

        

            

                

            

        


    

  

    

        [image: manning]

    


    

    

    

    Hacking Cryptography


    Write, break, and fix real-world implementations


    Kamran Khan and Bill Cox




    

    

    

        To comment go to livebook.

    


    

    

        [image: manning]

    


    

    

        Manning


         Shelter Island


    




    

        For more information on this and other Manning titles go to manning.com.

    


  




              

                copyright


                 

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact
 


 

 

   Special Sales Department
 


 

 

   Manning Publications Co.
 


 

 

   20 Baldwin Road
 


 

 

   PO Box 761
 


 

 

   Shelter Island, NY 11964 
 


 

 

   Email: orders@manning.com
 


 

 

 ©2025 by Manning Publications Co. All rights reserved.
 


 

 

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.
 


 

 

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.
 


 

 

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.
 


 

 

 The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.
 


 

 

  Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964 
 
 


 

 

 Development editor: Marina Michaels
 Technical editor: Jon Riddle
 Review editors: Aleksandar Dragosavljević,
 Radmila Ercegovac
 Production editor: Andy Marinkovich
 Copy editor: Tiffany Taylor
 Proofreader: Melody Dolab
 Technical proofreader: Germano Rizzo
 Typesetter: Ammar Taha Mohamedy
 Cover designer: Marija Tudor
 


 

 

 ISBN 9781633439740
 Printed in the United States of America
 




              


            

   

   dedication
 

  
 

   

   To my son Ibrahim: thank you for teaching me everything that I truly know.
 To Syed Massadiq Hussain, thank you for taking care of our family in the most selfless of ways. We miss you.
 K.K.
 

  


 

  

   contents


  


  

   preface


  


  

   acknowledgments


  


  

   about this book


  


  

   about the authors


  


  

   about the cover illustration


  


  

   1 Introduction


  


  

   1.1 What is cryptography?


  


  

   1.2 How does cryptography work?


  


  

   1.2.1 Confidentiality


  


  

   1.2.2 Integrity


  


  

   1.2.3 Authenticity


  


  

   1.3 Attacks on cryptographic theory vs. attacks on implementations


  


  

   1.4 What will you learn in this book?


  


  

   2 Random number generators


  


  

   2.1 Why do we need random numbers for cryptography?


  


  

   2.1.1 Uniform distribution: Making things harder to guess


  


  

   2.1.2 Entropy: Quantifying unpredictability


  


  

   2.2 Understanding different types of RNGs


  


  

   2.2.1 True random number generators (TRNGs)


  


  

   2.2.2 Pseudo random number generators (PRNGs)


  


  

   2.2.3 Cryptographically secure pseudorandom number generators (CSPRNGs)


  


  

   3 Implementing and exploiting RNGs


  


  

   3.1 Implementing and exploiting Mersenne Twister-based RNGs


  


  

   3.1.1 Implementing MT19937


  


  

   3.1.2 Exploiting MT19937


  


  

   3.2 Implementing and exploiting the Dual Elliptic Curve Deterministic Random Bit Generator


  


  

   3.2.1 Building block for DUAL_EC_DRBG: Big numbers


  


  

   3.2.2 Building block for DUAL_EC_DRBG: Elliptic curves


  


  

   3.2.3 Implementing DUAL_EC_DRBG


  


  

   3.2.4 Exploiting DUAL_EC_DRBG


  


  

   4 Stream ciphers


  


  

   4.1 Symmetric key encryption


  


  

   4.1.1 The exclusive-or (XOR) operation and its role in cryptography


  


  

   4.1.2 One-time pads and their practical limitations


  


  

   4.2 Linear feedback shift registers (LFSRs)


  


  

   4.2.1 Implementing LFSRs


  


  

   4.2.2 Exploiting LFSRs


  


  

   4.3 RC4 encryption and Wi-Fi security


  


  

   4.3.1 Implementing RC4


  


  

   4.3.2 Exploiting RC4 in WEP using the Fluhrer, Mantin, and Shamir (FMS) attack


  


  

   5 Block ciphers


  


  

   5.1 Important block ciphers


  


  

   5.2 Padding: Making data fit blocks neatly


  


  

   5.3 Modes of operation for block ciphers


  


  

   5.4 Padding oracles and how to attack them


  


  

   5.4.1 Implementing a padding oracle server


  


  

   5.4.2 Exploiting a padding oracle


  


  

   5.5 Browser Exploit Against SSL/TLS: The BEAST attack


  


  

   5.5.1 Simulating a vulnerable browser for BEAST


  


  

   5.5.2 Exploiting the BEAST vulnerability


  


  

   6 Hash functions


  


  

   6.1 Hash functions as one-way digital fingerprints


  


  

   6.2 Security properties of hash functions


  


  

   6.3 Important hash functions


  


  

   6.3.1 The Merkle–Damgård construction


  


  

   6.3.2 Cryptographic sponges: Permutation-based hash functions


  


  

   6.4 Attacks on hash functions


  


  

   6.4.1 Collision attacks


  


  

   6.4.2 Example: Exploiting hash functions using rainbow tables


  


  

   7 Message authentication codes


  


  

   7.1 Message integrity and authenticity


  


  

   7.2 Different types of MACs


  


  

   7.3 Secret-prefix MACs and length-extension attacks


  


  

   7.3.1 Implementing a bank API that uses secret-prefix hashing for authentication


  


  

   7.3.2 Exploiting secret-prefix MACs using length-extension attacks


  


  

   7.4 Secret-suffix MACs and collision attacks


  


  

   7.5 HMACs: Hash-based MACs


  


  

   8 Public-key cryptography


  


  

   8.1 Asymmetric cryptography: Splitting the secret key into public and private portions


  


  

   8.2 Mathematical theory behind public-key cryptography


  


  

   8.2.1 Prime numbers and how to find them


  


  

   8.2.2 Probabilistic testing of prime numbers and the important role of RNGs in generating them


  


  

   8.2.3 Trapdoor functions


  


  

   8.3 Types of public-key cryptography systems


  


  

   8.3.1 Discrete logarithms


  


  

   8.3.2 Integer factorization and the RSA cryptosystem


  


  

   8.4 Exploiting RSA


  


  

   8.4.1 Common-factors attack and the effect of poor random number generation on cryptographic security


  


  

   8.4.2 Wiener’s attack: Exploiting short secret exponents in textbook RSA


  


  

   9 Digital signatures


  


  

   9.1 Message authenticity using symmetric and asymmetric secrets


  


  

   9.2 Practical applications of digital signatures


  


  

   9.2.1 Certificates: Extending trust using digital signatures


  


  

   9.2.2 Code integrity: Ensuring software security using digital signatures


  


  

   9.2.3 Using signatures for digital contracts


  


  

   9.3 Forgery attacks on digital signatures


  


  

   9.4 Schoolbook RSA signatures


  


  

   9.5 The elliptic curve digital signature algorithm (ECDSA)


  


  

   9.5.1 Implementing vulnerable ECDSA signatures with reused nonces


  


  

   9.5.2 Exploiting reused nonces in ECDSA signatures


  


  

   9.6 RSA signature forgery with Bleichenbacher’s e = 3 attack


  


  

   9.6.1 PKCS#1 v1.5: Padding strikes again


  


  

   9.6.2 Implementing a vulnerable PKCS #1 v1.5 padding verifier


  


  

   9.6.3 Exploiting PKCS #1 v1.5 padding with Bleichenbacher e = 3 signature forgery


  


  

   9.6.4 Stitching prefix and suffix cube roots together to forge a signature


  


  

   10 Guidelines and common pitfalls for cryptographic implementations


  


  

   10.1 A brief recap of attacks from previous chapters


  


  

   10.1.1 Random number generators


  


  

   10.1.2 Stream ciphers


  


  

   10.1.3 Block ciphers


  


  

   10.1.4 Hash functions


  


  

   10.1.5 Message authentication codes


  


  

   10.1.6 Asymmetric encryption


  


  

   10.1.7 Digital signatures


  


  

   10.2 One vulnerability to rule them all: Poor-quality randomness


  


  

   10.3 Padding: Challenges with fitting things neatly


  


  

   10.4 Constant-time implementations and timing attacks


  


  

   10.4.1 Comparing data in constant time


  


  

   10.4.2 Timing attacks and side-channel analysis


  


  

   10.5 Control flow and secrets: A dangerous mix


  


  

   10.6 Memory safety and buffer management


  


  

   10.7 Type safety: Challenges with interpreting raw bytes


  


  

   10.8 Miscellaneous considerations


  


  

   10.8.1 Handling sensitive values in general-purpose memory


  


  

   10.8.2 Time-of-check to time-of-use (TOCTOU) vulnerabilities


  


  

   10.8.3 Prefer authenticated encryption to combining primitives on your own


  


  

   10.8.4 Treating security as a product


  


  

   index


  


 

   

   preface
 

  
 

   

   My friend Asim and I were two nerds growing up in Taif, Saudi Arabia (we attended a Pakistani embassy school). In the fourth grade, we once tried to pick the lock on an abandoned cabinet in a storage space. We couldn’t open it with paper clips like we saw on TV, so I asked him to bring a Philips screwdriver the next day. I have wished countless times that I hadn’t. We took the lock off the cabinet and found a bunch of discarded documents inside. I wanted to leave, but Asim insisted on staying and screwing the lock back onto the cabinet. He got caught by a teacher. I took refuge inside a hiding spot in the school. I was soon located afterward as Asim was pressured to reveal who “helped" him break the cabinet lock. Asim’s family moved away soon after. I only spoke to or heard from him again once, when he dropped by before leaving town to return some Urdu novels we had exchanged. Urdu novels were our shared love. Neither of us had access to video games or computers, and being “Urdu-medium" kids, we had a minimal grasp of English. Since then, my life has taken many twists and turns, as I’m sure his did, too. Some five years after our great heist, I used my first computer, a transformative event in my life. Asim and I had pretended years earlier to know how computers worked. Now I had a real one to learn about.
 

  
 

    

   [image: figure] 

   
Figure 1 The computer we pretended was real. “Window 2000 in 1” sounds a lot better than “Window 1998 in 1.”


  
 

   

   Most significantly, the computer connected me to a community of geeks and nerds. Until recently, I had always believed that I loved learning about security and cryptography because I am not a particularly fast learner, and these fields have natural, strategic reasons for moving slowly. With age—and helped by the process of writing this book—I have realized that the reasons ran much deeper. Although it is true that the slow-moving nature of this field helps people like me because we can read decades-old algorithms and implementations that are still relevant today, I found a home in this area because it was by design.
 

  
 

   

   By design, I don’t mean someone is intentionally leading young people to the world of cryptography and security; rather, there are very real underlying themes of acceptance and growth in this field that make it a home to kids like Asim and me. It would not be an overstatement to say that the world of cybersecurity has traditionally been home to some of the biggest misfits. Behind all the trench coats and digital rain is an ethos of questioning, learning, and breaking things. It does not matter where you came from, the speed of your internet connection, or how cool you were in school; as long as you bring humility and curiosity, there are those in the community who will genuinely welcome you and spend their precious time sharing their passions with you. This book is my attempt to pay it forward. Although Asim and I did not get the chance to talk about real computers or cryptography, I would not have grasped any of these ideas without the real friendships of many of the people I have since worked with. After a talk about cryptographically verifiable elections at Microsoft, Dr. Josh Benaloh distributed some swag for audience giveaways. I received a lockpicking kit, and as I held it in my hands, I could not help imagining a smile on my friend’s face—we could have had so much fun with such a fancy tool! Sometimes, the most effective way to learn why locks are made the way they are is to understand how they are picked. That’s what this book is all about. There are many books about cryptography that focus on how the locks are made, this book is about how cryptography fails when attacked: how its locks get picked and broken. All you need to bring is a computer, a healthy curiosity, and basic familiarity with the Go programming language—no Philips screwdrivers required.
 

  
 

   

   Kamran Khan
 

  


 

   

   acknowledgments
 

  
 

   

   When I look back over the process of writing this book, I can honestly say that it did take a village. If I miss out on acknowledging somebody, it is a symptom of my limitations but never due to a lack of gratitude.
 

  
 

   

   They say it’s never a good idea to meet your heroes, and they’re mostly right. But the exceptions make it worth doing. I have been fortunate enough to meet some of my heroes who absolutely disproved the age-old maxim. My coauthor, Bill, is one of them. He had been conducting a cryptography workshop at Google for many years, so I reached out to him and asked about writing a book about how cryptography implementations usually fail. Bill’s passion is randomness. His goal is to get strong, reliable random number generation into everybody’s hands because that really is the final frontier for cryptography engineering. Allow me to explain: no matter how sophisticated our cryptographic algorithms and defenses are, any security they provide goes out the window if randomness is not handled well. It is a great privilege to be able to make that case with Bill in this book.
 

  
 

   

   Thank you to my teacher, friend, and editor, Marina Michaels. Without her insights and patient guidance, I would not have made it beyond a few pages. Thank you to Jon Riddle for his technical review of the book. Jon, who is the founder and Chief Information Security Officer of RocketFuel Risk Management, a consultancy specializing in information security and secure software development, provided some invaluable insights and feedback. Thank you to Brian Sawyer for his stewardship of this project and for his faith in me despite my years-long struggle to get this book across the finish line. Thank you to Germano Rizzo for his meticulous review and perceptive feedback on the manuscript. Marina, Jon, and Germano were the first three readers of this book, and my spirit will always be grateful to them.
 

  
 

   

   Thank you to Ivan Martinović and Matko Hrvatin for the MEAP process that improved the quality of the book by leaps and bounds. I could not even begin to imagine how hard the process of writing this book would have been—and how different the end result would be—without MEAP. The way Manning blends the importance of old-style books with newer technologies and processes to improve quality is nothing short of masterful. Thank you to Aleksandar Dragosavljević and Radmila Ercegovac for taking the book through a multitude of reviews that were decisively helpful for improving the quality of content within.
 

  
 

   

   Thank you to Tiffany Taylor and Melody Dolab for their thorough reviews and for fixing many errors I had made in the text and to Andy Marinkovich for patiently walking me through the book’s production process. Thank you to Aira Dučić for her incredible dedication to bringing this book to readers everywhere; to Azra Dedic for her expertise in getting the graphics right for an engaging learning experience; to Ammar Taha Mohamedy for bringing clarity and elegance to the book’s pages in print and greatly enhancing its presentation; and to Marija Tudor for the beautiful and illuminating cover design.
 

  
 

   

   Thank you to all of the early reviewers: Dr. Adrian M. Rossi, Alain Couniot, Borko Djurkovic, Chad Yantorno, Damien Cooke, Gianluigi Spagnuolo, Gregory Reshetniak, Julien Pohie, Keith Kim, Keith Martin, Luke Kupka, Maciej Jurkowski, Markus Wolff, Nick Decroos, Ori Pomerantz, Oscar J. W. Cao, Paul Love, Rahul Modpur, Rani Sharim, Ravi Kiran Bamidi, Sergio Britos Arevalo, Simon Tschöke, Steven Edwards, Theron Spiegl, Tim van Deurzen, Vinicios Henrique Wentz, Walter Alexander Mata López, Zachary LeFevre, and Zoheb Ainapore. Your suggestions helped make this a better book.
 

  
 

   

   Thank you to my mentor, boss, and the person most responsible for my professional growth: Vikram Rao. Thank you to my managers and friends, Alex Polak, Vishal Agarwal, and Firdaus Modak, for being bedrocks of guidance and support throughout the years.
 

  
 

   

   Thank you to João, Arthur, Rose, Keith, and Agnos for opening your hearts to our family. Your love and friendship is precious to us, and we look forward to our families growing and thriving together.
 

  
 

   

   Thank you to my parents and my brother for keeping that spark of curiosity alive in me even in the most trying of circumstances.
 

  
 

   

   Thank you to my wife, Lyla, for walking the most important life journeys with me. Thank you to my son and best friend, Ibrahim, without whose help this book would not exist, and to my daughter, Aria, for bringing strength and hope into our lives.
 

  
 

   

   Finally, thank you to my friend Arsalan Tufail. It’s rare for a day to go by without me being reminded of your boundless compassion, generosity, and friendship. I miss you, Gola Jee.
 

  
 

   

   Kamran Khan
 

  


 

   

   about this book
 

  
 

   

   Cybersecurity is and will always be an arms race. Cryptography is the bedrock of information security and the best tool we have for ensuring confidentiality and integrity in the modern world. Within the cryptography field, certain constructs pop up everywhere for specific purposes. For example, hash functions are widely used to get one-way “fingerprints” of data like passwords. These ideas are brought to reality through specific algorithms and their implementations. When the bad guys want to break a system, they rarely start with mathematical theory. Most of the time, they target the translation of theory to practice—in other words, they target mistakes in cryptography engineering.
 

  
 

   

   Each of the chapters in this book presents a core cryptographic idea, such as block ciphers, digital signatures, and so on, but with a twist. We look through this lens: How did the bad guys target this idea? How did they succeed? And what mitigations are we relying on at the time of this writing?
 

  
 

   

     Who should read this book? 
 

  
 

   

   If you’re going to be working on cryptography, this book will provide a whirlwind tour of how we got where we are today. The examples were painstakingly designed to highlight the important weaknesses in these areas. It is highly recommended that you run the examples from the accompanying repo while reading the relevant sections; readers who have done so have reported a deeper understanding of the book’s content.
 

  
 

   

     How this book is organized: A roadmap 
 

  
 

   

   The book has 10 chapters. Beginning with chapter 2, each chapter introduces a cryptographic concept, explains why it is important for practical use, and then discusses the various ways in which that idea has been targeted by attackers.
 

  
 

   

   	Chapter 1 provides an introduction to cryptography and its goals.
 

   	Chapter 2 dives deep into the theory behind random number generation and why it is critical to the goals of cryptography.
 

   	Chapter 3 implements and exploits two random number generators: MT19937 and DUAL_EC_DRBG (the latter of which was a “cryptographically secure”generator recommended by the National Institute of Standards and Tech-nology).
 

   	Chapter 4 discusses stream ciphers, which are heavily used, for example, instreaming technologies. We implement and exploit linear-feedback shiftregisters (LFSRs) and then look at cracking first-generation Wi-Fi passwordsby exploiting RC4.
 

   	Chapter 5 discusses block ciphers, which are popular in areas such as disk encryption technologies. We implement and exploit padding oracles, which are almost a perennial evil with block cipher implementations, and the BEAST attack, which creatively broke TLS encryption to steal browser cookies.
 

   	Chapter 6 introduces hash functions. We implement a full-fledged rainbow table to crack hashed passwords and discuss the effectiveness and limitations of rainbow tables when attacking hashes.
 

   	Chapter 7 discusses message authentication codes (MACs), especially those built on top of hash functions. We implement and exploit secret-prefix authentication. Risky implementations of such MACs broke services like AWS and Flickr in the past; and in 2024, the widely used RADIUS protocol (for authentication, authorization, and accounting) fell to a similar attack on its secret-prefix authentication scheme. This chapter summarizes how HMACs avoid pitfalls associated with both secret-prefix and secret-suffix MACs.
 

   	Chapter 8 introduces public-key cryptography. We discuss prominent asymmetric encryption schemes and implement the common factors attack that left millions of keys vulnerable on the internet. We also highlight the distinction between theory and practice by demonstrating Wiener’s attack on short private exponents, something all (serious) RSA implementations need to account for.
 

   	Chapter 9 discusses digital signatures. We implement and exploit ECDSA as part of a demonstration of how bad randomness led to a complete breakdown of the Sony PlayStation 3’s security. We round off the final major exploit in the book by implementing Bleichenbacher’s signature forgery attack against a vulnerable PKCS#1 1.5 signature verifier.
 

   	Chapter 10 summarizes the discussions and lessons from the first nine chapters and provides general guidelines for writing secure code. We dissect code to look at why practices like constant-time implementations matter and how they protect against advanced attacks like side-channel analysis.
 

  
 

   

     About the code 
 

  
 

   

   This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.
 

  
 

   

   In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code are removed from the listings when the code is described in the text. Code annotations accompany some listings, highlighting important concepts.
 

  
 

   

   You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/hacking-cryptography. The complete code for the examples in the book is available for download from the Manning website at www.manning.com and from GitHub at https://github.com/krkhan/crypto-impl-exploit.
 

  
 

   

     liveBook discussion forum 
 

  
 

   

   Purchase of Hacking Cryptography includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/hacking-cryptography/discussion. You can also learn more aboutManning’s forums and the rules of conduct at https://livebook.manning.com/discussion.
 

  
 

   

   Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.
 

  
 

 

   

   about the authors
 

  
 

    

   Kamran Khan is a software engineer with more than a decade of experience in the security industry, currently working as a software engineering architect at Salesforce. His previous gigs include Google and Microsoft. He has worked in a variety of areas related to security engineering, including large-scale distributed services (e.g., for key distribution, identity, and access management), embedded devices intended for multifactor authentication, and cryptographically verifiable elections.
 

  


  

   [image: figure]

  
 

    

   Bill Cox is a software engineer with nearly 40 years of experience in securing hardware and software. His open source projects include infnoise (a cryptographic hardware random number generator) and sonic (audio processing for speeding up and slowing down speech). Bill conducts crypto-writing workshops at Google and loves teaching engineers the fundamentals of writing secure code.
 

  


  

   [image: figure]

  


 

   

   about the cover illustration
 

  
 

   

   The figure on the cover of Hacking Cryptography, captioned “Indien du Mexique police,” or “Mexican Indian police,” is taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.
 

  
 

   

   In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.
 

  


 

   

    1  Introduction 
 

  
 

   

   This chapter covers
 

    

    	What is cryptography, and why is it important?
 

    	Where and how is cryptography used?
 

    	How does this book cover cryptography?
 

    	How does our approach differ from other books that cover this topic?
 

   
 

  
 

   

   Getting cryptography right is paramount for ensuring digital security in the modern world. The mathematical ideas and theory behind cryptography are hard to break, whereas the implementations (transforming mathematical ideas to reality via engineering processes, e.g., programming code and designing hardware) have orders of magnitude more vulnerabilities that are much easier to exploit. For these reasons, malicious actors regularly target flaws in implementations to “break” crypto. We wanted to capture these attacks with an organized approach so that engineers working in information security can use this book to build an elementary intuition about how cryptographic engineering usually falls prey to adversaries.
 

  
 

   

   In the upcoming chapters, we will dive into the technical details of how cryptography is implemented and exploited. But before that, let’s first go through a high-level view of what cryptography is.
 

  
 

   

   
1.1 What is cryptography?
 

  
 

   

   Cryptography builds on top of computer science to provide algorithms, tools, and practices for accomplishing the following security goals (see figure 1.1):
 

  
 

   

   	
Confidentiality—Transforming sensitive data into a form that prevents disclosure
 

   	
Integrity—Protecting sensitive data from being altered (either accidentally or by a malicious attacker)
 

   	
Authenticity—Preventing impersonation of digital entities
 

  
 

    

   [image: figure] 

   
Figure 1.1 Security goals of cryptography


  
 

   

   The goal of confidentiality is achieved by transforming data in a way that makes it incomprehensible for everyone except those who have the corresponding secret to “unlock” (not a formal term) this data. Imagine an impenetrable lockbox that can only be opened with a unique key. You leave the key with a relative and then travel across the country, taking the lockbox with you. Now when you need to send something secretly to this relative, you put the items in the lockbox and ship them using regular mail. The post office can see who the lockbox is addressed to (because your mail carrier needs to deliver it), but neither the post office nor anyone else (e.g., mailbox thieves) can open the lockbox to see the contents. Only the relative who has the specific key can retrieve the contents once they receive the lockbox.
 

  
 

   

   Cryptography can be thought of as the digital equivalent of the lockbox in the preceding example. One of its primary uses is to protect the secrecy of digital messages while they are transported around the world (by various internet service providers [ISPs]) in the form of internet packets.
 

  
 

   

   Protecting messages against eavesdroppers has historically been the main area of focus for practitioners of cryptography. Beginning in the last half-century, however, cryptographic tools have also been used to ensure integrity and authenticity of data. Going back to our example, this would be akin to providing incontrovertible proof that nobody tampered with the lockbox while it was en route. Cryptography is the cornerstone of computer and network security in today’s world and is by far the best tool for the job if you want to protect data against (both malicious and accidental) exposure and/or corruption.
 

  
 

   

   Data has grown exponentially in importance as governments, businesses, and consumers imbue it with meaning and significance to the point that it is often referred to as the “gold of the twenty-first century.” At its core, the main ingredients that drive the digital revolution are as follows:
 

  
 

   

   	Consumption of data (e.g., via input devices)
 

   	Processing of data (e.g., via processors)
 

   	Transmission of data (e.g., via network devices)
 

   	Storage of data (e.g., on hard drives)
 

   	Output of data (e.g., via monitors)
 

  
 

   

   Whether we are watching video streams, doing online banking, working from home via video calls, or playing video games, data drives our digital lives—and, by extension, our physical ones. The infrastructure that deals with these truly gargantuan amounts of data is almost always shared. For example, when we open a bank account, we do not get a banking kiosk installed in our home with a dedicated physical wire to the bank’s mainframes. Instead, we use the internet to access the bank’s servers, and our digital traffic shares the physical path with many other businesses and customers along the way.
 

  
 

   

   However, sharing infrastructure implies that data is exposed to parties other than those for whom it is intended. Not only can others look at this data, but they can also actively modify or corrupt it for nefarious gains. Cryptography guards data against these scenarios: for example, ensuring that our ISPs cannot see our emails and that someone who has access to our Wi-Fi (possibly in a public place) cannot modify our transactions when we are making online payments.
 

  
 

   

    

    The Enigma encryption machine
 

   
 

    

     Enigma was a famous encryption machine used by the Germans during World War II to encode secret military messages. Alan Turing and other researchers cracked the encryption scheme, allowing them to decode these messages quickly. Breaking the Enigma cipher was one of the most important victories by the Allied powers and significantly tilted the balance of power during the war, as it proved to be a pivotal advantage for allies in World War II.
 

   
 

  
 

   

   Other areas, such as military applications, rely even more heavily on secrecy and integrity of data. It would not be an overstatement to say that although the secrecy and confidentiality of messages have always been important, providing these properties at scale has become a crucial aspect of modern society. Those who can do it well gain competitive advantages, and those who lag (whether nations or corporations) pay the price with the loss of consumer confidence, revenues, political influence, and even strategic setbacks in full-scale wars.
 

  
 

   

   
1.2 How does cryptography work?
 

  
 

   

   Let’s dive deeper into the goals we covered in introducing cryptography:
 

  
 

   

   	
Confidentiality—Protect data so that only the intended parties can see it. For example, the data on your laptop’s hard drive should remain inaccessible to an attacker who steals the laptop. During WWII, the Germans were confident that even if encrypted messages were intercepted, they would not reveal any meaningful information to the Allies. The goal of confidentiality was defeated with Alan Turing’s Bombe machine, which revealed messages encrypted by Enigma.
 

   	
Integrity—Protect data when it is being shared among different entities such that any modification or corruption (whether accidental or by a malicious party) is guaranteed to be detected. For example, when you use a credit card at a payment terminal, the transaction amount is cryptographically “signed” by a small computer embedded in the credit card chip. It should be impossible for an attacker to forge a signature without possessing the physical card. While the transaction is being communicated to the bank, any attempt to modify the authorized amount should be automatically detected and should result in the transaction being denied.
 

   	
Authenticity—Ensure that an entity is who it claims to be. For example, if you are communicating with an old schoolmate over a messaging app, you want to be sure it is indeed them at the other end and not a malicious employee of the app company masquerading as your friend.
 

  
 

   

   
1.2.1 Confidentiality
 

  
 

   

   Confidentiality guards data against being seen by unwanted entities. It accomplishes this by depending on keys available to all the intended participants but not eavesdroppers. In its simplest form, a secret key is used to encrypt data, as shown in figure 1.2. The same key is used to decrypt the data. This is also known as symmetric key encryption, as the same key is used to both encrypt and decrypt data. An eavesdropper only sees encrypted data, which to them is indistinguishable from random garbage bytes.
 

  
 

    

   [image: figure] 

   
Figure 1.2 Using symmetric keys for encryption and decryption


  
 

   

   It is important to note that the data should remain protected even if an attacker knows every detail about the encryption algorithm except the secret key. This is known as Kerckhoff’s principle. A system violates this principle when its security hinges on whether its implementation details (e.g., the algorithm, the source code, and design documents) are known to adversaries. Unfortunately, this principle is overlooked far too often in real-world engineering decisions, mostly as a result of time constraints, because publicly auditing cryptographic implementations consumes significant time and resources.
 

  
 

   

    

    Kerckhoff’s principle
 

   
 

    

     A cryptosystem should be secure even if an attacker knows everything about the system except the key.
 

   
 

  
 

   

   
1.2.2 Integrity
 

  
 

   

   Whereas confidentiality protects data against being seen, integrity protects data against being modified or corrupted. Figure 1.3 illustrates using a key to “sign” the data, essentially generating a strong pairing between the data and the signature. The data can then be sent to a trusted party—that also has the secret key—along with the signature, without any fear of the data being modified along the way (e.g., by an ISP). Because any attacker attempting to corrupt the data will not have the secret key, they can’t generate a valid signature. Once the data reaches its intended destination, the trusted party can use its copy of the secret key to verify the signature.
 

  
 

    

   [image: figure] 

   
Figure 1.3 Using symmetric signing to ensure integrity


  
 

   

   Even though the data is transmitted in plain sight, if it is modified or corrupted, the recipient will detect it because the received copy will not pass the signature verification.
 

  
 

   

   
1.2.3 Authenticity
 

  
 

   

   Authenticity is a special case of integrity. Integrity helps prove that a particular piece of data was not modified. Authenticity builds on that assertion to conclude that the data was in the control of a particular entity at some point. For example, imagine a website that does not want its users to have to provide a username and password each time they visit. To improve the user experience, the website generates a token on a successful login (that is, a piece of data signifying that the user provided the correct username and password) and signs it with a secret key. The signed token is then downloaded on the user machine; during subsequent visits, it is automatically provided to the website, which uses its secret key to verify the integrity of the token. If the token signature is valid, the website can assume that it issued the token itself at some prior point in time and, building on that assumption, that it can trust the username specified in the token instead of requiring a password again. In other words, the website has authenticated the user by their possession of a cryptographic token.
 

  
 

   

   We can find some very rough analogies for applications of confidentiality, integrity, and authenticity around us. If a super-unforgeable stamp is made that can be verified by a recipient, it can be used to stamp an envelope’s seal. The envelope provides confidentiality against eavesdroppers. The stamp provides integrity so that the recipient can verify the stamp mark to trust the contents of the envelope. Let’s say the envelope contained a local newspaper from a remote town. You could then conclude that whoever possessed the stamp was in that particular town on a particular day. The last conclusion admittedly requires a leap of faith (maybe the stamp was lost or stolen, or perhaps the newspaper was mailed and then stamped in a different town), but you can reasonably assume the sender’s authenticity based on the envelope’s integrity.
 

  
 

   

   
1.3 Attacks on cryptographic theory vs. attacks on implementations
 

  
 

   

   Cryptography is not new. At its core, it is driven by mathematical ideas that are sometimes hundreds of years old. Dozens of books provide excellent coverage of cryptographic theory and examples of how to implement that theory in academic settings.
 

  
 

   

   However, most existing material advises against writing your own cryptography for real-world applications. There are good reasons for that; cryptographic implementations are extremely hard to get right. Code that looks safe and secure ends up being broken all the time. Bugs and programming defects subtly manifest themselves in cryptographic code and can cause disastrous consequences if the code is relied on to protect something critical.
 

  
 

   

   If you are writing a JavaScript frontend application, a bug may produce a bad user experience. If you are writing a machine-learning model for music recommendations, obscure bugs may generate wonky suggestions. Both the stakes and the engineering requirements for precision are different for the world of cryptography, where the most advanced adversaries attack implementations via extremely sophisticated means, and subtle bugs can have huge ramifications for the security of a system. For example, a cryptographic key might be broken just by analyzing the power consumption of the device where computation is happening. It takes unparalleled vigilance and care to write cryptographic code that can stand the test of time.
 

  
 

   

   Cryptographic implementations are used to meet specific security goals in a system. For example, one of the security goals of modern gaming consoles is that the customer should only be able to run “blessed” (that is, approved by the console makers) software and games on their hardware. A famous case of a cryptographic implementation bug bringing down a system’s security goals involved Sony’s Play-Station 3: the gaming console remained secure for almost half a decade until it was discovered that some random numbers were not being generated properly as part of a key cryptographic operation. That simple mistake allowed Sony’s critical private key—which was not even present on consumer hardware and was never meant to leave Sony’s secure data centers—to be calculated and published by hackers.
 

  
 

   

   Therefore, cryptography books advise against relying on your own cryptographic implementations. And this book is going to do the same thing! The difference is that this book covers how cryptography is implemented in the real world and how it has been broken time and again. These ideas and practices are interspersed throughout presentations, blog posts, research papers, specialized documents, and vulnerability reports. This book aims to capture the intricacies, pitfalls, and hard-learned lessons from these resources and present them in an organized manner.
 

  
 

   

   Most cryptographic code is broken via vulnerabilities in its implementation as opposed to weaknesses in its mathematical theory. Many of the world’s brightest minds attack mathematical theory relentlessly before it is adopted as a standard. For example, one of the most commonly used algorithms is the Advanced Encryption Standard (AES), which was adopted at the turn of the millennium after a three-year selection process: top cryptographers analyzed and debated more than a dozen candidates before selecting the Rijndael algorithm as the winner. AES continues to be used extensively for protecting everything from bank transactions to top-secret classified data. There are still no known practical attacks against correctly implemented AES. (“Practical” implies that contemporary adversaries could use such an attack given a reasonable amount of time and resources.)
 

  
 

   

   On the other hand, systems employing AES have been broken time after time due to weaknesses introduced by implementation bugs. For example, many practical attacks have used a class of bugs related to how messages are “padded” (filled with empty data for engineering reasons); these bugs allow hackers to see data encrypted by vulnerable AES implementations.
 

  
 

   

   The implementations need to be updated much more frequently, and even the most accomplished engineers cannot foresee all the ways the code will interact with machines and data. Due to these factors, it is more cost-effective for sophisticated adversaries to target security gaps in implementations instead of attacking the theory itself. Therefore, we will focus on how the engineering aspect of cryptography is usually broken, as opposed to mathematical attacks on the theory itself.
 

  
 

   

   
1.4 What will you learn in this book?
 

  
 

   

   This book teaches you how popular cryptographic algorithms are implemented in practice and how they are usually broken. You can use this information as an introduction to cryptography, but we will not cover the underlying mathematical theory behind those algorithms.
 

  
 

   

   We will use the Go programming language for most of the coding examples in this book. Go is a simple language well-suited for rapid prototyping and teaching engineering concepts because of its readability and portability. The book’s code listings and exercise solutions are available publicly on the book’s website (https://www.manning.com/books/hacking-cryptography) and at the GitHub repository (https://github.com/krkhan/crypto-impl-exploit).
 

  
 

   

    Tip You can get started with Go using the tutorial at https://go.dev/doc/tutorial/getting-started. 
 

  
 

   

   If you want to extract maximum value from this book, it is strongly recommended that you run the accompanying code and see the vulnerabilities and their respective exploits in action. The examples were carefully chosen to convey how each chapter’s main subject has been targeted by attackers over the years and the most important avenues through which it has been broken. For example, you may have heard about something called rainbow tables being used to target hash functions. In chapter 6, we’ll build an actual rainbow table implementation for cracking hashed passwords. Walking through each example as it is discussed in the text with specific line numbers from the source code will help you build a concrete understanding of why all hash functions are theoretically susceptible to this line of attack, how it has been used in the past to great success, and the practical limitations of targeting hash functions using this approach.
 

  
 

   

   There are good reasons why most people should not implement their own cryptography in production code (code that business outcomes rely on). As we saw in the preceding section, cryptographic implementations are extremely hard to get right. Therefore, when choosing how to use cryptography, the better engineering decision is to rely on existing implementations that are widely used and thoroughly tested. For example, OpenSSL is a popular cryptographic engine that has had its fair share of bugs over the years. However, it is a safe choice because of the many huge enterprises and governments that rely on it for security. It is in the combined vested interests of all those entities that bugs in OpenSSL be discovered and fixed as soon as possible.
 

  
 

   

   The general principle in security engineering is to hedge your bets with the broader community and big players. For example, instead of writing your own cryptographic protocol (and associated code) for message encryption, you should rely on Transport Layer Security (TLS)—specifically, versions and algorithms of TLS recommended (by standards organizations and regulatory authorities) for a good security posture.
 

  
 

   

   For most businesses and organizations, the recommended security design involves following the best engineering practices and using existing cryptographic solutions the right way, which in itself is a significant challenge (e.g., you can use the right cryptographic fundamentals while overlooking weaknesses caused by complexities of their interactions). Building an intuition for how security designs are weakened by flaws in cryptographic implementations is not straightforward. This book aims to help you start grokking the general attack principles and some common scenarios in which those principles are applied. This understanding can help you in several areas:
 

  
 

   

   	Avoiding common pitfalls if you are going to be working on implementing cryptography, possibly at a large enterprise
 

   	Performing code reviews and assessing the security posture of existing implementations
 

   	Assessing the implications when security vulnerabilities in existing cryptographic software are discovered and published, and reasoning about those bugs in a substantive manner
 

   	Following best practices for writing secure code if you do need to implement cryptography for something that isn’t widely used yet, such as cryptographic elections or using cryptography to improve privacy in machine learning algorithms
 

  
 

   

   None of this will preempt the need to have as many experts as possible review your code. You cannot point to any cryptographic implementation and claim that it is secure. The best you can do is to have a lot of people try to break it and then fix the bugs as fast as you can to build confidence in the codebase. Linus Torvalds (the creator of the Linux operating system) once famously quipped, “Given enough eyeballs, all bugs are shallow.” For cryptographic code, that is both a curse and a blessing. When bugs are found in cryptographic code, they produce vulnerabilities. On the other hand, when you have enough eyeballs, you approach the tail end of remaining bugs as they become harder to find, and the code in question becomes reasonably safe. This book aims to assist in the training of those eyeballs.
 

  
 

   

    

    Do not implement your own cryptography!
 

   
 

    

     It is okay to use the contents of this book to learn about how cryptography works and how it is usually broken. It is also okay to go further and read about and discuss more crypto vulnerabilities. It is even okay to try to break something new. But please do not try to implement your own cryptographic code based on anything you read here.
 

   
 

    

    If there is one takeaway from this book, it’s this: it requires extreme discipline, precision, knowledge, expertise, and professional training to write secure cryptographic code. This book only aims to organize the available knowledge in specific areas and does not compensate for the rest of those qualities. A close analogy would be books on surgery: they serve to organize that body of knowledge, but no one in their right mind would feel that reading a medical text equips them to operate on real people.
 

   
 

  
 

   

   Summary
 

  
 

   

   	Cryptography is the art of protecting the confidentiality and integrity of data. It consists of mathematical theory and software (code) or hardware (dedicated chips) implementations that use those mathematical ideas.
 

   	Cryptographic algorithms (that is, mathematical theory) are developed and adapted after careful consideration and debate by top experts in the field.
 

   	Most cryptographic code is broken via attacks on its engineering implementation as opposed to weaknesses in its mathematical theory.
 

   	Data is all around us and permeates the shared infrastructure where ensuring its secrecy and safety is paramount.
 

   	When using cryptography for security, a good engineering approach is to use well-established implementations.
 

   	Complex interactions between (even well-established) cryptographic components can end up causing subtle weaknesses.
 

   	Readers of academic material on cryptography are well-advised against deploying in-home–developed cryptography in production/business environments because of the risk of subtle bugs that can compromise the security of the whole system.
 

   	If you have good reasons to write cryptographic code from scratch, it is valuable to crowdsource the review process and have the code reviewed by as many experts as possible.
 

  


 

   

    2  Random number generators 
 

  
 

   

   This chapter covers
 

    

    	The importance of random numbers for cryptography
 

    	Qualities of random number generators
 

    	Understanding the different types of random number generators
 

    	Implementing and exploiting linear-congruential generators
 

   
 

  
 

   

   In this chapter, we lay the foundations for understanding what random numbers are and some different kinds of random number generators (RNGs). We’ll implement and exploit an insecure but widely used type of RNG known as a linear-congruential generator (LCGs). LCGs are not meant to be used for security-sensitive applications but will help us get into the habit of implementing and exploiting algorithms. (In the next chapter, we’ll implement and exploit a cryptographically secure RNG.)
 

  
 

   

   My first encounter with randomness was when I used the RAND button on my father’s scientific calculator. Whenever I pressed it, I got a seemingly different number. This confused me endlessly. As a kid, you have some intuition about the limits of the world around you. For example, although folks on TV represent real people, you cannot physically go inside the box. I understood that human beings had created machines that could calculate 2 + 2 and give us answers. But the machine was under our control.
 

  
 

   

   How could human beings ask a machine to decide something apparently all on its own? Did that mean the machines were thinking for themselves? I was too young to comprehend the differences between determinism and randomness. However, as I grew up, learning about RNGs helped me wrap my head around how the calculator worked.
 

  
 

   

    Note David Wong had a similar experience when he was young. He talks about it in the chapter on randomness in his excellent book Real World Cryptography (Manning, 2021). 
 

  
 

   

   Let’s begin by taking a deeper look at what random means. Imagine a magician telling you, “Think of a random number between 1 and 10.” Most of us understand what that means at an intuitive level. The magician is asking you to think of a number that they supposedly cannot guess or predict.
 

  
 

   

   Essentially, the magician is asking you to generate a random number. We can visualize RNGs as things that produce an arbitrary sequence of random numbers, as illustrated in figure 2.1.
 

  
 

    

   [image: figure] 

   
Figure 2.1 RNGs generate random numbers that are hard to predict.


  
 

   

   You would think that we would be pretty good at such a rudimentary task, but as it turns out, human beings are lousy RNGs. Ideally, if you ask an RNG to generate 1,000 numbers between 1 and 10, you’ll get roughly 100 1s, 100 2s, 100 3s, and so on. In other words, the distribution of generated numbers will be uniform. On the other hand, if you ask 1,000 people to think of a number between 1 and 10 (or the same person 1,000 times, although we advise against doing so for reasons unrelated to cryptography), you are likely to get many more 3s and 7s than 1s and 10s. This may seem inconsequential, but the same problem plays out at a larger scale when many people pick the same password under similar constraints.
 

  
 

   

   
2.1 Why do we need random numbers for cryptography?
 

  
 

   

   Random numbers are oxygen to the world of cryptography. The success of cryptography’s primary goals (confidentiality, integrity, and authenticity) depends on the quality of random numbers.
 

  
 

   

   When asked to think of a number between 1 and 10, you are essentially picking from a list of available choices. The same principle applies to, for example, cryptographic tools generating new keys by selecting them from a list of possible choices. If the keys they pick are not uniformly distributed, attackers can guess the keys and bypass any security provided by the underlying algorithms. Even slight biases can produce disastrous consequences. Let’s look at an example that is not directly related to cryptography but outlines the basic idea of how biases in distribution make guessing easier.
 

  
 

   

   
2.1.1 Uniform distribution: Making things harder to guess
 

  
 

   

   Imagine a medical portal that asks users to pick an eight-digit PIN as their password. Passwords would therefore look like 91838472 and 64829417.
 

  
 

   

   Let’s say you are trying to brute-force guess a single password for a user account on this website. The very first guess you make will choose from a list of around 100 million possible passwords (from 1 to 99999999). If we put aside our species’ dismal performance as RNGs for a moment and assume that the passwords are uniformly distributed, you will need to make around 50 million attempts on average before hitting the right password for a user’s account.
 

  
 

   

   Now suppose the medical portal sets the password as users’ birthdays expressed in the form MMDDYYYY, where the first two digits represent the month, the middle two represent the day, and the last four represent the year (quite a few medical websites do this, unfortunately). How many guesses will you need to make before getting lucky? There are 12 possible values for MM and 31 possible values for DD, and we can try the last 150 years (as the upper cap on the lifespan of a reasonable person) for YYYY. The number of possible passwords is now shown in equation 2.1:
 

  
 

   

   Equation 2.1

 

   [image: equation image] 

  
 

   

   Instead of 100 million possible passwords, the number has been reduced to 55,800. On average, you’ll need to make only around 28,000 guesses before finding the right password—a number much smaller than 50 million! The passwords are still eight digits in length, as before (for example, November 24, 1988, is represented as the eight-digit number 11241988), but the range of possible passwords has been reduced drastically, making the job of an attacker a lot easier than before. In other words, any biases—that is, deviations from a uniform distribution—make guessing easier for attackers.
 

  
 

   

   There are many other uses for random numbers in the area of cryptography. For example, passwords are mixed with random numbers stored in databases. In cryptographically verifiable elections, votes are mixed with random numbers to ensure that votes for the same candidate do not produce the same encrypted ballots. Almost every cryptographic algorithm that provides confidentiality depends on picking a secret key. If a biased RNG is used to pick a cryptographic key, it can drastically reduce the number of guesses an attacker needs to make before stumbling onto the same key. We therefore conclude that for cryptographic purposes, an RNG such as the one shown in figure 2.1 should produce output (the lone arrow in the picture) that is uniformly distributed across the entire range of possible outputs.
 

  
 

   

   
2.1.2 Entropy: Quantifying unpredictability
 

  
 

   

   Another important characteristic of RNGs is entropy, which can be defined as the measure of uncertainty (or disorder, in terms of its classical definition) in a system. In a fair coin toss where both sides have equal chances of landing up, the entropy is 1 bit. If we denote heads by 1 and tails by 0, we are equally unsure whether the value of that single bit will be heads or tails. If we predict the outcome of 10 successive fair coin tosses, we have an entropy of 10 bits.
 

  
 

   

   If the coin has been tampered with somehow, the entropy is less than 1 bit. The more biased it is, the smaller the entropy is. As an extreme example, if you have tails on both sides of the coin, the entropy is 0 bits. If the coin has been tampered with so that heads has a 75% probability of coming up and tails only 25%, the entropy of such a coin toss will be roughly 0.8 bits. Let’s see how.
 

  
 

   

   The entropy of a probability distribution (e.g., distribution of numbers generated by an RNG) can be calculated as shown in equation 2.2:
 

  
 

   

   Equation 2.2

 

   [image: equation image] 

  
 

   

   [image: equation image] is the probability of the first choice being picked, [image: equation image] is the probability of the second choice being picked, and so on. Each probability is multiplied by its binary log (log to the base 2) before their negative sums are added up. In terms of a coin toss, we have only [image: equation image] and [image: equation image]. The sum of all probabilities for a given probability space is always 1. In other words, although there’s a 50% (0.5) chance of either side coming up each time you flip the coin, there is a 100% chance that the answer will be one of those two options. Each probability value is always less than 1, which makes its logarithm negative. To land on a single positive value for the system’s total entropy, we take a negative sum of all the individual probabilities multiplied by their binary logs.
 

  
 

   

   We can write a program to calculate the entropy of a biased coin toss. Figure 2.2 shows the flowchart for the steps we can take to calculate the entropy of a biased coin toss. It will also help us get in the flow for upcoming code examples. These steps are implemented in listing 2.1, in which we do the following:
 

  
 

   

   	Take two floating-point numbers as input, representing the probability of heads or tails, respectively, coming out on top.
 

   	Validate the input before performing calculations using the provided values. The sum of the two probability values must be equal to 1. Because of the way floating-point numbers work in Go, if we simply compare (heads+tails) to 1 for equality, it will trip for some inputs, such as 0.9 and 0.1 (even though their sum should equal 1). For this reason, on line 34, we measure how close we are to approaching 1 instead of testing for equality.
 

   	Apply the formula in equation 2.2 to these values, and print the result.
 

  
 

    

   [image: figure] 

   
Figure 2.2 Flow chart for calculating the entropy of a biased coin toss


  
 

   

   
Listing 2.1 main.go
 

    

    package main



import (

  "fmt"

  "math"

  "os"

  "strconv"

)



func main() {

  var line string



  fmt.Printf("Enter probability of heads (between 0.0 and 1.0): ")

  fmt.Scanln(&line)

  heads, err := strconv.ParseFloat(line, 32)

  if err != nil || heads < 0 || heads > 1 {

    fmt.Println("Invalid probability value for heads")

    os.Exit(1)

  }



  fmt.Printf("Enter probability of tails (between 0.0 and 1.0): ")

  fmt.Scanln(&line)

  tails, err := strconv.ParseFloat(line, 2)

  if err != nil || tails < 0 || tails > 1 {

    fmt.Println("Invalid probability value for heads")

    os.Exit(1)

  }



  if heads+tails > 1 {

    fmt.Println("Sum of P(heads) and P(tails) must be less than or equal to 1")

    os.Exit(1)

  }



  if 1-(heads+tails) > 0.01 {   #1

    fmt.Println("Sum of P(heads) and P(tails) must be 1")

    os.Exit(1)

  }



  entropy := -(heads * math.Log2(heads)) - (tails * math.Log2(tails))

  fmt.Printf("P(heads)=%.2f, P(tails)=%.2f, Entropy: %.2f bits\n", heads, tails, entropy)

}
 

    

     #1 /Measures the delta between (heads+tails) and 1, expecting it to be smaller than an acceptable threshold

     


    
 

   
 

  
 

   

   You can test this program by executing the following command in the accompanying code repo.
 

  
 

   

   
Listing 2.2 Executing ch02/biased_coin_toss/main.go
 

    

    $ go run ch02/biased_coin_toss/main.go

Enter probability of heads (between 0.0 and 1.0): 0.50

Enter probability of tails (between 0.0 and 1.0): 0.50

P(heads)=0.50, P(tails)=0.50, Entropy: 1.00 bits
  

   
 

  
 

   

   Let’s collect a few results for different probability values.
 

  
 

   

   
Listing 2.3 Output for ch02/biased_coin_toss/main.go
 

    

    P(heads)=0.50, P(tails)=0.50, Entropy: 1.00 bits

P(heads)=0.75, P(tails)=0.25, Entropy: 0.81 bits

P(heads)=0.80, P(tails)=0.20, Entropy: 0.72 bits

P(heads)=0.10, P(tails)=0.90, Entropy: 0.47 bits
  

   
 

  
 

   

   As you can see, even though we are still getting one bit of output (that is, whether the result was heads or tails) when we toss the coin, the entropy of the output decreases as the coin toss becomes more biased. Another way to understand this is to look at it from the other side: if a coin toss has an entropy of 1 bit, guessing its output becomes as hard as it can be for a coin toss. If it has an entropy of 0.47 bits, we know one outcome is likelier than the other, making the outcome easier to guess.
 

  
 

   

   Figure 2.3 shows how entropy (the solid curved line) changes as the coin toss becomes more biased. The dotted lines represent the probability of heads or tails coming up. Note that their sum always remains exactly equal to 1 because they represent the entire probability space—there is no third outcome. Entropy is maximum (the peak in the middle) when both heads and tails have a 50% probability of occurring. That is when it is the hardest to predict which way the coin is likelier to land.
 

  
 

    

   [image: figure] 

   
Figure 2.3 Entropy of a biased coin toss


  
 

   

   So how is entropy related to RNGs? If the output of an RNG is uniformly distributed, the job of guessing the output is as hard as it can be. If an RNG is asked to generate 100 numbers between 1 and 10, and it generates ten 1s, ten 2s, and so on, it has a uniform distribution. That’s when we have maximum possible uncertainty about the output.



OEBPS/Images/eq-chapter-2-21-1.png
IMM]
12

X

DD|
31

55800





OEBPS/Images/FM_UN01_Cox.jpg





OEBPS/Images/cover.jpg
Kamran Khan
Bill Cox

/ll MANNING






OEBPS/Images/Kamran-Khan.png





OEBPS/Images/CH02_F03_Cox.jpg
’, === P (heads)
& 00 e P (tails)
—— Entropy

Left to right: heads dominates more outcomes than tails






OEBPS/Images/Manning_M_small.png





OEBPS/Images/Bill-Cox.png





OEBPS/Images/eq-chapter-2-29-2.png
P2





OEBPS/Images/CH01_F01_Cox.png
Prevent spoofing/impersonation

Authenticity





OEBPS/Images/CH01_F02_Cox.png
Encrypted
data






OEBPS/Images/eq-chapter-2-29-4.png
Ptails





OEBPS/Images/CH01_F03_Cox.png





OEBPS/Images/eq-chapter-2-29-1.png
Py





OEBPS/Images/CH02_F01_Cox.png
Generate random numbers between 1 and 100

23, 37, 01, 48, 12, 88, 91, 06, 84, 82, ...





OEBPS/Images/eq-chapter-2-29-3.png
Pheads





OEBPS/Images/eq-chapter-2-28-1.png
D _pzlogypa

=
p1 % log,(py) — pa % logy(pa)—. .. p, % log,(p,)






OEBPS/Images/CH02_F02_Cox.png
Calculate
entropy using
the binary log
formula

Input for Input for
probability probability
of heads of tails
coming up coming up

Start -Yes-

No-






OEBPS/Images/manning_m.jpg





