

 [image: cover]

 Hello! Python

 Anthony Briggs

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 User Friendly artwork, characters, and strips used by permission from UserFriendly.Org. All Rights Reserved.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Sebastian Stirling
Technical proofreader: Marion Newlevant
Copyeditors: June Eding, Tiffany Taylor
Typesetter: Marija Tudor
Cover designer: Leslie Haimes

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About Hello! books

 Chapter 1. Why Python?

 Chapter 2. Hunt the Wumpus

 Chapter 3. Interacting with the world

 Chapter 4. Getting organized

 Chapter 5. Business-oriented programming

 Chapter 6. Classes and object-oriented programming

 Chapter 7. Sufficiently advanced technology...

 Chapter 8. Django!

 Chapter 9. Gaming with Pyglet

 Chapter 10. Twisted networking

 Chapter 11. Django revisited!

 Chapter 12. Where to from here?

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About Hello! books

 Chapter 1. Why Python?

 Learning to program

 Telling a computer what to do

 Programming is made of ideas

 Programming is design

 What makes Python so great?

 Python is easy

 Python is a real language

 Python has “batteries included”

 Python has a large community

 Setting up Python for Windows

 Installing Python

 Running Python programs on Windows

 Running Python programs from the command line

 Linux

 Installing under Linux

 Linux GUI

 Linux command line

 Macintosh

 Updating the shell profile

 Setting the default application

 Troubleshooting

 A syntax error

 An incorrect file extension (Windows)

 Python is installed in a different place (Linux)

 Text editors and IDEs

 Summary

 Chapter 2. Hunt the Wumpus

 What’s a program?

 Writing to the screen

 Remembering things with variables

 Asking the player what to do

 Making decisions

 Loops

 Functions

 Your first program

 The first version of Hunt the Wumpus

 Debugging

 Experimenting with your program

 More (or fewer) caves

 A nicer wumpus

 More than one wumpus

 Making the caves

 Lists

 For loops

 Coding your caves

 Fixing a more subtle bug

 The problem

 The solution

 Coding connected caves

 Clean up your code with functions!

 Function basics

 Variable scope

 Shared state

 Fixing the wumpus

 Interacting with the caves

 Creating the caves

 Interacting with the player

 The rest of the program

 Bows and arrows

 More atmosphere

 Where to from here?

 Bats and pits

 Making the wumpus move

 Different cave structures

 Summary

 Chapter 3. Interacting with the world

 “Batteries included”: Python’s libraries

 Python’s standard library

 Other libraries

 Using libraries

 What’s in a library, anyway?

 Another way to ask questions

 Using command-line arguments

 Using the sys module

 Reading and writing files

 Paths and directories (a.k.a. dude, where’s my file?)

 Paths

 File, open!

 Comparing files

 Fingerprinting a file

 Mugshots: storing your files’ fingerprints in a dictionary

 Putting it all together

 Testing your program

 Improving your script

 Putting results in order

 Comparing directories

 Where to from here?

 Summary

 Chapter 4. Getting organized

 Planning: specifying your program

 How do you know your program works?

 Testing manually—boring!

 Functional testing

 Unit testing: make the computer do it

 Test-Driven Development

 Writing the program

 Making your tests pass

 Putting your program together

 Testing user interfaces

 What do you do with your input?

 Running commands

 Running your program

 Taking stock

 What to do next?

 I’m very busy and important

 List comprehensions

 Oops, a bug!

 Saving your work

 Editing and deleting

 A quick fix

 Deleting to-dos

 Editing to-dos

 Where to from here?

 A help command

 Undo

 Different interface

 Time management and estimation

 Study one of the unit-testing frameworks

 Summary

 Chapter 5. Business-oriented programming

 Making programs talk to each other

 CSV to the rescue!

 Other formats

 Getting started

 Installing Beautiful Soup

 Installing Firefox and Firebug

 Examining the page

 Downloading the page with Python

 Chopping out the bit you need

 Adding extra information

 Caveats for web scraping

 Writing out to a CSV file

 Emailing the CSV file

 Email structure

 Creating an email

 Sending email

 Other email modules

 A simple script—what could possibly go wrong?

 No internet

 Invalid data

 Data you haven’t thought of

 Unable to write data

 No mail server

 You don’t have to fix them

 How to deal with breaking scripts

 Communication

 Tolerance of failure

 Don’t break in the first place

 Fail early and loudly

 Belt and braces

 Stress and performance testing

 Try again later

 Exceptions

 Why use exceptions?

 What it means when your program goes “bang!”

 Catching errors

 The traceback module

 Where to from here?

 Summary

 Chapter 6. Classes and object-oriented programming

 What exactly are classes?

 Classes contain data

 They’re a type of their own

 How do they work?

 Your first class

 Object-oriented design

 Player input

 First steps: verbing nouns

 Treasure!

 Where should your methods go?

 Finding the treasure

 Picking up the treasure

 Further into the caves

 Here there be monsters!

 Creating your monsters

 Some object-oriented design tips

 Tying it all together

 Danger and excitement

 Where to from here?

 Add more monsters and treasure

 Extend combat and items

 Add more adventure

 Experiment with verbs and nouns

 Investigate some more advanced features of classes

 Summary

 Chapter 7. Sufficiently advanced technology...

 Object orientation

 Mixin classes

 super() and friends

 Customizing classes

 __getattr__

 __setattr__

 __getattribute__

 Properties

 Emulating other types

 Generators and iterators

 Iterators

 Generators

 Generator expressions

 Using generators

 Reading files

 Getting to grips with your log lines

 Pulling out the bits

 Functional programming

 Side effects

 Map and filter

 Passing and returning functions

 Where to from here?

 Summary

 Chapter 8. Django!

 Writing web-based applications with Django

 Installing Django

 Setting up Django

 Writing your application

 The simplest possible todo list

 Using a template

 Using a model

 Setting up the database

 Creating a model

 Django’s admin module

 Adding an admin interface

 Making use of your data

 Using the model

 Setting up your URLs

 Submitting forms

 Handling individual todos

 Final polishing

 Where to from here?

 Summary

 Chapter 9. Gaming with Pyglet

 Installing Pyglet

 First steps

 Starship piloting 101

 Making things happen

 Back to school: Newton’s first law (and vectors)

 Gravity

 Calculating gravity

 Watch out for that planet!

 Guns, guns, guns!

 Evil aliens

 Where to from here?

 Extending the game play

 Altering the game play

 Refactoring

 Get feedback

 Summary

 Chapter 10. Twisted networking

 Installing Twisted

 Your first application

 First steps with your MUD

 Making the game more fun

 Bad monster!

 Back to the chat server

 Making your life easier

 Exploring unfamiliar code

 Putting it all together

 Write your own state machine

 Making your world permanent

 Where to from here?

 Summary

 Chapter 11. Django revisited!

 Authentication

 Logging in

 Adding users

 Listing only your own todos

 Fixing your database

 Back on track...

 Covering all your bases

 Updating your interface

 Testing!

 Unit testing

 Functional testing

 Running your tests

 Images and styles

 Serving media from Django

 Serving media from another server

 Last but not least

 Where to from here?

 Summary

 Chapter 12. Where to from here?

 Read some more code

 Python Standard Library

 Python recipes

 Open source projects

 Join the Python community

 Sign up for some mailing lists

 Find a local user group

 Help out an open source project

 Scratch your own itch

 Look at more Python libraries

 Profiling code

 Logging

 Subprocess and multiprocessing

 Better parsing

 PIL and image processing

 XML, ElementTree, and JSON

 Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 When Anthony asked me if I would write a foreword to this book, I thought, “Oh, no! Another job! I’ll just refuse.” But something
 urged me to at least take a look at the text, which I soon saw was sprinkled with frames from the User Friendly cartoon series (a firm favorite, I am sure, with those few surviving individuals who like me have been working with computers
 since the days of punched cards and tape). So I thought I would take a look at the manuscript, and found that in 12 short
 chapters you can learn enough about Python and some of its most popular applications to either get started programming or
 decide that the programmer’s life is not for you.

 Even the latter conclusion would make the money invested in buying Hello! Python worthwhile—if you don’t enjoy programming in Python, you are unlikely to enjoy programming at all, in which case you might
 save yourself the trouble of years spent in a mismatched career.

 The book is full of sound practical advice, and nowhere does it try to make pretentious and unbelievable claims. It is a solid
 work that will, I am sure, introduce many more people who might not currently think of themselves as programmers to the Python
 language.

 I hope that Hello! Python will give a broad audience new insights into programming and the fascinating world of information technology. In the absence
 of sensible computer science education in secondary schooling (which many U.S. states appear unable to afford at present),
 this book is appealing enough to draw students to the subject. By the time they discern the educational purpose they will
 be so engaged with the text that they will digest the whole volume.

 STEVE HOLDEN

 PRESIDENT, THE OPEN BASTION

Preface

 When I was first asked to write Hello! Python, I didn’t want to write just another introductory book—I wanted to write something different. The programming books that
 I’ve read in the past have often been just a laundry list of features: a list can have things in it, and you can call len(mylist) to find out exactly how many things, .pop() to chop an element from the end, .append() to add ... There you go, that’s all you need to know about lists, now on to the next feature. If you’re shown a program,
 it’s usually either a trivial few lines or a couple of chapters tacked on to the end of the book as an afterthought.

 Then I thought back to how I first learned to program. I didn’t read an entire programming book from cover to cover and then
 write a program after I knew everything there was to know. Instead I started with a goal, something that I wanted to do, and
 worked toward it, figuring things out as I went. I read programming books from time to time, but really only to figure out
 the bits I was stuck on. When I was done, my programs weren’t particularly elegant or fast, but they were mine—I knew how they worked, and they solved a real problem that I was having.

 Fast-forward to today, and my programs are elegant and fast, for the most part. And most of the really good programmers I know have learned to program the same way.
 In Hello! Python, I’ve tried to re-create that process, but speeded up, with all the things I’ve learned about programming and the pitfalls
 I’ve encountered. Every chapter (except the first and last) includes a practical program at its core to illustrate either
 a particular Python feature or a library—often several. Some of them are fun, some of them are useful, but there are no boring
 beginning chapters where you learn, in excruciating detail, every feature of a list or dictionary—or, worse, learn how Python
 adds numbers together.

 Instead, you’ll watch a program being written and learn about Python features as you need them, not before. Several of the
 chapters build on previous ones, so you’ll learn how to extend existing programs to add new features and keep their design
 under control—essential if you’re going to be writing programs of any scope. The book also explores several different styles
 of program, from simple scripts, to object-oriented programs, to event-based games.

 The idea is to provide a book that’s different—that lets you begin writing programs from the first chapter and learn how to
 use Python’s features by seeing them used in action. I hope this is the sort of book that will help people really understand
 how to use Python.

Acknowledgments

 First I’d like to thank Lyndall, my beautiful wife, for being supportive and giving me the time I needed to write this book.
 It took much longer than we originally thought, but her enthusiasm was unwavering, despite the many weekends that I spent
 cloistered in the study.

 Second, I’d like to thank the team at Manning: my editor, Sebastian Stirling, for his suggestions and experience; June Eding
 and Tiffany Taylor for the final editing, proofreading, and push across the line; Karen Tegt-meyer for organizing the whole
 thing; and Michael Stephens for helping me develop the initial concept of the book.

 Third, I’d like to acknowledge J.D. “Illiad” Fraser of User Friendly for letting Manning use the User Friendly cartoons in the Hello! Series and allowing me to put my own words in the characters’ mouths in this book.

 Next, I’d like to thank all of my beta testers who helped find errors— Daniel Hadson, Eldar Marcussen, William Taylor, David
 Hepworth, and Tony Haig—as well as everyone in the MEAP program who offered advice and criticism or discovered errors.

 Finally, I would like to thank the following peer reviewers who provided invaluable feedback on the manuscript at various
 stages of its development: Tray Skates, Curtis Miller, Joe Hoover, Michael R. Bain, Francesco Goggi, Mike Stok, Michael R.
 Head, Cheryl M. Davis, Daniel Bretoi, Amos Bannister, Rob Allen, Dr. John Grayson, William Z. Taylor, Munch Paulson, David
 Hepworth, Eldar Marcussen, Daniel Hadson, Tony Niemann, Paolo Corti, Edmon Begoli, Lester Lobo, Robby O’Connor, and Sopan
 Shewale. And special thanks to Marion Newlevant for her careful technical review of the final manuscript during production
 and to Steve Holden for agreeing to write the foreword to my book.

About this book

 Hello! Python is written for people who’d like to learn more about Python and how to program. You might be completely new to programming,
 or you might have some prior experience; either way, Hello! Python will take you from your first steps through writing networked games and web applications.

 The style of this book is different from most programming books. Rather than present a laundry list of every possible feature,
 I’ve chosen to show you a more real-world picture. Starting with chapter 2, you’ll be following along as we write real, useful programs—warts and all. All programming language features have a purpose,
 and it’s hard to recognize that purpose if you don’t see all the bugs, broken code, and badly written programs that the feature
 is supposed to help with.

 Some of the programs in Hello! Python are improved and expanded as the book progresses, so you’ll see how Python features such as functions, classes, and modules
 can help keep your code under control as it expands. They will also reduce the amount of work you have to do when you need
 to add new parts.

 I think of Hello! Python as being split into three rough sections, although that’s not explicitly mentioned in the book. The first chapters cover
 the basic syntax of Python, how to use libraries, some common concepts, and all the other pieces you’ll need to know to understand
 how things work. The middle section covers more advanced features and introduces libraries that will help you get more done
 without having to reinvent the wheel. In the final section, we write complete programs using frameworks, which will help you
 even more.

 The fun doesn’t stop when you’ve finished the book. All the programs in Hello! Python are intended to be extended and reused when you write your own programs. Most experienced programmers have a library of code
 that they’ve previously written, and the code in this book will give you a head start on your own projects.

Roadmap

 Chapter 1 gives you an introduction to Python and programming, as well as an idea of what it’s all about—why we program, and what you
 can do with your programs. I also step through how to install Python on Windows, Mac, or Linux, and some common issues you
 might run into when doing so.

 Chapter 2 jumps straight into the basic building blocks of programs, and you write your first program based on Hunt the Wumpus. Over
 the course of the chapter, you see firsthand some of the issues that programmers face, such as how to manage complex programs
 and make them clear and easy to understand.

 Chapter 3 teaches you about Python’s famed standard library, as well as how to import its code along with code that other programmers
 have written to perform common tasks. You learn how to use this code in your own programs, saving you tons of time and making
 your programs easier to read.

 Chapter 4 shows you how to test your programs, and covers both unit testing and system testing as well as some common testing issues
 and solutions. As you follow along, you’ll write a simple and easily extendable to-do-list application.

 Chapter 5 covers how you might use Python for business-style programming by downloading web pages, parsing the information inside them,
 and using that to generate emails and CSV files. It also looks at how to make your programs more robust and harder to break
 in the face of bad information and other errors.

 In chapter 6, we write an adventure game, complete with locations, monsters, and treasure. In the process, you learn how classes work
 and how to design object-oriented programs.

 Chapter 7 extends what you’ve learned about classes with some more advanced features, like mixins, __getattribute__, and properties. We also look briefly at some of Python’s other advanced features, such as iterators and generators, as well
 as regular expressions and functional programming.

 Chapter 8 introduces Django and helps you get a personal todo list site up and running. You learn about Django’s templates, database
 handling, forms, and admin functions. The chapter also covers some common web development patterns, including RESTful design
 and using the right HTTP methods.

 Chapter 9 teaches you how to write an arcade game, loosely based on Asteroids and Lunar Lander, using a library called Pyglet. You’ll
 learn about geometry, event-based programming, and timers.

 Chapter 10 extends the adventure program you wrote in chapter 6 so that you and your friends can play it over a network using Telnet. You use a Python networking library called Twisted
 to handle all the connection handling, protocol definition, and logging needed to make the game work.

 Chapter 11 takes the todo list application that we wrote in chapter 8 and updates it so that everyone can have their own todo list. You’ll learn how to handle logins, create users in Django,
 use Django’s generic views, secure your web applications, and deploy behind a server such as Apache or Nginx.

 Finally, chapter 12 gives you some extra resources you can use as you continue learning about Python—mailing lists and user groups, as well as
 programs to read and explore, and other libraries you might want to investigate.

Code downloads and conventions

 The source code for this book is released under the 3-clause BSD license. More information about the license is available
 within the source code, available from manning.com/HelloPython/.

 Throughout the book, I’ve used the convention of formatting code in a monospaced font, as well as variable, class, and method names. Because this book is primarily about reading and writing code, there’s a fair
 bit of it—Manning uses a numbering scheme with code annotations to more thoroughly explain what particular pieces of code
 do.

Author Online

 Purchase of Hello! Python includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/HelloPython. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the author

 Anthony Briggs has been a Python programmer since early 2000. He’s currently writing a web publishing system for Ramble Communications in
 Melbourne. Previously he worked on a core booking system for a travel firm in Australia and Canada, eventually becoming lead
 developer overseeing the entire project.

About Hello! books

 At Manning, we think it should be just as much fun to learn new tools as it is to use them. And we know that fun learning
 gets better results. Our Hello! series demonstrates how to learn a new technology without getting bogged down in too many details. In each book, User Friendly cartoon characters offer commentary and humorous asides, as the book moves quickly from Hello World into practical techniques.
 Along the way, readers build a unique hands-on application that leverages the skills learned in the book.

 Our Hello! books offer short, lighthearted introductions to new topics, with the author and cartoon characters acting as your guides.

Chapter 1. Why Python?

	

 This chapter covers

	
What a computer and a program are, and why you’d want to write a program

 	What Python is and why it’s so great

 	Installing Python

	

If you’ve picked up this book, you’re probably trying to learn how to program. Congratulations! Not many people set out to
 learn programming, but it’s one of the most interesting and rewarding subjects that you can teach yourself. Programming is
 the new literacy; if you’re not sure how to write a simple program, whether as a batch file, mail filter, or formula in a
 spreadsheet, you’re at a disadvantage compared to those who do. Programming is also a lever. With programming, you can turn
 your ideas into reality.

 [image:]

 I first started to program when I was around 10, using the Commodore 64. Back then, there wasn’t much available in the way
 of preprogrammed software, unless you counted games or simple word processing. Computers like the Commodore came with BASIC built in, and programming
 was a lot more accessible—you didn’t need to learn a great deal to be able to get results quickly.

 Since then, computers have departed from that early ideal. Now you have to go out of your way to install something so that
 your computer can be programmed. But once you know how, you can create all sorts of wondrous programs which will do boring
 work for you, inform you, and entertain you. Especially that last part—programming is fun, and everybody should try it.

 You’ll notice the cartoons sprinkled throughout the book. I’ve used these to give you some background information about what’s
 going on in the chapter, or to cover some common problems, all while having a bit of fun. Although the characters are from
 User Friendly, the text and jokes are all mine—so if you don’t like them, you know who to blame.

 Let’s start by learning the basics of programming.

Learning to program

 Because this book is about programming, it makes sense to give you some sort of overview before we jump in and start learning
 the details in chapter 2. What is programming? How does it work? The definition of programming is simple.

 [image:]

	

Definition

 Programming is telling a computer what to do.

	

But, like most definitions, this is a drastic oversimplification. Like chess, learning the initial rules of programming is
 easy; but putting them together in a useful way and mastering them is much harder. Programming touches on most areas of human
 endeavor these days—if you want to create something meaningful with a computer, it’s really hard to do so without having to
 program in some sense—and it’s just as much about design and ideas and personal expression as it is about numbers and calculation.

Telling a computer what to do

 Let’s break down the different parts of our definition and look at them individually. In order to understand our definition,
 we need to know what a computer is; what we mean by “telling” it what to do; and what, exactly, “what to do” consists of.

A Computer

 A computer is a fast calculator that can make simple decisions based on your instructions. Computer instructions are simple
 and usually consist of tasks like adding numbers and making comparisons. But sets of instructions can be combined to create
 large programs that can do complex things like write documents, play games, balance your accounts, and control nuclear reactors.

 Computers seem smart, but they’re actually stupid and single-minded, and they lack common sense. After all, they’re only machines; they
 will do exactly what you (or the developers of Python) tell them to do—no matter the consequences. Consider a command to delete
 an entire hard drive. Most people would find that to be a bit drastic, and they’d probably check to make sure that’s what
 you wanted before proceeding. But a computer will go right ahead and destroy all your data, no questions asked.

	

Note

 The great thing about computers is that they do exactly what you tell them. The terrible thing about computers is that they
 do exactly what you tell them.

	

If a program that you’re using (or that you’ve written) is doing something odd or crashes for no reason, it’s nothing personal—it’s
 just following the instructions it was given.

Telling

 When working with Python, you’ll typically instruct it by typing program code into a text file and then telling the Python program to run it; you’ll find out how to do this later in the chapter. The
 instructions that you type can be complex or simple, and they cover a wide range of tasks—adding numbers, opening other files,
 placing things on screen, and so on. A simple Python program looks like this:

 number = "42"
print "Guess my number..."
guess = raw_input(">")
if guess == number:
 print "Yes! that's it!"
else:
 print "No - it's", number
raw_input("hit enter to continue")

 Don’t worry too much about trying to understand this program yet; this example is just meant to provide you with some background.

What To Do

 This is where the fun starts. Most modern computers are “Turing complete,” which means they can do anything; anything you
 can think of, a computer can do. At least in theory—it might take longer or be more complicated than you first expected, or
 need special hardware if you want to interact in a certain way, but if the computer has access to enough data and you’ve programmed
 it properly, the sky’s the limit. Here are some of the tasks that computers have been used for:

	Controlling manned and unmanned spacecraft and probes and guiding robots on other planets, including the Mars exploration
 rovers Spirit and Opportunity.

 	Transmitting data around the world via a network of computers—the internet and World Wide Web! Online, you can transmit or
 receive information from around the world in a fraction of a second.

 	Building robots, from industrial robot arms to Roomba vacuum cleaners to lifelike human robots that can climb stairs or mimic
 human emotions.

 	Modeling real world processes such as gravity, light, and weather. This includes scientific models, but also most games.

[image:]

 You might not have the hardware that’s needed to send a robot probe to another planet, but, in principle at least, you can still run the same programs. Incredibly, the computers used to drive Spirit and Opportunity, for
 example, are much less powerful than the computer sitting on your desk, in your lap, or even in your pocket (your mobile phone).

Programming is made of ideas

 It’s easy to focus on the concrete aspects of computer programming—instructions, adding numbers, networks, hardware, and so
 on—but the core of programming is about ideas: specifically, successfully capturing those ideas in a program so that other
 people can use them. Helping other people by discovering new, cool things has been happening since early man started using
 pointy sticks, and programming is no exception. Computers have helped to develop many new ideas since their invention, including
 the internet, spreadsheets, interactive games, and desktop publishing.

 [image:]

 Unfortunately, I can’t help you come up with new ideas, but I can show you some of the ideas that other people have come up
 with as inspiration to develop some of your own.

Programming is design

 Most of the aspects of programming that we’ll cover in this book deal with design. Design is typically described as a common solution to a particular problem. For example, architecture is the design of buildings
 and the space that they occupy. It addresses some of the problems common to buildings, such as how people get in and out and
 move around inside a building, how they occupy it, how to make people happy about being in a building, using materials sensibly,
 and so forth.

 What makes a design good—and what makes one design better than another—is whether it solves your problems effectively. This
 means a design is never complete; there are always other, potentially better ways to solve a problem. Always question what
 you’ve designed. Is the solution accurate? Or does it only solve part of your problem? How easy is your design to build? If it’s 10% better in some way but twice as hard to put into practice, then you might go with
 the simpler design.

 If programming is the design of ideas, what are some of the problems that it solves? Some of the problems that you’re likely
 to run into include the following:

	Your idea isn’t fully formed—there are details that need to be worked out.

 	Most ideas are complicated, and have a lot of details involved once you start writing them down.

 	Your ideas need to be clear and easy to follow, so that other people can use them, understand them, and build on them.

The key thing that programs need to do is to express your ideas as clearly and simply as possible. One of the common themes
 in the development of computer languages is the management of complexity. Even when working on straightforward programs, it’s
 easy to get bogged down in details and lose sight of what you’re trying to do. When it comes time to make changes to a program,
 you can misunderstand the original purpose of the program and introduce errors or inconsistencies. A good programming language
 will have features to help you work at different levels of detail, allowing you to move to more (or less) detailed levels
 as necessary.

 Another important factor is how flexible your programs are when written in a particular language. Exploratory programming
 is a useful tool when developing ideas, and we’ll be doing a lot of it in this book—but if your programming language doesn’t
 have strong facilities for managing complexity or hiding detail, then they become hard to change, and a lot of the benefit
 is lost.

 Now that you have a basic understanding of programming, it’s time to check out this book’s chosen language, Python.

What makes Python so great?

 [image:]

 In this book, you’ll be learning Python, which, not so coincidentally, happens to be my favorite programming language. For
 a number of reasons, It’s ideal for a beginner who’s just started programming.

Python is easy

 If you compare Python to other programming languages, the first thing you’ll notice is that it’s easy to read. Python’s syntax
 is intended to be as clear as possible. Some features that make Python especially user-friendly include the following:

	It avoids the use of punctuation characters like { } $ / and \.

 	Python uses whitespace to indent lines for program control, instead of using brackets.

 	Programmers are encouraged to make their programs clear and easy to read.

 	Python supports a number of different ways to structure your programs, so you can pick the best one for the job.

Python’s developers try to do things “right,” by making programming as straightforward as possible. There have been several
 cases where features have been delayed (or even cancelled outright) while the core developers figured out the best way to
 present a particular feature. Python even has its own philosophy on how programs should look and behave. Try typing “import
 this” once you have Python installed (later in the chapter).

Python is a real language

 Although Python is an easy-to-use language, it’s also a “real” language. Typically, languages come in two flavors: easy ones
 with training wheels, to teach people how to program; and harder ones with more features to let you get real work done. When
 you’re learning how to program, you have two choices:

	Jump head first into a real language, but be prepared to be confused until you figure out the hard language.

 	Start with a beginner’s language, but be ready to throw away all of the work that you’ve done when you need a feature that
 it doesn’t have.

Python skips the drawbacks and manages to combine the best aspects of these approaches. It’s easy to use and learn, but as
 your programming skills grow, you’ll be able to continue using Python, because it’s fast and has lots of useful features.
 Best of all, jumping in and learning how to do things the real way is often easier than following all of the steps that you
 need to learn how to program “properly.”

Python has “batteries included”

 A large number of libraries are included with Python, and there are many more which you can download and install. Libraries are program code that other programmers have written that you can easily reuse. They let you read files, process data, connect
 to other computers via the internet, serve web pages, generate random numbers, and do pretty much any other sort of basic
 activity. Python is a good choice for the following:

	Web development

 	Networking

 	Graphical interfaces

 	Scripting operating system tasks

 	Games

 	Data processing

 	Business applications

[image:]

 Often, when it comes time to write a program, most of the hard bits are already done for you, and all you have to do is join
 together a few libraries to be able to do what you need. You’ll read more about Python’s libraries and how to use them in
 chapter 3.

Python has a large community

 Python is a popular language and has a large, friendly community that is happy to help out new Python developers. Questions
 are always welcome on the main mailing list, and there’s also a specialized mailing list set up specifically to help new developers.
 There are also a lot of introductions and tutorials, and a great deal of example code, available on the internet.

	

Tip

 “Good artists borrow, great artists steal.” Because of the size of the Python developer community, there are a lot of programs
 to beg, borrow and steal, regardless of what type of program you’re writing. Once you have some Python experience, reading
 other people’s programs is an excellent way to learn more.

	

One of the other advantages of having a large community is that Python gets a lot of active development, so bugs are fixed
 rapidly and new features are added regularly. Python is constantly improving.

 Now that you know about programming and why Python is a good choice, let’s install Python on your computer so that you can
 run your own programs. If you’re running Linux, skip ahead a section. If you’re running Mac, skip ahead two sections.

Setting up Python for Windows

 Over the next couple of sections, we’ll go through the installation process step by step, create a simple program to make
 sure that Python is working on your system, and teach you the basic steps involved in running a program. Making sure that
 Python is working properly now will save you a lot of frustration later on.

Installing Python

 We’ll be using the latest version of Python 2, because most of the libraries that we’ll use in this book don’t yet support
 Python 3. At the time of writing, Python 2.6 is the standard version, but Python 2.7 should be available by the time you read
 this. To install Python, we need to download a program from the Python website and run it. That program includes Python, its
 libraries, and everything you need to run Python programs.

 The first step is to go to http://python.org/ and click Download. That should take you to a page that lists all of the operating systems that Python can be installed on.
 Click the Windows version, and save it to your desktop.

 Figure 1.1. Python.org’s download page

 [image:]

 Once it’s finished downloading, double-click the program’s icon to open and run it. You’ll probably be shown a screen similar
 to figure 1.2. Click Run to run the Python installer.

 Figure 1.2. Are you sure you want to run this strange program from the internet? Yes!

 [image:]

 You’ll now be given a series of options for installing Python. Typically, the defaults (the options that have already been
 chosen for you) are good enough, unless your computer is low on disk space and needs to install to a different partition.
 If you’re happy with the options at each step, click Next to go to the next screen.

 Figure 1.3. Install Python for all users.

 [image:]

 Figure 1.4. Choose Python’s location.

 [image:]

 Figure 1.5. Choose which bits of Python you want.

 [image:]

 Figure 1.6. Installing Python

 [image:]

 The final stage might take a little while depending on the speed of your computer, but once you see figure 1.7, you’re done.

 Figure 1.7. Hooray! Python’s installed!

 [image:]

 [image:]

 Congratulations! You’ve installed Python!

Running Python programs on Windows

 Now that you have Python installed on your system, let’s create a simple program. This will let you know that Python is installed
 correctly and also show you how to create a program and run it.

 Python programs are normally written into a text file and then run by the Python interpreter. To start, you’ll use Notepad
 to create your file (but if you already have a favorite text editor, you can use that). Avoid using Microsoft Word or Wordpad
 to create your programs—they insert extra characters for formatting which Python won’t understand. Notepad is in the Programs
 > Accessories section of your Start menu.

 Figure 1.8. Here’s where Notepad lives.

 [image:]

 In the Notepad window that opens, type the following code. Don’t worry too much about what it does yet—for now you want to
 test out Python and make sure that you can run a program. Type the following:

 print "Hello World!"
raw_input("hit enter to continue")

 Figure 1.9. The test program for Python

 [image:]

 Figure 1.10. Save your test program to the desktop.

 [image:]

 [image:]

 When you’re done, save it to your desktop as hello_world.py. The .py on the end is important—that’s how Windows knows that
 it’s a Python program.

 If you have a look on your desktop, you should be able to see your program, with the blue and yellow Python icon on it. Double-click
 the document icon, and your program should run.

 [image:]

 Figure 1.11. Run your script by double-clicking it.

 [image:]

 Congratulations! Python is installed and working properly on your computer! Read on to find out how to run Python from the
 command line—it can be an important troubleshooting tool when things go wrong. If you don’t see the output, don’t worry—the
 “Troubleshooting” section has some common problems and their solutions.

Running Python programs from the command line

 It’s also possible to run Python programs from the command line. This is often easier when you have a program that deals mainly
 with text input and output, or runs as an operating system script, or needs lots of input—using command-line options can be
 easier to program than a custom settings window.

OEBPS/f0005-01.jpg

OEBPS/f0007-01.jpg

OEBPS/f0002-01.jpg

OEBPS/f0004-01.jpg

OEBPS/manning.jpg

OEBPS/f0001-01.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/01fig02.jpg

OEBPS/f0008-01.jpg

OEBPS/01fig01.jpg

OEBPS/cover.jpg

OEBPS/01fig11.jpg

OEBPS/f0014-01.jpg

OEBPS/f0013-01.jpg

OEBPS/01fig04.jpg

OEBPS/01fig03.jpg

OEBPS/01fig06.jpg

OEBPS/01fig05.jpg

OEBPS/f0012-01.jpg

OEBPS/01fig07.jpg

OEBPS/01fig09.jpg

OEBPS/01fig08.jpg

OEBPS/01fig10.jpg

