

 [image: cover]

 Scala in Depth

 Joshua D. Suereth & Foreword by: Martin Odersky

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	[image:]
 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	 Development editor : Katharine Osborne
Technical proofreader: Justin
 Copyeditors: Linda Kern, Benjamin Berg
 Proofreader: Elizabeth Martin
 Typesetter: Dottie Marsico
 Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. Scala—a blended language

 Chapter 2. The core rules

 Chapter 3. Modicum of style—coding conventions

 Chapter 4. Utilizing object orientation

 Chapter 5. Using implicits to write expressive code

 Chapter 6. The Type System

 Chapter 7. Using implicits and types together

 Chapter 8. Using the right collection

 Chapter 9. Actors

 Chapter 10. Integrating Scala with Java

 Chapter 11. Patterns in functional programming

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. Scala—a blended language

 1.1. Functional programming meets object orientation

 1.1.1. Discovering existing functional concepts

 1.1.2. Examining functional concepts in Google Collections

 1.2. Static typing and expressiveness

 1.2.1. Changing sides

 1.2.2. Type inference

 1.2.3. Dropping verbose syntax

 1.2.4. Implicits are an old concept

 1.2.5. Using Scala’s implicit keyword

 1.3. Transparently working with the JVM

 1.3.1. Java in Scala

 1.3.2. Scala in Java

 1.3.3. The benefits of a JVM

 1.4. Summary

 Chapter 2. The core rules

 2.1. Learn to use the Read Eval Print Loop (REPL)

 2.1.1. Experiment-driven development

 2.1.2. Working around eager parsing

 2.1.3. Inexpressible language features

 2.2. Think in expressions

 2.2.1. Don’t use return

 2.2.2. Mutability

 2.3. Prefer immutability

 2.3.1. Object equality

 2.3.2. Concurrency

 2.4. Use None instead of null

 2.4.1. Advanced Option techniques

 2.5. Polymorphic equality

 2.5.1. Example: A timeline library

 2.5.2. Polymorphic equals implementation

 2.6. Summary

 Chapter 3. Modicum of style—coding conventions

 3.1. Avoid coding conventions from other languages

 3.1.1. The block debacle

 3.2. Dangling operators and parenthetical expressions

 3.3. Use meaningful variable names

 3.3.1. Avoid $ in names

 3.3.2. Working with named and default parameters

 3.4. Always mark overridden methods

 3.5. Annotate for expected optimizations

 3.5.1. Using the tableswitch optimization

 3.5.2. Using the tail recursion optimization

 3.6. Summary

 Chapter 4. Utilizing object orientation

 4.1. Limit code inside an object or trait’s body to initialization logic

 4.1.1. Delayed construction

 4.1.2. And then there’s multiple inheritance

 4.2. Provide empty implementations for abstract methods on traits

 4.3. Composition can include inheritance

 4.3.1. Member composition by inheritance

 4.3.2. Classic constructors with a twist

 4.4. Promote abstract interface into its own trait

 4.4.1. Interfaces you can talk to

 4.4.2. Learning from the past

 4.5. Provide return types in your public APIs

 4.6. Summary

 Chapter 5. Using implicits to write expressive code

 5.1. Introduction to implicits

 5.1.1. Identifiers: A digression

 5.1.2. Scope and bindings

 5.1.3. Implicit resolution

 5.2. Enhancing existing classes with implicit views

 5.3. Utilize implicit parameters with defaults

 5.4. Limiting the scope of implicits

 5.4.1. Creating implicits for import

 5.4.2. Implicits without the import tax

 5.5. Summary

 Chapter 6. The Type System

 6.1. Types

 6.1.1. Types and paths

 6.1.2. The type keyword

 6.1.3. Structural types

 6.2. Type constraints

 6.3. Type parameters and higher-kinded types

 6.3.1. Type parameter constraints

 6.3.2. Higher-kinded types

 6.4. Variance

 6.4.1. Advanced variance annotations

 6.5. Existential types

 6.5.1. The formal syntax of existential types

 6.6. Summary

 Chapter 7. Using implicits and types together

 7.1. Context bounds and view bounds

 7.1.1. When to use implicit type constraints

 7.2. Capturing types with implicits

 7.2.1. Manifests

 7.2.2. Using Manifests

 7.2.3. Capturing type constraints

 7.2.4. Specialized methods

 7.3. Use type classes

 7.3.1. FileLike as a type class

 7.3.2. The benefits of type classes

 7.4. Conditional execution using the type system

 7.4.1. Heterogeneous typed list

 7.4.2. IndexedView

 7.5. Summary

 Chapter 8. Using the right collection

 8.1. Use the right collection

 8.1.1. The collection hierarchy

 8.1.2. Traversable

 8.1.3. Iterable

 8.1.4. Seq

 8.1.5. LinearSeq

 8.1.6. IndexedSeq

 8.1.7. Set

 8.1.8. Map

 8.2. Immutable collections

 8.2.1. Vector

 8.2.2. List

 8.2.3. Stream

 8.3. Mutable collections

 8.3.1. ArrayBuffer

 8.3.2. Mixin mutation event publishing

 8.3.3. Mixin synchronization

 8.4. Changing evaluation with views and parallel collections

 8.4.1. Views

 8.4.2. Parallel collections

 8.5. Writing methods to use with all collection types

 8.5.1. Optimizing algorithms for each collections type

 8.6. Summary

 Chapter 9. Actors

 9.1. Know when to use actors

 9.1.1. Using actors to search

 9.2. Use typed, transparent references

 9.2.1. Scatter-Gather with OutputChannel

 9.3. Limit failures to zones

 9.3.1. Scatter-Gather failure zones

 9.3.2. General failure handling practices

 9.4. Limit overload using scheduler zones

 9.4.1. Scheduling zones

 9.5. Dynamic actor topology

 9.6. Summary

 Chapter 10. Integrating Scala with Java

 10.1. The language mismatch between Scala and Java

 10.1.1. Differences in primitive boxing

 10.1.2. Differences in visibility

 10.1.3. Inexpressible language features

 10.2. Be wary of implicit conversions

 10.2.1. Object identity and equality

 10.2.2. Chaining implicits

 10.3. Be wary of Java serialization

 10.3.1. Serializing anonymous classes

 10.4. Annotate your annotations

 10.4.1. Annotation targets

 10.4.2. Scala and static fields

 10.5. Summary

 Chapter 11. Patterns in functional programming

 11.1. Category theory for computer science

 11.2. Functors and monads, and how they relate to categories

 11.2.1. Monads

 11.3. Currying and applicative style

 11.3.1. Currying

 11.3.2. Applicative style

 11.4. Monads as workflows

 11.5. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Joshua Suereth is one of the most complete programmers I know. Familiar with a whole gamut of programming languages and techniques,
 he is an expert in high-performance systems, build tools, type theory, and many other areas. He is also a gifted teacher,
 and all that combined is what makes Scala in Depth special.

 This book provides in-depth coverage of several of the more intricate areas of Scala, including advanced aspects of its type
 system, implicits, composition techniques with traits, collections, actors, functional categories. But this is not a dry recollection
 of language and library concepts. The book is full of practical advice on how to apply these lesser known parts of Scala in
 useful ways, and what the best practices are. The explanations and examples demonstrate Joshua’s great experience constructing
 large-scale systems in Scala.

 Scala in Depth is not a beginner’s introduction; it should primarily appeal to competent Scala programmers who want to become experts. The
 techniques that are taught are handy for constructing flexible and type-safe library abstractions. Many of these techniques
 were folklore until now; they have been, for the first time, written-up here.

 I am particularly happy about one other thing: The book fills a gap in that it explains key parts of the formal Scala specification
 to programmers who are not language lawyers. Scala is one of few languages that actually has a specification. That specification
 consists mainly of definitions written in highly stylized prose and mathematical formulas; so it’s not everybody’s piece of
 cake. Joshua’s book manages to be both authorative and understandable as it explains these concepts.

 MARTIN ODERSKY
CREATOR OF SCALA
HEAD OF PROGRAMMING
RESEARCH GROUP, EPFL

Preface

 In fall 2010 Michael Stephens from Manning contacted me about writing a Scala Book. I was working for a small virtualization/security
 startup where I had been learning Scala and applying it to our codebase. During that first conversation Michael and I discussed
 the Scala ecosystem and what kind of a book would best serve the community.

 I believed Scala needed a “practical Scala” book to help guide those new to the language. Scala is a beautiful language, but
 it brings many new concepts to the table. I had watched as the community slowly discovered best practices and a code style
 that was wholly “Scala.” But I wasn’t sure whether I was the right person to write such a book. When it came down to it, I
 was passionate about the topic, had enough free time to do the research, and had the support of the magnates of the community
 to help achieve what you are reading today—so I decided to go ahead.

 I’ve learned a lot during the writing process. One reason it took so long was the evolving nature of Scala and the emergence
 of new best practices. Another reason was that I realized my own knowledge was woefully inadequate in some areas of Scala.
 To all aspiring authors out there, I will tell you that writing a book makes you an expert. You may think you are one before
 you start, but true expertise grows from the blood, sweat, and tears of teaching, of trying to convey complex concepts to
 your readers with clarity.

 Working on this book was a journey that I never could have completed without a very supportive and loving wife, a great publisher,
 and an amazing community of Scala developers and readers willing to read my manuscript in various stages, point out my typos
 and misspellings, and offer advice on how to make Scala in Depth a much better book than I could have achieved alone.

Acknowledgments

 Many people helped get this book off the ground and into print. While I’m going to try to list them all, I’m sure I’ll miss
 a few as there were just too many for my tiny brain to remember. This book showed me that I have a lot of high quality friends,
 coworkers, and family.

 The biggest thank you is for my wife and children, who had to deal with a husband/father who was constantly hiding in a corner,
 writing, when he should have been helping out. There’s no way an author can write a book without the support of immediate
 family, and mine was no exception.

 Next, I’d like to thank Manning Publications and all the work the staff did to ensure I became a real author. Not only did
 they review and lay out the book, they also helped improve my technical writing skills for clear communication. I can’t give
 enough thanks to the whole team, but I’d especially like to thank Katherine Osborne for putting up with my missed deadlines,
 Pennsylvania-Dutch sentence structures, and overall poor spelling. Katherine was instrumental to the voice of this book, and
 those who’ve been reading the MEAPs will notice the improvement.

 The next group that deserves thanks are the Scala experts and nonexperts who helped me improve my technical material and descriptions.
 Tim Perret was authoring Lift in Action for Manning around the same time I was writing Scala in Depth. Discussions with Tim were both encouraging and motivating. Unfortunately for me, he finished first. Justin Wick was a reviewer
 and collaborator on a lot of the content, and definitely helped me reach a wider audience than I had initially attempted to
 attract. He also reviewed the final manuscript and code one last time, just before the book went into production. Adriaan
 Moors, as usual, pointed out all my mistakes when discussing the type system and implicit resolution and helped make the discussions
 both practical and correct. Eric Weinberg was an old coworker of mine who helped provide guidance for reaching non-Scala developers
 in the book. Viktor Klang reviewed the “Actors” chapter (and the whole book) and offered improvements. Thank you also to Martin
 Odersky for his endorsement and kind words on the final product that you will read in the foreword, Josh Cough for being a
 guy I can bounce ideas off when needed, and Peter Simanyi for an email with a very detailed, thorough, complete, and awesome
 review of the entire book.

 Manning also contacted the following reviewers, who read the manuscript at various stages of its development, and I would
 like to thank them for their invaluable insights and comments: John C. Tyler, Orhan Alkan, Michael Nash, John Griffin, Jeroen
 Benckhuijsen, David Biesack, Lutz Hankewitz, Oleksandr Alesinskyy, Cheryl Jerozal, Edmon Begoli, Ramnivas Laddad, Marco Ughetti,
 Marcus Kazmierczak, Ted Neward, Eric Weinberg, Dave Pawson, Patrick Steger, Paul Stusiak, Mark Thomas, David Dossot, Tariq
 Ahmed, Ken McDonald, Mark Needham, and James Hatheway.

 Finally, I’d like to thank all of the MEAP reviewers. I received great feedback from them and appreciate the support and good
 reviews this book received before it was even in print. You guys had to bear with lots of typos and errors and deserve credit
 for persevering through my rough initial cuts and making it to this final version.

About this Book

 Scala in Depth is a practical guide to using Scala with deep dives into necessary topics. This book, picking up where introductory books
 drop off, enables readers to write idiomatic Scala code and understand trade-offs when making use of advanced language features.
 In particular, this book covers Scala’s implicit and type systems in detail before discussing how these can be used to drastically
 simplify development. The book promotes the “blended style” of Scala, where paradigms are mixed to achieve something greater.

Who should read this book?

 Scala in Depth is for new or intermediate Scala developers who wish to improve their skills with the language. While this book covers very
 advanced concepts in Scala, it attempts to pull along those new to Scala.

 This book was written for readers who know Java or another object-oriented language. Prior experience with Scala is helpful
 but not required. It covers Scala 2.7.x through Scala 2.9.x.

Roadmap

 Scala in Depth begins with a philosophical discussion of the “xen” of Scala—that Scala is a blending of concepts that achieve a greater
 whole when combined. In particular, three dichotomies are discussed: static typing versus expressiveness, functional programming
 versus object-oriented programming, and powerful language features versus dead simple Java integration.

 Chapter 2 is a discussion of the core rules of Scala. These are the things that every Scala developer should be aware of and make use
 of in daily development. This chapter is for every Scala developer and covers the basics that make Scala a great language.

 Chapter 3 is a digression in code style and associated issues. Scala brings a few new players to the table, and any Scala style guide
 should reflect that. Some common conventions from popular languages like Ruby and Java can actually be deterrents to good
 Scala code.

 Chapter 4 covers new issues arising in object-oriented design due to Scala’s mixin inheritance. One topic of interest to any Scala
 developer is the early initializer coverage, which gets little coverage in other books.

 After object orientation, the book moves into the implicit system. In chapter 5, rather than simply discussing best practices, a deep dive is taken into the mechanics of implicits in Scala. This chapter
 is a must for all Scala developers who wish to write expressive libraries and code.

 Chapter 6 is devoted to Scala’s type system. The discussion covers all the ways types appear in Scala and how to utilize the type system
 to enforce constraints. The chapter moves into a discussion of higher-kinded types and finishes with a dive into existential
 types.

 Chapter 7 discusses the most advanced usage patterns in the language, the intersection of types and implicits. This intersection is
 where a lot of interesting and powerful abstractions occur, the epitome of which is the type class pattern.

 Having covered the most advanced aspects of Scala, in chapter 8 we move into a discussion of Scala’s collection library. This includes the design and performance of Scala’s collections
 as well as how to deal with the powerful type mechanisms.

 Chapter 9 kicks off the discussion on actors in Scala. Actors are a concurrency mechanism that can provide great throughput and parallelism
 when used appropriately. The chapter dives into issues of designing actor-based systems and finishes with a demonstration
 of how the Akka actors library provides best practices by default.

 Chapter 10 covers Java integration with Scala. While Scala is more compatible with Java than most other JVM languages, there’s still
 a mismatch in features between the two. It’s at these corners that issues arise in Scala-Java integration and this chapter
 provides a few simple rules that help avoid these issues.

 Chapter 11 takes concepts from category theory and makes them practical. In pure functional programming, a lot of concepts from category
 theory have been applied to code. These are akin to object-oriented design patterns, but far more abstract. While they have
 terrible names, as is common in mathematics, these concepts are immensely useful in practice. No coverage of functional programming
 would be complete without a discussion of some of these abstractions, and Scala in Depth does its best to make these concepts
 real.

Code downloads and conventions

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts. I have
 tried to format the code so that it fits within the available page space in the book by adding line breaks and using indentation
 carefully. Sometimes, however, very long lines include line-continuation markers.

 Source code for all the working examples is available from www.manning.com/ScalainDepth and at https://github.com/jsuereth/scala-in-depth-source. To run the examples, readers should have Scala installed and, optionally, SBT (http://scalasbt.org).

 Code examples appear throughout this book. Longer listings appear under clear listing headers; shorter listings appear between
 lines of text.

Author online

 Purchase of Scala in Depth includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/ScalainDepth. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray.

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the author

 Josh Suereth is a Senior Software Engineer at Typesafe Inc., the company behind Scala. He has been a Scala enthusiast since
 he came to know this beautiful language in 2007. He started his professional career as a software developer in 2004, cutting
 his teeth with C++, STL, and Boost. Around the same time, Java fever was spreading and his interest was migrating to web-hosted
 distributed Java-delivered solutions to aid health departments in the discovery of disease outbreaks.

 He introduced Scala into his company code base in 2007, and soon after he was infected by Scala fever, contributing to the
 Scala IDE, maven-scala-plugin and Scala itself. Today, Josh is the author of several open source Scala projects, including
 the Scala automated resource management library and the PGP sbt plugin, as well as contributing to key components in the Scala
 ecosystem, like the maven-scala-plugin. His current work at Typesafe Inc., has him doing everything from building MSIs to
 profiling performance issues.

 Josh regularly shares his expertise in articles and talks. He likes short walks on the beach and dark beer.

About the Cover Illustration

 On the cover of Scala in Depth is a figure dressed in “An old Croatian folk costume.” The illustration is taken from a reproduction of an album of Croatian
 traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia,
 in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in
 the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304.
 The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of
 the costumes and of everyday life.

 While the caption for the illustration on the cover does not tell us the town or region of origin, the blue woolen trousers
 and richly embroidered vest and jacket that the figure is wearing are typical for the mountainous regions of central Croatia.
 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It’s now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Chapter 1. Scala—a blended language

	

 In this chapter

	Short introduction to Scala

 	Insights into Scala’s design

	

Scala was born from the mind of Martin Odersky, a man who had helped introduce generics into the Java programming language.
 Scala was an offshoot from the Funnel language, an attempt to combine functional programming and Petri nets. Scala was developed
 with the premise that you could mix together object orientation, functional programming, and a powerful type system and still
 keep elegant, succinct code. It was hoped that this blending of concepts would create something that real developers could
 use and that could be studied for new programming idioms. It was such a large success that industry has started adopting Scala
 as a viable and competitive language.

 Understanding Scala requires understanding this mixture of concepts. Scala attempts to blend three dichotomies of thought
 into one language. These are:

	Functional programming and object-oriented programming

 	Expressive syntax and static typing

 	Advanced language features and rich Java integration

Functional programming is programming through the definition and composition of functions. Object-oriented programming is
 programming through the definition and composition of objects. In Scala, functions are objects. Programs can be constructed through both the definition and composition of objects or functions. This gives Scala
 the ability to focus on “nouns” or “verbs” in a program, depending on what is the most prominent.

 Scala also blends expressive syntax with static typing. Mainstream statically typed languages tend to suffer from verbose
 type annotations and boilerplate syntax. Scala takes a few lessons from the ML programming language and offers static typing
 with a nice expressive syntax. Code written in Scala can look as expressive as dynamically typed languages, like Ruby, while
 retaining type safety.

 Finally, Scala offers a lot of advanced language features that are not available in Java. But Scala runs on the Java virtual
 machine (JVM) and has tight integration with the Java language. This means that developers can make direct use of existing
 Java libraries and integrate Scala into their Java applications while also gaining the additional power of Scala. This integration
 makes Scala a practical choice for any JVM-based project.

 Let’s take a deeper look at the blending of paradigms in Scala.

1.1. Functional programming meets object orientation

 Functional programming and object-oriented programming are two different ways of looking at a problem. Functional programming
 puts special emphasis on the “verbs” of a program and ways to combine and manipulate them. Object-oriented programming puts
 special emphasis on “nouns” and attaches verbs to them. The two approaches are almost inverses of each other, with one being
 “top down” and the other “bottom up.”

 Object-oriented programming is a top-down approach to code design. It approaches software by dividing code into nouns or objects.
 Each object has some form of identity (self/this), behavior (methods), and state (members). After identifying nouns and defining
 their behaviors, interactions between nouns are defined. The problem with implementing interactions is that the interactions
 need to live inside an object. Modern object-oriented designs tend to have service classes, which are a collection of methods that operate across several domain objects. Service classes, although objects, usually
 don’t have a notion of state or behavior independent of the objects on which they operate.

 A good example is a program that implements the following story: “A cat catches a bird and eats it.” An object-oriented programmer
 would look at this sentence and see two nouns: cat and bird. The cat has two verbs associated with it: catch and eat. The
 following program is a more object-oriented approach:

 class Bird
class Cat {
 def catch(b: Bird): Unit = ...
 def eat(): Unit = ...
}
val cat = new Cat
val bird = new Bird
cat.catch(bird)
cat.eat()

 In the example, when a Cat catches a Bird, it converts the bird to a type of Food, which it can then eat. The code focuses on the nouns and their actions: Cat.eat(), Cat.catch(...). In functional programming, the focus is on the verbs.

 Functional programming approaches software as the combination and application of functions. It tends to decompose software
 into behaviors, or actions that need to be performed, usually in a bottom-up fashion. Functions are viewed in a mathematical
 sense, purely operations on their input. All variables are considered immutable. This immutability aids concurrent programming.
 Functional programming attempts to defer all side effects in a program as long as possible. Removing side effects makes reasoning
 through a program simpler, in a formal sense. It also provides much more power in how things can be abstracted and combined.

 In the story “A cat catches a bird and eats it,” a functional program would see the two verbs catch and eat. A program would create these two functions and compose them to create the program. The following program is a more functional
 approach:

 trait Cat
trait Bird
trait Catch
trait FullTummy
def catch(hunter: Cat, prey: Bird): Cat with Catch
def eat(consumer: Cat with Catch): Cat with FullTummy
val story = (catch _) andThen (eat _)
story(new Cat, new Bird)

 In the example, the catch method takes a Cat and a Bird and returns a new value of type Cat with Catch. The eat method is defined as taking a CatWithPrey (a cat needs something to eat) and returns a FullCat (because it’s no longer hungry). Functional programming makes more use of the type system to describe what a function is
 doing. The catch and eat methods use the type signatures to define the expected input and output states of the function. The with keyword is used to combine a type with another. In this example, the traits Catch and FullTummy are used to denote the current state of a Cat. The methods eat and catch return new instances of Cat attached to different state types. The story value is created by composing the functions catch and eat. This means that the catch method is called and the result is fed into the eat method. Finally, the story function is called with a Cat and a Bird and the result is the output of the story: a full cat.

 Functional programming and object orientation offer unique views of software. It’s these differences that make them useful
 to each other. Object orientation can deal with composing the nouns and functional programming can deal with composing verbs. In the example, the functional version was built by composing a set of functions that encompassed a story and then
 feeding the initial data into these functions. For the object-oriented version, a set of objects was created and their internal
 state was manipulated. Both approaches are useful in designing software. Object orientation can focus on the nouns of the
 system and functional programming can compose the verbs.

 Table 1.1. Attributes commonly ascribed to object-oriented and functional programming

	
 Object-oriented programming

 	
 Functional programming

	Composition of objects (nouns)
 	Composition of functions (verbs)

	Encapsulated stateful interaction
 	Deferred side effects

	Iterative algorithms
 	Recursive algorithms and continuations

	Imperative flow
 	Lazy evaluation

	N/A
 	Pattern matching

In fact, in recent years, many Java developers have started moving toward splitting nouns and verbs. The Enterprise JavaBeans
 (EJB) specification splits software into Session beans, which tend to contain behaviors, and Entity beans, which tend to model the nouns in the system. Stateless Session beans start looking more like collections of functional code
 (although missing most of the useful features of functional code).

 This push of functional style has come along much further than the EJB specifications. The Spring Application Framework promotes
 a functional style with its Template classes, and the Google Collections library is very functional in design. Let’s look
 at these common Java libraries and see how Scala’s blend of functional programming with object orientation can enhance these
 Application Program Interfaces (APIs).

 1.1.1. Discovering existing functional concepts

 Many modern API designs have been incorporating functional ideas without ascribing them to functional programming. For Java,
 things such as Google Collections or the Spring Application Framework make popular functional concepts accessible to the Java
 developer. Scala takes this further and embeds them into the language. To illustrate, you’ll do a simple translation of the
 methods on the popular Spring Jdbc-Template class and see what it starts to look like in Scala.

 [image:]

 Now for a simple translation into Scala, you’ll convert the interface into a trait having the same method(s):

 trait JdbcTemplate {
 def query(psc: PreparedStatementCreator,
 rowMapper: RowMapper): List[_]
}

 The simple translation makes a lot of sense but it’s still designed with a distinct Java flair. Let’s start digging deeper
 into this design. Specifically, let’s look at the PreparedStatementCreator and the RowMapper interfaces.

 public interface PreparedStatementCreator {
 PreparedStatement createPreparedStatement(Connection con)
 throws SQLException;
}

 The PreparedStatementCreator interface contains only one method: create-PreparedStatement. This method takes a JDBC connection and returns a PreparedStatement. The RowMapper interface looks similar:

 public interface RowMapper {
 Object mapRow(ResultSet rs, int rowNum)
 throws SQLException;
}

 Scala provides first-class functions. This feature lets us change the JdbcTemplate query method so that it takes functions instead of interfaces. These functions should have the same signature as the sole
 method defined on the interface. In this case, the PreparedStatementCreator argument can be replaced by a function that takes a connection and returns a PreparedStatement. The RowMapper argument can be replaced by a function that takes a ResultSet and an integer and returns some type of object. The updated Scala version of the JdbcTemplate interface would look as follows:

 [image:]

 The query method is now more functional. It’s using a technique known as the loaner pattern. This technique involves some controlling entity (the JdbcTemplate) creating a resource and delegating the use of it to another function. In this case, there are two functions and three resources.
 Also, as the name implies, JdbcTemplate is part of a template method in which pieces of the behavior were deferred for the user to implement. In pure object-orientation,
 this is usually done via inheritance. In a more functional approach, these behavioral pieces become arguments to the controlling
 function. This provides more flexibility by allowing mixing/matching arguments without having to continually use subclasses.

 You may be wondering why you’re using AnyRef for the second argument’s return value. AnyRef is equivalent in Scala to java.lang.Object. Because Scala has supported generics, even when compiling for 1.4 JVMs, we should
 modify this interface further to remove the AnyRef and allow users to return specific types.

 [image:]

 With a few simple transformations, you’ve created an interface that works directly against functions. This is a more functional
 approach because Scala’s function traits allow composition. By the time you’re finished reading this book, you’ll be able
 to approach the design of this interface completely differently.

 Functional programming also shines when used in a collections library. The Ruby and Python programming languages support some
 functional aspects directly in their standard library collections. For Java users, the Google Collections library bring practices
 from functional programming.

 1.1.2. Examining functional concepts in Google Collections

 The Google Collections API adds a lot of power to the standard Java collections. Primarily it brings a nice set of efficient
 immutable data structures, and some functional ways of interacting with your collections, primarily the Function interface and the Predicate interface. These interfaces are used primarily from the Iterables and Iterators classes. Let’s look at the Predicate interface and its uses.

 interface Predicate<T> {
 public boolean apply(T input);
 public boolean equals(Object other);
}

 The Predicate interface is simple. Besides equality, it contains an apply method that returns true or false against its argument. This is used in an Iterators/Iterables-filter method. The filter method takes a collection and a predicate. It returns a new collection containing only elements that pass the predicate apply method. Predicates are also used in the find method. The find method looks in a collection for the first element passing a Predicate and returns it. The filter and find method signatures
 are shown in the following code.

 [image:]

 There also exists a Predicates class that contains static methods for combining predicates (ANDs/ORs) and standard predicates for use, such as “not null.”
 This simple interface creates some powerful functionality through the potential combinations that can be achieved with terse
 code. Also, because the predicate itself is passed into the filter function, the function can determine the best way or time
 to execute the filter. The data structure may be amenable to lazily evaluating the predicate, making the iterable returned
 a “view” of the original collection. It might also determine that it could best optimize the creation of the new iterable
 through some form of parallelism. This has been abstracted away, so the library could improve over time with no code changes
 on our part.

 The Predicate interface is rather interesting, because it looks like a simple function. This function takes some type T and
 returns a Boolean. In Scala this would be represented T => Boolean. Let’s rewrite the filter/find methods in Scala and see what their signatures would look like:

 [image:]

 You’ll immediately notice that in Scala we aren’t using any explicit ? super T type annotations. This is because Scala defines type variance at declaration time. For this example, that means that the
 variance annotation is defined on the Function1 class rather than requiring it on every method that used the class.

 What about combining predicates in Scala? We can accomplish a few of these quickly using some functional composition. Let’s
 make a new Predicates module in Scala that takes in function predicates and provides commonly used function predicates. The input type of these
 combination functions should be T => Boolean and the output should also be T => Boolean. The predefined predicates should also have a type T => Boolean.

 [image:]

 We’ve now started to delve into the realm of functional programming. We’re defining first-class functions and combining them
 to perform new behaviors. You’ll notice the or method take two predicates, f1 and f2. It then creates a new anonymous function that takes an argument t and ORs the results of f1 and f2. Playing with functions also makes more extensive use of generics and the type system. Scala has put forth a lot of effort
 to reduce the overhead for generics in daily usage.

 Functional programming is more than combining functions with other functions. The essence of functional programming is delaying
 side effects as long as possible. This predicate object defines a simple mechanism to combine predicates. The predicate isn’t
 used to cause side effects until passed to the Iterables object. This distinction is important. Complex predicates can be built from simple predicates using the helper methods defined
 on the object predicates.

 Functional programming grants the means to defer state manipulation in a program until a later time. It provides a mechanism
 to construct verbs that delay side effects. These verbs can be combined in a fashion that makes reasoning through a program
 simpler. Eventually the verbs are applied against the nouns of the system. In traditional FP, side effects are delayed as long as possible. In blended OO-FP, the idioms merge.

1.2. Static typing and expressiveness

 The Scala type system allows expressive code. A common misconception among developers is that static typing leads to verbose
 code. This myth exists because many of the languages derived from C, where types must be explicitly specified in many different
 places. As software has improved, along with compiler theory, this is no longer true. Scala uses some of these advances to
 reduce boilerplate in code and keep things concise.

 Scala made a few simple design decisions that help make it expressive:

	Changing sides of type annotation

 	Type inference

 	Scalable syntax

 	User-defined implicits

Let’s look at how Scala changes the sides of type annotations.

 1.2.1. Changing sides

 Scala places type annotations on the right-hand side of variables. In some statically typed languages, like Java or C++, it’s
 common to have to express the types of variables, return values, and arguments. When specifying variables or parameters, the
 convention, drawn from C, is to place type indicators on the left-hand side of the variable name. For method arguments and
 return values, this is acceptable, but causes some confusion when creating different styles of variables. C++ is the best
 example of this, as it has a rich set of variable styles, such as volatile, const, pointers, and references. Table 1.2 shows a comparison of C++ variables and Scala variables.

 Table 1.2. Variable definition in C++ versus Scala

	
 Variable type

 	
 C++

 	
 Java

 	
 Scala

	Mutable integer variable
 	int x
 	int x
 	var x: Int

	Immutable integer value
 	const int x
 	final int x
 	val x: Int

	Constant pointer to a volatile integer
 	volatile int * const x
 	N/A
 	N/A

	Lazily evaluated integer value
 	N/A
 	N/A
 	lazy val x: Int

The more complicated a variable type, the more annotations are required directly on the type of the variable. In C++, this
 is maximized in the usage of a pointer, because a pointer can be constant. Scala defines three variable types on the left-hand
 side, like var, val, and lazy val. These leave the type of the variable clean. In all instances, the type of the name x is Int.

 In addition to separating the concerns of how a variable behaves from the variable type, the placement of types on the right
 allows type inference to determine the type of the variables.

 1.2.2. Type inference

 Scala performs type inference wherever possible. Type inference is when the compiler determines what the type annotation should
 be, rather than forcing the user to specify one. The user can always provide a type annotation, but has the option to let
 the compiler do the work.

 val x: Int = 5
val y = 5

 This feature can drastically reduce the clutter found in some other typed languages. Scala takes this even further to do some
 level of inference on arguments passed into methods, specifically with first-class functions.

 def myMethod(functionLiteral: A => B): Unit
myMethod({ arg: A => new B })
myMethod({ arg => new B })

 If a method is known to take a function argument, the compiler can infer the types used in a function are literal.

 1.2.3. Dropping verbose syntax

 Scala syntax takes the general approach that when the meaning of a line of code is straightforward, the verbose syntax can
 be dropped. This feature can confuse users first using Scala but can be rather powerful when used wisely. Let’s show a simple
 refactoring from the full glory of Scala syntax into the simplistic code that’s seen in idiomatic usage. Here is a function
 for Quicksort in Scala.

 [image:]

 This code accepts a list whose type, T, is able to be implicitly converted into a variable of type Ordered[T] (T <% Ordered[T]). We’ll discuss type parameters and constraints in great detail in chapter 6, so don’t focus too much on these. We’re requiring that the list contain elements that we have some notion of ordering for,
 specifically a less than function (<). We then examine the list. If it’s empty, or Nil, then we return a Nil list. If it encounters a list, we extract the head
 (x) and tail (xs) of the list. We use the head element of the list to partition the tail into two lists. We then recursively call the Quicksort
 method on each partition. In the same line, we combine the sorted partitions and the head element into a complete list.

 You may be thinking, “Wow, Scala looks ugly.” In this case you would be right. The code is cluttered and difficult to read.
 There’s a lot of syntactic noise preventing the meaning of the code from being clear. There’s also a lot of type information
 after qsort. Let’s pull out our surgical knife and start cutting out cruft. First we’ll start with Scala’s semicolon inference. The compiler
 will assume that the end of a line is the end of an expression, unless you leave some piece of syntax hanging, like the . before a method call.

 But removing semicolons isn’t quite enough to reduce the clutter. We should also use an operator notation. This is the name Scala gives to its ability to treat methods as operators. A method of no arguments can be treated as a
 postfix operator. A method of one argument can be treated as an infix operator. There’s also the special rule for certain
 characters (for example, :) at the end of a method name that reverses the order of a method call. These rules are demonstrated as follows:

 x.foo(); /*is the same as*/ x foo
x.foo(y); /*is the same as*/ x foo y
x.::(y); /*is the same as*/ y :: x

 Scala also provides placeholder notation when defining anonymous functions (aka, lambdas). This syntax uses the _ keyword as a placeholder for a function argument. If more than one placeholder is used, each consecutive placeholder refers
 to consecutive arguments to the function literal. This notation is usually reserved for simple functions, such as the less-than
 (<) comparison in our Quicksort.

 We can apply this notation paired with operator notation to achieve the following on our quick sort algorithm:

 [image:]

 Scala offers syntactic shortcuts for simple cases, and it provides a mechanism to bend the type system via implicits conversions
 and implicits arguments.

 1.2.4. Implicits are an old concept

 Scala implicits are a new take on an old concept. The first time I was ever introduced to the concept of implicit conversions
 was with primitive types in C++. C++ allows primitive types to be automatically converted as long as there is no loss of precision.
 For example, we can use an int literal when declaring a long value. The types double, float, int, and long are different to the compiler. It does try to be intelligent and “do the right thing” when mixing these values. Scala provides
 this same mechanism, but using a language feature that’s available for anyone.

 The scala.Predef object is automatically imported into scope by Scala. This places its members available to all programs. It’s a handy mechanism
 for providing convenience functions to users, like directly writing println instead of Console .println or System.out.println. Predef also provides what it calls primitive widenings. These are a set of implicit conversions that automatically migrate from lower-precision types to higher precision types.
 The following listing shows the set of methods defined for the Byte type.

 Listing 1.1. Byte conversions in scala.Predef object

 implicit def byte2short(x: Byte): Short = x.toShort
 implicit def byte2int(x: Byte): Int = x.toInt
 implicit def byte2long(x: Byte): Long = x.toLong
 implicit def byte2float(x: Byte): Float = x.toFloat
 implicit def byte2double(x: Byte): Double = x.toDouble

 These methods are calls to the runtime-conversion methods. The implicit before the method means the compiler may attempt to
 apply this method to a type Byte, if it’s required for correct compilation. This means if we attempt to pass a Byte to a method requiring a Short, it will use the implicit conversion defined as byte2short. Scala also takes this one step further and looks for methods via implicit conversions if the current type doesn’t have the
 called method. This comes in handy for more than just primitive conversions.

 Scala also uses the implicit conversion mechanism as a means of extending Java’s base classes (Integer, String, Double, and so on). This allows Scala to make direct use of Java classes, for ease of integration, and provide richer methods that
 make use of Scala’s more advanced features. Implicits are a powerful feature and are mistrusted by some. The key to implicits
 in Scala are knowing how and when to use them.

 1.2.5. Using Scala’s implicit keyword

 Utilizing implicits is key to manipulating Scala’s type system. They’re primarily used to automatically convert from one type
 to another as needed, but can also be used to limited forms of compiler time metaprogramming. To use, implicits must be associated
 with a lexical scope. This can be done via companion objects or by explicitly importing them.

 The implicit keyword is used in two different ways in Scala. First it’s used to identify and create arguments that are automatically passed
 when found in the scope. This can be used to lexically scope certain features of an API. As implicits also have a lookup policy,
 the inheritance linearization, they can be used to change the return type of methods. This allows some advanced APIs and type-system
 tricks such as that used in the Scala collections API. These techniques are covered in detail in chapter 7.

 The implicit keyword can also be used to convert from one type to another. This occurs in two places, the first when passing
 a parameter to a function. If Scala detects that a different type is needed, it will check the type hierarchy and then look
 for an implicit conversion to apply to the parameter. An implicit conversion is a method, marked implicit, that takes one
 argument and returns something. The second place where Scala will perform an implicit conversion is when a method is called
 against a particular type. If the compiler can’t find the desired method, it will apply implicit conversations against the variable until it either finds one that contains the method or it runs out of conversions. This
 is used in Scala’s “pimp my library” pattern, described in chapter 7.

 These features combine an expressive syntax with Scala, despite its advanced type system. Creating expressive libraries requires
 a deep understanding of the type system, as well as thorough knowledge of implicit conversions. The type system will be covered
 more fully in chapter 6. The type system also interoperates well with Java, which is a critical design for Scala.

1.3. Transparently working with the JVM

 One of Scala’s draws is its seamless integration with Java and the JVM. Scala provides a rich compatibility with Java, such
 that Java classes can be mapped directly to Scala classes. The tightness of this interaction makes migrating from Java to
 Scala rather simple, but caution should be used with some of Scala’s advanced feature sets. Scala has some advanced features
 not available in Java, and care was taken in the design so that seamless Java interaction can be achieved. For the most part,
 libraries written in Java can be imported into Scala as is.

 1.3.1. Java in Scala

 Using Java libraries from Scala is seamless because Java idioms map directly into Scala idioms. Java classes become Scala
 classes; Java interfaces become abstract Scala traits. Java static members get added to a pseudo-Scala object. This combined
 with Scala’s package import mechanism and method access make Java libraries feel like natural Scala libraries, albeit with
 more simplistic designs. In general, this kind of interaction just works. For example, the following listing shows a Java
 class that has a constructor, a method, and a static helper method.

 Listing 1.2. Simple Java object

 [image:]

 [image:]

 This mapping is rather natural and makes using Java libraries a seamless part of using Scala. Even with the tight integration,
 Java libraries usually have a form of thin Scala wrapper that provides some of the more advanced features a Java API could
 not provide. These features are apparent when trying to use Scala libraries inside Java.

 1.3.2. Scala in Java

 Scala attempts to map its features to Java in the simplest possible fashion. For the most part, simple Scala features map
 almost one-to-one with Java features (for example, classes, abstract classes, methods). Scala has some rather advanced features
 that don’t map easily into Java. These include things like objects, first-class functions, and implicits.

Scala Objects in Java

 Although Java statics map to Scala objects, Scala objects are instances of a singleton class. This class name is compiled
 as the name of the object with a $ appended to the end. A MODULE$ static field on this class is designed to be the sole instance. All methods and fields can be accessed via this MODULE$ instance. Scala also provides forwarding static methods when it can; these exist on the companion class (that is, a class with the same name as the object). Although
 the static methods are unused in Scala, they provide a convenient syntax when called from Java.

 [image:]

Scala Functions in Java

 Scala promotes the use of function as object, or first-class functions. As of Java 1.6, there is no such concept in the Java
 language (or the JVM). Therefore, Scala creates the notion of function traits. These are a set of 23 traits that represent functions of arity 0 through 22. When the compiler encounters the need for passing
 a method as a function object, it creates an anonymous subclass of an appropriate function trait. As traits don’t map into
 Java, the passing of first-class functions from Java into Scala is also inhibited but not impossible.

 [image:]

 We’ve created an abstract class in Scala that Java can implement more easily than a function trait. Although this eases the
 implementation in Java, it doesn’t make things 100% simple. There’s still a mismatch between Java’s type system and Scala’s
 encoding of types that requires us to coerce the type of the function when making the Scala call, as you can see in the following
 listing.

 Listing 1.3. Implementing a first-class function in Java

 [image:]

 It’s possible to use first-class functions and with them a more functional approach when combining Scala and Java. But other
 alternatives exist to make this work. A more detailed discussion of this tweak, along with other Java–Scala related issues
 can be found in chapter 10. As you can see, Scala can integrate well with existing Java programs and be used side by side with existing Java code. Java–Scala
 interaction isn’t the only benefit of having Scala run inside the JVM; the JVM itself provides a huge benefit.

 1.3.3. The benefits of a JVM

 As alluded to earlier, the JVM provides many of the benefits associated with Java. Through bytecode, libraries become distributable
 to many differing platforms on an as is basis. The JVM has also been well tested in many environments and is used for large-scale
 enterprise deployments. It has also been a big focus on performance of the Java platform. The HotSpot compiler can perform
 various optimizations on code at runtime. This also enables users to upgrade their JVM and immediately see performance improvements,
 without patches or recompiling.

Hotspot-ing

 The primary benefit of Scala running on the JVM is the HotSpot runtime optimizer. This allows runtime profiling of programs,
 with automatic optimizations applied against the JVM bytecode. Scala acquires these optimization “for free” by nature of running
 against the JVM. Every release of the JVM improves the HotSpot compiler, and this improves the performance of Scala. The HotSpot
 compiler does this through various techniques. Including the following:

	Method inlining

 	On Stack Replacement (OSR)

 	Escape Analysis

 	Dynamic deoptimization

Method inlining is HotSpot’s ability to determine when it can inline a small method directly at a call-spot. This was a favorite technique
 of mine in C++, and HotSpot will dynamically determine when this is optimal. On Stack Replacement refers to HotSpot’s ability to determine that a variable could be allocated on the stack versus the heap. I remember in C++
 the big question when declaring a variable was whether to place it on the stack or the heap. Now HotSpot can answer that for
 me. HotSpot performs escape analysis to determine if various things “escape” a certain scope. This is primarily used to reduce locking overhead when synchronized
 method calls are limited to some scope, but it can be applied to other situations. Dynamic deoptimization is the key feature of HotSpot. It’s the ability to determine whether an optimization did not improve performance and undo that optimization, allowing others to be applied. These features combine into a pretty compelling
 picture of why new and old languages (for example, Ruby) desire to run on the JVM.

1.4. Summary

 In this chapter, you’ve learned a bit about the philosophy of Scala. Scala was designed with the idea of blending various
 concepts from other languages. Scala blends functional and object-oriented programming, although this has been done in Java
 as well. Scala made choices about syntax that drastically reduced the verbosity of the language and enabled some powerful
 features to be elegantly expressed, such as type inference. Finally, Scala has tight integration with Java and runs on top
 of the Java virtual machine, which is perhaps the single most important aspect to make Scala relevant to us. It can be utilized
 in our day-to-day jobs with little cost.

 As Scala blends various concepts, users of Scala will find themselves striking a balance among functional programming techniques,
 object orientation, integration with existing Java applications, expressive library APIs, and enforcing requirements through
 the type system. Often the best course of action is determined by the requirements at hand. It’s the intersection of competing
 ideas where Scala thrives and also where the greatest care must be taken. This book will help guide when to use each of these
 techniques.

 Let’s start looking at a few key concepts every Scala developer needs to know when coding Scala.

Chapter 2. The core rules

	

 In this chapter

	
Using the Scala Read Eval Print Loop

 	Expression-oriented programming

 	Immutability

 	The Option class

	

This chapter covers a few topics that every newcomer to Scala needs to know. Not every topic is covered in depth, but we cover
 enough to allow you to explore the subject. You’ll learn about the Read Eval Print Loop and how you can use this to rapidly
 prototype software. Next we’ll learn about expression-oriented programming, and how to look at control flow in a different
 light. From this, we’ll spring into immutability and why it can help to greatly simplify your programs, and help them run
 better concurrently.

2.1. Learn to use the Read Eval Print Loop (REPL)

 Scala provides many materials to learn the core language. You can investigate many tutorials, examples, and projects online.
 But the single most important thing Scala provides is a Read Eval Print Loop (REPL). The REPL is an interactive shell that compiles Scala code and returns results/type immediately. The Scala REPL is instantiated by running scala on the command line, assuming you have Scala installed on your machine and your path is set correctly. The Scala REPL should
 output something like the following:

 $ scala
Welcome to Scala version 2.8.0.r21454-b20100411185142
 (Java HotSpot(TM) 64-Bit Server VM, Java 1.6.0_15).
Type in expressions to have them evaluated.
Type :help for more information.
scala>

 From now on, in code examples I’ll use the scala> prompt to imply that these were entered into the REPL. The following line will be the output. Let’s do a few quick samples
 in the REPL and see what it shows us.

 scala> "Hello"
res0: java.lang.String = Hello
scala> "Hello".filter(_ != 'l')
res1: String = Heo
scala> "Hello".map(_.toInt + 4)
res2: scala.collection.immutable.IndexedSeq[Int] =
 Vector(76, 105, 112, 112, 115)
scala> "Hello".r
res3: scala.util.matching.Regex = Hello

 You’ll notice that after every statement we enter into the interpreter, it prints a line like res0: java.lang.String = Hello (see figure 2.1). The first part of this expression is a variable name for the expression. In the case of these examples, the REPL is defining
 a new variable for the result of each expression (res0 through res3). The next part of the result expression (after the :

OEBPS/f0006-01_alt.jpg
lass Iterables Filters
public static <T> Iterable<T> filter(Iterable<T> unfiltered, J uiing
Predicate<? super T> predicate) predicate
public static <T> T find(Iterable<T> iterable,
) <—‘ Find using
predicate

Predicate<? super T> predicate)

OEBPS/f0007-01_alt.jpg
ORGY LCSERDLES |

def ilter(T) (unfiltered: Iterable(t],

T => Boolean): Iterable(T] =
def fmammezable. Iterable(T],

predicate: T => Boolean): T

No need
for?

OEBPS/f0005-01_alt.jpg
trait JdbcTemplate {
def query(psc: Connection => PreparedStatement, Use first-class
rowMapper: (ResultSet, Int) => AnyRef functions
: List[AnyRef]

OEBPS/f0005-02_alt.jpg
1tIten] (psc

rowdapper: (Resultset,
List [ResultIten]

Int) => ResultItem

-
return list

OEBPS/manning.jpg

OEBPS/f0004-01_alt.jpg
public interface JdbcTemplate {
List query(PreparedStatementCreator psc, < Query for list of objects
RowMapper rowMapper)

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/f0007-02_alt.jpg
object Predicates

def or(T)(£1: T => Boolean, £2:

™ = f1(6) || £2(0)
> Boolean, £2:

£1(t) &k £2(t)

=> Boolean

(e
def and[T] (£

(e 1) =
val notNull(T]: T

T => Boolean)

T

function
Placeholder
functior

n syntax

OEBPS/f0010-01_alt.jpg
SR R L

S R T) e S SRS A S
case Nil

Placeholder
xs => notation used
val (before, after) = xs partition (_ < x) instead of =>

gsort (before) ++ (x :: gsort(after));

OEBPS/f0009-01_alt.jpg
{ <— <% means “view’

e
gsort (before) . ++(gsort (after) .:: (x))); ++ and

) mean aggregate

OEBPS/cover.jpg
Joshua . Suereth

Matin Odersky

| FITOT

OEBPS/ch01list2-1.jpg
)
Now, let’s use this in Scala,

val x = SimpleJavaClass.create (*Test")
x.getName ()

val ¥ = new SinoleJaveClass{"Test")

< Calling Java static methods
< Calling Java methods

< Using Java constructor

OEBPS/ch01list2-0.jpg
AANS Simpiedeveciase {
private String n

public smp)eaavacussqsmng name)

« < Constructor
this.name =

public String getName() { < Class method
return name;

public static SimpleJavaClass create(String name)

(< Static lass helper
return new SimpleJavacluss(n:

OEBPS/f0013-02_alt.jpg
object FunctlonUtll {
def testFunction(f : Int

nt) : Int = £(5)
y

Special abstract
abstract class AbstractFunctionIntIntForJava extends class to use
(Int => Imt) (from Java

OEBPS/f0013-01_alt.jpg
UL SERABULRN |

def log(msg : String) : Unit = Console.println(msg) <— Simple Scala method

val MAX_LOG_SIZE = 1056 < Simple Scala field
)
ScalaUtils.log("Hellot™); < Acts like static call

ScalaUtilss.MODULES . log ("Hello!"); < Usethe

System.out.println(ScalaUtilss.MODULES .MAX_LOG_STZE()) ;

gleton instance
< Variables become

Svstem.out.println{Scalaltils.MAX LOG SIZE()): Static forwarder

OEBPS/01list03_alt.jpg
RS WIETNERRCL I L.

ublic static void main(string(] azgs) ¢
t 1

¢ Coerce types
(scala. Vit tinistages s eatol
bstractFunctionIntIntFordava() (< First-clas function
public Tnteger spply (Integer argument) (
return argunent + 5: 1 Function ogic

N

