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foreword


  The time to learn Rust is now. The sheer amount of C/C++ code written over the past 40 years is mind-boggling. It is used in nearly every operating system and embedded system, even powering some of the most popular programming languages such as Python and JavaScript. It has long been a way to make libraries portable and usable in almost any platform from one to another, even with different CPU architectures. It has also been the source of most hacks and vulnerabilities.


  You can think of C/C++ as a katana, but without a handle. You can easily craft what you want, but if you squeeze too tight or aren’t very careful, you can cut yourself or others. This has long been the tradeoff that we have made to get the run-time speed and portability that we require when creating software. Thanks to Rust, there’s no more need to balance risk and speed, as it addresses most of the safety issues that have long been coupled with traditional C/C++ development.


  This book does an excellent job of easing potential Rustaceans into how Rust works in small, easily digestible pieces that any developer can consume and understand. This is the first time I’ve seen a book start off showing how to comment in the language, which is great because you’ll always want to make notes in your code so you can remember what it does! It’s stunning that some books don’t consider the fundamental needs of a beginner reader; I’m happy to report that this book does. I also enjoy that this book slowly creeps into more advanced topics such as shadowing, which will usually come up in a Rustacean’s career before a tutorial mentions it, but it is still important nonetheless.


  Learning Rust isn’t a simple achievement. There’s definitely a rabbit hole of information to burrow through, and that path will change whether you’re writing operating systems or a simple web service. This book will give you the basics and ease you into Rust without requiring you to install it until toward the end of the book, which definitely can help you finish within “a month of lunches.” You’ve done yourself a favor in buying this book; now do yourself another favor and read it cover to cover.


  —Allen Wyma, host of Rustacean Station podcast, Director at Plangora Limited


  
preface


  I’ll forever be grateful to Rust for solving a paradox in my life, that of having a software-developer-like mind without a place to apply it. I took to programming languages like a duck to water as a child in the 1980s, which at the time meant BASIC, which I liked, and Logo, which I didn’t. But truly getting into programming at the time didn’t mean taking your fancy laptop to Starbucks every day to interact with people across the globe; it meant spending days inside the computer lab at school with the blinds shut, typing away as the rest of the world went about its business in the sun. Without knowing that programming was much more than working on BASIC and Logo all day (I probably would have loved Ada if I had known about it), I didn’t get very far and eventually fell out of love with the idea of programming and moved on to other interests like heavy metal.


  Other attempts decades later to learn a few popular programming languages never worked, as they were either too high level, hiding details that I was interested in and lacking in performance for what I really wanted to do (make video games), or too low level, lacking safeguards and outright intimidating. There were no external factors forcing me to learn to code either, as I was already an adult and working full time in other fields.


  One day in 2019 I set myself to learn Python, Javascript, and other popular languages for the umpteenth time and thought that I might give this new language called Rust a look. I had heard that it was challenging and incredibly low level and that you needed to be a grizzled old software developer of decades to even hope to make heads or tails of it. Two days later, I was hooked, and my programming language wanderlust was gone. Without getting into too many details, suffice it to say that I had found the language that could make what I wanted to make and that showed me the low-level details I craved to see but with safeguards in place to avoid too many pitfalls.


  Learning Rust was a phenomenal experience, and even in 2019, there were sufficient resources to do so. But I think the first encounter with Rust can be even further refined, and that’s where this book comes from. If this book ends up being the difference for enough people between giving up on Rust and going all the way, the years put into making it will have all been worth it.
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about this book


  When Rust was released in 2015, it had to convince the world that it was worth learning. Back then, a lot of books compared Rust to languages like C++ and C because Rust is a good alternative language for C++ and C programmers. Rust books and websites were also written for people coming from Java, C#, and other such languages.


  Now, a lot more people are learning Rust as a first language. For those people, a book that starts with examples in other languages is going to be confusing. Learn Rust in a Month of Lunches doesn’t assume that you know general programming terminology: words like generics, pointers, stack and heap memory, arguments, expressions, concurrency, and so on. All of these terms are explained one by one.


  Almost all of Learn Rust in a Month of Lunches is written using the online Rust Playground, which requires nothing to install. You can, of course, use VS Code or some other IDE you have installed, but you don’t need to. The book intends to be easy in this sense, too: you should be able to learn most of the language just by opening up a tab in your browser.


  
Who should read this book


  Learn Rust in a Month of Lunches has a single goal: to be the absolute easiest way for anyone to learn Rust as quickly as possible. I like to think of the book’s target audience as these types of people:


  
    	
      People who are ambitious and want to learn Rust as quickly as possible—The simple English used in the book gets out of your way and lets you focus more on Rust itself.

    


    	
      People with English as a second language—Most developers are good enough at English that reading documentation is easy enough, but a full book of wordy and complex English can be a bit of a burden for some.

    


    	
      People who are curious but don’t have enough time in the day and just want to get to the information—Maybe you only have 30 minutes a day to devote to Rust. Without any flowery language, you can use those 30 minutes as effectively as possible to get to the information you want.

    


    	
      People who have read another introductory Rust book and want to go over the basics again with something new.

    


    	
      People who have tried to learn Rust, but it still hasn’t clicked—Hopefully this book will be the one that does the trick!

    

  


  
How this book is organized: A road map


  Learn Rust in a Month of Lunches is organized into 24 separate chapters but not into thematic sections as one often sees in a book of its type. That said, the book could be divided into parts that represent the amount of mental effort required.


  Chapters 1 to 6 are a steady progression from Rust’s simplest types and concepts to making your own types, working with advanced collection types, and, finally, error handling and some of the first types and concepts that make Rust quite unique. By the end of this section, you will have a feel for what makes Rust the language it is and eager to dive into the rest.


  Chapters 7 to 12 are packed to the brim with new concepts and are the chapters where Rust will finally start to click. This is probably the most fascinating yet mentally taxing part of the book. It deals with understanding traits, iterators, closures, lifetimes, interior mutability, multiple threads, and even a type called Cow.


  Chapters 13 to 16 are where the pace of learning starts to ease up a bit. Many new concepts are introduced here as well, but they go in hand with beginning to look at how to start building software in Rust, how to test it, and other tips and tricks involving patterns you will use often as a Rust developer.


  In Chapters 17 to 19, the book begins to get into external crates: code written by others for you to use in your own programs. This is the point at which we’ll begin to assume that you have Rust installed on your computer. It is also the point at which we will learn about async Rust, which is encountered quite a bit in external crates.


  Chapters 20 and 21 are a fun tour of the standard library. In these two chapters, we kick back and relax for a bit and see what parts of the standard library we haven’t come across yet.


  Chapter 22 is about macros, a way to generate code before the compiler begins looking at it. If you walk away from this chapter with a general understanding of how to read macros and when you might use them, it will have done its job.


  Chapter 23 and 24 are the last chapters of the book and are a fun send-off. Each of these chapters contains three unfinished projects for you to pick up and develop on your own. Each of the six projects compiles and accomplishes its basic objectives but is left incomplete on purpose to encourage you to make your own changes and add to them.


  
About the code


  This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/learn-rust-in-a-month-of-lunches. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/learn-rust-in-a-month-of-lunches.


  
liveBook discussion forum


  Purchase of Learn Rust in a Month of Lunches includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/learn-rust-in-a-month-of-lunches/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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1 Some basics


  This chapter covers


  
    	
Introducing Rust


    	
Using comments (putting human-readable hints in your code)


    	
Some primitive types (simple numbers and other simple types)


    	
Type inference (how Rust knows the type)


    	
“Hello, World!” and printing


    	
Declaring variables and code blocks


    	
Shadowing (giving variables the same name)

  


  This first chapter is as easy as Rust gets and has a bit of everything to get started. You’ll notice that even in Rust’s easiest data types, there’s a strong focus on the bits and bytes that make up a computer’s system. That means there’s quite a bit of choice, even in simple types like integers. You’ll also start to get a feel for how strict Rust is. If the compiler isn’t satisfied, your program won’t run! That’s a good thing—it does a lot of the thinking for you.


  
1.1 Introducing Rust


  The Rust language was only released in 2015 and, as of 2024, isn’t even a decade old. It’s quite new but already very popular, appearing just about everywhere you can think of—Windows, Android, the Linux kernel, Amazon Web Services (AWS), Discord, Cloudflare, you name it. It is incredible how popular Rust has become after less than a decade. Rust earned its popularity by giving you almost everything you could want in a language: the speed and control of languages like C or C++, the memory safety of other newer languages like Python, a rich type system that lets you avoid bugs, and a friendly compiler that helps you when you go wrong. It does this with some new ideas that are sometimes different from other languages. That means there are some new things to learn, and you can’t just “figure it out as you go along.” Rust is a language you have to think about for a while to understand.


  So Rust is a language that is famously difficult to learn. But I don’t agree that Rust is difficult. Programming itself is difficult. Rust simply shows you these difficulties when you are writing your code, not after you start running it. That’s where this saying comes from: “In Rust, you get the hangover first.” In many other languages, the party starts first: your code compiles and looks great! Then you run your code, and there’s a lot to debug. That’s when you get the hangover.


  The hangover in Rust is because you have to satisfy the compiler that you are writing correct code. If your code doesn’t satisfy the compiler, it won’t run. You can’t mix types together, you have to handle possible errors, you have to decide what to do when a value might be missing, etc. But as you do that, the compiler gives you hints and suggestions to fix your code so that it will run. It’s tough work, but the compiler tries to guide you along the way. And when your code finally compiles, it works great.


  In fact, because of that, Rust was the first language that I was properly able to learn. I loved how friendly the compiler was when my code didn’t compile. The compiler felt like a teacher or a co-programmer. It was also interesting how the errors taught me about how computers use memory. Rust wasn’t just a language that let me build software; it was a language that taught me details about the inner workings of computers that I never knew before. The more I used it, the more I wanted to know, and that’s why I was able to learn Rust as my first language. I hope this book will help others learn it, too, even if Rust is their first programming language.


  
1.1.1 A pep talk


  Rust is a fairly easy language. Seriously! Well, sort of. Yes, it’s complex and takes a lot of work to learn. Yes, most people who learn Rust have frustrating days (sometimes unbearingly frustrating days) where they just want their code to compile and don’t understand what to do.


  But this period does not last forever. After the period is over, Rust becomes easier because it starts doing a lot of the thinking for you. Rust is the type of language that allows junior developers to start working on an existing code base with confidence because, for the most part, it simply won’t compile if there’s a problem with your code. Sometimes you hear horror stories about junior developers who join a company and simply aren’t able to contribute yet. They see a code base and ask if they can make a change, but the senior developers say not to touch it “because it’s working and who knows what will happen if you make a change.” Rust isn’t like that.


  That makes contributing and refactoring code, well, easy. If you watch Rust live streams on YouTube or Twitch, you’ll see this happen a lot. The streamer will make a bunch of changes to some existing code and then say, “Okay, let’s see what breaks.” The compiler then gives a few dozen messages showing what parts don’t work anymore, and then the streamer hunts them down one by one and makes the necessary changes until it compiles again—usually in just a few minutes. Not a lot of languages can do that.


  
1.1.2 Rust is like a critical spouse


  A great analogy for Rust is that of a critical but helpful spouse. Imagine you have a job interview and are getting ready to head out the door and ask your spouse how you look. Let’s see how two types of spouses treat you: the lenient language spouse and the strict Rust spouse.


  The lenient language spouse sees you going out the door and calls out: “You look great, honey! Hope the interview goes well!” And off you go! You’re feeling good. But maybe you don’t look great and don’t realize it. Maybe you forgot to prepare a number of important things for the interview. If you’re an expert in interviews, you’ll do fine, but if not, you might be in trouble.


  The Rust spouse isn’t so lenient and won’t even let you out the door: “You’re going out wearing that? It’s too hot today; you’ll be sweating by the time you get in. Put on that suit with the lighter fabric.” You change your suit.


  The Rust spouse looks at you again and says, “The suit you just changed into doesn’t match your socks. You need to change to grey socks.” You grumble and go change your socks.


  The Rust spouse still isn’t satisfied: “It’s windy today, and it’s at least a quarter-mile walk from the parking lot to the company. Your hair is going to be messy by the time you get there. Put some gel in.” You go back to the bathroom and put some gel in your hair.


  The Rust spouse says, “You still can’t go. The parking lot you’ll be using was built a long time ago and doesn’t take credit cards. You need $2.50 in change for the machine. Find some change.” Sigh. You go and look around for some loose change. Finally, you gather $2.50.


  This repeats and repeats another 10 times. You’re starting to get annoyed, but you know your spouse is right. You make yet another change. Is it the last one?


  Eventually, your Rust spouse looks you up and down, thinks a bit, and says: “Fine. Off you go.” Yes! Finally! That was a lot of work.


  You head out the door, still a bit frustrated by all the changes you had to make. But you walk by a window and see your reflection. You look great! It’s windy today, but your hair isn’t being blown around. You pull into the parking lot and put in the $2.50—just the right amount of change.


  You look around and see someone else arriving for the interview in a suit that’s too heavy and is already sweating. His socks don’t match the suit. He only has a credit card and is trying to find a store nearby to get some change. He starts walking to the store, his hair in a mess as the wind blows it every which way. But not you—your spouse did half of the work for you before you even started. So, in that sense, Rust is a really easy language.


  If you think about it, programs live at run time, but programmers can only see up to compile time—the time before a program starts. If your code compiles, you run it and hope for the best. You can’t control the program anymore once it starts.


  If your language isn’t strict at compile time, most of the possible errors will happen at run time instead, and you will have to debug them. Rust is as strict as possible at compile time, where you, the programmer, live. So Rust teaches you as much as it can about your program before you even run it.


  Okay, what does this actually look like in practice? Let’s take a look at a real example. We’ll go to the Rust Playground (https://play.rust-lang.org/), write some incorrect Rust code, and see what happens. We’ll try to make a String and then push a single character to it and print it out:

  fn main() {
    let my_name: String = "Dave";
    my_name.push("!");
    println!("{}" my_name);
}


  This is pretty good for a first try at Rust, but it’s not correct yet. What does the Rust compiler have to say about that? Quite a bit, in fact. It gives you three suggestions:

  error: expected `,`, found `my_name`
  |
4 |     println!("{}" my_name);
  |               ^^^^^^^ expected `,`
 
error[E0308]: mismatched types
 --> src/main.rs:2:27
  |
2 |     let my_name: String = "Dave";
  |                  ------   ^^^^^^- help: try using a conversion method:
                     ➥`.to_string()`
  |                  |        |
  |                  |        expected struct `String`, found `&str`
  |                  expected due to this
 
error[E0308]: mismatched types
 --> src/main.rs:3:18
  |
3 |     my_name.push("!");
  |             ---- ^^^ expected `char`, found `&str`
  |             |
  |             arguments to this function are incorrect
  |
help: if you meant to write a `char` literal, use single quotes
  |
3 |     my_name.push('!');
  |                  ~~~


  If you do what the compiler suggests, it will look like this:

  fn main() {
    let my_name: String = "Dave".to_string();
    my_name.push('!');
    println!("{}", my_name);
}


  If you click Run again, you’ll see the compiler now has a little more to say:

  error[E0596]: cannot borrow `my_name` as mutable, as it is not declared as
➥mutable
 --> src/main.rs:3:5
  |
2 |     let my_name: String = "Dave".to_string();
  |         ------- help: consider changing this to be mutable: `mut
            ➥my_name`
3 |     my_name.push('!');
  |     ^^^^^^^^^^^^^^^^^ cannot borrow as mutable


  If you follow its advice here, you’ll end up with this code:

  fn main() {
    let mut my_name: String = "Dave".to_string();
    my_name.push('!');
    println!("{}", my_name);
}


  And it works! That’s the combination of strictness and helpfulness that the Rust compiler is famous for. You will understand all of this code within just a few chapters, so don’t worry about it too much now.


  One final note before we get into chapter 1: the Rust compiler is smart enough to know if you wrote some code you never used. In that case, it will give you a warning so that you will remember that you wrote something you haven’t used yet. In this book, many examples have code to teach a concept and never gets used, so don’t worry about those warnings.


  This code, for example, compiles and runs just fine:

  fn main() {
    let my_number = 9;
}


  But when you run it, Rust will generate a warning:

  warning: unused variable: `my_number`
 --> src/main.rs:2:9
  |
2 |     let my_number = 9;
  |         ^^^^^^^^^ help: if this is intentional, prefix it with an
            ➥underscore: `_my_number`
  |
  = note: `#[warn(unused_variables)]` on by default


  This is a hint from the compiler to let you know that you created a variable but didn’t do anything with it. It doesn’t mean there is a problem with your code, so don’t worry.


  Let’s get started!


  
1.2 Comments


  Comments are made for programmers to read, not the computer. It’s good to write comments to help other people understand your code. It’s also good to help you understand your code later (many people write good code but then forget why they wrote it). To write comments in Rust, you usually use // like in the following example:

  fn main() {
    // Rust programs start with fn main()
    // You put the code inside a block. It starts with { and ends with }
    let some_number = 100; // We can write as much as we want here and the 
       ➥compiler won't look at it
}


  When you write a // comment, the compiler won’t look at anything to the right of the //.


  The let some_number = 100; part of the code, by the way, is how you make variables in Rust. A variable is basically a piece of data with a name chosen by us—hopefully a good name—so that later on we will remember what sort of data the variable is holding. Here, we are telling Rust to take this piece of data (the number 100) and give it the name some_number so that we can use some_number later to access the number 100 it holds. The variable name could differ depending on the context: we might write let perfect_score = 100;, for example, if the number 100 represented a perfect score on a test.


  There is another kind of comment that you write with /* to start and */ to end. A comment wrapped in /* and */ is useful to write in the middle of your code:

  fn main() 
    let some_number/*: i16*/ = 100;
}


  To the compiler, let some_number/*: i16*/ = 100; looks like let some_number = 100;. The /* */ form is also useful for very long comments of more than one line. In the following example, you can see that you need to write // for every line. But if you type /*, the comment won’t stop until you finish it with */:

  fn main() {
    let some_number = 100; // Let me tell you
    // a little about this number.
    // It's 100, which is my favorite number.
    // It's called some_number but actually I think that...
 
    let some_number = 100; /* Let me tell you
    a little about this number.
    It's 100, which is my favorite number.
    It's called some_number but actually I think that... */
}


  If you see /// (three slashes), that’s a “doc comment” (documentation comment). A doc comment can be automatically made into documentation for your code. Documentation is used to explain how code works, usually for other people to read, but it can be good for you, too, so you won’t forget. All the information on documentation pages like http://doc.rust-lang.org/std/index.html is made with doc comments.


  So // means comments for inside the code, while /// is for more official information to be shared beyond the code itself. Regular // comments can be very informal, like this:

  // todo: delete this after Fred updates the client. 


  But /// comments are for outsiders reading your code and tend to be more formal, like:

   /// Converts a string slice in a given base to an integer. Leading and trailing whitespace represent an error.


  (We’ll look at doc comments later in the book. But if you have Rust installed already and are curious, try writing some comments and then typing cargo doc --open to see what happens.)


  So comments are pretty easy because Rust doesn’t notice them at all. Let’s move on to another pretty easy subject: Rust’s simplest types.


  
1.3 Primitive types: Integers, characters, and strings


  Rust has many types that let you work with numbers, characters, and so on. Some are simple, and others are more complicated; you can even create your own.


  The simplest types in Rust are called primitive types (primitive = very basic). We will start with two of them: integers and characters. Rust has a lot of integer types, but they all have one thing in common: they are whole numbers with no decimal point. There are two types of integers: signed integers and unsigned integers.


  So what does signed mean exactly? It’s simple: signed means + (plus sign) and − (minus sign). So, signed integers can be positive or negative (e.g., +8, −8) or zero. But unsigned integers (e.g., 8) can only be nonnegative because they do not have a sign. The signed integer types are i8, i16, i32, i64, i128, and isize. The unsigned integer types are u8, u16, u32, u64, u128, and usize.


  The number after the i or the u means the number of bits for the number, so numbers with more bits can be larger: 8 bits = 1 byte, so i8 is 1 byte, i64 is 8 bytes, and so on. Number types with more bits can hold much larger numbers:


  
    	
      u8 can hold a number as large 255.

    


    	
      u16 can hold a number as large as 65,535.

    


    	
      u128 can hold a number as large as 340,282,366,920,938,463,463,374,607,431,768,211,455.

    

  


  A quick explanation of how integers work: computers use binary numbers, while people use decimals. Binary means 2, and decimal means 10, so you have two possible digits for binary (0 or 1) and 10 possible digits (0 to 9) for decimal.


  
    [image: ]

  


  With decimals, you move up by 10 at a time: 100 is 10 times more than 10, 1,000 is 10 times more than 100, and so on. But computers increase numbers in binary by 2, not 10. Here’s what this doubling looks like over the 8 bits of a u8.
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  You can see that there are eight spaces for numbers, which are the bits. Each bit is for a number two times larger than the last one. A bit can be a 0 or a 1—nothing else. When a bit shows up as 0, the number isn’t counted; if it shows up as 1, it is counted.


  If you have a decimal number with eight digits, the highest number you can get is 99,999,999. Reading from right to left, you can think of this number as being made of a 9, a 90, a 900, a 9,000, a 90,000, a 900,000, a 9,000,000, and a 90,000,000. Put them all together, and you get 99,999,999. Now, if you do the same for binary, the highest number you can get over eight digits is 11111111. And if you count up these numbers, you get 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255. That’s why 255 is the largest size for a u8. And if you move to a u16, you have eight more spaces, each one two times larger than the last. So a u16 is all those plus 256, then 512, and so on. Consequently, the highest number for a u16 is 65,535 (a lot higher), even though it’s only two times the size (16 bits, or 2 bytes).


  You can also think of it as this: a human cashier at the grocery who asks you to pay $226 is asking for


  
    	
      six 1s (6)

    


    	
      two 10s (20)

    


    	
      two 100s (200)

    

  


  But what a “machine cashier” asks you for is 11100010, which is (remember, going from right to left):


  
    	
      no 1s

    


    	
      one 2

    


    	
      no 4s

    


    	
      no 8s

    


    	
      no 16s

    


    	
      one 32

    


    	
      one 64

    


    	
      one 128

    

  


  Putting all that together, you get: 2 + 32 + 64 + 128 = 226. And that’s why the u8 for 226 looks like this.
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  Signed integers have a maximum value that is only half that of an unsigned type of the same number of bits because they also have to represent negative numbers. So a u8 goes from 0 to 255 while an i8 goes from −128 to 127.


  So what about isize and usize, and why are there no numbers in their name? These two types have a number of bits depending on your type of computer. (The number of bits on your computer is called the architecture of your computer.) So isize and usize on a 32-bit computer is like i32 and u32, and isize and usize on a 64-bit computer is like i64 and u64.


  There are many reasons why Rust has a lot of integer sizes. One reason is com-puter performance: a smaller number of bytes can be faster to process. For example, the number –10 as an i8 is 11110110, but as an i64, it is 1111111111111111111111111111111111111111111111111111111111110110. The lar-ger type has a greater maximum number but still uses the same number of bits, even if the number is a small one. But there are quite a few other reasons for having a lot of integer sizes. One is related to the char type, which is related to one of Rust’s integer types.


  Characters in Rust are called char. Every char has a number: the letter A is number 65, while the character 友 is number 21451. The list of numbers is called Unicode. Unicode uses smaller numbers for basic characters like A through Z, digits 0 through 9, or space. New languages get added to Unicode all the time, and some languages have thousands of characters, which is why 友 is such a high number.


  As you can see, a char can be a lot of things, even an emoji:

  fn main() {
    let first_letter = 'A';
    let space = ' ';                  ①
    let other_language_char = 'Ꮔ';    ②
    let cat_face = '😺';              ③
}


  ① A space inside ' ' is also a char.


  ② Thanks to Unicode, other languages like Cherokee display just fine, too.


  ③ Emojis are chars, too!


  So you won’t be able to fit all chars into something as small as a u8, for example. But the characters used most (called ASCII) are represented by numbers less than 256, and they can fit into a u8. Remember, a u8 is 0 plus all the numbers up to 255, for 256 characters in total. This means that Rust can safely “cast” a u8 into a char, using as. (“Cast a u8 as a char” means “turn a u8 into a char.”)


  Casting with as is useful because Rust is very strict. It always needs to know the type and won’t let you use two different types together, even if they are both integers. For example, this will not work:

  fn main() {                  ①
    let my_number = 100;     ②
    println!("{}", my_number as char);
}


  ① main() is where Rust programs start to run. Code goes inside {} (known as braces or curly brackets).


  ② We didn’t say which integer type it will be, so Rust chooses i32. Rust always chooses i32 for integers if you don’t tell it to use a different type.


  Here is the reason:

  error[E0604]: only u8 can be cast as char, not i32
 --> src\main.rs:3:20
  |
3 |     println!("{}", my_number as char);
  |                    ^^^^^^^^^^^^^^^^^


  By the way, you’ll see println!, {}, and {:?} in this chapter a bit. Typing println! will print and then add a new line, while {} and {:?} describe what type of printing. println! is known as a macro. A macro is a function that writes code for you; all macros have a ! after them. You don’t need to worry about remembering to add the ! because the compiler will notice if you don’t:

  fn main() {    
    let my_number = 100;    
    println("{}", my_number);
}


  The compiler tells us exactly what to do:

  error[E0423]: expected function, found macro `println`
 --> src/main.rs:3:5
  |
3 |     println("{}", my_number);
  |     ^^^^^^^ not a function
  |
help: use `!` to invoke the macro
  |
3 |     println!("{}", my_number);
  |       


  We will learn more about printing in this and the next chapter.


  Now, back to our my_number as char problem. Fortunately, we can easily fix this with as. We can’t cast i32 as a char, but we can cast an i32 as a u8. Then we can do the same from u8 to char. So, in one line, we use as to make my_number a u8 and again to make it a char. Now it will compile:

  fn main() {
    let my_number = 100;
    println!("{}", my_number as u8 as char);
}


  It prints d because that is the char in place 100.


  So casting can be convenient. But be careful: when you cast a large number into a smaller type, some unexpected things can happen. For example, a u8 can go up to 255. What happens if you cast the number 256 into a u8?

  fn main() {
    let my_number = 256;
    println!("{}", my_number as u8);
}


  You might think it would cut it down to 255, the largest possible size, but it returns a 0.


  What happens if you cast an i32 600 to a u8?

  fn main() {
    let my_number = 600;
    println!("{}", my_number as u8);
}


  Now it returns an 88. You can probably see what it’s doing now: every time it passes the largest possible number, it starts at 0 again. So when you cast a 600 to a u8, it passes the largest possible u8 two times, and then there are 88 left. You can think of it mathematically as 600 − 256 − 256 = 88. So be a little careful when casting into a smaller type! When casting, make sure the old number isn’t larger than the new type’s largest possible number.


  In fact, casting is somewhat rare in Rust because there is usually no need for it. For example, you don’t need to use a cast to get a u8. You can just tell Rust that my_ number is a u8. Here’s how you do it:

  fn main() {
    let my_number: u8 = 100;             ①
    println!("{}", my_number as char);
}


  ① Change my_number to my_number: u8.


  So those are two reasons for all the different number types in Rust. Here is another reason: usize is the size Rust uses for indexing. (Indexing means “which item is first,” “which item is second,” etc.) A usize is the best size for indexing because


  
    	
      An index can’t be negative, so it needs to be an unsigned integer with a u.

    


    	
      It should have a lot of space because index numbers can get quite large (but it can’t be a u64 because 32-bit computers can’t use a u64).

    

  


  So Rust uses usize so that your computer can get the biggest number for indexing that it can read.


  Let’s learn some more about char. You saw that a char is always one character and uses ' ' (single quotes) instead of " " (double quotes).


  All chars use 4 bytes of memory, since 4 bytes are enough to hold any kind of character:


  
    	
      Basic letters and symbols usually need 1 byte, (e.g., a b 1 2 + - = $ @).

    


    	
      Other letters like German umlauts or accents need 2 bytes (e.g., ä ö ü ß è à ñ).

    


    	
      Korean, Japanese, or Chinese characters need 3 or 4 bytes (e.g., 国 안 녕).

    

  


  So, to be sure that a char can be any of these, it needs to be 4 bytes. With 2 bytes (a u16), the largest number you can make is 65,535, which is well below the number of letters in all the languages in the world (Chinese characters alone are more than this!). But a u32 (4 bytes) offers more than enough space, allowing for up to 4,294,967,295 letters, which is why a char is a u32 on the inside.


  But always using 4 bytes is just for the char type. Strings are different and don’t always use 4 bytes per single character. When a character is part of a string (not the char type), the string is encoded to use the least amount of memory needed for each character.


  We can use a method called .len() to see this for ourselves. Try copying and pasting this and clicking Run:

  fn main() {
    println!("Size of a char: {}", std::mem::size_of::<char>());
    println!("Size of a: {}", "a".len());
    println!("Size of ß: {}", "ß".len());
    println!("Size of 国: {}", "国".len());
    println!("Size of 𓅱: {}", "𓅱".len());
}


  (By the way, std::mem means the part of the standard library called mem where this size_of() function is. The :: symbol is used sort of like a path to an address. It’s sort of like writing USA::California::LosAngeles. We will learn about this later.)


  The previous code prints the following:

  Size of a char: 4
Size of a: 1
Size of ß: 2
Size of 国: 3
Size of 𓅱: 4


  You can see that a is 1 byte, the German ß is 2, the Japanese 国 (meaning country) is 3, and the ancient Egyptian 𓅱 (a quail chick) is 4 bytes.


  Let’s try printing the length of two strings, one with six letters and the other with three letters. Interestingly, the second one is larger:

  fn main() {
    let str1 = "Hello!";
    println!("str1 is {} bytes.", str1.len());
    let str2 = "안녕!";                           ①
    println!("str2 is {} bytes.", str2.len());
}


  ① Korean for “Hi”


  This prints

  str1 is 6 bytes.
str2 is 7 bytes.


  str1 is six characters in length and 6 bytes, but str2 is three characters in length and 7 bytes. So be careful! The .len() method returns the number of bytes, not the number of letters or characters.


  By the way, the size of a byte is one u8: it’s a number that goes from 0 to 255. We can use a method called .as_bytes() to see what these strings look like as bytes:

  fn main() {
    println!("{:?}", "a".as_bytes());
    println!("{:?}", "ß".as_bytes());
    println!("{:?}", "国".as_bytes());
    println!("{:?}", "𓅱".as_bytes());
}


  You can see that each one is different and that to show them all in a single type, it needs 4 bytes. And that’s why the char type is 4 bytes long:

  [97]
[195, 159]
[229, 155, 189]
[240, 147, 133, 177]
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  Now, if .len() gives the size in bytes, what about the size in characters? You can find this out by using two methods together. We will learn about these methods in more detail later in the book (especially chapter 8), but for now, you can just remember that .chars().count() will give you the number of characters or letters, not bytes. Calling .chars() first turns a string into a collection of characters, and then .count() counts how many of them there are.


  Let’s give that a try:

  fn main() {
    let str1 = "Hello!";
    println!("str1 is {} bytes and also {} characters.", str1.len(), str1.chars().count());
    let str2 = "안녕!";
    println!("str2 is {} bytes but only {} characters.", str2.len(), str2.chars().count());
}


  This prints

  str1 is 6 bytes and also 6 characters.
str2 is 7 bytes but only 3 characters.


  You might have noticed already that you don’t usually need to tell Rust the type of variable you’re making. The Rust compiler is happy with let letter = 'ß' and doesn’t make you type let letter: char = 'ß' to declare a char. Let’s learn why!


  
1.4 Type inference


  The term type inference means that Rust can usually decide what type a variable is even if you don’t tell it. The term comes from the verb infer, which means to make an educated guess.


  The compiler is smart enough that it can usually “infer” the types that you are using. In other words, it always needs to know the type of variables you are using, but most of the time, you don’t need to tell it. For example, if you type let my_number = 8, the variable my_number will be an i32. That is because the compiler chooses i32 for integers unless you tell it to choose a different integer type. But if you say let my_number: u8 = 8, it will make my_number a u8 because you told it to make a u8 instead of an i32.


  So, usually, the compiler can guess. But sometimes you need to tell it, usually for two reasons:


  
    	
      You are doing something very complex, and the compiler can’t determine the type you want.

    


    	
      You simply want a different type (e.g., you want an i128, not an i32).

    

  


  To specify a type, add a colon after the variable name:

  fn main() {
    let small_number: u8 = 10;
}


  For numbers, you can add the type after the number. You don’t need a space—just type it right after the number:

  fn main() {
    let small_number = 10u8;    ①
}


  ① Same as u8 = 10


  You can also add _ if you want to make the number easy to read:

  fn main() {
    let small_number = 10_u8;
    let big_number = 100_000_000_i32;
}


  The _ is only to make numbers easy for humans to read and does not affect the number. It is completely ignored by the compiler. In fact, it doesn’t matter how many _ you use:

  fn main() {
    let number = 0________u8;
    let number2 = 1___6______2____4______i32;
    println!("{}, {}", number, number2);
}


  This prints 0, 1624.


  Interestingly, if you add a decimal point to a number, it won’t be an integer (a whole number) anymore. Rust will instead make a float, which is an entirely different type of number. Let’s learn how floats work now.


  
1.5 Floats


  Floats are numbers with decimal points. 5.5 is a float, and 6 is an integer. 5.0 is also a float, and even 5. is a float. The variable my_float in the following code won’t be an i32 because of the decimal point that follows it:

  fn main() {
    let my_float = 5.;
}


  But these types are not officially called floats; they are called f32 and f64. As you can imagine, the numbers in their type names show the number of bits needed to make them: 32 and 64 (4 bytes and 8 bytes). In the same way that Rust chooses an i32 by default, it will also choose f64 unless you tell it to make an f32.


  Of course, Rust is strict, so only floats of the same type can be used together. You can’t add an f32 to an f64. We can generate an error by telling Rust to make an f64 and an f32 and then trying to add them together:

  fn main() {
    let my_float: f64 = 5.0;
    let my_other_float: f32 = 8.5;
 
    let third_float = my_float + my_other_float;
}


  When you try to run this, Rust will say

  error[E0308]: mismatched types
 --> src\main.rs:5:34
  |
5 |     let third_float = my_float + my_other_float;
  |                                  ^^^^^^^^^^^^^^ expected `f64`, found 
                                     ➥`f32`


  The compiler writes “expected (type), found (type)” when you use the wrong type. It reads your code like this:


  
    	
      let my_float: f64 = 5.0;—Here we specifically tell the compiler that my_ float must be an f64.

    


    	
      let my_other_float: f32 = 8.5;—And here we say that my_other_float must be an f32. The compiler does what we tell it to do.

    


    	
      let third_float = my_float +—At this point, the variable that follows my_ float has to be an f64. The compiler will expect an f64 to follow.

    


    	
      my_other_float;—But it’s an f32, so it can’t add them together.

    

  


  So when you see “expected (type), found (type)”, you must find why the compiler expected a different type.


  Of course, with simple numbers, it is easy to fix. You could cast the f32 to an f64 with as:

  fn main() {
    let my_float: f64 = 5.0;
    let my_other_float: f32 = 8.5;
 
    let third_float = my_float + my_other_float as f64;    ①
}


  ① my_other_float as f64 = use my_other_float like an f64


  But there is an even simpler method: remove the type declarations (to declare a type just means to tell Rust to use a type) and let Rust do the work for us. Rust will choose types that can be added together. In the following code, Rust will make each float an f64:

  fn main() {
    let my_float = 5.0;
    let my_other_float = 8.5;
 
    let third_float = my_float + my_other_float;
}


  The Rust compiler is pretty smart and will not make an f64 if we declare an f32 and try to add it to another float:

  fn main() {
    let my_float: f32 = 5.0;
    let my_other_float = 8.5;                       ①
 
    let third_float = my_float + my_other_float;    ②
}


  ① Usually Rust would choose f64 for my_other_float.


  ② But now it knows you need to add it to an f32 so it chooses f32 for my_other_float, too.


  So those are some of the most basic concepts and types in Rust.


  You’re probably wondering when we’re going to look at “Hello, World!,” which is usually the first example you see when learning a programming language. That time is now!


  
1.6 “Hello, World!” and printing


  When you open a new Rust program in the Playground, it always has this code:

  fn main() {
    println!("Hello, world!");
}


  Let’s break this code down a bit and see what it means:


  
    	
      fn means function.

    


    	
      main() is the function that starts the program.

    


    	
      () means that we didn’t pass the function any arguments (an argument is an input to a function). So, that means the function is starting without any variables that it can use.

    

  


  After that comes {}, which is called a code block. Code blocks are spaces where code lives. If you start a variable inside a code block, it will live until the end of the block. This is its lifetime. Let’s look at the example with floats from before, but we’ll put one of them inside its own code block. Now, it won’t live until the end of the program:

  fn main() {
    let my_float = 5.0;                               ①
    {
        let my_other_float = 8.5;                     ②
    }                                                 ③
    // let third_float = my_float + my_other_float;   ④
}                                                     ⑤


  ① The variable my_float lives inside the code block for main(). This is where its lifetime starts.


  ② The variable my_other_float’s lifetime starts here, but it’s inside another code block, so it doesn’t live as long.


  ③ This is where my_other_float’s lifetime ends! After this line, you can’t use it.


  ④ This won’t work anymore, so we commented it out. The variable my_other_float’s lifetime is already over.


  ⑤ This is the end of the block inside which my_float lives. This is where its lifetime ends.


  So that’s how code blocks with {} work.


  A {} doesn’t always mean a code block in Rust, though. The following code shows {} being used to change the output in main to add a number 8 after Hello, world:

  fn main() {
    println!("Hello, world number {}!", 8);
}


  The {} in println! means “put the variable inside here.” In other words, the {} is used to capture the variable. This prints Hello, world number 8!.


  We can put more in, just like we did before:

  fn main() {
    println!("Hello, worlds number {} and {}!", 8, 9);
}


  This prints Hello, worlds number 8 and 9!.


  Did you notice that a ; comes at the end of the line? This is a semicolon, and it has a particular meaning in Rust.


  We can see what the semicolon is used for by creating a simple function. We’ll call it give_number and put it above main(). (Usually, you put main() on the bottom, but it makes no difference). Then we’ll call this function inside main by typing give_ number():

  fn give_number() -> i32 {
    8
}
 
fn main() {
    println!("Hello, world number {}!", give_number());
}


  This also prints Hello, world number 8!. When Rust looks at give_number(), it sees that you are calling a function. This function


  
    	
      Does not take anything because there’s nothing inside ().

    


    	
      Returns an i32. The -> (called a skinny arrow) shows what the function returns.

    

  


  Inside the function is just 8. Because there is no semicolon at the end of the line, this 8 (an i32) is the value the function give_number() returns. If it had a semicolon at the end, it would not return anything (it would return a (), which is called the unit type and means “nothing”).


  So here’s the important part: Rust will not compile this program if the function’s body ends with a ; because the return type is i32, and with ;, the function returns (), not i32. Let’s try adding ; to see the error. Now our code looks like this:

  fn give_number() -> i32 {
    8;
}
 
fn main() {
    println!("Hello, world number {}", give_number());
}


  The error looks like this:

  error[E0308]: mismatched types
 --> src/main.rs:1:21
  |
1 | fn give_number() -> i32 {
  |    -----------      ^^^ expected `i32`, found `()`
  |    |
  |    implicitly returns `()` as its body 
  ➥has no tail or `return` expression
 
2 |     8;
  |      - help: remove this semicolon to return this value


  This means “you told me that give_number() returns an i32, but you added a ; so it doesn’t return anything.” So, the compiler suggests removing the semicolon.


  You can also write return 8; to return a value, but in Rust, it is normal to remove the return. The last line of the function is what the function returns, and you don’t need to type return to make the return happen. Of course, if you want to return a value early from the function (before the last line), you’ll want to use return.


  Here is a simple example of a function that returns a value early. Interestingly, the code compiles! It even returns the same Hello, world number 8 output as before:

  fn give_number() -> i32 {
    return 8;
    10;
}
 
fn main() {
    println!("Hello, world number {}", give_number());
}


  It compiles because there is nothing wrong with the code: the give_number() function returns an i32 as it is supposed to. However, Rust does notice that the function will never reach the line below return 8; and gives a warning:

  warning: unreachable expression
 --> src/main.rs:3:5
  |
2 |     return 8;
  |     -------- any code following this expression is unreachable
3 |     10;
  |     ^^ unreachable statement
  |
  = note: `#[warn(unreachable_code)]` on by default


  So there is no reason for us to use an early return here, but Rust will still run the code for us.


  When you want to give variables to a function, put them inside the (). You have to give them a name and write the type:

  fn multiply(number_one: i32, number_two: i32) {   ①
    let result = number_one * number_two;
    println!("{} times {} is {}", number_one, number_two, result);
}
 
fn main() {
    multiply(8, 9);                               ②
    let some_number = 10;                         ③
    let some_other_number = 2;
    multiply(some_number, some_other_number);     ④
}


  ① This function will take two i32s, and we will call them number_one and number_two.


  ② We can pass in the two numbers directly to the function.


  ③ Or, we can declare two i32 variables...


  ④ ...and pass them into the function.


  The output for this sample is

  8 times 9 is 72
10 times 2 is 20


  We can also return an i32. Just take out the semicolon at the end:

  fn multiply(number_one: i32, number_two: i32) -> i32 {
    let result = number_one * number_two;               ①
    result                                              ②
}
 
fn main() {
    let multiply_result = multiply(8, 9);
    println!("The two numbers multiplied are: {multiply_result}");
}


  ① Makes a number called result here


  ② Puts it on the last line to return it


  The output will be

  The two numbers multiplied are: 72


  In fact, we don’t even need to declare a variable before returning it. This code generates the same output:

  fn multiply(number_one: i32, number_two: i32) -> i32 {
    number_one * number_two                            ①
}
 
fn main() {
    let multiply_result = multiply(8, 9);
    println!("The two numbers multiplied are: {}", multiply_result);
}


  ① This means “return the result of number_one * number_two.”


  One reason that Rust is so fast is that it knows exactly how long variables need to use memory. Once the variables don’t need memory, they are dropped, and Rust frees up that memory automatically. Let’s now learn about declaring variables and how long they live for.


  NOTE How Rust manages memory is different from garbage collection! Most languages have a garbage collector that handles cleaning up memory. In other languages like C and C++, you clean up memory yourself. Rust doesn’t have a garbage collector, same as C and C++. But Rust is also different: it is smart enough to know exactly when a variable doesn’t need to exist anymore and frees the memory for you.


  
1.7 Declaring variables and code blocks


  In Rust, we use the let keyword to declare a variable. A variable is just a name that represents some type of information in the same way that a real name represents a person:

  fn main() {
    let my_number = 8;         ①
    println!("Hello, number {}", my_number);
}


  ① Creates the variable my_number that is the number 8


  Since 2021, you can capture variables inside the {} of println!, so you can also do this:

  fn main() {
    let my_number = 8;
    println!("Hello, number {my_number}");
}


  In this book, we’ll use both methods for printing. Sometimes writing the variable name inside {} looks better:

  fn main() {
    let color1 = "red";
    let color2 = "blue";
    let color3 = "green";
 
    println!("I like {color1} and {color2} and {color3}");
}


  But sometimes using a comma after {} looks better:

  fn main() {
    let naver_base_url = "naver";
    let google_base_url = "google";
    let microsoft_base_url = "microsoft";
 
    println!("The url is www.{naver_base_url}.com");         ①
    println!("The url is www.{google_base_url}.com");        ①
    println!("The url is www.{microsoft_base_url}.com");     ①
    
    println!("The url is www.{}.com", naver_base_url);       ②
    println!("The url is www.{}.com", google_base_url);      ②
    println!("The url is www.{}.com", microsoft_base_url);   ②
}


  ① Printing this way is okay.


  ② But this way it lines up much nicer.


  As we saw previously, a variable’s lifetime starts and ends inside a code block: {}. This example will generate an error because my_number is inside its own code block and its lifetime ends before we try to print it:

  fn main() {
    {
        let my_number = 8;                      ①
    }
    println!("Hello, number {}", my_number);    ②
}


  ① The variable my_number starts here but ends just one line later!


  ② Error: there is no my_number for println! to print.


  However, you can return a value from a code block to keep it alive. Take a close look at how this works:

  fn main() {
    let my_number = {
    let second_number = 8;
        second_number + 9     ①
    };
 
    println!("My number is: {}", my_number);
}


  ① No semicolon, so the code block returns 8 + 9. It works just like returning from a function.


  The value of second_number is 8, and we return second_number + 9, so this is like writing let my_number = 8 + 9. And because the block returns the value, my_number never lives inside the block; instead, it gets its value from the return value at the end of the block.


  If you add a semicolon inside the block, it will return () (nothing):

  fn main() {
    let my_number = {
    let second_number = 8;                        ①
        second_number + 9;                        ②
    };
 
    println!("My number is: {:?}", my_number);    ③
}


  ① Here we declare a variable second_number and add 9 to it.


  ② But we added a semicolon, so my_number is not an i32! The block returns a () instead, and second_number dies here.


  ③ my_number is ().


  So why did we write {:?} and not {}? We will talk about that now.


  
1.8 Display and Debug


  Simple variables in Rust can be printed with {} inside println!. This is called Display printing. But some variables won’t be able to use {} to print, and you need Debug printing. You can think of Debug printing as printing for the programmer because it usually shows more information—and is usually less pretty.


  How do you know if you need {:?} and not {}? The compiler will tell you. Let’s try printing () with Display to see the error:

  fn main() {
    let doesnt_print = ();
    println!("This will not print: {}", doesnt_print);
}


  When we run this, the compiler says

  error[E0277]: `()` doesn't implement `std::fmt::Display`
 --> src\main.rs:3:41
  |
3 |     println!("This will not print: {}", doesnt_print);
  |                                         ^^^^^^^^^^^^ `()` 
  ➥cannot be formatted with the default formatter
  |
  = help: the trait `std::fmt::Display` is not implemented for `()`
  = note: in format strings you may be able to use `{:?}` (or {:#?} 
  ➥for pretty-print) instead
  = note: required by `std::fmt::Display::fmt`


  This is quite a bit of information. There is also one important word here: trait. Traits are important in Rust, and we will learn about them throughout the book. But for now, you can think of the word trait as “what a type can do.” So if the compiler says The trait Display is not implemented, it means “the type doesn’t have Display capabilities.”


  Now, here is the important part of the error message:

  you may be able to use {:?} (or {:#?} for pretty-print) instead.


  This means that you can try {:?} or {:#?}. {:#?}, is known as “pretty printing.” It is the same as Debug with {:?} but prints with different formatting over more lines.


  So, with {:?}, you’ll see this sort of output:

  User { name: "Mr. User", user_number: 101 }


  {:#?} will look more like this, over more lines:

  User {
    name: "Mr. User",
    user_number: 101,
}


  One more thing: you can also use print! without ln if you don’t want to add a new line.

  fn main() {
    print!("This will not print a new line");
    println!(" so this will be on the same line");
}


  This prints This will not print a new line so this will be on the same line.


  To sum up, here are the three ways to print that we’ve learned:


  
    	
      {}—Display print. More types have Debug than Display, so if a type you want to print can’t print with Display, you can try Debug.

    


    	
      {:?}—Debug print. If there is too much information on one line, you can try {:#?}.

    


    	
      {:#?}—Debug print, but pretty. Pretty means that each part of a type is printed on its own line to make it easier to read.

    

  


  There is quite a bit more to printing in Rust, and we will learn more about it in the next chapter. Now, let’s get back to some more basic information about Rust’s easiest types.


  
1.9 Smallest and largest numbers


  If you want to see the smallest and biggest numbers, you can use MIN and MAX after the name of the type:

  fn main() {
    println!("The smallest i8: {} The biggest i8: {}", i8::MIN, i8::MAX);
    println!("The smallest u8: {} The biggest u8: {}", u8::MIN, u8::MAX);
    println!("The smallest i16: {} The biggest i16: {}", i16::MIN, i16::MAX);
    println!("The smallest u16: {} and the biggest u16: {}", u16::MIN, u16::MAX);
    println!("The smallest i32: {} The biggest i32: {}", i32::MIN, i32::MAX);
    println!("The smallest u32: {} The biggest u32: {}", u32::MIN, u32::MAX);
    println!("The smallest i64: {} The biggest i64: {}", i64::MIN, i64::MAX);
    println!("The smallest u64: {} The biggest u64: {}", u64::MIN, u64::MAX);
    println!("The smallest i128: {} The biggest i128: {}", i128::MIN, i128::MAX);
    println!("The smallest u128: {} The biggest u128: {}", u128::MIN, u128::MAX);
}


  This will print the following:

  The smallest i8: -128 The biggest i8: 127
The smallest u8: 0 The biggest u8: 255
The smallest i16: -32768 The biggest i16: 32767
The smallest u16: 0 and the biggest u16: 65535
The smallest i32: -2147483648 The biggest i32: 2147483647
The smallest u32: 0 The biggest u32: 4294967295
The smallest i64: -9223372036854775808 The biggest i64: 9223372036854775807
The smallest u64: 0 The biggest u64: 18446744073709551615
The smallest i128: -170141183460469231731687303715884105728 The biggest i128: 
➥170141183460469231731687303715884105727 The smallest u128: 0 
➥The biggest u128: 340282366920938463463374607431768211455


  By the way, MIN and MAX are written in all capitals because they are consts (unchangeable global values). In this case, they are consts, which are attached to their types with a :: in between. We will learn more about consts in the next chapter.


  
1.10 Mutability (changing)


  When you declare a variable with let, it is immutable (cannot be changed). So this will not work:

  fn main() {
    let my_number = 8;
    my_number = 10;
}


  You can’t change my_number because variables are immutable if you only write let. The compiler message is pretty detailed:

  error[E0384]: cannot assign twice to immutable variable `my_number`
 --> src/main.rs:3:5
  |
2 |     let my_number = 8;
  |         ---------
  |         |
  |         first assignment to `my_number`
  |         help: consider making this binding mutable: `mut my_number`
3 |     my_number = 10;



  But sometimes you want to be able to change your variable, and the compiler has given us some advice if we want to do so. To make a variable that you can change, add mut after let:

  fn main() {
    let mut my_number = 8;
    my_number = 10;
}


  Now there is no problem. However, you cannot change the type of a variable even if you declare it as mut. So the following will not work:

  fn main() {
    let mut my_variable = 8;
    my_variable = "Hello, world!";
}


  You will see the same “expected” message from the compiler:

  error[E0308]: mismatched types
 --> src/main.rs:3:19
  |
2 |     let mut my_variable = 8;
  |                           - expected due to this value
3 |     my_variable = "Hello, world!";
  |                   ^^^^^^^^^^^^^^^ expected integer, found `&str`


  By the way, &str is a string type we will learn soon.


  
1.11 Shadowing


  Now that we know the basics of mutability, it’s time to learn about shadowing. Shadowing means using let to declare a new variable with the same name as another variable. It looks like mutability, but it is completely different. Be sure not to confuse them! Shadowing looks like this:

  fn main() {
    let my_number = 8;           ①
    println!("{}", my_number);
    let my_number = 9.2;         ②
    println!("{}", my_number);
}


  ① A regular i32 called my_number


  ② This is an f64 with the same name. But it’s not the first my_number ; it is completely different!


  Here we say that we “shadowed” my_number with a new “let binding.” The variable my_number is now pointing to a completely different value.


  So, is the first my_number destroyed? No, but when we call my_number, we now get my_number the f64. Because they are in the same scope block (the same {}), we can’t see the first my_number anymore.


  But if they are in different blocks, we can see both. Let’s take the same example and put the second my_number inside a different block to see what happens:

  fn main() {
    let my_number = 8;
    println!("{}", my_number);
    {
        let my_number = 9.2;
        println!("{}", my_number);    ①
    }
    println!("{}", my_number);        ②
}


  ① This prints 9.2 because the second my_number is shadowing the first my_number. But the second my_number only lives until the end of this block. The first my_number is still alive!


  ② Prints 8, not 9.2


  So, when you shadow a variable with a new variable with the same name, you don’t destroy the first one. You block it.


  Imagine that there’s a classroom with a student named Brian who always says true (he’s a bool). Every time you call out his name, he tells you his value. Then one day a new student comes in who is also named Brian and sits in front of the other Brian. The second Brian is shadowing the first one.


  
    [image: ]

  


  This second Brian is a completely different type: he’s a string that says “I’m Brian” every time. Now, every time you call Brian and ask his value, you’ll get something completely different. But let’s say that the second Brian was only visiting from another school and later leaves—he’s in a smaller “scope.” Now, when you call out the name Brian, you’ll hear true again because the first Brian is still there (his scope lasts longer).


   What is the advantage of shadowing? Shadowing is good when you need to work on a variable a lot and you don’t care about it in between. Imagine that you want to do a lot of simple math with a variable:

  fn times_two(number: i32) -> i32 {
    number * 2
}
 
fn main() {
    let final_number = {
        let y = 10;
        let x = 9;
        let x = times_two(x);     ①
        let x = x + y;            ②
        x                         ③
    };
    println!("The number is now: {}", final_number)
}


  ① Shadows with x: 18


  ② Shadows again with x: 28


  ③ Returns x: final_number is now the value of x


  This prints The number is now: 28.


  Without shadowing, you would have to think of different names, even though you don’t care about x. Let’s pretend we wanted to do the same thing, but Rust didn’t allow shadowing. We would have to come up with a new variable name each time:

  fn times_two(number: i32) -> i32 {
    number * 2
}
 
fn main() {
    let final_number = {
        let y = 10;
        let x = 9;
        let x_twice = times_two(x);        ①
        let x_twice_and_y = x_twice + y;   ②
        x_twice_and_y
    };
    println!("The number is now: {}", final_number)
}


  ① Here we would have to come up with a new variable name.


  ② And here again!


  Shadowing can be useful when working with mutability, too. In the following example, we have a number called x again. We’d like to change its value, and we don’t care about the original variable called x. In this case, we can shadow it with a new mutable variable that is a float, and now we can change it:

  fn main() {
    let x = 9
    let mut x = x as f32;
    x += 0.5;              ①
}


  ① The value is now 9.5.


  In general, you see shadowing in Rust in cases like these: working quickly with variables we don’t care too much about or getting around Rust’s strict rules about types, mutability, and so on.


  So that’s it for the first chapter. If you know another programming language, you might have noticed that Rust is very familiar but quite different in some areas. And if Rust is your first language, that’s fine, too. Everything will be new to you, but you won’t have any habits to unlearn either.


  In the next chapter, we are going to learn about how memory works and how data is owned. Ownership is one of Rust’s most unique concepts, so we’ll spend a lot of time thinking about it.


  
Summary


  
    	
      You can write whatever you want in your comments, and if you write them with ///, Rust can automatically use them to document your code.

    


    	
      You can tell Rust the type name of a variable you are making, but most of the time, you don’t need to.

    


    	
      Understanding how binary works gives you a sense of which integer type is best to use.

    


    	
      Variables live inside {} code blocks (scopes). Variables created inside can’t leave them unless they are the return value into another larger scope.

    


    	
      You can change a variable in Rust if you make it mutable with mut. Otherwise, the compiler will give an error if you try.

    


    	
      Shadowing is completely different from mutability: it’s just a variable with the same name that blocks the other one.

    

  


  
2 Memory, variables, and ownership


  This chapter covers


  
    	
The stack, the heap, pointers, and references


    	
Strings, the most common way to work with text


    	
const and static, variables that last forever


    	
More on shadowing


    	
Copy types



    	
More about printing

  


  In this chapter, you’ll see how Rust keeps you thinking about the computer itself. Rust keeps you focused on how the computer’s memory is being used for your program and what ownership is (who owns the data). Remember this word, ownership—it’s probably Rust’s most unique idea. We’ll start with the two types of memory a computer uses: the stack and the heap.


  Oh, and there’s quite a bit more to learn about printing to build on what you learned in the last chapter. Look for that at the end!


  
2.1 The stack, the heap, pointers, and references


  Understanding the stack, the heap, pointers, and references is very important in Rust. We’ll start with the stack and the heap, which are two places to keep memory in computers. Here are some important points to keep in mind:


  
    	
      The stack is very fast, but the heap is not so fast. It’s not super slow either, but the stack is usually faster.

    


    	
      The stack is fast because it is like a stack: memory for a variable gets stacked on top of the last one, right next to it. When a function is done, it removes the value of the variables starting from the last one that was added, and now the memory is freed again. Some people compare the stack to a stack of dishes: you put one on top of the other, and if you want to unstack them, you take the top one off first, then the next top one, and so on. The dishes are all right on top of each other, so they are quick to find. But you can’t use the stack all the time.

    


    	
      Rust needs to know the size of a variable at compile time. So simple variables like i32 can go on the stack because we know their exact size. You always know that an i32 is 4 bytes because 32 bits = 4 bytes. So, i32 can always go on the stack.

    


    	
      Some types don’t know the size at compile time. And yet, the stack needs to know the exact size. So what do you do? First, you put the data in the heap because the heap can have any size of data. (You don’t have to do this yourself; the program asks the computer for a piece of memory to put the data in.) And then, to find it, a pointer goes on the stack. This is fine because we always know the size of a pointer. So, then the computer first goes to the pointer, reads the address information, and follows it to the heap where the data is.

    


    	
      Sometimes you can’t even use heap memory! If you are programming in Rust for a small embedded device, you are going to have to use only stack memory. There’s no operating system to ask for heap memory on a small embedded device.

    

  


  Pointers sound complicated, but they don’t have to be. Pointers are like a table of contents in a book. Take this book, for example.
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  This table of contents is like five pointers. You can read them and find the information they are talking about. Where is the chapter “My life”? It’s on page 1 (it points to page 1). And where is the chapter “My job”? It’s on page 23.


  The pointer you usually see in Rust is called a reference, which you can think of as a memory-safe pointer: a reference point to owned memory and not just unsafe random memory locations. The important thing to know about a reference is this: a reference points to the memory of another value. A reference means you borrow the value, but you don’t own it. It’s the same as our book: the table of contents doesn’t own the information. The chapters own the information. In Rust, references have a & in front of them:


  
    	
      let my_variable = 8 makes a regular variable.

    


    	
      let my_reference = &my_variable makes a reference to the data held by my_ variable.

    

  


  You read my_reference = &my_variable like this: “my_reference is a reference to my_ variable” or “my_reference refers to my_variable.” This means that my_reference is only looking at the data of my_variable; my_variable still owns its data.


  You can even have a reference to a reference or any number of references:

  fn main() {
    let my_number = 15;                        ①
    let single_reference = &my_number;         ②
    let double_reference = &single_reference;  ③
    let five_references = &&&&&my_number;      ④
}


  ① This is an i32.


  ② This is an &i32.


  ③ This is an &&i32.


  ④ This is an &&&&&i32.


  These are all different types, just in the same way that “a friend of a friend” is different from “a friend.” In practice, you probably won’t see references that are five deep, but you will sometimes see a reference to a reference.


  
2.2 Strings


  Rust has two main types of strings: String and &str. Why are there two types, and what is the difference?


  
    	
      A &str is a simple string. It’s just a pointer to the data plus the length. Usually, you’ll hear it pronounced like “ref-stir.” With the pointer to the data plus the length, Rust can see where it starts and where it ends. When you write let my_ variable = "Hello, world!", you create a &str. It is also called a string slice. That’s because &str uses the pointer to find the data and the length to know how much to look at. It might just be a partial view of the data owned by some other variable, so just a slice of it.

    


    	
      String is a bit more complicated string. It may be a bit slower, but it has more functionality. A String is a pointer with data on the heap. The biggest difference is that a String owns its data, while a &str is a slice (a view into some data). A String is easy to grow, shrink, mutate, and so on.

    

  


  Also, note that &str has the & in front of it because you need a reference to use a str for the same previously discussed reason: the stack needs to know the size, and a str can be of any length. So we access it with a &, a reference. The compiler knows the size of a reference’s pointer, and it can then use the & to find where the str data is and read it. Also, because you use a & to interact with a str, you don’t own it. But a String is an “owned” type. We will soon learn why that is important to know.


  Both &str and String are encoded with UTF-8, which is the main character-encoding system used worldwide. So the content inside a &str or String can be in any language:

  fn main() {
    let name = "자우림";                                         ①
    let other_name = String::from("Adrian Fahrenheit Țepeș");   ②
}


  ① This &str of a Korean rock band’s name is no problem; Korean characters are UTF-8, too.


  ② This String holding a famous vampire’s name is no problem either: Ţ and ș are valid UTF-8.


  You can see in String::from("Adrian Fahrenheit Țepeș") that it is easy to make a String from a &str. This second variable is an owned String.


  You can even write emojis, thanks to UTF-8:

  fn main() {
    let name = "😂";
    println!("My name is actually {}", name);
}


  On your computer, that will print My name is actually 😂 unless your command line can’t print it. Then it will show something like My name is actually . But Rust itself has no problem with emojis or any other Unicode, even if your command line can’t display them.


  Let’s look at the reason for using a & for strs again to make sure we understand. A str is a dynamically sized type. Dynamically sized means that the size can be different. For example, the two names we saw before (자우림 and Adrian Fahrenheit Țepeș) are not the same size. We can see this with two functions: size_of, which shows the size of a type, and size_of_val, which shows the size of a value pointed to. It looks like this:

  fn main() {
    let size_of_string = std::mem::size_of::<String>();      ①
    let size_of_i8 = std::mem::size_of::<i8>();
    let size_of_f64 = std::mem::size_of::<f64>();
    let size_of_jaurim = std::mem::size_of_val("자우림");     ②
    let size_of_adrian = std::mem::size_of_val("Adrian Fahrenheit Țepeș");
 
    println!("A String is Sized and always {size_of_string} bytes.");
    println!("An i8 is Sized and always {size_of_i8} bytes.");
    println!("An f64 is always Sized and {size_of_f64} bytes.");
    println!("But a &str is not Sized: '자우림' is {size_of_jaurim} bytes.");
    println!("And 'Adrian Fahrenheit Țepeș' is {size_of_adrian} bytes - not Sized.");
}


  ① std::mem::size_of::<Type>() gives you the size of a type in bytes.


  ② std::mem::size_of_val() gives you the size in bytes of a value.


  This prints

  A String is Sized and always 24 bytes.
An i8 is Sized and always 1 bytes.
An f64 is always Sized and 8 bytes.
But a &str is not Sized: '자우림' is 9 bytes.
And 'Adrian Fahrenheit Țepeș' is 25 bytes - not Sized.


  That is why we need a & because it makes a pointer, and Rust knows the size of the pointer. So, only the pointer goes on the stack. If we wrote str, Rust wouldn’t know what to do because it doesn’t know the size. Actually, you can try it out by telling it to make a str instead of a &str:

  fn main() {
    let my_name: str = "My name";
}


  Here’s the error:

  error[E0308]: mismatched types
 --> src/main.rs:2:24
  |
2 |     let my_name: str = "My name";
  |                  ---   ^^^^^^^^^ expected `str`, found `&str`
  |                  |
  |                  expected due to this
 
error[E0277]: the size for values of type `str` 
➥cannot be known at compilation time
 --> src/main.rs:2:9
  |
2 |     let my_name: str = "My name";
  |         ^^^^^^^ doesn't have a size known at compile-time
  |
  = help: the trait `Sized` is not implemented for `str`
  = note: all local variables must have a statically known size
  = help: unsized locals are gated as an unstable feature
help: consider borrowing here
  |
2 |     let my_name: &str = "My name";
  |                  +


  Not a bad error message! The compiler itself seems to enjoy teaching Rust.


  There are many ways to make a string. Here are some:


  
    	
      String::from("This is the string text");—This is a method for String that takes text and creates a string.

    


    	
      "This is the string text".to_string()—This is a method for &str that makes it into a String.

    


    	
      The format! macro—This works just like println!, except it creates a string instead of printing. So you can do this:

    

  

  fn main() {
    let name = "Billybrobby";
    let country = "USA";
    let home = "Korea";
    let together = format!("I am {name} from {country} but I live in {home}.");
}


  Now we have a String named together, but we have not printed it yet.


  Another way to make a String is called .into(), but it is a bit different because .into() isn’t for making a string; it’s for converting from one type into another type. Some types can easily convert to and from another type using From:: and .into(); if you have From, you also have .into(). From is clearer because you already know the types: you know that String::from("Some str") is a String from a &str. But with .into(), sometimes the compiler doesn’t know:

  fn main() {
    let my_string = "Try to make this a String".into();
}


  NOTE How does this happen? It’s thanks to something called a blanket trait implementation. We’ll learn about that much later.


  Rust doesn’t know what type you want because many types can be made from a &str. It is saying, “I can make a &str into a lot of things, so which one do you want?”

  error[E0282]: type annotations needed
 --> src\main.rs:2:9
  |
2 |     let my_string = "Try to make this a String".into();
  |         ^^^^^^^^^ consider giving `my_string` a type


  So, you can do this:

  fn main() {
    let my_string: String = "Try to make this a String".into();
}


  And now you get a String.


  Next up are two keywords that let you make global variables. Global variables last forever, so you don’t need to think about ownership for them!


  
2.3 const and static


  There are two other ways to declare values without the keyword let. These two are known as const and static. Another difference is that Rust won’t use type inference for them: you need to write their type. These are for values that don’t change (const means constant). Well, technically, static can change, but we will learn about that later. The two main differences are 


  
    	
      const is for values that don’t change and are created at compile time.

    


    	
      static is similar to const but has a fixed memory location. It might not be created at compile time.

    

  


  For the time being, you can think of them as almost the same. For a global variable, Rust programmers will usually use const, but there are good reasons for the static keyword, too. You’ll know about the key differences between the two by the end of chapter 16.


  You write them with ALL CAPITAL LETTERS and usually outside of main so that they can live for the whole program. Two quick examples are

  const NUMBER_OF_MONTHS: u32 = 12;
static SEASONS: [&str; 4] = ["Spring", "Summer", "Fall", "Winter"];


  Because they are global, you can access them anywhere, and they don’t get dropped. Here’s a quick example. Note that this print_months() function has no input, but no problem—NUMBER_OF_MONTHS can be accessed from anywhere:

  const NUMBER_OF_MONTHS: u32 = 12;
 
fn print_months() {                       ①
    println!("Number of months in the year: {NUMBER_OF_MONTHS}");
}
 
fn main() {
    print_months();
}


  ① This function takes no input!


  That was pretty convenient. So, why not just make everything global? One reason is that these types are made at compile time, before the program runs. If you don’t know what a value is during compile time, you can’t make it a const or static. Also, you can’t use the heap during compile time because the program needs to perform a memory allocation (an allocation is like a reservation for heap memory). Don’t worry: you don’t need to allocate memory yourself. Rust takes care of memory allocation for you.


  const and static are pretty easy: if the compiler lets you make one, you have it to use anywhere, and you don’t have to worry about ownership. So let’s move on to references because for those you need to understand ownership, and that takes a bit longer to learn.


  
2.4 More on references


  We have learned about references in general, and we know that we use & to create a reference. Let’s look at an example of some code with references:

  fn main() {
    let country = String::from("Austria");
    let ref_one = &country;
    let ref_two = &country;
    println!("{}", ref_one);
}


  This prints Austria.


  Inside the code is the variable country, which is a String and, therefore, owns its data. We then created two references to country. They have the type &String, which is a “reference to a String.” These two variables can look at the data owned by country. We could create 3 references or 100 references to country, and it would be no problem because they are just viewing the data.


  But this next code is a problem. Let’s see what happens when we try to return a reference to a String from a function:

  fn return_str() -> &String {
    let country = String::from("Austria");
    let country_ref = &country;
    country_ref
}
 
fn main() {
    let country = return_str();
}


  Here’s what the compiler says:

  error[E0515]: cannot return value referencing local variable country
 --> src/main.rs:4:5
  |
3 |     let country_ref = &country;
  |                       -------- `country` is borrowed here
4 |     country_ref
  |     ^^^^^^^^^^^ returns a value referencing data owned by the current function


  The function return_str() creates a String, and then it creates a reference to the String. Then it tries to return the reference. But the String called country only lives inside the function, and then it dies (remember, a variable only lives as long as its code block). Once a variable is gone, the computer will clean up the memory so that it can be used for something else. So after the function returns, country_ref would be referring to memory that is already gone. Definitely not okay! Rust prevents us from making a mistake with memory here.


  This is the important part about the “owned” type that we talked about previously. Because you own a String, you can pass it around. But a &String will die if its String dies, and you don’t pass around ownership with it.


  
2.5 Mutable references


  If you want to use a reference to change data, you can use a mutable reference. For a mutable reference, you write &mut instead of &:

  fn main() {
    let mut my_number = 8;         ①
    let num_ref = &mut my_number;
}


  ① Don’t forget to write mut here!


  So what are these two types called? my_number is an i32, and num_ref is &mut i32. In speech, you call this a “mutable reference to an i32” or a “ref mut i32.”


  Let’s use it to add 10 to my_number. However, you can’t write num_ref += 10 because num_ref is not the i32 value; it is an &i32. There’s nothing to add inside a reference. The value to add is actually inside the i32. To reach the place where the value is, we use *. Using * lets you move from the reference to the value behind the reference. In other words, * is the opposite of &. Also, one * erases one &.


  The following code demonstrates these two concepts. It uses * to change the value of a number through a mutable reference and shows that one * equals one &.

  fn main() {
    let mut my_number = 8;
    let num_ref = &mut my_number;
    *num_ref += 10;                 ①
    println!("{}", my_number);
 
    let second_number = 800;
    let triple_reference = &&&second_number;
    println!("Are they equal? {}", second_number == ***triple_reference);
}


  ① Use * to change the i32 value.


  This prints

  18
Are they equal? true


  Because using & is called referencing, using * is called dereferencing.


  
2.5.1 Rust’s reference rules


  Rust has two rules for mutable and immutable references. They are very important but easy to remember because they make sense:


  
    	
      Rule 1 (immutable references)—You can have as many immutable references as you want: 1 is fine, 3 is fine, 1,000 is fine. It’s no problem because you’re just viewing data.

    


    	
      Rule 2 (mutable references)—You can only have one mutable reference. Also, you can’t have an immutable reference and a mutable reference together.

    

  


  Because mutable references can change the data, you could have problems if you change the data when other references are reading it. A good way to understand is to think of a presentation made with Powerpoint or on Google Docs. Let’s look at some ownership situations through a comparison with real life and determine whether they are okay or not.


  
2.5.2 Situation 1: Only one mutable reference


  Say you are an employee writing a presentation using Google Docs online. You own the data. Now you want your manager to help you. You log in with your account on your manager’s computer and ask the manager to help by making edits. Now, the manager has a mutable reference to your presentation but doesn’t own your computer. The manager can make any changes wanted and then log out after the changes are done. This is fine because nobody else is looking at the presentation.


  
2.5.3 Situation 2: Only immutable references


  Say you are giving the presentation to 100 people. All 100 people can now see your data. They all have an immutable reference to your presentation. This is fine because they can see it, but nobody can change the data. One thousand or 1 million more people can come to the presentation, and it wouldn’t make any difference.


  
2.5.4 Situation 3: The problem situation


  Say you log in on your manager’s computer, as before. The manager now has a mutable reference. Then you give the presentation to 100 people, but the manager hasn’t logged out yet. This is definitely not fine because the manager can still do anything on the computer. Maybe the manager will delete the presentation and start typing an email or even something worse! Now, the 100 people have to watch the manager’s random computer activity instead of the presentation. That’s unexpected behavior and exactly the sort of situation that Rust prevents.


  Here is an example of a mutable borrow with an immutable borrow:

  fn main() {
    let mut number = 10;
    let number_ref = &number;
    let number_change = &mut number;
    *number_change += 10;
    println!("{}", number_ref);
}


  The compiler prints a helpful message to show us the problem:

  error[E0502]: cannot borrow `number` as mutable because it is also borrowed as immutable
 --> src\main.rs:4:25
  |
3 |     let number_ref = &number;
  |                      ------- immutable borrow occurs here
4 |     let number_change = &mut number;
  |                         ^^^^^^^^^^^ mutable borrow occurs here
5 |     *number_change += 10;
6 |     println!("{}", number_ref);
  |                    ---------- immutable borrow later used here


  Take a close look at the next code sample. In the sample, we create a mutable variable and then a mutable reference. The code changes the value of the variable through the reference. Finally, it creates an immutable reference and prints the value using the immutable reference. That sounds like a mutable borrow together with an immutable borrow, but the code works. Why?
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