

 inside front cover

 [image:]

 Prototypical release pipeline

 [image:]

 Grokking Continuous Delivery

 Christie Wilson

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Ian Hough

 	
 Technical development editor:

 	
 Mark Elston

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Kathleen Rossland

 	
 Copy editor:

 	
 Sharon Wilkey

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Ninoslav Cerkez

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Leslie Hames

 ISBN: 9781617298257

 dedication

 To my daughter, Alexandra, my most important delivery to date!

brief contents

 Part 1. Introducing continuous delivery

 1 Welcome to Grokking Continuous Delivery

 2 A basic pipeline

 Part 2. Keeping software in a deliverable state at all times

 3 Version control is the only way to roll

 4 Use linting effectively

 5 Dealing with noisy tests

 6 Speeding up slow test suites

 7 Give the right signals at the right times

 Part 3. Making delivery easy

 8 Easy delivery starts with version control

 9 Building securely and reliably

 10 Deploying confidently

 Part 4. CD design

 11 Starter packs: From zero to CD

 12 Scripts are code, too

 13 Pipeline design

 Appendices:

 Appendix A. CD systems

 Appendix B. Version control systems

contents

 Front matter

 forewords

 preface

 acknowledgments

 about this book

 about the author

 Part 1. Introducing continuous delivery

 1 Welcome to Grokking Continuous Delivery

 Do you need continuous delivery?

 Why continuous delivery?

 Continuous delivery

 Integration

 Continuous integration

 What do we deliver?

 Delivery

 Continuous delivery/deployment

 Elements of continuous delivery

 Conclusion

 2 A basic pipeline

 Cat Picture Website

 Cat Picture Website source code

 Cat Picture Website pipelines

 What’s a pipeline? What’s a task?

 The basic tasks in a CD pipeline

 Gates and transformations

 CD: Gates and transformations

 Cat Picture Website service pipeline

 Running the pipeline

 Running once a day

 Trying continuous integration

 Using notifications

 Scaling manual effort

 Automation with webhooks

 Scaling with webhooks

 Don’t push changes when broken

 Cat Picture Website CD

 What’s in a name?

 Conclusion

 Part 2. Keeping software in a deliverable state at all times

 3 Version control is the only way to roll

 Sasha and Sarah’s start-up

 All kinds of data

 Source and software

 Repositories and versions

 Continuous delivery and version control

 Git and GitHub

 An initial commit—with a bug!

 Breaking main

 Pushing and pulling

 Are we doing continuous delivery?

 Keep version control releasable

 Trigger on changes to version control

 Triggering the User service pipeline

 Building the User service

 The User service in the cloud

 Connecting to the RandomCloud database

 Managing the User service

 The User service outage

 Outsmarted by automation

 What’s the source of truth?

 User service config as code

 Configuring Deployaker

 Config as code

 Rolling out software and config changes

 Conclusion

 4 Use linting effectively

 Becky and Super Game Console

 Linting to the rescue!

 The lowdown on linting

 The tale of Pylint and many, many issues

 Legacy code: Using a systematic approach

 Step 1: Configure against coding standards

 Step 2: Establish a baseline

 Step 3: Enforce at submission time

 Adding enforcement to the pipeline

 Step 4: Divide and conquer

 Isolation: Not everything should be fixed

 Enforcing isolation

 Not all problems are created equal

 Types of linting issues

 Bugs first, style later

 Jumping through the hoops

 Conclusion

 5 Dealing with noisy tests

 Continuous delivery and tests

 Ice Cream for All outage

 Signal vs. noise

 Noisy successes

 How failures become noise

 Going from noise to signal

 Getting to green

 Another outage!

 Passing tests can be noisy

 Fixing test failures

 Ways of failing: Flakes

 Reacting to failures

 Fixing the test: Change the code or the test?

 The dangers of retries

 Retrying revisited

 Why do we retry?

 Get to green and stay green

 Conclusion

 6 Speeding up slow test suites

 Dog Picture Website

 When simple is too simple

 New engineer tries to submit code

 Tests and continuous delivery

 Diagnosis: Too slow

 The test pyramid

 Fast tests first

 Two pipelines

 Getting the right balance

 Changing the pyramid

 Safely adjusting tests

 Test Coverage

 Enforcing test coverage

 Test coverage in the pipeline

 Moving tests in the pyramid with coverage

 What to move down the pyramid?

 Legacy tests and FUD

 Running tests in parallel

 When can tests run in parallel?

 Updating the pipelines

 Still too slow!

 Test sharding, aka parallel++

 How to shard

 More complex sharding

 Sharded pipeline

 Sharding the browser tests

 Sharding in the pipeline

 Dog Picture Website’s pipelines

 Conclusion

 7 Give the right signals at the right times

 CoinExCompare

 Life cycle of a change

 CI only before merge

 Timeline of a change’s bugs

 CI only before merging misses bugs

 A tale of two graphs: Default to seven days

 A tale of two graphs: Default to 30 days

 Conflicts aren’t always caught

 What about the unit tests?

 PR triggering still lets bugs sneak in

 CI before AND after merge

 Option 1: Run CI periodically

 Option 1: Setting up periodic CI

 Option 2: Require branches to be up-to-date

 Option 2: At what cost?

 Option 3: Automated merge CI

 Option 3: Running CI with the latest main

 Option 3: Merge events

 Option 3: Merge queues

 Option 3: Merge queue for CoinExCompare

 Where can bugs still happen?

 Flakes and PR-triggered CI

 Catching flakes with periodic tests

 Bugs and building

 CI vs. build and deploy

 Build and deploy with the same logic

 Improved CI pipeline with building

 Timeline of a change revisited

 Conclusion

 Part 3. Making delivery easy

 8 Easy delivery starts with version control

 Meanwhile at Watch Me Watch

 The DORA metrics

 Velocity at Watch Me Watch

 Lead time for changes

 Watch Me Watch and elite performers

 Increasing velocity at Watch Me Watch

 Integrating with AllCatsAllTheTime

 Incremental feature delivery

 Committing skipped tests

 Code review and “incomplete” code

 Keeping up the momentum

 Committing work-in-progress code

 Reviewing work-in-progress code

 Meanwhile, back at the end-to-end tests

 Seeing the benefits

 Decreasing lead time for changes

 Continuing AllCatsAllTheTime

 Deployment windows and code freezes

 Increased velocity

 Conclusion

 9 Building securely and reliably

 Top Dog Maps

 When the build process is a doc

 Attributes of secure and reliable builds

 Always releasable

 Automated builds

 Build as code

 Use a CD service

 Ephemeral build environments

 Miguel’s plan

 From a doc to a script in version control

 Automated containerized builds

 Secure and reliable build process

 Interface changes and bugs

 When builds cause bugs

 Builds and communication

 Semantic versioning

 The importance of being versioned

 Another outage!

 Build-time dependency bugs

 Pinning dependencies

 Version pinning alone isn’t a guarantee

 Pinning to hashes

 Conclusion

 10 Deploying confidently

 Plenty of deployment woes

 DORA metrics for stability

 DORA metrics at Plenty of Woofs

 Deploying less frequently?

 Deploying more frequently?

 Daily deployments vs. outages

 Steps toward increasing frequency

 Fixing problems with the process

 Rolling updates

 Fixing a bug with a rolling update

 Rollbacks

 Rollback strategy = immediate improvement

 Rollback policy in action

 Blue-green deployments

 Faster time to restore with blue-green

 Faster and more stable with canaries

 Requirements for canary deployments

 Canary deployments with baselines

 Time to restore with canary deployments

 Increasing deployment frequency

 DORA metrics with daily canary deployments

 Continuous deployment

 When to use continuous deployment

 Mandatory QA phases

 QA and continuous deployment

 Elite DORA performance

 Conclusion

 Part 4. CD design

 11 Starter packs: From zero to CD

 Starter packs: Overview

 Recap: Universal CD pipeline tasks

 Prototypical release pipeline

 Prototypical CI pipeline

 Both pipelines with triggering

 Greenfield: Getting to CD

 Gulpy

 Greenfield: Zero to CD

 First step: Does it build?

 Picking a CD system

 Setting up the initial automation

 State of the code: Linting

 State of the code: Unit tests

 State of the code: Coverage

 Moving past CI: Publishing

 Deployment

 Expanding testing

 Tasks for integration and end-to-end tests

 Completing the CI pipeline

 Gulpy’s complete pipelines

 Legacy: Getting to CD

 Rebellious Hamster

 First step: Prioritize incremental goals

 Focusing on the pain first

 Pain at Rebellious Hamster

 Know when things are broken

 Isolate and add tests

 Legacy pipeline with more tests

 Make deployments more automated

 Creating a release pipeline

 Rebellious Hamster’s release pipeline

 Rebellious Hamster’s complete pipelines

 Conclusion

 12 Scripts are code, too

 Purrfect Bank

 CD problems

 Purrfect Bank CD overview

 Payment Org’s bash libraries

 Transaction service pipeline

 Evolving from one big script

 Principles of well-designed tasks

 Breaking up the giant task

 Updated Transaction service pipeline

 Debugging bash libraries

 Investigating the bash library bug

 Why was the bug introduced?

 What is bash for?

 When is bash less good?

 Shell scripting vs. general-purpose languages

 Shell script to general-purpose language

 Migration plan

 From bash library to task with bash

 Reusable bash inside a task

 From bash to Python

 Tasks as code

 CD scripts are code, too

 Conclusion

 13 Pipeline design

 PetMatch

 Matchmaking CD pipelines

 CD pipeline problems

 End-to-end test pipeline

 End-to-end test pipeline and errors

 Finally behavior

 Finally as a graph

 Finally in the matchmaking pipeline

 End-to-end test pipeline and speed

 Parallel execution of tasks

 End-to-end test pipeline and test speed

 Parallel execution and test sharding

 End-to-end test pipeline with sharding

 End-to-end test pipeline and signal

 One CI pipeline

 Release pipeline and signal

 Differences in CI

 Combining pipelines

 Release pipeline

 Hardcoding in the release pipeline

 Pipeline reuse with parameterization

 Using reusable pipelines

 Updated pipelines

 Solving PetMatch’s CD problems

 CD features to look for

 Conclusion

 Appendices:

 Appendix A. CD systems

 Appendix B. Version control systems

 index

 front matter

forewords

 When David Farley and I wrote Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation (Addison-Wesley, 2010), we knew, from years of applying the principles described in the book, that it represented a modern, holistic approach to software delivery that brought substantial benefits to teams and organizations who used it. Multiple research programs (including the one I have been involved in, led by Dr. Nicole Forsgren and described in chapters 8 and 10 of this book) have shown that it leads to higher quality and stability, as well as faster delivery.

 Although continuous integration and continuous delivery (often shortened to CI/CD) are now thought of as standard practice, they are still surprisingly hard to implement and get right. There are still too many teams (and customers!) that deal with infrequent, risky releases that happen over evenings or weekends, planned and unplanned downtime, rollbacks, and problems with performance, availability, and security. These are all avoidable problems, but solving them requires ongoing investment in teams, tooling, and organizational culture.

 Crucially, many people who are new to the industry aren’t familiar with the fundamental practices and how to implement them. This book does an outstanding job of addressing this problem. Christie Wilson, an expert in continuous delivery who leads the open source Tekton CI/CD project at Google, has written a comprehensive, clear, and thorough book that details both the technology and process sides of implementing a modern software delivery process. She not only covers the principles and the implementation, but also shows why they are important, and provides a step-by-step guide to the hardest problems with which I see teams struggle such as taking an iterative approach to feature development and handling “legacy” codebases.

 I hope this book finds a place in every software team’s onboarding list as a primer. It will also prove invaluable as a detailed guide for more experienced software engineers adopting a way of working they’re not familiar with. I am grateful to Christie for creating a resource that I am confident will drive a better understanding of how to implement a modern software delivery process to the benefit of both the industry and the wider public we serve.

 —Jez Humble

 co-author of Continuous Delivery,

 The DevOps Handbook, and Accelerate

 The beauty of software is that everything can be improved over time. But it is also the curse of software—because we can change things, we do, essentially all the time. The relentless pressure for new features or other improvements leads to a desire for some kind of high-velocity process for integrating changes, testing them, and getting them out to users.

 Christie Wilson has lived this process and watched it from many angles, and created a book about how to get consistent velocity for your software teams. Indeed a team that can achieve a high-velocity process, with lots of automation, has a competitive advantage for their products. Over time, these teams not only gain market share, but they also have higher morale and lower attrition. It is great to be part of a productive team!

 A common misconception is that lower-velocity processes, presumably with more barriers to deployment, are safer or more secure. Many teams are averse to change and thus release changes once a quarter, for example. This approach has two serious flaws. First, it typically moves the difficult task of integrating many changes towards the end, but with so many changes to integrate since the last release, it can go horribly wrong and cause large delays. Second, a slow process prevents fast security patches, a critical goal for most teams. The approach described in this book is all about continuous (small) integrations, enabling both fast feedback on problems, and a viable mechanism for security patches.

 In the past few years, security challenges have increased dramatically, especially around “supply chain attacks.” Modern software includes components from many places—other teams, other companies, and open source software. It is not crazy to have 1,000 components that need to be integrated together. This requires a different level of automation: we need to know all of the inputs and where they came from, and how they were used together. Christie’s book is one of the first to cover these issues and outline how to add this kind of security to your systems.

 Finally, although there are a huge number of tools and options in this space, this book does a great job of covering the key concepts and goals, while also making it real through both examples and discussion of alternatives.

 I found the book a breath of fresh air in a complex space, and I hope you will enjoy it, too.

 —Eric Brewer

 VP of Infrastructure and Fellow at Google

preface

 Programming has fascinated me ever since I realized it was a thing. I remember (approximately 300 years ago) a friend telling me about a chess program he wrote; although I had absolutely no idea what he was talking about, I simultaneously realized that (a) I’d never given even a passing thought to how computers worked, and (b) I now absolutely needed to understand as much about them as I could. What followed was alternately amazing and confusing (“variables are like a mailbox” is an analogy that makes perfect sense in hindsight, but as my very first introduction to the idea, it just slid right off my brain). After my first high school class in Turbo Pascal and a lot of self-taught Java, I was hooked.

 Although I found programming itself fascinating, I became equally, if not more, intrigued by the processes that are used to organize the work of software development. I’ve spent at least half of my career being disappointed by how little attention these processes get, relative to the impact they have on not only the quality of the software but also the happiness and effectiveness of the people making the software. More than that, I was frustrated when I encountered engineers and managers who trivialized this work. This is often driven by the perception that slamming out code as fast as possible is the best way to maximize return on investment.

 Ironically, time and research have shown that speed really is a key indicator of success, but to actually make engineers fast, and make their work sustainable, speed has to be balanced with safety. Maximizing the speed and safety of software development are the heart of continuous delivery, so the concept and the practices involved resonated with me. That being said, I wasn’t aware of continuous delivery itself until fairly recently.

 What captivated me first were tests and automation. I still remember the sense of freedom I experienced when I was introduced to tests, and especially test-driven development, and I realized that I could verify the software that I was writing as I was writing it. Being able to check my work as I went felt like a huge weight lifted off my shoulders—specifically, the weight of the voice in my head that sometimes tried to convince me that I didn’t know what I was doing and that nothing I wrote would work properly. Tools and automation further helped me feel confident doing things that had huge consequences and were scary: using them is like having a friend sitting at my side, coaching me through what I’m doing.

 Continuous delivery as a concept takes the best of all the testing and automation that has empowered me during my career and packages it as a set of practices that can help anyone improve the way they develop software. I want to help engineers—especially engineers who sometimes doubt themselves or struggle with fear (and I’m guessing that describes most of us at least some of the time)—to feel the same sense of freedom, empowerment, and increased confidence that I did when I wrote a test for the first time.

 Thank you for taking the time to read this book. I hope, if nothing else, you can take away from it that most of the bugs and mistakes that happen in software have little to do with the code itself (and certainly not with the person writing the code). What really causes them is software development processes that just need a little TLC—and taking the time to update and fix those processes is well worth the investment.

acknowledgments

 First of all, thanks to my unreasonably supportive husband, Torin Sandall (technically we’re both Warwick now, but we’re still getting used to it!), who not only encouraged me through the multiple years I’ve been working on this but also taken so much off of my plate to make sure I’d be able to finish during this most intense time of our lives. (Let’s just say that moving from New York to Vancouver, getting married, and having a baby within just one year is only part of the story!)

 Thanks to Bert Bates for forever changing the way I think about teaching and presenting ideas. I hope you’ll feel this book does justice to your compassionate and effective teaching style! I still have quite a ways to go, but I’ll be applying what you’ve taught me for the rest of my life in everything I write and every conference talk I give.

 Thanks to my nontechnical friends who provided me with constant encouragement (even though I’m not sure I was ever really able to explain what the book is about) and even sat through my Twitch streams; particularly Sarah Taplin and Sasha Burden, who enjoy an alternate universe existence as start-up founders in chapters 3 and 8.

 A quick thank you to the teachers I’ve been lucky enough to cross paths with who have made such a difference in my life: Stuart Gaitt, for encouraging a weird little girl; Shannon Rodgers, for teaching me to really think; and Aman Abdulla, for giving me the practical engineering skills and the high standards that I needed in order to get to where I am today.

 Thanks so much to everyone at Manning for giving me the opportunity to write this book; it’s a dream come true! Thanks to publisher Marjan Bace; to Mike Stephens for reaching out to me and starting this wild adventure; to Ian Hough for working closely and patiently with me chapter by chapter; to Mark Elston for reviewing the clunky first drafts (warts and all); to Ninoslav Cerkez for careful technical review; and to the review editor Aleksandar Dragosavlijevic. Thanks also to Sharon Wilkey, who helped me fix and understand my many, many grammatical (and other) errors; to Kathleen Rossland for patiently guiding me through the production process; and to the other behind-the-scenes folks who helped produce this book. To all the reviewers: Andrea C. Granata, Barnaby Norman, Billy O’Callaghan, Brent Honadel, Chris Viner, Clifford Thurber, Craig Smith, Daniel Vasquez, Javid Asgarov, John Guthrie, Jorge Bo, Kamesh Ganesan, Mike Haller, Ninoslav Cerkez, Oliver Korten, Prabhuti Prakash, Raymond Cheung, Sergio Fernández González, Swaminathan Subramanian, Tobias Getrost, Tony Sweets, Vadim Turkov, William Jamir Silva, and Zorodzayi Mukuya—your suggestions helped make this a better book. Thanks also to the marketing team at Manning, especially Radmila Ercegovac for helping me get out of my comfort zone onto some podcasts, as well as Stjepan Jureković and Lucas Weber for my Twitch debut, which was a lot of fun.

 Thanks so much to everyone who has patiently reviewed the book as I’ve written it and given me feedback, particularly everyone at Google who took the time to help me jump through all the right hoops, including Joel Friedman, Damith Karunaratne, Dan Lorenc, and Mike Dahlin. Thanks a million times to Steven Ernest for teaching me how important commit messages and release notes are, and opening my eyes to how horribly inconsistent I am with quotation marks. And thanks to Jerop Kipruto for not only reading chapters of this book but getting excited about the content and immediately applying it!

 Finally, thanks to Eric Brewer for all of the encouragement and reviews along the way, and for not only believing in the book but also taking the time to craft an inspirational foreword for it. Thanks also to Jez Humble for all the wisdom you shared with me at the start of this journey—which unfortunately, I completely ignored and have now learned the hard way. Better late than never, I guess! To both of you: having your stamps of approval in the forewords of this book is a highlight of my career.

about this book

 This book is intended to be the missing manual of how to get started with continuous delivery and apply it effectively: by covering the individual practices that make up continuous delivery and teaching you the building blocks you’ll need in order to create the automation that supports these practices. This is the kind of knowledge you’d have to gather on your own after several years of hard-earned experience. Hopefully, this book will give you a shortcut so you don’t have to learn it all the hard way!

 Who should read this book

 Grokking Continuous Delivery is for everyone who does the nitty-gritty, day-to-day job of building software. To get the most benefit from this book, you should have some familiarity with the basics of shell scripting, with at least one programming language, and some experience with testing. You’ll also want to have some experience with version control, HTTP servers, and containers. You don’t need deep knowledge on any of these topics; and if needed, you can research them as you go.

How this book is organized: A road map

 This book is organized into 13 chapters across four parts. The first two chapters form the introduction to the idea of continuous delivery and the terminology you’ll need for the rest of the book:

 	
 Chapter 1 defines continuous delivery and explains its relation to adjacent terms like continuous integration and continuous deployment.

 	
 Chapter 2 introduces the basic elements that make up continuous delivery automation, including the terminology used throughout the rest of the book.

 Part 2 is all about the activities that make up continuous integration and are essential to continuous delivery:

 	
 Chapter 3 explains the vital role that version control plays in continuous delivery; without version control, you can’t do continuous delivery.

 	
 Chapter 4 looks at a powerful but little discussed element of continuous integration: static analysis—specifically, linting—and how you can apply linting to legacy codebases.

 	
 Chapters 5 and 6 both deal with testing, the vital verification piece of continuous integration. Rather than trying to teach you how to test (a wealth of information on that topic already exists in many other books), they focus on common problems that build up in test suites over time—specifically, test suites that become noisy or slow.

 	
 Chapter 7 walks through the life cycle of a code change and examines all the places where bugs can sneak in, and how to set up automation to catch and squash those bugs as soon as they appear.

 Part 3 moves past verification of software changes with continuous integration and into releasing that software:

 	
 Chapter 8 takes a look at version control, showing you how it impacts release velocity by looking through the lens of the DORA metrics.

 	
 Chapter 9 demonstrates how to build artifacts safely by applying the principles defined by the SLSA standard, and explains the importance of versioning.

 	
 Chapter 10 returns to the DORA metrics, focusing on the stability-related metrics, and examines various deployment methodologies that you can use to improve your software’s stability.

 In part 4, we look at concepts that apply to continuous delivery automation as a whole:

 	
 Chapter 11 looks back at the continuous delivery elements that have been taught in the previous chapters, and shows how to effectively introduce those elements to a greenfield project and to a legacy project.

 	
 Chapter 12 focuses the spotlight on the workhorse often at the heart of any continuous delivery automation: the shell script. You’ll see how to apply the same best practices we use on the rest of our code to the scripts that we rely on to deliver our software safely and correctly.

 	
 Chapter 13 looks at the overall structure of the automated pipelines we need to create to support continuous delivery, and models the features that we need from continuous delivery automation systems to ensure these are effective.

 At the end of the book are two appendices that explore specific features of continuous delivery and version control systems that are popular at the time of writing this book.

 I suggest starting with reading chapter 1; terms like continuous delivery are used inconsistently in the real world, and understanding its context in this book will help ground your understanding of the rest of the chapters.

 Reading part 2 and part 3 in order will be the clearest way to consume the content, since later chapters build on each other. Part 3 particularly assumes that the continuous integration practices described in part 2 are well understood. That being said, you should be able to jump around the chapters if you prefer, and every chapter will reference related material in other chapters when it comes up.

 Part 4 is the advanced section of the book. Each chapter refers to concepts covered previously, and some of the content (for example, chapter 12) may make more sense after you’ve gained some experience working with continuous delivery systems in general.

liveBook discussion forum

 Purchase of Grokking Continuous Delivery includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/grokking-continuous-delivery/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest her interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the author

 [image:]

 Christie Wilson is a software engineer. She is a frequent speaker on CI/CD and related topics at conferences like Kubecon, OSCON, QCon, PyCon and more. Christie started her career in mobile web application development, working on backend services for AAA games where she wrote features that wouldn’t be used until the big launch, when everyone would use them at once. To enable that, she built systems for load and system testing.

 Leveraging the experience she gained at these previous companies dealing with complex deployment environments, high criticality systems, and bursty traffic patterns, she moved on to work at Google where she built internal productivity tooling for AppEngine, bootstrapped Knative, and created Tekton, a cloud native CI/CD platform built on Kubernetes (currently contributed to by 65+ companies).

Part 1. Introducing continuous delivery

 Welcome to Grokking Continuous Delivery! These first two chapters will introduce you to the idea of continuous delivery and the terminology you’ll need for the rest of the book.

 Chapter 1 defines continuous delivery and explains its relation to adjacent terms like continuous integration and continuous deployment.

 Chapter 2 introduces the basic elements that make up continuous delivery automation, including the terminology that will be used throughout the rest of the book.

 1 Welcome to Grokking Continuous Delivery

 In this chapter

 	understanding why you should care about continuous delivery

 	understanding the history of continuous delivery, continuous integration, continuous deployment, and CI/CD

 	defining the kinds of software that you might be delivering and understanding how continuous delivery applies to them

 	defining the elements of continuous delivery: keeping software in a deliverable state at all times and making delivery easy

 Hi there! Welcome to my book! I’m so excited that you’ve decided to not only learn about continuous delivery, but also really understand it. That’s what this book is all about: learning how to make continuous delivery work for you on a day-to-day basis.

Do you need continuous delivery?

 The first thing you might be wondering is whether it’s worth your time to learn about continuous delivery, and even if it is, is it worth the hassle of applying it to your projects. The quick answer is yes if the following is true for you:

 	
 You are making software professionally.

 	
 More than one person is involved in the project.

 If both of those are true for you, continuous delivery is worth investing in. Even if just one is true (you’re working on a project for fun with a group of people, or you’re making professional software solo), you won’t regret investing in continuous delivery.

 But wait—you didn’t ask what I’m making. What if I’m working on kernel drivers, or firmware, or microservices? Are you sure I need continuous delivery?

 —You

 It doesn’t matter! Whatever kind of software you’re making, you’ll benefit from applying the principles in this book. The elements of continuous delivery that I explain in this book are built on the principles that we’ve been gathering ever since we started making software. They’re not a trend that will fade in and out of popularity; they are the foundations that will remain whether we’re making microservices, monoliths, distributed container-based services, or whatever comes next.

 This book covers the fundamentals of continuous delivery and will give you examples of how you can apply them to your project. The exact details of how you do continuous delivery will probably be unique, and you might not see them exactly reflected in this book, but what you will see are the components you need to put together your continuous delivery automation, and the principles to follow to be the most successful.

 But I don’t need to deploy anything!

 That’s a good point! Deployment and the related automation do not apply to all kinds of software—but continuous delivery is about far more than just deployment. We’ll get into this in the rest of this chapter.

Why continuous delivery?

 What’s this thing you’re here to learn about, anyway? I want to start with what continuous delivery (CD) means to me, and why I think it’s so important:

 Continuous delivery is the process of modern professional software engineering.

 Let’s break down this definition:

 	
 Modern—Professional software engineering has been around way longer than CD, though those folks working with punch cards would have been ecstatic for CD! One of the reasons we can have CD today, and we couldn’t then, is that CD costs a lot of CPU cycles. To have CD, you run a lot of code!

 I can’t even imagine how many punch cards you’d need to define a typical CD workflow!

 	
 Professional—If you’re writing software for fun, it’s kind of up in the air whether you’re going to want to bother with CD. For the most part, CD is the process you put in place when it’s really important that the software works. The more important it is, the more elaborate the CD. And when we’re talking about professional software engineering, we’re probably not talking about one person writing code on their own. Most engineers will find themselves working with at least a few other people, if not hundreds, possibly working on exactly the same codebase.

 	
 Software engineering—Other engineering disciplines come with bodies of standards and certifications software engineering generally lacks. So let’s simplify it: software engineering is writing software. When we add the modifier professional, we’re talking about writing software professionally.

 	
 Process—Writing software professionally requires a certain approaches to ensure that the code we write does what we mean it to. These processes are less about how one software engineer is writing code (though that’s important too), and more about how that engineer is able to work with other engineers to deliver professional-quality software.

 Continuous delivery is the collection of processes that we need to have in place to ensure that multiple software engineers, writing professional quality software, can create software that does what they want.

 Wait, are you saying CD stands for continuous delivery? I thought it meant continuous deployment!

 Some people do use it that way, and the fact that both terms came into existence around the same time made this very confusing. Most of the literature I’ve encountered (not to mention the Continuous Delivery Foundation!) favors using CD for continuous delivery, so that’s what this book uses.

 [image:] Continuous word soup

 [image:]

 [image:] 1994: “Continuous integration” coined in Object-Oriented Analysis and Design with Applications by Grady Booch et al. (Addison-Wesley)

 [image:] 1999: “Continuous integration” practice defined in Extreme Programming Explained by Kent Beck (Addison-Wesley)

 [image:] 2007 “Continuous integration” practice further defined in Continuous Integration by Paul M. Duvall et al. (Addison-Wesley)

 [image:] 2007 “Continuous deployment” coined in the same book by Duvall

 [image:] 2010: “Continuous delivery” practice defined in Continuous Delivery by Jez Humble and David Farley (Addison-Wesley) inspired by the Agile Manifesto

 [image:] 2014: Earliest article defining “CI/CD” is “Test Automation and Continuous Integration & Deployment (CI/CD)” by the Ravello Community (http://mng.bz/1opR)

 [image:] 2016: “CI/CD” entry added to Wikipedia (http://mng.bz/J2RQ)

 [image:] 2009: “Continuous deployment” popularized in a blog post by Timothy Fitz (http://mng.bz/2nmw)

 You might be thinking, okay Christie, that’s all well and good, but what does deliver actually mean? And what about continuous deployment? What about CI/CD?

 It’s true, we have a lot of terms to work with! And to make matters worse, people don’t use these terms consistently. In their defense, that’s probably because some of these terms don’t even have definitions!

 Let’s take a quick look at the evolution of these terms to understand more. Continuous integration, continuous delivery, and continuous deployment are all terms that were created intentionally (or in the case of continuous integration, evolved), and the creators had specific definitions in mind.

 CI/CD is the odd one out: no one seems to have created this term. It seems to have popped into existence because lots of people were trying to talk about all the different continuous activities at the same time and needed a short form. (CI/CD/CD didn’t take for some reason!)

 CI/CD, as it’s used today, refers to the tools and automation required for any and all of continuous integration, delivery, and deployment.

Continuous delivery

 Continuous delivery is the collection of processes that we need to have in place to ensure that multiple software engineers, writing professional-quality software, can create software that does what they want.

 My definition captures what I think is really cool about CD, but it’s far from the usual definition you’ll encounter. Let’s take a look at the definition by the Continuous Delivery Foundation (CDF) (http://mng.bz/YGXN):

 A software development practice in which teams release software changes to users safely, quickly, and sustainably b.

 	
 Proving that changes can be released at any time

 	
 Automating release processes

 You’ll notice that CD has two big pieces. You’re doing continuous delivery when:

 	
 You can safely release changes to your software at any time.

 	
 Releasing that software is as simple as pushing a button.

 The big shift that CD represents over just CI is redefining what it means for a feature to be done. With CD, done means released. And the process for getting changes from implementation to released is automated, easy, and fast.

 This book details the activities and automation that will help you achieve these two goals. Specifically:

 	
 To be able to safely release your changes at any time, your software must always be in a releasable state. The way to achieve this is with continuous integration (CI).

 	
 Once these changes have been verified with CI, the processes to release the changes should be automated and repeatable.

 Before I start digging into how you can achieve these goals in the next chapters, let’s break these terms down a bit further.

 Continuous delivery is a set of goals that we aim for; the way you get there might vary from project to project. That being said, activities have emerged as the best ways we’ve found for achieving these goals, and that’s what this book is about!

Integration

 Continuous integration (CI) is the oldest of the terms we’re dealing with—but still a key piece of the continuous delivery pie. Let’s start even simpler with looking at just integration.

 What does it mean to integrate software? Actually, part of that phrase is missing: to integrate, you need to integrate something into something else. And in software, that something is code changes. When we’re talking about integrating software, what we’re really talking about is this:

 Integrating code changes into existing softwar.

 This is the primary activity that software engineers are doing on a daily basis: changing the code of an existing piece of software. This is especially interesting when you look at what a team of software engineers does: they are constantly making code changes, often to the same piece of software. Combining those changes together is integrating them.

 Software integration is the act of combining together code changes made by multiple people.

 As you have probably personally experienced, this can really go wrong sometimes. For example, when I make a change to the same line of code as you do, and we try to combine those together, we have a conflict and have to manually decide how to integrate those changes.

 One more piece is still missing. When we integrate code changes, we do more than just put the code changes together; we also verify that the code works. You might say that v for verification is the missing letter in CI! Verification has been packed into the integration piece, so when we talk about software integration, what we really mean is this:

 Software integration is the act of combining together multiple code changes made by multiple people and verifying that the code does what it was intended to do.

 Who cares about all these definitions? Show me the code already!

 It’s hard to be intentional and methodical about what we’re doing if we can’t even define it. Taking the time to arrive at a shared understanding (via a definition) and getting back to core principles is the most effective way to level up!

 On some rare occasions you may be creating software for the very first time, but from every point after the first successful compile, you are once again integrating changes into existing software.

Continuous integration

 Let’s look at how to put the continuous into continuous integration with an example outside of software engineering. Holly, a chef, is cooking pasta sauce. She starts with a set of raw ingredients: onions, garlic, tomatoes, spices. To cook, she needs to integrate these ingredients together, in the right order and the right quantities, to get the sauce that she wants.

 [image:]

 To accomplish this, every time she adds a new ingredient, she takes a quick taste. Based on the flavor, she might decide to add a little extra, or realize she wants to add an ingredient she missed.

 By tasting along the way, she’s evolving the recipe through a series of integrations. Integration here is expressing two things:

 	
 Combining the ingredients

 	
 Checking to verify the result

 And that’s what the integration in continuous integration means: combining code changes together, and also verifying that they work— i.e., combine and verify.

 Holly repeats this process as she cooks. If she waited until the end to taste the sauce, she’d have a lot less control, and it might be too late to make the needed changes. That’s where the continuous piece of continuous integration comes in. You want to be integrating (combining and verifying) your changes as frequently as you possibly can—as soon as you can.

 And when we’re talking about software, what’s the soonest you can combine and

 verify? As soon as you make a change:

 Continuous integration is the process of combining code changes frequently, with each change verified on check-in.

 Combining code changes together means that engineers using continuous integration are committing and pushing to shared version control every time they make a change, and they are verifying that those changes work together by applying automated verification, including tests and linting.

 Automated verification? Linting? Don’t worry if you don’t know what those are all about; that’s what this book is for! In the rest of the book, we’ll look at how to create the automated verification that makes continuous integration work.

What do we deliver?

 Now as I transition from looking at continuous integration to continuous delivery, I need to take a small step back. Almost every definition we explore is going to make a reference to delivering some kind of software (for example, I’m about to start talking about integrating and delivering changes to software). It’s probably good to make sure we’re all talking about the same thing when we say software—and depending on the project you’re working on, it can mean some very different things.

 [image:] Vocab time

 The term software exists in contrast to hardware. Hardware is the actual physical pieces of our computers. We do things with these physical pieces by providing them with instructions. Instructions can be built directly into hardware, or they can be provided to hardware when it runs via software.

 When you are delivering software, you could be making several forms of software (and integrating and delivering each of these will look slightly different):

 	
 Library—If your software doesn’t do anything on its own, but is intended to be used as part of other software, it’s probably a library.

 	
 Binary—If your software is intended to be run, it’s probably a binary executable of some kind. This could be a service or application, or a tool that is run and completes, or an application that is installed onto a device like a tablet or phone.

 	
 Configuration—This refers to information that you can provide to a binary to change its behavior without having to recompile it. Typically, this corresponds to the levers that a system administrator has available to make changes to running software.

 	
 Image—Container images are a specific kind of binary that are currently an extremely popular format for sharing and distributing services with their configuration, so they can be run in an operating system-agnostic way.

 	
 Service—In general, services are binaries that are intended to be up and running at all times, waiting for requests that they can respond to by doing something or returning information. Sometimes they are also referred to as applications.

 At different points in your career, you may find yourself dealing with some or all of these kinds of software. But regardless of the particular form you are dealing with, in order to create it, you need to integrate and deliver changes to it.

Delivery

 What it means to deliver changes to software depends on what you are making, who is using it, and how. Usually, delivering changes refers to one or all of building, releasing, and deploying:

 	
 Building—The act of taking code (including changes) and turning it into the form required for it to be used. This usually means compiling the code written in a programming language into a machine language. Sometimes it also means wrapping the code into a package, such as an image, or something that can be understood by a package manager (e.g., PyPI for Python packages).

 Building is also done as part of integration in order to ensure that changes work together.

 	
 Publishing—Copying software to a repository (a storage location for software)—for example, by uploading your image or library to a package registry.

 	
 Deploying—Copying the software where it needs to be to run and putting it into a running state.

 You can deploy without releasing—e.g., deploying a new version of your software but not directing any traffic to it. That being said, deploying often implies releasing; it all depends on where you are deploying to. If you are deploying to production, you’ll be deploying and releasing at the same time. See chapter 10 for more on deploying.

 	
 Releasing—Making software available to your users. This could be by uploading your image or library to a repository, or by setting a configuration value to direct a percentage of traffic to a deployed instance.

 [image:] Vocab time

 We’ve been building software for as long as we’ve had programming languages. This is such a common activity that the earliest systems that did what we now call continuous delivery were called build systems. This terminology is so prevalent that even today you will often hear people refer to the build. What they usually mean is the tasks in a CD pipeline that transform software (more on this in chapter 2).

Continuous delivery/deployment

 Now you know what it means to deliver software changes, but what does it mean for it to be continuous? In the context of CI, we learned that continuous means as soon as possible. Is that the case for CD? Yes and no. CD’s use of continuous is better represented as a continuum:

 [image:]

 Your software should be proven to be in a state where it could be built, released, and/or deployed at any time. But how frequently you choose to deliver that software is up to you.

 [image:] 2010: “Continuous delivery” practice defined in book of the same name

 [image:] 2009: “Continuous deployment” popularized in blog post

 Around this time you might be wondering, “What about continuous deployment?” That’s a great question. Looking at the history again, you’ll notice that the two terms, continuous delivery and continuous deployment, came into popular use pretty much back-to-back. What was going on when these terms were coined?

 This was an inflection point for software: the old ways of creating software, which relied on humans doing things manually, a strong software development and operations divide (interestingly, the term DevOps appeared at around the same time), and sharply delineated processes (e.g., testing phase) were starting to shift (left). Both continuous deployment and continuous delivery were naming the set of practices that emerged at this time. Continuous deployment means the following:

 Working software is released to users automatically on every commit.

 [image:] Vocab time

 Shifting left is a process intended to find defects as early as possible while creating software.

 Continuous deployment is an optional step beyond continuous delivery. The key is that continuous delivery enables continuous deployment; always being in a releasable state and automating delivery frees you up to decide what is best for your project.

 If continuous deployment is actually about releasing, why not call it continuous releasing instead?

 Great point! Continuous releasing is a more accurate name, and would make it clear how this practice can apply to software that doesn’t need to be deployed, but continuous deployment is the name that’s stuck! See chapter 9 for an example of continuous releasing.

Elements of continuous delivery

 The rest of this book will show you the fundamental building blocks of CD:

 A software development practice in which working software is released to users as quickly as it makes sense for the project and is built in such a way that it has been proven that this can safely be done at any time.

 [image:]

 You will learn how to use CI to always have your software in a releasable state, and you will learn how to make delivery automated and repeatable. This combo allows you to choose whether you want to go to the extreme of releasing on every change (continuous deployment), or if you’d rather release on another cadence. Either way, you can be confident in the knowledge that you have the automation in place to deliver as frequently as you need.

 And at the core of all of this automation will be your continuous delivery pipeline. In this book, I’ll dig into each of these tasks and what they look like. You’ll find that no matter what kind of software you’re making, many of these tasks will be useful to you.

 Pipeline? Task? What are those?

 Read the next chapter to find out!

 The following table looks back at the forms of software we explored and what it means to deliver each of them.

 	

 	
 Delivery includes building?

 	
 Delivery includes publishing?

 	
 Delivery includes deploying?

 	
 Delivery includes releasing?

 	
 Library

 	
 Depends

 	
 Yes

 	
 No

 	
 Yes

 	
 Binary

 	
 Yes

 	
 Usually

 	
 Depends

 	
 Yes

 	
 Configuration

 	
 No

 	
 Probably not

 	
 Usually

 	
 Yes

 	
 Image

 	
 Yes

 	
 Yes

 	
 Depends

 	
 Yes

 	
 Service

 	
 Yes

 	
 Usually

 	
 Yes

 	
 Yes

Conclusion

 The continuous delivery space contains a lot of terms, and a lot of contradictory definitions. In this book, we use CD to refer to continuous delivery, which includes continuous integration (CI), deploying, and releasing. I’ll be focusing on how to set up the automation you need in order to use CD for whatever kind of software you’re delivering.

Summary

 	
 Continuous delivery is useful for all software; it doesn’t matter what kind of software you’re making.

 	
 To enable teams of software developers to make professional-quality software, you need continuous delivery.

 	
 To be doing continuous delivery, you use continuous integration to make sure your software is always in a deliverable state.

 	
 Continuous integration is the process of combining code changes frequently, with each change verified on check-in.

 	
 The other piece of the continuous delivery puzzle is the automation required to make releasing as easy as pushing a button.

 	
 Continuous deployment is an optional step you can take if it makes sense for your project; with this approach software is automatically delivered on every commit.

Up next . . .

 You’ll learn all about the basics and terminology of continuous delivery automation, setting up the foundation for the rest of the book!

 2 A basic pipeline

 In this chapter

 	working with the basic building blocks: pipelines

 and tasks

 	learning the elements of a basic CD pipeline: linting, testing, building, publishing, and deploying

 	understanding the role of automation in the execution of pipelines: webhooks, events, and triggering

 	exploring the varied terminology in the CD space

 Before we get into the nitty-gritty of how to create great continuous delivery (CD) pipelines, let’s zoom out and take a look at pipelines as a whole. In this chapter, we’ll look at some pipelines at a high level and identify the basic elements you should expect to see in most CD pipelines.

Cat Picture Website

 To understand what goes into basic CD pipelines, we’ll take a look at the pipelines used for Cat Picture Website. Cat Picture Website is the best website around for finding and sharing cat pictures! The way it’s built is relatively simple, but since it’s a popular website, the company that runs it (Cat Picture, Inc.) has architected it into

 several services.

 What’s CD again?

 We use CD in this book to refer to continuous delivery. See chapter 1 for more.

 The company runs Cat Picture Website in the cloud (its cloud provider is called Big Cloud, Inc.) and it uses some of Big Cloud’s services, such as Big Cloud Blob Storage service.

 What’s a pipeline?

 Don’t worry, we’ll get into that in a couple of pages!

 [image:]

Cat Picture Website source code

 The architecture diagram tells us how Cat Picture Website is architected, but to understand the CD pipeline, there’s another important thing to consider: where does the code live?

 In chapter 1, we looked at the elements of CD, half of which is about using continuous integration (CI) to ensure that our software is always in a releasable state. Let’s look at the definition again:

 CI is process of combining code changes frequently, with each change verified on check-in.

 When we look at what we’re actually doing when we do CD, we can see that the core is code changes. This means that the input to our CD pipelines is the source code. In fact, this is what sets CD pipelines apart from other kinds of workflow automation: CD pipelines almost always take source code as an input.

 Version control

 Using a version control system such as Git is a prerequisite for CD. Without having your code stored with history and conflict detection, it is practically impossible to have CD. More on this in chapter 3.

 Before we look at Cat Picture Website CD pipelines, we need to understand how its source code is organized and stored. The folks working on Cat Picture Website store their code in several code repositories (repos):

 	
 The Frontend repo holds the code for the frontend

 	
 The Picture service, User service, and the database schemas are all stored in the Service repo.

 	
 Lastly, Cat Picture Website uses a config-as-code approach to configuration management (more on this in chapter 3), storing its configuration in the Config repo.

 [image:]

 The Cat Picture Website developers could have organized their code in lots of other ways, all with their own pros and cons.

Cat Picture Website pipelines

 Since Cat Picture Website is made up of several services, and all the code and configuration needed for it is spread across several repos, the website is managed by several CD pipelines. We’ll go over all of these pipelines in detail in future chapters as we examine more advanced pipelines, but for now we’re going to stick to the basic pipeline that is used for the User service and the Picture service.

 [image:]

 Since these two services are so similar, the same pipeline is used for both, and that pipeline will show us all of the basic elements we’d expect to see in a pipeline.

 [image:] Vocab time

 Container images are executable software packages that contain everything needed to run that software.

 [image:]

 This pipeline is not only used for Cat Picture Website, but also has the basic elements that you’ll see in all the pipelines in this book!

 When does this actually get run? We’ll get to that in a few pages, and go in depth in chapter 10.

What’s a pipeline? What’s a task?

 We just spent a few pages looking at Cat Picture Website pipeline, but what is a pipeline anyway? A lot of different terminology exists in the CD space. While we’re using the term pipeline, some CD systems use other terms like workflow. We’ll have an overview

 of this terminology at the end of the chapter, but for now let’s take a look at pipelines

 and tasks.

 Tasks are individual things you can do; you can think of them a lot like functions. And pipelines are like the entry point to code, which calls all the functions at the right time, in the right order.

 The following is a pipeline, represented as Python code, with three tasks: Task A runs first, then Task B, and the pipelines ends with Task C.

 [image:]

 CD Pipelines will get run again and again; we’ll talk more about when in a few pages. If we were to run the pipeline() function (representing the preceding pipeline), we’d get this output:

 Hello from task A!
Hello from task B!
Hello from task C!

The basic tasks in a CD pipeline

 The Cat Picture Website pipeline shows us all the basic tasks that you will see in most pipelines. We’ll be looking at these basic tasks in detail in the next chapters. Let’s review what each task in the Cat Picture Website

 pipeline is for:

 	
 Linting catches common programing and style errors in the Picture service and User service code.

 	
 Unit and integration tests verify that the Picture service and User service code does what the authors intended.

 	
 After the code has been linted and tested, the build image task builds container images for each of the services.

 	
 Next we upload the container images to an image registry.

 	
 Last, the running version of the software is updated to use the new images.

 [image:]

 Each task in the Cat Picture Website pipeline is representative of a basic pipeline element:

 	
 Linting is the most common form of static analysis in CD pipelines.

 	
 Unit and integration tests are forms of tests.

 	
 These services are built into images; to use most software, you need to build it into another form before it can be used.

 	
 Container images are stored and retrieved from registries; as you saw in chapter 1, some kinds of software will need to be published in order to be used.

 	
 Cat Picture Website needs to be up and running so users can interact with it. Updating the running service to use the new image is how the website is deployed.

 These are the basic types of tasks you’ll see in a CI/CD pipeline:

 [image:]

Gates and transformations

 Some tasks are about verifying your code. They are quality gates that your code has to pass through.

 [image:]

 Other tasks are about changing your code from one form to another. They are transformations of your code: your code goes in as input and comes out in another form.

 [image:]

 Looking at the tasks in a CD pipeline as gates and transformations goes hand in hand with the elements of CD. In chapter 1, you learned that you’re doing CD when

 	
 you can safely deliver changes to your software at any time.

 	
 delivering that software is as simple as pushing a button.

 If you squint at those, they map 1:1 to gates and transformations:

 	
 Gates verify the quality of your code changes, ensuring it is safe to deliver them.

 	
 Transformations build, publish, and, depending on the kind of software, deploy your changes.

 And in fact, the gates usually make up the CI part of your pipeline!

 CI is all about verifying your code! You’ll often hear people talk about “running CI” or “CI failing,” and usually they’re referring to gates.

CD: Gates and transformations

 Let’s take a look at our basic CD tasks again and see how they map to gates and transformations:

 	
 Code goes into gating tasks, and they either pass or fail. If they fail, the code should not continue through the pipeline.

 	
 Code goes into transformation tasks, and it changes into something completely different, or changes are made to some part of the world using it.

 Basic CD tasks map to gates and transformations like this:

 	
 Linting is all about looking at the code and flagging common mistakes and bugs, but without actually running the code. Sounds like a gate to me!

 	
 Testing activities verify that the code does what we intended it to do. Since this is another example of code verification, this sounds like a gate too.

 	
 Building code is about taking code from one form and transforming it into another form so that it can be used. Sometimes this activity will catch issues with the code, so it has aspects of CI. However, in order to test our code, we probably need to build it, so the main purpose here is to transform (build) the code.

 	
 Publishing code is about putting the built software somewhere so that it can be used. This is part of releasing that software. (For some code, such as libraries, this is all you need to do in order to release it!) This sounds like a kind of transformation too.

 	
 Lastly, deploying the code (for kinds of software that need to be up and running) is a kind of transformation of the state of the built software.

 [image:]

 Okay, you said the gates are the CI tasks. Are you saying CI is just about tests and linting? I remember before CD, CI included building, too.

 I hear you! CI does often include building, and sometimes folks throw publishing in there also. What really matters is having a conceptual framework for these activities, so in this book I choose to treat CI as being about verification, and not building/publishing/deploying/releasing.

Cat Picture Website service pipeline

 What does the Cat Picture Website service pipeline look like if we view it as a pipeline of gates and transformations?

 	
 [image:]

 	
 The first gate the code must pass through is linting. If there are linting problems in the code, we shouldn’t start transforming the code and delivering it; these problems should be fixed first.

 	
 [image:]

 	
 [image:]

 	
 The other gate the code must pass through is unit and integration tests. Just as with linting, if these tests reveal that the code doesn’t do what the authors intended, we shouldn’t start transforming the code and delivering it; these problems should be fixed first.

 Once the code has passed through all the gates, we know it’s in good shape and we can start transforming it.

 	
 [image:]

 	
 [image:]

 	
 The first transformation is to build the image from the source code. The code is compiled and packaged up into a container image that can be executed.

 	
 [image:]

 	
 [image:]

 	
 The next transformation takes that built image and uploads it to the image registry, changing it from an image on disk to an image in a registry that can be downloaded and used.

OEBPS/OEBPS/Images/02-10.png
Lint

Test

Build

Publish

gia

Deploy

|

OEBPS/OEBPS/Images/01-02.png

OEBPS/OEBPS/Images/02-12b.png

OEBPS/OEBPS/Images/icons-list-c.png

OEBPS/OEBPS/Images/02-02.png
/ Frontend l
Frontend
repo
Picture
/ service
<— User
Service serv)ce

repo

Config \ ,
repo

OEBPS/OEBPS/Images/02-01.png
when o user visits
the website, their
request first goes to
the Frontend.

18 he user is tryjing o log

1% the user is on a.page inor look o their own

with cot pictures (quite

x uploaded pictures, the
m‘.;;;\g!) the Frmie;:l*o Frontend will make
will make a. req
uests to the User
the Picture service to ;Z:,;ce ©
retrieve the picture)
$rom storage.
The User service and
4he Picture service
The Picture service both store data. about
stores the pictures users and their
as binary blobs. pictures in the

dotobase.

OEBPS/OEBPS/Images/Christie.png

OEBPS/OEBPS/Images/02-07.png

OEBPS/OEBPS/Images/02-11c.png
-

Build image

4

OEBPS/cover.jpeg
continuous

delivery

Christie Wilson

Forewords by Jez Humble and Eric Brewer

OEBPS/OEBPS/Images/icons_books.png

OEBPS/OEBPS/Images/02-12c.png

OEBPS/OEBPS/Images/01-01.png

OEBPS/OEBPS/Images/02-06.png
Lint

Run unit and
integration
tests

Build image

Upload image
to registry

Update running
service to use
new image
L

OEBPS/OEBPS/Images/02-11d.png
Upload image
o registry

OEBPS/OEBPS/Images/02-09.png

OEBPS/OEBPS/Images/IFC.png

OEBPS/OEBPS/Images/02-04.png
The code in the
Service repois
the pipeline’s input:
in every task, we
are doing
something with
this code.

Upload image
to registry

Update running
service to use
new image
-

1. Linting catches
common programing
and style errors in the
Picture service and
user service code.

. Tests verify that the

Picture service and
user service code does
what the authors.
intended.

3.fter the code has been linted
and tested, container images are
buikk for each of the services.

4. The container images are
uploaded to an image registry,

s. Finally, the running version of
the software is updated to use
the new image.

OEBPS/OEBPS/Images/icons-list-a.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/01-02b.png
eeing oble to sa¥el5 su¥el5 releasing
release ot any time on every change

OEBPS/OEBPS/Images/icons_noodles.png

OEBPS/OEBPS/Images/02-05.png
2ach task is like a
function. def taska():
print("Hello from task A!")

def taskB():
print("Hello from task B!")

_—

T def taskC():
print("Hello from task CI")

—

A pipeline puts all the tasks \ def pipeline():
o taska()
together by describing the o

order to call them in. taskc()

OEBPS/OEBPS/Images/02-11a.png

OEBPS/OEBPS/Images/01-03.png
|

Test

e

Build

Publish

a8

Deploy

|

OEBPS/OEBPS/Images/02-03.png
/ Frontend

Frontend

repo
Picture
_service
< User
Service service
repo
Config \ ,
repo

OEBPS/OEBPS/Images/icons-list-b.png

OEBPS/OEBPS/Images/02-12a.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/02-08.png

OEBPS/OEBPS/Images/02-11b.png
Run unit and

integration
tests

