless Chrome, code coverage, static code analysis with SonarQube, and security analysis.

 	
 Chapter 9 covers building Docker images within CI pipelines, managing their versions, and scanning for security vulnerabilities. It also discusses how to automate reviews of GitHub pull requests with Jenkins.

 	
 Chapter 10 walks through the deployment process of Dockerized applications to Docker Swarm with Jenkins. It demonstrates how to maintain multiple runtime environments and how to achieve continuous deployment and delivery.

 	
 Chapter 11 goes deep into automating the deployment of applications on Kubernetes with Jenkins pipelines, including how to package and version Helm charts and run post-deployment tests. It also demonstrates the usage of Jenkins X and how it compares to Jenkins.

 	
 Chapter 12 covers how to build CI/CD pipelines for a serverless-based application and how to manage multiple Lambda deployment environments.

 Part 4 covers maintaining, scaling, and monitoring a Jenkins cluster running in production with ease:

 	
 Chapter 13 explores how to build interactive dashboards to continuously monitor Jenkins for anomalies and performance issues using Prometheus, Grafana, and Slack. It also covers how to stream Jenkins logs to a centralized logged platform based on the ELK stack.

 	
 Chapter 14 covers how to secure Jenkins jobs with a granular RBAC mechanism. It also explores how to back up, restore, and migrate Jenkins jobs and plugins.

About the code

 This book is a hands-on experience that provides many examples of code. These appear throughout the text and as separate code listings. Code appears in a fixed-width font just like this, so you’ll know when you see it.

 All of the source code used in the book is available on the Manning website (https://www.manning.com/books/pipeline-as-code), or in my GitHub repository (https://github.com/mlabouardy/pipeline-as-code-with-jenkins). This repository is a labor of love, and I appreciate the work done by all who catch bugs, make performance improvements, and help with documentation. Everything is ideal for contributions!

liveBook discussion forum

 Purchase of Pipeline as Code includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/pipeline-as-code/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 Need additional help?

 	
 Check out my blog (https://labouardy.com/), where I regularly share the latest news about Jenkins and the best practices to follow while building CI/CD workflows.

 	
 A weekly DevOps newsletter (https://devopsbulletin.com) can help you stay up-to-date with the latest wonders in the pipeline-as-code space.

 	
 The Jenkins tag at StackOverflow (https://stackoverflow.com/questions/tagged/jenkins) is a great place to both ask questions and help others.

about the author

 	
 [image:]

 	
 Mohamed Labouardy is CTO and cofounder of Crew.work, and a DevSecOps evangelist. He is the founder of Komiser.io, and an author of multiple books about serverless and distributed applications. He enjoys contributing to open source projects and is a regular conference speaker. You can also find him on Twitter (@mlabouardy).

about the cover illustration

 The figure on the cover of Pipeline as Code is captioned “Bohémien de prague,” or a Bohemian from Prague. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1. Getting started with Jenkins

 This first part of this book takes you through the DevOps essential concepts. You’ll learn about CI/CD practices and how they allow you to integrate small pieces of code at one time and ease technical debt. After that, I’ll introduce the new approach of building CI/CD pipelines, pipeline as code, and how it can be implemented with Jenkins. Finally, I’ll lay the groundwork for a well-designed CI/CD workflow by introducing the GitFlow branching model.

1 What’s CI/CD?

 This chapter covers

 	
The path organizations have taken to evolve from monolith to cloud-native applications

 	
The challenges of implementing CI/CD practices for cloud-native architectures

 	
An overview of continuous integration, deployment, and delivery

 	
How CI/CD tools like Jenkins can bring business value to organizations that undertake the journey of continuous everything

 Software development and operations have experienced several paradigm shifts recently. These shifts have presented the industry with innovative approaches for building and deploying applications. More importantly, two significant paradigm shifts have consolidated capabilities for developing, deploying, and managing scalable applications: cloud-native architecture and DevOps.

 Cloud-native architecture emerged with cloud adoption, with cloud providers like Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure taking ownership of the infrastructure. Open source tools like Kubernetes, Docker, and Istio offer horizontal scaling ability, letting developers build and run modern scalable applications without worrying about the underlying infrastructure. As a result, operational overhead is reduced, and the development velocity of applications is increased.

 DevOps bridged the divide between developers and ops teams, and brought back harmony through collaboration, automated tools, and iterative and Agile development and deployment.

 With these two significant, powerful approaches combined, organizations now have the capability to create scalable, robust, and reliable applications with a high level of collaboration and information sharing among small teams. However, to build, test, and safely deploy cloud-native applications, two essential DevOps practices must be implemented in a cloud-native manner: continuous integration (CI) and continuous deployment/delivery (CD).

 The first part of this book takes you through the evolution of cloud-native applications. You’ll learn about the main principles of CI/CD and how automation invented the way those principles are implemented through the pipeline-as-code approach. This first chapter lays the foundation. It introduces basic principles of DevOps and cloud-native approaches, in addition to selecting the tools for implementing CI/CD pipelines.

1.1 Going cloud native

 Before exploring the essential characteristics of cloud-native applications and how CI/CD practices contribute to standardizing feedback loops for developers and enabling fast product iterations, we will cover the changes the software development model went through and the challenges associated with each model, starting with the monolithic approach.

1.1.1 Monolithic

 In the past, organizations used to build their software in a monolithic way: all functionalities were packaged in a single artifact and deployed in a single server running one process. This architecture comes with many drawbacks and limitations:

 	
 Development velocity—Adding new features on top of an existing application is next to impossible. Application modules are tightly coupled and, most of the time, not documented. As a result, adding new features is often slow, expensive, and requires extra synchronization when working with multiple developers within distributed teams on a large codebase. Moreover, the release cycle can take months, if not several years, because of the application’s large codebase. This delay puts companies at risk of being surpassed by new competitors and ultimately undercuts the company’s profits.

 	
 Maintainability—Modules in a monolithic architecture are frequently tightly coupled, which makes them hard to maintain and test. Plus, upgrading to new technology is limited to the framework used to develop the application (no polyglot programming).

 	
 Scaling and resiliency—Applications are designed with no scalability in mind, and the application may face downtime if traffic increases. The monolithic application works as a single unit and is developed in a single programming language using a single tech stack. As a result, to achieve partial horizontal scaling, the whole application needs to be scaled (inefficient usage of server resources).

 	
 Cost-effectiveness—The application is expensive to maintain in the long run (for example, finding an experienced COBOL developer is time-consuming and expensive).

 In the late 2000s, many web giants (including Facebook, Netflix, Twitter, and Amazon) came onto the tech scene with innovative ideas, aggressive strategies, and a “move fast” approach that led to the exponential growth of their platforms. These companies introduced a new architecture pattern that is known today as microservices. So, what exactly is microservices architecture?

1.1.2 Microservices

 James Lewis and Martin Fowler defined microservices architecture as follows in 2014:

 In short, the microservice architectural style is an approach to developing a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms, often an HTTP resource API. These services are built around business capabilities and independently deployable by fully automated deployment machinery. There is a bare minimum of centralized management of these services, which may be written in different programming languages and use different data storage technologies.

 This architecture uses the same technique of “divide and conquer” to tackle the complexity of an application. An application is split into smaller, independent, and composable services/fragments, each responsible for a specific functionality or task of the application (organized around business capabilities).

 Those microservices communicate using an application programming interface (API), typically over HTTP or HTTP/2 (for example, gRPC, RESTful APIs, Google Protocol Buffers, or Apache Thrift), or through message brokers (such as Apache ActiveMQ or Kafka). Each microservice can be implemented in a different programming language running on a different OS platform.

 In contrast to microservices, the monolithic architecture means the code’s components are designed to work together as one cohesive unit, sharing the same server resources (memory, CPU, disk, and so forth). Figure 1.1 illustrates the differences between monolith and microservices architectures.

 [image:]

 Figure 1.1 Comparing monolith and microservices architectures

 Microservices architecture is an extension of service-oriented architecture (SOA). Both architectures rely on services as the main component, but they vary greatly in terms of service characteristics:

 	
 Granularity—Service components within a microservices architecture are generally single-purpose services that do one thing. In SOA, service components can range in size, anywhere from small application services to very large enterprise services.

 	
 Sharing—SOA enhances component sharing, whereas microservices architecture tries to minimize sharing through bounded context (loosely coupled services or modules) with minimal dependencies.

 	
 Communication—Microservices rely on lightweight protocols such as HTTP/REST and simple messaging, while SOA architectures rely on enterprise service bus (ESB) for communication; early versions of SOA used object-oriented protocols to communicate with each other, such as Distributed Component Object Model (DCOM) and object request brokers (ORBs). Later versions used messaging services such as Java Message Service (JMS) or Advanced Message Queuing Protocol (AMQP).

 	
 Deployment—SOA services are deployed to application servers (IBM WebSphere Application Server, WildFly, Apache Tomcat) and virtual machines. On the other hand, microservices are deployed in containers. This makes microservices more flexible and lighter than SOA.

 Note For more details about microservices architecture, I recommend reading Microservices in Action by Morgan Bruce and Paulo A. Perreira (Manning, 2018). It covers what makes a microservice, how it can be composed by an individual or a dedicated team, the constant back-and-forth comparison between a monolithic application, and things to consider when deploying your microservices.

 The advantages of microservices convinced some big enterprise players such as Amazon, Netflix, and Uber to adopt the methodology. Following their footsteps, other companies are working in the same direction: evolving from monolithic to flexible microservice-based architecture.

 But what makes it so special? Compared to more monolithic design structures, microservices architecture comes with the following benefits:

 	
 Scalability—Applications built as microservices can be broken into multiple components so that each component can be deployed and scaled independently without service interruption. Also, for stateless microservices, usage of Docker or Kubernetes can offer horizontal scaling within seconds.

 	
 Fault tolerance—If one microservice fails, the others will continue to work because of loosely coupled components. A single microservice can be easily replaced by a new one without affecting the whole system. As a result, modernization in microservices architecture can be incremental, while modernization in monolithic architecture can cause service outages.

 	
 Development velocity—Microservices can be written in different languages (polyglot programming) and use different databases or OS environments. If one microservice is, for example, CPU intensive, it could be implemented in highly productive languages such as Golang or C++, while other components could be implemented in lightweight programming languages such as JavaScript or Python. So companies can easily hire more developers and scale development. Also, because microservices are autonomous, developers have the freedom to independently develop and deploy services without bumping into each other’s code (avoiding synchronization hell within the organization) and having to wait for one team to finish a chunk of work before starting theirs. As a result, team productivity increases, and vendor or technology stack lock-in reduces.

 	
 Continuous everything—Microservices architecture combined with Agile software development enable continuous delivery. The software release cycle in microservice applications becomes much smaller, and many features can be released per day through CI/CD pipelines with open source CI tools like Jenkins.

 To summarize, microservices make solving big problems easier, increase productivity, offer flexibility in choosing technologies, and are great for cross-functional teams. At the same time, running microservices in a distributed cloud environment can be a tough challenge for organizations. Here are some of the potential pain areas associated with microservices designs:

 	
 Complexity—Increased complexity over a monolithic application due to the number of services involved. As a result, enormous effort, synchronization, and automation are required to handle interservice communication, monitoring, testing, and deployment.

 	
 Operational overhead—Deploying a microservice-based application can be complex. It needs a lot of coordination among multiple services. Each service must be isolated with its own runtime environment and resources. Hence, traditional deployment solutions like virtualization can’t be used and must be replaced with containerization solutions like Docker.

 	
 Synchronization—Microservices require cultural changes in organizations seeking to adopt them. Having multiple development teams working on different services requires a huge effort to ensure that communication, coordination, and automated processes are in place. Cultures like Agile and DevOps practices are mandatory to take on microservice-based applications.

 Note While Docker comes with no learning curve, it can quickly become a nightmare when handling deploying microservices among a cluster of machines or nodes.

 Most of these drawbacks were addressed with the consumption of cloud computing services offered by AWS and with the rise of open source tools—particularly Kubernetes. It brought a completely new approach to managing infrastructure and enabled applications to be architected in a distributed manner. As a result, a new software architecture style arose in 2014: cloud-native applications.

1.1.3 Cloud native

 The Cloud Native Computing Foundation (CNCF), a Linux Foundation project founded in 2015 to help advance container technology, defines cloud native as follows:

 Cloud-native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach. These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.

 Cloud native is a paradigm for building applications as microservices and running them on containerized and dynamically orchestrated platforms that fully exploit the advantage of the cloud computing model. These applications are developed using the language and framework best suited for the functionality. They’re designed as loosely coupled systems, optimized for cloud scale and performance, use managed services, and take advantage of continuous delivery to achieve reliability and faster time to market.

 The overall objective is to improve the speed, scalability, and finally, profit margin. Figure 1.2 illustrates an example of a cloud-native application.

 [image:]

 Figure 1.2 Overview of a cloud-native application

 Cloud-native applications are packaged in lightweight containers and efficiently deployed as microservices. They use a lightweight API to expose their functionality, and binary and nonbinary protocols to communicate with each other internally. A step further, the applications are managed on elastic cloud infrastructure through Agile DevOps processes having continuous delivery workflows.

 Note Docker has become the standard for container technology. It has revolutionized the way we think about developing microservices, and enables us to easily deploy microservices locally, on premises, or in the cloud.

 Kubernetes (https://kubernetes.io/) is one of the preferred platforms for running workloads that function as cloud-native applications. It’s an open source container orchestration platform originally developed at Google. It ensures high-end automated deployment, scaling, and management of containerized applications. This new paradigm of building and deploying applications comes with many benefits:

 	
 No operational overhead—Developers can focus on developing features and adding business value instead of dealing with infrastructure provisioning and management.

 	
 Security compliance—Simplified security monitoring is required because the various parts of an application are isolated. A security problem could happen in one container without affecting other areas of the application.

 	
 Autoscaling—Containers can be deployed into a fleet of servers in different availability zones or even multiple isolated data centers (regions). As a result, cloud-native apps can take advantage of the elasticity of the cloud by scaling resources in or out during a use spike without the need to procure and provision physical servers. Also, by adopting cloud services, the business can go global in minutes with lower adaptation costs and increased revenue and without worrying about scalability.

 	
 Development speed—The application architecture is easy to understand since each container represents a small piece of functionality, and is easy for developers to modify, so they can help a new team member become productive quickly. Also, adopting cloud-native technologies and practices enables companies to create software in-house, allowing business people to closely partner with IT people, keep up with competitors, and deliver better services to their customers.

 	
 Resiliency—Cloud-native microservices allow for failure at a granular level. They do this by providing adequate isolation between each service and offer multiple design patterns that might improve the components’ availability and resilience such as Circuit Breaker (https://martinfowler.com/bliki/CircuitBreaker.html), Throttling (www.redhat.com/architect/pros-and-cons-throttling), and Retry patterns. Companies like Netflix used it to develop a new approach called chaos engineering to build a resilient streaming platform.

 Figure 1.3 shows the differences between monolithic, microservices, and cloud-native architectures.

 [image:]

 Figure 1.3 Monolith, microservices, and cloud-native architectures

 To summarize, cloud-native architecture allows you to dynamically scale and support large numbers of users, events, and requests on distributed applications. A real-world example of the adoption of cloud-native architecture is the serverless model.

1.1.4 Serverless

 The serverless computing model was kicked off with AWS Lambda in 2014. In this architecture, developers can write cost-efficient applications without provisioning or maintaining a complex infrastructure.

 Cloud providers deploy customers’ code to fully managed, ephemeral, time-boxed containers that live only during the invocation of the functions. Therefore, businesses can grow without customers having to worry about horizontal scaling or maintaining complex infrastructure.

 Note Serverless doesn’t mean “no ops.” You’re just outsourcing sysadmin with serverless services. You will still deal with monitoring, deployment, and security.

 An application built based on serverless architecture may end up looking like fig- ure 1.4.

 [image:]

 Figure 1.4 An example of a serverless application

 Instead of maintaining a dedicated container or instance to host your static web application, you can combine an Amazon Simple Storage Service (S3) bucket to benefit from scalability at a cheaper cost. The HTTP requests coming from the website go through Amazon API Gateway HTTP endpoints that trigger the right AWS Lambda function to handle the application logic and persist data to a fully managed database service such as DynamoDB. For particular use cases, going serverless can make sense for several reasons:

 	
 Less operational overhead—The infrastructure is managed by the cloud provider, and this reduces the overhead and increases developer velocity. OS updates are taken care of, and patching is done by the function-as-a-service (FaaS) provider. This results in decreased time to market and faster software releases and eliminates the need for a system administrator.

 	
 Horizontal autoscaling—Function becomes the unit of scale that leads to small, loosely coupled, stateless components that, in the long run, lead to scalable applications. Plus, the scaling mechanism is shifted to the cloud provider, which decides how to use its infrastructure effectively to serve the client’s requests.

 	
 Cost optimization—You pay for only the compute time and resources that you consume. As a result, you don’t pay for idle resources, which significantly reduces infrastructure costs.

 	
 Polyglot—Another benefit is the ability to choose a different language runtime depending on the use case. One part of the application can be written in Java, while another in Python; it doesn’t really matter as long as the job gets done.

 Note A big concern while going serverless is vendor lock-in. Although you should favor development speed and efficiency above all, it’s important to choose a vendor based on your use case.

 Cloud-native architectures, in general, are gaining massive adoption, but the learning curve for many teams is steep. Plus, the shift to cloud-native architecture can be a double-edged sword for many organizations, and one of the challenges when moving to a fully cloud-native approach can be CI/CD.

 But what do these practices mean? And how can they be applied when you’re building cloud-native applications?

1.2 Defining continuous integration

 Continuous integration (CI) is the practice of having a shared and centralized code repository, and directing all changes and features through a complex pipeline before integrating them into the central repository (such as GitHub, Bitbucket, or GitLab). A classic CI pipeline is as follows:

 	
 Triggers a build whenever a code commit occurs

 	
 Runs the unit tests and all pre-integration tests (quality and security tests)

 	
 Builds the artifact (for example, Docker image, zip file, machine learning training model)

 	
 Runs acceptance tests and pushes the result to an artifact-management repository (such as a Docker Registry, Amazon S3 bucket, Sonatype’s Nexus, or JFrog Artifactory)

 Figure 1.5 shows an example of a CI pipeline for a containerized application.

 [image:]

 Figure 1.5 Basic CI workflow for cloud-native applications

 Basically, CI automatically monitors the commits that each developer makes and launches automated tests. Automated testing is an integral part of CI/CD pipelines. Without automated tests, CI/CD pipelines will lack quality checks, which are important in order for the application to be released.

 You can implement various types of testing to ensure that your software meets all the initial requirements. Here are the most famous ones:

 	
 Unit tests—These test each piece of the source code. They consist of testing individual functions and methods. You could also output your test coverage and validate that you’re meeting your code coverage requirements.

 	
 Quality tests—Check that the code is well formatted, follows best practices, and has no serious coding errors. This is also called static code analysis, as it helps to produce high-quality code by looking for patterns in code that might generate bugs.

 	
 Security tests—Inspect source code to uncover common security vulnerabilities and common security flaws (for example, leaked usernames and passwords).

 	
 UI tests—Simulate user behavior through the system to ensure that the application works correctly in all supported browsers (including Google Chrome, Mozilla Firefox, and Microsoft Internet Explorer) and platforms (such as Windows, Linux, and macOS) and that it delivers the functionality promised in user stories.

 	
 Integration tests—Check that services or components used by the application work well together and no defects exist. For example, an integration test might test an application’s interaction with the database.

 Manually executing all these tests can be time-consuming and counterproductive. Therefore, you should always use a testing framework that suits your application requirements to perform those tests on a scale in a repeatable and reliable way.

 Note Chapter 8 covers how to run automated tests with Jenkins and Headless Chrome, as well as how to integrate SonarQube for code analysis.

 Once tests are successful, the application will be compiled and packaged, and a releasable artifact will be generated and versioned in a remote repository.

1.3 Defining continuous deployment

 Continuous deployment (CD) is an extension of continuous integration. Every change that passes all stages of your continuous integration pipeline is released automatically to your staging/preproduction environment.

 In such a process, there’s no need to decide what will be deployed and when. The pipeline will automatically deploy whatever build components/packages successfully exit the pipeline. Figure 1.6 illustrates a typical CI/CD pipeline for microservices running in Kubernetes.

 [image:]

 Figure 1.6 Basic CI/CD workflow for cloud-native applications

 This CI workflow has four steps, and the CD pipeline is the deployment to Kubernetes (step 5). However, a pure continuous deployment approach is not always appropriate for everyone.

 For example, many clients would not appreciate new versions falling into their laps several times a week, and prefer a more predictable and transparent release cycle. Commercial and marketing considerations might also play a role in when a new release should actually be deployed.

 While continuous deployment may not be right for every company, continuous delivery is an absolute requirement of DevOps practices. Only when you continuously deliver your code can you have true confidence that your changes will be serving value to your customers within minutes of pushing the “go” button, and that you can actually push that button any time the business is ready for it.

1.4 Defining continuous delivery

 Continuous delivery (CD) is similar to continuous deployment but requires human intervention or a business decision before deploying the release to production. Figure 1.7 shows how the CI/CD practices relate to each other.

 [image:]

 Figure 1.7 The continuous deployment maturity model

 Note A Monitor and Optimize stage can occur in a sophisticated CI/CD workflow. This step consists of collecting and analyzing metrics and feedback to eliminate risks and waste and to optimize the release time.

1.5 Embracing CI/CD practices

 CI/CD and continuous delivery can bring more agility to cloud-native applications through daily builds, which leads to the following:

 	
 Detecting anomalies at an earlier stage (reducing the risk) and minimizing technical debt through unit and functional tests. According to Atlassian (www.atlassian.com/software-development/practices), 75% of development teams face issues with bugs, defects, or delays when it’s time to release.

 	
 Building features your users actually want. This often results in better user interaction and quicker feedback regarding released features, which can help the product team focus on the most demanded features and build a high-quality product.

 	
 Having a production-ready package available. This is an excellent way to accelerate the time to market.

 	
 Increasing product quality and reliability through quality and stress tests, and tracking with better visibility into project status and health.

 	
 Driving innovation from feedback while building high-quality products through each iteration.

 However, the journey from a manual to a highly automated deployment process can take several months. Therefore, companies need to be iterative in adopting CI/CD, as illustrated in figure 1.8.

 [image:]

 Figure 1.8 Introducing CI/CD to an organization

 You should always prioritize the steps in CI/CD. First and foremost, automate the process for compiling the source code. Ideally, you will develop new features and fix multiple bugs per day. Manually, this process takes a few minutes to a couple of hours. Also, you should prioritize functional testing before UI testing, as it often changes and thus requires frequent pipeline changes. So make sure to break your CI/CD steps into smaller segments and automate in patches to make the best use of your resources.

 Another concern is that the complexity of CI/CD will be increasing, from handling singular applications to dozens of microservices (multiple pipelines). Therefore, adapting your CI/CD tools and processes is mandatory to keep pace.

 Moreover, you need to have a clear road map of your product with a proven track record of development success. Your end customers should be able to consume constant product changes. Therefore, using CI/CD requires a high degree of discipline, dedication to quality, and a learning curve (new skill sets). If you can’t handle that, stop thinking about CI/CD immediately.

 As a result, moving to CI/CD should not be an isolated decision, made alone by the DevOps team. A successful rollout of CI/CD must be a decision for your whole organization and should be made only when your entire organization agrees to it.

 Although you need to keep some concerns in mind, the benefits of CI/CD almost always outweigh the challenges. To realize the full promise of cloud-native applications, you must implement CI/CD practices that are best suited to your unique business goals.

 In this book, we will go through some real-world use cases for building CI/CD pipelines for most adopted cloud-native architectures, such as Dockerized microservices with both Docker Swarm and Kubernetes, as well as Lambda-based serverless applications. We will also cover how to manage and scale a CI tool with less maintenance hassle to help you increase deployment speed. But first, what makes a modern CI tool, and which one are we going to use?

 Note While monoliths may not be trendy, many companies still have monolith flagship products and can still benefit tremendously from a well-architected CI/CD solution. So most of the examples in the book can also be applied to modernizing monolithic applications.

1.6 Using essential CI/CD tools

 A lot of excellent CI tools are out there. Some have been here for a long time, and others are relatively new. It’s a bit redundant to say that a modern CI tool must be fast, user-friendly, and flexible, since those are the features we already expect out of the box. CI tools can be divided into the following three main categories:

 	
 Cloud-managed solutions like AWS CodePipeline (https://aws.amazon.com/codepipeline/), Google Cloud Build (https://cloud.google.com/build), and Microsoft Azure Pipelines (https://azure.microsoft.com/services/devops/pipelines/).

 	
 Open source solutions such as Jenkins (www.jenkins.io), Spinnaker (https://spinnaker.io/), or GoCD (www.gocd.org).

 	
 Software-as-a-service (SaaS) solutions like Travis CI (https://travis-ci.org/), CircleCI (https://circleci.com/), and TeamCity (www.jetbrains.com/teamcity/).

1.6.1 Choosing a CI/CD tool

 Figure 1.9 shows the most popular CI/CD tools on the market today. These tools are the mature ones, with the essential capabilities for your project.

 [image:]

 Figure 1.9 Top CI/CD tools in 2021

 Plenty of excellent CI tools are available, so you need to pick the best one based on the following factors:

 	
 Team experience and skills—While many tools use configuration YAML files to declare the CI/CD pipeline, they might require some sysadmin skills to set up and provision the needed infrastructure to run the CI/CD platform. Also, maintaining the underlying infrastructure might cause a lot of headaches and become a bottleneck for your company’s growth once your project codebase becomes bigger (scaling capabilities), as you need to maintain distributed CI/CD complex pipelines across multiple nodes or servers.

 	
 Target platform—Consider the operating system your application or project is running on (some CI tools don’t support macOS and ARM architecture), and the use of a self-hosted infrastructure or a cloud provider.

 	
 Programming language and architecture—Most CI tools support the top cutting-edge languages including Java, Ruby, Python, PHP, and JavaScript. However, some tools like TeamCity offer better integration and support for Java and .NET projects. Similarly, Bamboo, as a creation of Atlassian, has native support for Jira and Bitbucket. Additionally, the deployment solution can be a factor in choosing the right CI tool for your project. Tools like Drone (www.drone.io) and GitLab CI (https://docs.gitlab.com/ee/ci/) offer native Docker support with an integrated Docker registry.

1.6.2 Introducing Jenkins

 Although no single tool can satisfy the needs of every project, in this book, we will rely heavily on Jenkins. It’s considered one of the most popular CI tools on the market today, with over one million users. It was written in Java, making it a cross-platform (Windows, Linux, and macOS) continuous integration tool.

 Originally a part of the Hudson project, the community and codebase split following trademark conflicts with Oracle after it acquired Sun Microsystems. Hudson was originally released in 2005, while the first release as Jenkins was made in 2011.

 Note Hosted SaaS platforms can be beneficial if you’re willing to pay a bit of extra money for someone else to maintain and update the solution. Businesses tend to choose this option when they need a UI superior to what Jenkins offers and when they lack infrastructure skills. But a major benefit of self-hosting solutions like Jenkins is that you have more control and flexibility over your own data security and job pipelines.

 A rich set of plugins enables Jenkins to support any type of language or technology such as Docker, Maven, Git, Mercurial, and AWS. Being an open source project makes it customizable and easy for developers to extend by creating custom plugins. Here are some of Jenkins key features:

 	
 Extensible with a huge community-contributed plugin resource (more than 1,400 plugins).

 	
 A free and open source tool as well as a paid enterprise edition offered by CloudBees (www.cloudbees.com/jenkins) with speedy customer support.

 	
 Has an active community that helps developers reduce the time to build a working CI/CD workflow.

 	
 Can be deployed on premises or in the cloud with an easy configuration through the user interface or the command line.

 	
 Supports distributed builds with master-worker architecture with a built-in parallelism mechanism.

 	
 A powerful and flexible tool with complete control over workflow that can serve every CI/CD need.

 	
 Works on many platforms and has the support for a wide variety of tools and frameworks.

 	
 Supports containers as build agents for teams planning to use Docker.

 	
 Seamless integration with GitHub, GitLab, Bitbucket, and most of the source code management (SCM) systems and Apache Subversion (SVN).

 	
 Flexible user management, user roles assignment, sorting users into groups, different ways of user authentication (including LDAP, GitHub OAuth, and Active Directory).

 	
 The CI process can be defined using the Groovy language in files within the repository itself or through text fields in the Jenkins web UI, thanks to the Jenkins pipeline workflow.

 Note If you like to test a small application for one particular platform, you won’t need the complexity of running a Jenkins server.

 Another key feature of Jenkins is pipeline as code. We’re going to use this approach to create Jenkins jobs. The cool part of using this approach is that our entire Jenkins jobs configuration can be created, updated, and version-controlled along with the rest of the application source code.

 It is helpful to note that Jenkins must be hosted on a server, so it often needs the attention of someone with infrastructure skills. You can’t just set it up and then expect it to run itself; the system requires frequent updates and maintenance. The main barrier to entry for most teams is the initial setup, procrastination, or failed previous attempts to set it up. People tend to know it’s good, but many teams neglect it for more urgent coding work. Perhaps someone on your team tried to deploy Jenkins at some point but did not successfully maintain it. Maybe the wasted effort gave your boss a bad impression about it.

 The reasons people do not implement Jenkins are usually very practical. That’s why, throughout this book, we will be using the magical power of infrastructure as code with open source tools like Terraform and Packer to set up our entire CI infrastructure out of thin air on most popular public cloud providers such as AWS, GCP, and Microsoft Azure.

 Another problem we will tackle in this book is how to write tests. Writing tests is something most developers want to do, but often don’t find the time to do. Understandably, coding the actual application is usually a higher priority for the business. Also, tests break, meaning when the functionality under test changes, it needs to be updated. If functionality is not updated, it stops delivering value. We will cover how to run various types of tests within CI/CD pipelines and how to integrate external code analysis tools.

 To sum up, implementing CI/CD for cloud-native architecture requires a cultural and mindset shift, especially from management. Managers have to allow time for this “unproductive stuff” to be done.

 Still, the brief sacrifice of time translates into long-term benefits for the whole company. With Jenkins, your code becomes easier to maintain, and fewer bugs sneak into production. Your team becomes more integrated, and builds take less time. Your business can ship faster and keep up with the changing needs of your customers (by shipping code faster, organizations can quickly respond to changes and keep products on the market).

 CI/CD is not an expense but an investment. And the return on investment (ROI) for implementation can be counted in time saved, errors avoided, and higher-quality products delivered more easily to your clients.

Summary

 	
 Cloud-native architectures are changing the landscape, forcing organizations to think about new models and new delivery methods.

 	
 Continuous integration, delivery, and deployment are practices designed to help increase the velocity of development and the release of well-tested, usable products.

 	
 Choosing the right CI/CD tool is critical to the long-term success of cloud-native applications and should be based on platform complexity, integration, learning curve, pricing, and work-time efficiency.

 	
 Jenkins can leverage the team’s current workflow to best exploit the automation features and create a solid CI/CD pipeline.

2 Pipeline as code with Jenkins

 This chapter covers

 	
How pipeline as code works with Jenkins

 	
An overview of Jenkinsfile structure and syntax

 	
Introduction to Blue Ocean, the new Jenkins user experience

 	
Declarative versus scripted Jenkins pipelines

 	
Integration of a GitFlow model within Jenkins projects

 	
Tips for productivity and efficiency while writing Jenkinsfiles for complex CI/CD pipelines

 There’s no doubt that cloud computing has had a major impact on the way companies build, scale, and maintain technology products. The ability to click a few buttons to provision machines, databases, and other infrastructure has led to an increase in developer productivity we’ve never seen before.

 While it was easy to spin up simple cloud architectures, mistakes can easily be made while provisioning complex ones. Human error will always be present, especially when you can launch cloud infrastructure by clicking buttons on the cloud provider’s web console.

 The only way to avoid these kinds of errors is through automation, and infrastructure as code (IaC) is helping engineers automatically launch cloud environments quickly and without mistakes. The growth of DevOps and the adoption of its practices have led to more tooling that can implement the IaC paradigm to a larger degree.

 In the past, setting up CI/CD workflow has been a manual process. It was commonly done via defining a series of individual jobs for the various pipeline tasks. Each job was configured via web forms—filling in text boxes, selecting entries from drop-down lists, and so forth. And then the series of jobs were strung together, each triggering the next, into a pipeline.

 Jenkins somewhat lagged in this area until the release of Jenkins 2. Although widely used and a primary workflow tool for creating CI/CD pipelines, this way of creating and connecting Jenkins jobs to form a pipeline was challenging. It did not meet the definition of IaC. Job configurations were stored only as Extensible Markup Language (XML) files within the Jenkins configuration area. This meant that the files were not easily readable or directly modifiable. And the Jenkins application itself provided the user’s primary view and access to them.

OEBPS/OEBPS/Images/CH01_F05_Labouardy.png

OEBPS/OEBPS/Images/Labouardy.png

OEBPS/OEBPS/Images/CH01_F03_Labouardy.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/CH01_F01_Labouardy.png

OEBPS/OEBPS/Images/CH01_F06_Labouardy.png

OEBPS/OEBPS/Images/CH01_F08_Labouardy.png

OEBPS/OEBPS/Images/IFC_F01_Labourardy.png

OEBPS/OEBPS/Images/CH01_F04_Labouardy.png

OEBPS/OEBPS/Images/CH01_F09_Labouardy.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F02_Labouardy.png

OEBPS/OEBPS/Images/CH01_F07_Labouardy.png

OEBPS/OEBPS/Images/Manning_copyright.png

