

 inside front cover

 [image:]

 An RDD versus a data frame. In the RDD, we think of each record as an independent entity. With the data frame, we mostly interact with columns, performing functions on them. We still can access the rows of a data frame, via RDD, if necessary.

 [image:]

 Data Analysis with Python and PySpark

 Jonathan Rioux

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Marina Michaels

 	
 Technical development editor:

 	
 Arthur Zubarev

 	
 Review editor:

 	
 Aleksander Dragosavljević

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Michele Mitchell

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Alex Ott

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617297205

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Introduction

 1.1 What is PySpark?

 Taking it from the start: What is Spark?

 PySpark = Spark + Python

 Why PySpark?

 1.2 Your very own factory: How PySpark works

 Some physical planning with the cluster manager

 A factory made efficient through a lazy leader

 1.3 What will you learn in this book?

 1.4 What do I need to get started?

 Part 1. Get acquainted: First steps in PySpark

 2 Your first data program in PySpark

 2.1 Setting up the PySpark shell

 The SparkSession entry point

 Configuring how chatty spark is: The log level

 2.2 Mapping our program

 2.3 Ingest and explore: Setting the stage for data transformation

 Reading data into a data frame with spark.read

 From structure to content: Exploring our data frame with show()

 2.4 Simple column transformations: Moving from a sentence to a list of words

 Selecting specific columns using select()

 Transforming columns: Splitting a string into a list of words

 Renaming columns: alias and withColumnRenamed

 Reshaping your data: Exploding a list into rows

 Working with words: Changing case and removing punctuation

 2.5 Filtering rows

 3 Submitting and scaling your first PySpark program

 3.1 Grouping records: Counting word frequencies

 3.2 Ordering the results on the screen using orderBy

 3.3 Writing data from a data frame

 3.4 Putting it all together: Counting

 Simplifying your dependencies with PySpark’s import conventions

 Simplifying our program via method chaining

 3.5 Using spark-submit to launch your program in batch mode

 3.6 What didn’t happen in this chapter

 3.7 Scaling up our word frequency program

 4 Analyzing tabular data with pyspark.sql

 4.1 What is tabular data?

 How does PySpark represent tabular data?

 4.2 PySpark for analyzing and processing tabular data

 4.3 Reading and assessing delimited data in PySpark

 A first pass at the SparkReader specialized for CSV files

 Customizing the SparkReader object to read CSV data files

 Exploring the shape of our data universe

 4.4 The basics of data manipulation: Selecting, dropping, renaming, ordering, diagnosing

 Knowing what we want: Selecting columns

 Keeping what we need: Deleting columns

 Creating what’s not there: New columns with withColumn()

 Tidying our data frame: Renaming and reordering columns

 Diagnosing a data frame with describe() and summary()

 5 Data frame gymnastics: Joining and grouping

 5.1 From many to one: Joining data

 What’s what in the world of joins

 Knowing our left from our right

 The rules to a successful join: The predicates

 How do you do it: The join method

 Naming conventions in the joining world

 5.2 Summarizing the data via groupby and GroupedData

 A simple groupby blueprint

 A column is a column: Using agg() with custom column definitions

 5.3 Taking care of null values: Drop and fill

 Dropping it like it’s hot: Using dropna() to remove records with null values

 Filling values to our heart’s content using fillna()

 5.4 What was our question again? Our end-to-end program

 Part 2. Get proficient: Translate your ideas into code

 6 Multidimensional data frames: Using PySpark with JSON data

 6.1 Reading JSON data: Getting ready for the schemapocalypse

 Starting small: JSON data as a limited Python dictionary

 Going bigger: Reading JSON data in PySpark

 6.2 Breaking the second dimension with complex data types

 When you have more than one value: The array

 The map type: Keys and values within a column

 6.3 The struct: Nesting columns within columns

 Navigating structs as if they were nested columns

 6.4 Building and using the data frame schema

 Using Spark types as the base blocks of a schema

 Reading a JSON document with a strict schema in place

 Going full circle: Specifying your schemas in JSON

 6.5 Putting it all together: Reducing duplicate data with complex data types

 Getting to the “just right” data frame: Explode and collect

 Building your own hierarchies: Struct as a function

 7 Bilingual PySpark: Blending Python and SQL code

 7.1 Banking on what we know: pyspark.sql vs. plain SQL

 7.2 Preparing a data frame for SQL

 Promoting a data frame to a Spark table

 Using the Spark catalog

 7.3 SQL and PySpark

 7.4 Using SQL-like syntax within data frame methods

 Get the rows and columns you want: select and where

 Grouping similar records together: group by and order by

 Filtering after grouping using having

 Creating new tables/views using the CREATE keyword

 Adding data to our table using UNION and JOIN

 Organizing your SQL code better through subqueries and common table expressions

 A quick summary of PySpark vs. SQL syntax

 7.5 Simplifying our code: Blending SQL and Python

 Using Python to increase the resiliency and simplifying the data reading stage

 Using SQL-style expressions in PySpark

 7.6 Conclusion

 8 Extending PySpark with Python: RDD and UDFs

 8.1 PySpark, freestyle: The RDD

 Manipulating data the RDD way: map(), filter(), and reduce()

 8.2 Using Python to extend PySpark via UDFs

 It all starts with plain Python: Using typed Python functions

 From Python function to UDFs using udf()

 9 Big data is just a lot of small data: Using pandas UDFs

 9.1 Column transformations with pandas: Using Series UDF

 Connecting Spark to Google’s BigQuery

 Series to Series UDF: Column functions, but with pandas

 Scalar UDF + cold start = Iterator of Series UDF

 9.2 UDFs on grouped data: Aggregate and apply

 Group aggregate UDFs

 Group map UDF

 9.3 What to use, when

 10 Your data under a different lens: Window functions

 10.1 Growing and using a simple window function

 Identifying the coldest day of each year, the long way

 Creating and using a simple window function to get the coldest days

 Comparing both approaches

 10.2 Beyond summarizing: Using ranking and analytical functions

 Ranking functions: Quick, who’s first?

 Analytic functions: Looking back and ahead

 10.3 Flex those windows! Using row and range boundaries

 Counting, window style: Static, growing, unbounded

 What you are vs. where you are: Range vs. rows

 10.4 Going full circle: Using UDFs within windows

 10.5 Look in the window: The main steps to a successful window function

 11 Faster PySpark: Understanding Spark’s query planning

 11.1 Open sesame: Navigating the Spark UI to understand the environment

 Reviewing the configuration: The environment tab

 Greater than the sum of its parts: The Executors tab and resource management

 Look at what you’ve done: Diagnosing a completed job via the Spark UI

 Mapping the operations via Spark query plans: The SQL tab

 The core of Spark: The parsed, analyzed, optimized, and physical plans

 11.2 Thinking about performance: Operations and memory

 Narrow vs. wide operations

 Caching a data frame: Powerful, but often deadly (for perf)

 Part 3. Get confident: Using machine learning with PySpark

 12 Setting the stage: Preparing features for machine learning

 12.1 Reading, exploring, and preparing our machine learning data set

 Standardizing column names using toDF()

 Exploring our data and getting our first feature columns

 Addressing data mishaps and building our first feature set

 Weeding out useless records and imputing binary features

 Taking care of extreme values: Cleaning continuous columns

 Weeding out the rare binary occurrence columns

 12.2 Feature creation and refinement

 Creating custom features

 Removing highly correlated features

 12.3 Feature preparation with transformers and estimators

 Imputing continuous features using the Imputer estimator

 Scaling our features using the MinMaxScaler estimator

 13 Robust machine learning with ML Pipelines

 13.1 Transformers and estimators: The building blocks of ML in Spark

 Data comes in, data comes out: The Transformer

 Data comes in, transformer comes out: The Estimator

 13.2 Building a (complete) machine learning pipeline

 Assembling the final data set with the vector column type

 Training an ML model using a LogisticRegression classifier

 13.3 Evaluating and optimizing our model

 Assessing model accuracy: Confusion matrix and evaluator object

 True positives vs. false positives: The ROC curve

 Optimizing hyperparameters with cross-validation

 13.4 Getting the biggest drivers from our model: Extracting the coefficients

 14 Building custom ML transformers and estimators

 14.1 Creating your own transformer

 Designing a transformer: Thinking in terms of Params and transformation

 Creating the Params of a transformer

 Getters and setters: Being a nice PySpark citizen

 Creating a custom transformer’s initialization function

 Creating our transformation function

 Using our transformer

 14.2 Creating your own estimator

 Designing our estimator: From model to params

 Implementing the companion model: Creating our own Mixin

 Creating the ExtremeValueCapper estimator

 Trying out our custom estimator

 14.3 Using our transformer and estimator in an ML pipeline

 Dealing with multiple inputCols

 In practice: Inserting custom components into an ML pipeline

 Appendix A. Solutions to the exercises

 Appendix B. Installing PySpark

 Appendix C. Some useful Python concepts

 index

 front matter

preface

 While computers have been getting more powerful and more capable of chewing though larger data sets, our appetite for consuming data grows much faster. Consequently, we built new tools to scale big data jobs across multiple machines. This does not come for free, and early tools were complicated by requiring users to manage not only the data program, but also the health and performance of the cluster of machines themselves. I recall trying to scale my own programs, only to be faced with the advice to “just sample your data set and get on with your day.”

 PySpark changes the game. Starting with the popular Python programming language, it provides a clear and readable API to manipulate very large data sets. Still, while in the driver’s seat, you write code as if you were dealing with a single machine. PySpark sits at the intersection of powerful, expressive, and versatile. Through a powerful multidimensional data model, you can build your data programs with a clear path to scalability, regardless of the data size.

 I fell in love with PySpark while working as a data scientist for building credit risk models. On the cusp of migrating our models to a new big data environment, we needed to devise a plan to intelligently convert our data products while “keeping the lights on.” As the self-appointed Python guy, I got tasked to help the team become familiar with PySpark and help accelerate the transition. This love grew exponentially as I got the chance to work with a myriad of clients on different use cases. The common thread? Big data and big problems, all solvable through a powerful data model. One caveat: most of the material available for learning Spark focused on Scala and Java, with Python developers left transliterating the code to their favorite programming language. I started writing this book to promote PySpark as a great tool for data analysts. In a fortunate turn of events, the Spark project really promoted Python as a first-class citizen. Now, more than ever, you have a powerful tool for scaling your data programs.

 And big data, once tamed, really feels powerful.

acknowledgments

 Although my name is on the cover, this book has been a tremendous team effort, and I want to take the time to thank those who helped me along the way.

 First and foremost, I want to thank my family. Writing a book is a lot of work, and with this work comes a lot of complaining. Simon, Catherine, Véronique, Jean, merci du fond du coeur pour votre soutien. Je vous aime énormément.

 Regina, in a way, you’ve were my very first PySpark student. Through your leadership, you literally changed everything for me career-wise. I will forever cherish the time we worked together, and I feel lucky our paths crossed when they did.

 I want to thank Renata Pompas, who allowed me to use a color palette made under her supervision for the diagrams in my book. I am color-blind, and finding a set of safe colors to use that would please me and be consistent was helpful during book development. If the figures look good to you, thank her (and the fine Manning graphic designers). If they look bad, blame it on me.

 Thank you to my team at EPAM, with a special shout-out to Zac, James, Nasim, Vahid, Dmitrii, Yuriy, Val, Robert, Aliaksandra, Ihor, Pooyan, Artem, Volha, Ekaterina, Sergey, Sergei, Siarhei, Kseniya, Artemii, Anatoly, Yuliya, Nadzeya, Artsiom, Denis, Yevhen, Sofiia, Roman, Mykola, Lisa, Gaurav, Megan, and so many more. From the day I announced that I was writing a book to when I wrote these words, I felt supported and encouraged. Thank you to the Laivly team, Jeff, Rod, Craig, Jordan, Abu, Brendan, Daniel, Guy, and Reid, for the opportunity to continue the adventure. I promise you that the future is bright.

 A warm thank you to those who believed in my “use PySpark, you’ll be grateful you did” mantra. There are too many folks to be exhaustive here, but I want to give a shout out to Mark Derry, Uma Gopinath, Tom Everett, Dhrun Lauwers, Milena Kumurdjieva, Shahid Amlani, Sam Diab, Chris Wagner, JV Eng, Chris Purtill, Naveen Pothayath, Vish Tipirneni, and Patrick Kurkiewicz.

 During the writing of the book, I had the joy to geek out on PySpark with some fine podcast producers: Brian at Test and Code (https://testandcode.com/), Lior and Michael at WHAT the Data?! (https://podcast.whatthedatapodcast.com/), and Ben at Profitable Python (https://anchor.fm/profitablepythonfm). I am so humbled and grateful that you invited me to exchange with you. Thank you Alexey Grigorev for having me in your Book of the Week club on Slack—what an awesome community you’ve built!

 I want to thank readers who provided comments on the manuscript during development, as well as the reviewers who provided excellent feedback: Alex Lucas, David Cronkite, Dianshuang Wu, Gary Bake, Geoff Clark, Gustavo Patino, Igor Vieira, Javier Collado Cabeza, Jeremy Loscheider, Josh Cohen, Kay Engelhardt, Kim Falk, Michael Kareev, Mike Jensen, Patrick A. Mol, Paul Fornia, Peter Hampton, Philippe Van Bergen, Rambabu Posa, Raushan Jha, Sergio Govoni, Sriram Macharla, Stephen Oates, and Werner Nindl.

 Finally, and most importantly, I want to thank the dream team at Manning that participated in making this book a reality. There are many folks who made this experience incredible: Marjan Bace, Michael Stephens, Rebecca Rinehart, Bert Bates, Candace Gillhoolley, Radmila Ercegovac, Aleks Dragosavljević, Matko Hrvatin, Christopher Kaufmann, Ana Romac, Branko Latinčić, Lucas Weber, Stjepan Jureković, Goran Ore, Keri Hales, Michele Mitchell, Melody Dolab, and the rest of the Manning production team.

 Speaking of Manning, I want to thank the authors of two specific books: Noel Rappin and Robin Dunn from wxPython in Action (Manning, 2016; https://www.manning.com/books/wxpython-in-action), as well as Michael Fogus and Chris Houser from The Joy of Clojure (Manning, 2014; https://www.manning.com/books/the-joy-of-clojure-second-edition). These books triggered something in my brain and made me plunge headfirst into programming (and then data science). In a way, they were the initial spark (bad pun intended) that resulted in this book.

 Finally, I want to highlight the team at Manning that helped me stay accountable on a day-to-day basis and made this book something I am proud of. Arthur Zubarev, I can’t believe we live in the same city and couldn’t meet! Thank you for your excellent feedback and answering my many questions. Alex Ott, I don’t think I could have wished for a better technical advisor. Databricks is incredibly lucky to have you. Last, but certainly not least, I want to thank Marina Michaels for supporting me from the moment I had the idea of writing this book. Writing a book is a lot more difficult than I originally thought, but you made the whole experience enjoyable, formative, and relevant. Thank you from the bottom of my heart.

about this book

 Data Analysis with Python and PySpark teaches you how to use PySpark to conduct your own big data analysis programs. It takes a practical stance on teaching both the how and why of PySpark. You’ll learn about how to effectively ingest, process, and work with data at scale as well as how to reason about your own data transformation code. After reading this book, you should feel comfortable using PySpark to write your own data programs and analyses.

Who should read this book

 This book is structured around increasingly complicated use cases, moving from simple data transformation to machine learning pipelines. We cover the whole cycle, from data ingestion to results consumption, adding more elements with regard to data source consumption and transformation possibilities.

 This book caters mostly to data analysts, scientists, and engineers who want to scale their Python code to larger data sets. Ideally, you should have written a few data programs, either through your work or while learning to program. You’ll get more out of this book if you already are comfortable using the Python programming language and ecosystem.

 Spark (and PySpark, naturally) borrows a lot from object-oriented and functional programming. I do not think it’s reasonable to expect complete knowledge of both programming paradigms just to use big data efficiently. If you understand Python classes, decorators, and higher-order functions, you’ll have a blast using some of the more advanced constructions in the book to bend PySpark to your will. Should those concepts be foreign to you, I cover them in the context of PySpark throughout the book (when appropriate) and in the appendixes.

How this book is organized: A road map

 The book is divided into three parts. Part 1, “Get Acquainted,” introduces PySpark and its computation model. It also covers building and submitting a simple data program, focusing on the core operations that you certainly will use in every PySpark program you create, such as selecting, filtering, joining, and grouping data in a data frame.

 Part 2, “Get Proficient,” goes further into data transformation by introducing hierarchical data, a key element of scalable data programs in PySpark. We also make our programs more expressive, flexible, and performant through the judicious introduction of SQL code, an exploration of resilient distributed datasets/user-defined functions, efficient usage of pandas within PySpark, and window functions. We also explore Spark’s reporting capabilities and resource management to pinpoint potential performance problems.

 Finally, Part 3, “Get Confident,” builds on parts 1 and 2 and covers how to build a machine learning program in PySpark. We use our data transformation tool kit to create and select features before building and evaluating a machine learning pipeline. We finish this part with creating our own machine learning pipeline components, ensuring maximum usability and readability for our ML programs.

 Parts 1 and 2 have exercises throughout the chapters, as well as at the end of the chapters. Exercises at the end of a section don’t require you to code; you should be able to answer the questions with what you learned.

 The book was written with the idea of being read cover to cover, using the appendixes as needed. Should you want to dig directly into a topic, I still recommend covering part 1 before delving into a specific chapter. Here are the hard and soft dependencies to help you navigate the book more efficiently:

 	
 Chapter 3 is a direct continuation of chapter 2.

 	
 Chapter 5 is a direct continuation of chapter 4.

 	
 Chapter 9 uses some concepts taught in chapter 8, but advanced readers can read it on its own.

 	
 Chapters 12, 13, and 14 are best read one after the other.

About the code

 This book works best with Spark version 3.1 or 3.2: Spark introduced many new functionalities in version 3, and most commercial offerings are now defaulting to this version. When appropriate, I provide backward-compatible instructions for Spark version 2.3/2.4. I do not recommend Spark 2.2 or below. I also recommend using Python version 3.6 and above (I used Python 3.8.8 for the book). Installation instructions are available in appendix A.

 You can find the companion repository for the book, with data and code, at https://github.com/jonesberg/DataAnalysisWithPythonAndPySpark. When appropriate, it also contains runnable versions of the programs developed throughout the book, as well as a few optional exercises. In addition, you can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/data-analysis-with-python-and-pyspark.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings and highlight important concepts.

liveBook discussion forum

 Purchase of Data Analysis with Python and PySpark includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/data-analysis-with-python-and-pyspark/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 	
 [image:]

 	
 Jonathan Rioux uses PySpark inside and out on a daily basis. He also teaches large-scale data analysis to data scientists, engineers, and data-savvy business analysts.

 Jonathan spent a decade in various analytical positions in the insurance industry before venturing into the consulting industry as a machine learning and data analysis expert. He currently works as the director of machine learning for Laivly, a company that equips friendly humans with intelligent automations and machine learning to create the best customer experiences on the planet.

about the cover illustration

 The figure on the cover of Data Analysis with Python and PySpark is “Russien,” or Russian man, taken from a book by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of today’s computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Introduction

 This chapter covers

 	
What PySpark is

 	
Why PySpark is a useful tool for analytics

 	
The versatility of the Spark platform and its limitations

 	
PySpark’s way of processing data

 According to pretty much every news outlet, data is everything, everywhere. It’s the new oil, the new electricity, the new gold, plutonium, even bacon! We call it powerful, intangible, precious, dangerous. At the same time, data itself is not enough: it is what you do with it that matters. After all, for a computer, any piece of data is a collection of zeroes and ones, and it is our responsibility, as users, to make sense of how it translates to something useful.

 Just like oil, electricity, gold, plutonium, and bacon (especially bacon!), our appetite for data is growing. So much, in fact, that computers aren’t following. Data is growing in size and in complexity, yet consumer hardware has been stalling a little. RAM is hovering for most laptops at around 8 to 16 GB, and SSDs are getting prohibitively expensive past a few terabytes. Is the solution for the burgeoning data analyst to triple-mortgage their life to afford top-of-the-line hardware to tackle big data problems?

 Here is where Apache Spark (which I’ll call Spark throughout the book) and its companion PySpark are introduced. They take a few pages of the supercomputer playbook—powerful, but manageable compute units meshed in a network of machines—and bring them to the masses. Add on top a powerful set of data structures ready for any work you’re willing to throw at them, and you have a tool that will grow (pun intended) with you.

 A goal for this book is to provide you with the tools to analyze data using PySpark, whether you need to answer a quick data-driven question or build an ML model. It covers just enough theory to get you comfortable while giving you enough opportunities to practice. Most chapters contain a few exercises to anchor what you just learned. The exercises are all solved and explained in appendix A.

1.1 What is PySpark?

 What’s in a name? Actually, quite a lot. Just by separating PySpark in two, you can already deduce that this will be related to Spark and Python. And you would be right!

 At its core, PySpark can be summarized as being the Python API to Spark. While this is an accurate definition, it doesn’t give much unless you know the meaning of Python and Spark. Still, let’s break down the summary definition by first answering “What is Spark?” With that under our belt, we then will look at why Spark becomes especially powerful when combined with Python and its incredible array of analytical (and machine learning) libraries.

1.1.1 Taking it from the start: What is Spark?

 According to the authors of the software, Apache Spark™, which I’ll call Spark throughout this book, is a “unified analytics engine for large-scale data processing” (see https://spark.apache.org/). This is a very accurate, if a little dry, definition. As a mental image, we can compare Spark to an analytics factory. The raw material—here, data—comes in, and data, insights, visualizations, models, you name it, comes out.

 Just like a factory will often gain more capacity by increasing its footprint, Spark can process an increasingly vast amount of data by scaling out (across multiple smaller machines) instead of scaling up (adding more resources, such as CPU, RAM, and disk space, to a single machine). RAM, unlike most things in this world, gets more expensive the more you buy (e.g., one stick of 128 GB is more than the price of two sticks of 64 GB). This means that, instead of buying thousands of dollars of RAM to accommodate your data set, you’ll rely on multiple computers, splitting the job between them. In a world where two modest computers are less costly than one large one, scaling out is less expensive than scaling up, which keeps more money in your pockets.

 Cloud cost and RAM

 In the cloud, prices will often be more consequential. For instance, as of January 2022, a 16-Core/128-GB RAM machine can be about twice the cost of an 8 Core/64 GB of RAM machine. As the data size grows, Spark can help control costs by scaling the number of workers and executors for a given job. As an example, if you have a data transformation job on a modest data set (a few TB), you can limit yourself to a lower number—say, five—machines, scaling up to 60 when you want to do machine learning. Some vendors, such as Databricks (see appendix B), offer auto-scaling, meaning that they increase and decrease the number of machines during a job depending on the pressure on the cluster. The implementation of auto-scaling/cost controlling is 100% vendor-dependent. (Check out chapter 11 for an introduction to the resources making up a Spark cluster, as well as their purpose.)

 A single computer can crash or behave unpredictably at times. If instead of one you have one hundred, the chance that at least one of them goes down is now much higher.1 Spark therefore has a lot of hoops to manage, scale, and babysit so that you can focus on what you want, which is to work with data.

 This is, in fact, one of the key things about Spark: it’s a good tool because of what you can do with it, but especially because of what you don’t have to do with it. Spark provides a powerful API (application programming interface, the set of functions, classes, and variables provided for you to interact with) that makes it look like you’re working with a cohesive source of data while also working hard in the background to optimize your program to use all the power available. You don’t have to be an expert in the arcane art of distributed computing; you just need to be familiar with the language you’ll use to build your program.

1.1.2 PySpark = Spark + Python

 PySpark provides an entry point to Python in the computational model of Spark. Spark itself is coded in Scala.2 The authors did a great job of providing a coherent interface between languages while preserving the idiosyncrasies of each language where appropriate. It will, therefore, be quite easy for a Scala/Spark programmer to read your PySpark program, as well as for a fellow Python programmer who hasn’t jumped into the deep end (yet).

 Python is a dynamic, general-purpose language, available on many platforms and for a variety of tasks. Its versatility and expressiveness make it an especially good fit for PySpark. The language is one of the most popular for a variety of domains, and currently it is a major force in data analysis and science. The syntax is easy to learn and read, and the number of libraries available means that you’ll often find one (or more!) that’s just the right fit for your problem.

 PySpark provides access not only to the core Spark API but also to a set of bespoke functionality to scale out regular Python code, as well as pandas transformations. In Python’s data analysis ecosystem, pandas is the de facto data frame library for memory-bound data frames (the entire data frame needs to reside on a single machine’s memory). It’s not a matter of PySpark or pandas now, but PySpark and pandas. Chapters 8 and 9 are dedicated to combining Python, pandas, and PySpark in one happy program. For those really committed to the pandas syntax (or if you have a large pandas program you want to scale to PySpark), Koalas (now called pyspark.pandas and part of Spark as of version 3.2.0; https://koalas.readthedocs.io/) provides a pandas-like porcelain on top of PySpark. If you are starting a new Spark program in Python, I recommend using the PySpark syntax—covered thoroughly in this book—reserving Koalas for when you want to ease the transition from pandas to PySpark. Your program will work faster and, in my opinion, will read better.

1.1.3 Why PySpark?

 There is no shortage of libraries and frameworks to work with data. Why should one spend their time learning PySpark specifically?

 PySpark has a lot of advantages for modern data workloads. It sits at the intersection of fast, expressive, and versatile. This section covers the many advantages of PySpark, why its value proposition goes beyond just “Spark, with Python,” and when it is better to reach for another tool.

 PySpark is fast

 If you search for “big data” in a search engine, there is a very good chance that Hadoop will come up within the first few results. There is a good reason for this: Hadoop popularized the famous MapReduce framework that Google pioneered in 2004 and inspired how data is processed at scale (we touch on MapReduce in chapter 8, when talking about PySpark’s low-level data structure, the resilient distributed data set).

 Spark was created a few years later, sitting on Hadoop’s incredible legacy. With an aggressive query optimizer, a judicious usage of RAM (reducing disk I/O; see chapter 11), and some other improvements we’ll touch on in the next chapters, Spark can run up to 100 times faster than plain Hadoop. Because of the integration between the two frameworks, you can easily switch your Hadoop workflow to Spark and gain some performance boost without changing your hardware.3

 PySpark is expressive

 Beyond Python being one of the most popular and easy-to-learn languages, PySpark’s API has been designed from the ground up to be easy to understand. PySpark borrows and extends the vocabulary for data manipulation from SQL. It does so in a fluent manner: each operation on a data frame returns a “new” data frame, so you can chain operations one after the other. Although we are just in the early stages of learning PySpark, listing 1.1 shows how readable, well-crafted PySpark looks. Even with no prior knowledge, the vocabulary choices and the consistency of the syntax makes it read like prose. We read a CSV file, create a new column that contains a value conditional to an old column, filter (using where), group by the values of the column, generate the count for each group, and finally write the results back to a CSV file. All these methods are covered throughout part 1 of the book, but we can already deduce what this code is doing.

 Listing 1.1 Simple ETL pipeline showing expressiveness of PySpark

 (
 spark.read.csv("./data/list_of_numbers/sample.csv", header=True)
 .withColumn(
 "new_column", F.when(F.col("old_column") > 10, 10).otherwise(0)
)
 .where("old_column > 8")
 .groupby("new_column")
 .count()
 .write.csv("updated_frequencies.csv", mode="overwrite")
)

 Under the hood, Spark optimizes these operations so that we don’t get an intermediate data frame after each method. Because of this, we can program our data transformation code in a very succinct and self-describing way, relying on Spark to optimize the end results—a programmer’s comfort at its finest.

 You will see many (more complex!) examples throughout this book. As I was writing the examples, I was pleased about how close to my initial (pen-and-paper) reasoning the code ended up looking. After understanding the fundamentals of the framework, I’m confident you’ll be in the same situation.

 PySpark is versatile

 A key advantage of PySpark is its versatility: you learn one tool and use it in a variety of settings. There are two components to this versatility. First, there is the availability of the framework. Second, there is the diversified ecosystem surrounding Spark.

 PySpark is everywhere. All three major cloud providers (Amazon Web Services [AWS], Google Cloud Platform [GCP], Microsoft Azure) have a managed Spark cluster as part of their offerings, which means you have a fully provisioned cluster at the click of a few buttons. You can also easily install Spark on your computer to nail down your program before scaling on a more powerful cluster. Appendix B covers how to get your local Spark running and succinctly walks you through the current main cloud offerings.

 PySpark is open source. Unlike other analytical software, you aren’t tied to a single company. You can inspect the source code if you’re curious and even contribute if you have an idea for new functionality or find a bug. It also gives a low barrier to adoption: download, learn, profit!

 Finally, Spark’s ecosystem doesn’t stop at PySpark. There is also an API for Scala, Java, and R, as well as a state-of-the-art SQL layer. This makes it easy to write a polyglot program in Spark. A Java software engineer can tackle the data transformation pipeline in Spark using Java, while a data scientist can build a model using PySpark.

 Where PySpark falls short

 It would be awesome if PySpark was the answer to every data problem. Unfortunately, there are some caveats. None of them are deal breakers, but they are to be considered when you’re selecting a tool for your next project.

 PySpark isn’t the right choice if you’re dealing with rapid processing of (very) small data sets. Executing a program on multiple machines requires a level of coordination between the nodes, which comes with some overhead. If you’re just using a single node, you’re paying the price but aren’t using the benefits. As an example, a PySpark shell will take a few seconds to launch; this is often more than enough time to process data that fits within your RAM. As new PySpark versions get released, though, this small data set performance gap gets narrower and narrower.

 PySpark also has a small disadvantage compared to the Java and Scala API. Since Spark is at the core of a Scala program, pure Python code has to be translated to and from JVM (Java Virtual Machine, the runtime that powers Java and Scala code) instructions. Since the DataFrame API is available with PySpark, the differences between languages have been narrowed significantly: data frame operations are mapped to highly efficient Spark operations that work at the same speed, whether your program is written in Scala, Java, or Python. You will still witness slower operations when you’re using the resilient distributed data set (RDD) data structure or when you define your Python user-defined functions. This does not mean that we will avoid them: I cover both topics in chapter 8.

 Finally, while programming PySpark can feel straightforward, managing a cluster can be a little arcane. Spark is a pretty complicated piece of software; while the code base matured remarkably over the past few years, we are not yet to the point that we can manage a 100-machine cluster as easily as a single node. Understanding how Spark is configured and tuning for performance is introduced in chapter 11, and cloud options are making it easier than ever (see appendix B). For hairier problems, do what I do: befriend your operations team.

 This section provided the why of PySpark, but also some why not, as knowing where and when to use PySpark is key to having a great development experience and processing performance. In the next section, we delve a little deeper into how Spark processes data and makes distributed data processing look like you’re controlling a single factory.

1.2 Your very own factory: How PySpark works

 In this section, we cover how Spark processes a program. It can be a little odd to present the workings and underpinnings of a system that we claimed, a few paragraphs ago, hides that complexity. Still, it is important to have a working knowledge of how Spark is set up, how it manages data, and how it optimizes queries. With this, you will be able to reason with the system, improve your code, and figure out quickly when it doesn’t perform the way you want.

 If we keep the factory analogy, we can imagine that the cluster of computers Spark is sitting on is the building. If we look at figure 1.1, we can see two different ways to interpret a data factory. On the left, we see how it looks from the outside: a cohesive unit where projects come in and results come out. This is how it will appear to you most of the time. Under the hood, it looks more like what’s on the right: you have some workbenches that some workers are assigned to. The workbenches are like the computers in our Spark cluster: there is a fixed amount of them. Some modern Spark implementations, such as Databricks (see appendix B), allow for auto-scaling the number of machines at runtime. Some require more planning, especially if you run on the premises and own your hardware. The workers are called executors in Spark’s literature: they perform the actual work on the machines/nodes.

 [image:]

 Figure 1.1 A totally relatable data factory, outside and in. Ninety percent of the time we care about the whole factory, but knowing how it’s laid out helps when reflecting on our code performance.

 One of the little workers looks spiffier than the other. That top hat definitely makes him stand out from the crowd. In our data factory, he’s the manager of the work floor. In Spark terms, we call this the master.4 The master here sits on one of the workbenches/machines, but it can also sit on a distinct machine (or even your computer!) depending on the cluster manager and deployment mode. The role of the master is crucial to the efficient execution of your program, so section 1.2.2 is dedicated to this.

 Tip In the cloud, you can have a high-availability cluster, meaning that your master will be replicated on more than one machine.

1.2.1 Some physical planning with the cluster manager

 Upon reception of the task, which is called a driver program in the Spark world, the factory starts running. This doesn’t mean that we get straight to processing. Before that, the cluster needs to plan the capacity it will allocate for your program. The entity or program taking care of this is aptly called the cluster manager. In our factory, this cluster manager will look at the workbenches with available space and secure as many as necessary, and then start hiring workers to fill the capacity. In Spark, it will look at the machines with available computing resources and secure what’s necessary before launching the required number of executors across them.

 Note Spark provides its own cluster manager, called Standalone, but can also play well with other ones when working in conjunction with Hadoop or another big data platform. If you read about YARN, Mesos, or Kubernetes in the wild, know that they are used (as far as Spark is concerned) as cluster managers.

 Any directions about capacity (machines and executors) are encoded in a SparkContext representing the connection to our Spark cluster. If our instructions don’t mention any specific capacity, the cluster manager will allocate the default capacity prescribed by our Spark installation.

 As an example, let’s try the following operation. Using the same sample.csv file in listing 1.1 (available in the book’s repository), let’s compute a simplified version of the program: return the arithmetic average of the values of old_column. Let’s assume that our Spark instance has four executors, each working on its own worker node. The data processing will be approximately split between the four executors: each will have a small portion of the data frame that it will work with.

 Listing 1.2 Content of the sample.csv file

 less data/list_of_numbers/sample.csv

old_column
1
4
4
5
7
7
7
10
14
1
4
8

 Figure 1.2 depicts one way that PySpark could process the average of our old_column in our small data frame. I chose the average because it is not trivially distributable, unlike the sum or the count, where you sum the intermediate values from each worker. In the case of computing the average, each worker independently computes the sum of the values and their counts before moving the result—not all the data!—over to a single worker (or the master directly, when the intermediate result is really small) that will process the aggregation into a single number, the average.

 For a simple example like this, mapping the thought process of PySpark is an easy and fun exercise. The size of our data and the complexity of our programs will grow and will get more complicated, and we will not be able to easily map our code to exact physical steps performed by our Spark instance. Chapter 11 covers the mechanism Spark uses to give us visibility into the work performed as well as the health of our factory.

 [image:]

 Figure 1.2 Computing the average of our small data frame, PySpark style: each worker works on a distinct piece of data. As necessary, the data gets moved/shuffled around to complete the instructions.

 This section took a simple example—computing the average of a data frame of numbers—and we mapped a blueprint of the physical steps performed by Spark to give us the right answer. In the next section, we get to one of Spark’s best, and most misunderstood, features: laziness. In the case of big data analysis, hard work pays off, but smart work is better!

 Some language convention: Data frame vs. DataFrame

 Since this book will talk about data frames more than anything else, I prefer using the noncapitalized nomenclature (i.e., “data frame”). I find this more readable than using capital letters or even “dataframe” without a space.

 When referring to the PySpark object directly, I’ll use DataFrame but with a fixed-width font. This will help differentiate between “data frame” the concept and DataFrame the object.

1.2.2 A factory made efficient through a lazy leader

 This section introduces one of the most fundamental aspects of Spark: its lazy evaluation capabilities. In my time teaching PySpark and troubleshooting data scientists’ programs, I would say that laziness is the concept in Spark that creates the most confusion. It’s a real shame because laziness is (in part) how Spark achieves its incredible processing speed. By understanding at a high level how Spark makes laziness work, you will be able to explain a lot of its behavior and better tune for performance.

 Just like in a large-scale factory, you don’t go to each employee and give them a list of tasks. No, here, the master/manager is responsible for the workers. The driver is where the action happens. Think of a driver as a floor lead: you provide them your list of steps and let them deal with it. In Spark, the driver/floor lead takes your instructions (carefully written in Python code), translates them into Spark steps, and then processes them across the worker. The driver also manages which worker/table has which slice of the data, and makes sure you don’t lose some bits in the process. The executor/factory worker sits atop the workers/tables and performs the actual work on the data.

 As a summary:

 	
 The master is like the factory owner, allocating resources as needed to complete the jobs.

 	
 The driver is responsible for completing a given job. It requests resources from the master as needed.

 	
 A worker is a set of computing/memory resources, like a workbench in our factory.

 	
 Executors sit atop a worker and perform the work sent by the driver, like employees at a workbench.

 We’ll review the terminology in practice in chapter 11.

 Taking the example of listing 1.1 and breaking each instruction one by one, PySpark won’t start performing the work until the write instruction. If you use regular Python or a pandas data frame, which are not lazy (we call this eager evaluation), each instruction is performed one by one as it’s being read.

 Your floor lead/driver has all the qualities a good manager has: it’s smart, cautious, and lazy. Wait, what? You read me right. Laziness in a programming context—and, one could argue, in the real world too—can be a very good thing. Every instruction you’re providing in Spark can be classified into two categories: transformations and actions. Actions are what many programming languages would consider I/O. The most typical actions are the following:

 	
 Printing information on the screen

 	
 Writing data to a hard drive or cloud bucket

 	
 Counting the number of records

 In Spark, we’ll see those instructions most often via the show(), write(), and count() methods on a data frame.

 [image:]

 Figure 1.3 Breaking down the data frame instructions as a series of transformations and one action. Each “job” Spark will perform consists of zero or more transformations and one action.

 Transformations are pretty much everything else. Some examples of transformations are as follows:

 	
 Adding a column to a table

 	
 Performing an aggregation according to certain keys

 	
 Computing summary statistics

 	
 Training a machine learning model

 Why the distinction, you might ask? When thinking about computation over data, you, as the developer, are only concerned about the computation leading to an action. You’ll always interact with the results of an action because this is something you can see. Spark, with its lazy computation model, will take this to the extreme and avoid performing data work until an action triggers the computation chain. Before that, the driver will store your instructions. This way of dealing with computation has many benefits when dealing with large-scale data.

 Note As we see in chapter 5, count() is a transformation when applied as an aggregation function (where it counts the number of records of each group) but an action when applied on a data frame (where it counts the number of records in a data frame).

 First, storing instructions in memory takes much less space than storing intermediate data results. If you are performing many operations on a data set and are materializing the data each step of the way, you’ll blow your storage much faster, although you don’t need the intermediate results. We can all agree that less waste is better.

 Second, by having the full list of tasks to be performed available, the driver can optimize the work between executors much more efficiently. It can use the information available at run time, such as the node where specific parts of the data are located. It can also reorder, eliminate useless transformations, combine multiple operations, and rewrite some portion of the program more effectively, if necessary.

 [image:]

 Figure 1.4 Eager versus lazy evaluation: storing (and computing on the fly) transformation saves memory by reducing the need for intermediate data frames. It also makes it easier to recreate the data frame if one of the nodes fails.

 Third, should one node fail during processing—computers fail!—Spark will be able to recreate the missing chunks of data since it has the instructions cached. It’ll read the relevant chunk of data and process it up to where you are without the need for you to do anything. With this, you can focus on the data-processing aspect of your code, offloading the disaster and recovery part to Spark. Check out chapter 11 for more information about compute and memory resources, and how to monitor for failures.

 Finally, during interactive development, you don’t have to submit a huge block of commands and wait for the computation to happen. Instead, you can iteratively build your chain of transformation, one at a time, and when you’re ready to launch the computation, you can add an action and let Spark work its magic.

 Lazy computation is a fundamental aspect of Spark’s operating model and part of the reason it’s so fast. Most programming languages, including Python, R, and Java, are eagerly evaluated. This means that they process instructions as soon as they receive them. With PySpark, you get to use an eager language—Python—with a lazy framework—Spark. This can look a little foreign and intimidating, but you don’t need to worry. The best way to learn is by doing, and this book provides explicit examples of laziness when relevant. You’ll be a lazy pro in no time!

 One aspect to remember is that Spark will not preserve the results of actions (or the intermediate data frames) for subsequent computations. If you submit the same program twice, PySpark will process the data twice. We use caching to change this behavior and optimize certain hot spots in our code (most noticeably when training an ML model), and chapter 11 provides you with how and when to cache (spoiler: not as often as you’d think).

 Note Reading data, although being I/O, is considered a transformation by Spark. In most cases, reading data doesn’t perform any visible work for the user. You, therefore, won’t read data until you need to perform some work on it (writing, reading, inferring schema; see chapter 6 for more information).

 What’s a manager without competent employees? Once the task, with its action, has been received, the driver starts allocating data to what Spark calls executors. Executors are processes that run computations and store data for the application. Those executors sit on what’s called a worker node, which is the actual computer. In our factory analogy, an executor is an employee performing the work, while the worker node is a workbench where many employees/executors can work.

 That concludes our factory tour. Let’s summarize our typical PySpark program:

 	
 We first encode our instructions in Python code, forming a driver program.

 	
 When submitting our program (or launching a PySpark shell), the cluster manager allocates resources for us to use. Those will mostly stay constant (with the exception of auto-scaling) for the duration of the program.

 	
 The driver ingests your code and translates it into Spark instructions. Those instructions are either transformations or actions.

 	
 Once the driver reaches an action, it optimizes the whole computation chain and splits the work between executors. Executors are processes performing the actual data work, and they reside on machines labeled worker nodes.

 That’s it! As we can see, the overall process is quite simple, but it’s obvious that Spark hides a lot of the complexity that arises from efficient distributed processing. For a developer, this means shorter and clearer code, and a faster development cycle.

1.3 What will you learn in this book?

 This book will use PySpark to solve a variety of tasks that a data analyst, engineer, or scientist will encounter during their day-to-day life. We will therefore

 	
 Read and write data from (and to) a variety of sources and formats

 	
 Deal with messy data with PySpark’s data manipulation functionality

 	
 Discover new data sets and perform exploratory data analysis

 	
 Build data pipelines that transform, summarize, and get insights from data in an automated fashion

 	
 Troubleshoot common PySpark errors and how to recover from them and avoid them in the first place

 After covering those fundamentals, we’ll also tackle different tasks that aren’t as frequent but are interesting and excellent ways to showcase the power and versatility of PySpark:

 	
 We’ll build machine learning models, from simple throwaway experiments to robust ML pipelines.

 	
 We’ll work with multiple data formats, from text to tabular to JSON.

 	
 We’ll seamlessly blend Python, pandas, and PySpark code, leveraging the strengths of each, and most importantly will scale pandas code to new territories.

 We are trying to cater to many potential readers but are focusing on people with little to no exposure to Spark and/or PySpark. More seasoned practitioners might find useful analogies for when they need to explain difficult concepts and maybe learn a thing or two!

1.4 What do I need to get started?

 The book focuses on Spark version 3.2, which is the most recent. The data frame made its appearance in Spark 1.3, so some code will work on Spark versions as old as this one. For this book, to avoid any headaches, I recommend you use Spark version 3.0 or later; if impossible, aim for the most recent version available to you.

 We’re assuming some basic Python knowledge; some useful concepts are outlined in appendix C. If you want a more in-depth introduction to Python, I recommend The Quick Python Book, by Naomi Ceder (Manning, 2018; https://www.manning.com/books/the-quick-python-book-third-edition), or Python Workout, by Reuven M. Lerner (Manning, 2020; https://www.manning.com/books/python-workout).

 To get started, the only thing required is a working installation of Spark. It can either be on your computer or on a cloud provider (see appendix B). Most examples in the book are doable using a local installation of Spark, but some may require more horsepower and will be identified as such.

 A code editor will also be very useful for writing, reading, and editing scripts as you go through the examples and craft your programs. A Python-aware editor, such as PyCharm, VS Code, or even Emacs/Vim, is nice to have but is in no way necessary. All the examples will work with Jupyter as well; check out appendix B to set up your notebook environment.

 The book’s code examples are available on GitHub (http://mng.bz/6ZOR), so Git will be a useful piece of software to have. If you don’t know Git or don’t have it handy, GitHub provides a way to download all the book’s code in a zip file. Make sure you check regularly for updates!

 Finally, I recommend that you have an analog way of drafting your code and schema. I am a compulsive notetaker and doodler, and even if my drawings are very basic and crude, I find that working through a new piece of software via drawings helps in clarifying my thoughts. This means rewriting less code and a happier programmer! Nothing spiffy is required: some scrap paper and a pencil will do wonders.

Summary

 	
 PySpark is the Python API for Spark, a distributed framework for large-scale data analysis. It provides the expressiveness and dynamism of the Python programming language to Spark.

 	
 Spark is fast: it owes its speed to a judicious usage of the RAM available and an aggressive and lazy query optimizer.

 	
 You can use Spark in Python, Scala, Java, R, and more. You can also use SQL for data manipulation.

 	
 Spark uses a driver that processes the instructions and orchestrates the work. The executors receive the instructions from the master and perform the work.

 	
 All instructions in PySpark are either transformations or actions. Because Spark is lazy, only actions will trigger the computation of a chain of instructions.

 1 It can be a fun probability exercise to compute, but I will try to keep the math to a minimum.

 2 Databricks, the company behind Spark, has a project called Photon, which is a rewrite of the Spark execution engine in C++.

 3 As always, the standard disclaimer applies: not every Hadoop job will get faster in Spark. Your mileage may vary. Always test your job before making large architectural changes.

 4 The term master is getting phased out. The replacement has not been decided, but you can follow the conversation here: https://issues.apache.org/jira/browse/SPARK-32333.

Part 1. Get acquainted: First steps in PySpark

 When working with a new technology, the best way to get familiar with it is to jump right in, building our intuition along the way. This first part succinctly introduces PySpark before going over two distinct use cases.

 Chapter 1 introduces the technology and the computing model that power Spark.

 Then, in chapters 2 and 3, we build a simple end-to-end program and learn how to structure PySpark code in a readable and intuitive fashion. We go from the data ingestion of text data to processing, to the presentation of the results, and, finally, to submitting the program in a noninteractive fashion.

 Chapters 4 and 5 look at working with tabular data, the most frequently used type of data. We build on the foundation from the previous chapters (already!) to manipulate structured data to our will. At the end of part 1, you should feel comfortable about writing your own simple programs from start to finish!

2 Your first data program in PySpark

 This chapter covers

 	
Launching and using the pyspark shell for interactive development

 	
Reading and ingesting data into a data frame

 	
Exploring data using the DataFrame structure

 	
Selecting columns using the select() method

 	
Reshaping single-nested data into distinct records using explode()

 	
Applying simple functions to your columns to modify the data they contain

 	
Filtering columns using the where() method

 Data-driven applications, no matter how complex, all boil down to what we can think of as three meta steps, which are easy to distinguish in a program:

 	
 We start by loading or reading the data we wish to work with.

 	
 We transform the data, either via a few simple instructions or a very complex machine learning model.

 	
 We then export (or sink) the resulting data, either into a file or by summarizing our findings into a visualization.

 The next two chapters will introduce a basic workflow with PySpark via the creation of a simple ETL (extract, transform, and load, which is a more business-speak way of saying ingest, transform, and export). You will find these three simple steps repeated in every program we build in this book, from a simple summary to the most complex ML model. We will spend most of our time in the pyspark shell, interactively building our program one step at a time. Just like normal Python development, using the shell or REPL (I’ll use the terms interchangeably) provides rapid feedback and quick progression. Once we are comfortable with the results, we will wrap our program so we can submit it in batch mode.

 Note REPL stands for read, evaluate, print, and loop. In the case of Python, it represents the interactive prompt in which we input commands and read results.

 Data manipulation is the most basic and important aspect of any data-driven program, and PySpark puts a lot of focus on this. It serves as the foundation of any reporting, machine learning, or data science exercise we wish to perform. This section gives you the tools to not only use PySpark to manipulate data at scale but also to think in terms of data transformation. We obviously can’t cover every function provided in PySpark, but I provide a good explanation of the ones we use. I also introduce how to use the shell as a friendly reminder for those cases when you forget how something works.

 Since this is your first end-to-end program in PySpark, we get our feet wet with a simple problem to solve: What are the most popular words used in the English language? Since collecting all the material ever produced in the English language would be a massive undertaking, we start with a very small sample: Pride and Prejudice, by Jane Austen. We first make our program work with this small sample and then scale it to ingest a larger corpus of text. I use this principle—starting with a sample of the data locally to get the structure and concepts right—when building a new program; when working in a cloud environment, this means less cost when exploring. Once I am confident about the flow of my program, I go all nodes blazing on the full data set.

 Since this is our first program, and I need to introduce many new concepts, this chapter will focus on the data manipulation part of the program. Chapter 3 will cover the final computation, as well as wrapping our program and then scaling it.

 Tip The book repository contains the code and data used for the examples and exercises. It is available online at http://mng.bz/6ZOR.

2.1 Setting up the PySpark shell

 Python provides a REPL for interactive development. Since PySpark is a Python library, it also uses the same environment. It speeds up your development process by giving instantaneous feedback the moment you submit an instruction instead of forcing you to compile your program and submit it as one big monolithic block. I’ll even say that using a REPL is even more useful in PySpark, since every operation can take a fair amount of time. Having a program crash midway is always frustrating, but it’s even worse when you’ve been running a data-intensive job for a few hours.

 For this chapter (and the rest of the book), I assume that you have access to a working installation of Spark, either locally or in the cloud. If you want to perform the installation yourself, appendix B contains step-by-step instructions for Linux, macOS, and Windows. If you can’t install it on your computer, or prefer not to, the same appendix also provides a few cloud-powered options.

 Once everything is set up, the easiest way to ensure that everything is running is by launching the PySpark shell by inputting pyspark into your terminal. You should see an ASCII-art version of the Spark logo, as well as some useful information. Listing 2.1 shows what happens on my local machine. In section 2.1.1, you’ll find a less magical alternative to running pyspark as a command that will help you with integrating PySpark into an existing Python REPL.

 Listing 2.1 Launching pyspark on a local machine

 $ pyspark

Python 3.8.8 | packaged by conda-forge | (default, Feb 20 2021, 15:50:57)
[Clang 11.0.1] on darwin
Type "help", "copyright", "credits" or "license" for more information.
21/08/23 07:28:16 WARN Utils: Your hostname, gyarados-2.local resolves to a loopback address:
 127.0.0.1; using 192.168.2.101 instead (on interface en0)
21/08/23 07:28:16 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
21/08/23 07:28:17 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform...
 using builtin-java classes where applicable ❶
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). ❷
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 3.2.0 ❸
 /_/

Using Python version 3.8.8 (default, Feb 20 2021 15:50:57) ❹
Spark context Web UI available at http:/ /192.168.2.101:4040 ❺
Spark context available as 'sc' (master = local[*], app id = local-1629718098205). ❻
SparkSession available as 'spark'. ❻

+In [1]: ❼

 ❶ When using PySpark locally, you most often won’t have a full Hadoop cluster preconfigured. For learning purposes, this is perfectly fine.

 ❷ Spark is indicating the level of details it’ll provide to you. We will see how to configure this in section 2.1.2.

 ❸ We are using Spark version 3.2.0.

 ❹ PySpark is using the Python available on your path. This will display the Python version on the master node. Since we are working locally, this is the Python installed on my machine.

 ❺ The Spark UI is available at this address (check chapter 11 on how to use it efficiently).

 ❻ The pyspark shell provides an entry point for you through the variables spark and sc. More on this insection 2.1.1.

 ❼ The REPL is now ready for your input!

 No IPython? No problem!

 I highly recommend you use IPython when using PySpark in interactive mode. IPython is a better frontend to the Python shell, with many useful functionalities, such as friendlier copy-and-paste and syntax highlighting. The installation instructions in appendix B include configuring PySpark to use the IPython shell.

 If you don’t use the IPython REPL, you will see something like this:

 Using Python version 3.9.4 (default, Apr 5 2021 01:47:16)
Spark context Web UI available at http:/ /192.168.0.12:4040
Spark context available as 'sc' (master = local[*], app id = local-1619348090080).
SparkSession available as 'spark'.
>>>

 Appendix B also provides instructions for how to use PySpark with a Jupyter notebook interface if you prefer this user experience. In the cloud—for instance, when using Databricks—you’ll most often be provided with the option to use a notebook by default.

 The pyspark program provides quick and easy access to a Python REPL with PySpark preconfigured: in the last two lines of listing 2.1, we see that the variables spark and sc are preconfigured. When using my favorite code editor, I usually prefer to start with a regular python/IPython shell and add a Spark instance from said shell, like in appendix B. In the next section, we explore spark and sc as the entry points of a PySpark program by defining and instantiating them.

2.1.1 The SparkSession entry point

 This section covers the SparkSession object and its role as the entry point to PySpark’s functionality within a program. Knowing how it gets created and used removes some of the magic of getting PySpark set up. I also explain how to connect PySpark within an existing REPL, simplifying integration with Python IDEs and tooling.

 If you have a pyspark shell already launched, exit() (or Ctrl-D) will get you back to your regular terminal. Launch a python (or better yet, an ipython) shell and input the code in listing 2.2; we create the spark object by hand. This makes it very explicit that PySpark is used as a Python library and not as a separate tool. It becomes easy to mix and blend Python libraries with PySpark when you start with a Python REPL. Chapter 8 and 9 are focused on integrating Python and pandas code within PySpark’s data frame.

 PySpark uses a builder pattern through the SparkSession.builder object. For those familiar with object-oriented programming, a builder pattern provides a set of methods to create a highly configurable object without having multiple constructors. In this chapter, we will only look at the happiest case, but the SparkSession builder pattern will become increasingly useful in parts 2 and 3 as we look into cluster configuration and adding dependencies to our jobs.

 In listing 2.2, we start the builder pattern and then chain a configuration parameter that defined the application name. This isn’t necessary, but when monitoring your jobs (see chapter 11), having a unique and well-thought-out job name will make it easier to know what’s what. We finish the builder pattern with the .getOrCreate() method to materialize and instantiate our SparkSession.

 Listing 2.2 Creating a SparkSession entry point from scratch

 from pyspark.sql import SparkSession ❶

spark = (SparkSession
 .builder ❷
 .appName("Analyzing the vocabulary of Pride and Prejudice.") ❸
 .getOrCreate())

 ❶ The SparkSession entry point is located in the pyspark.sql package, providing the functionality for data transformation.

 ❷ PySpark provides a builder pattern abstraction for constructing a SparkSession, where we chain the methods to configure the entry point.

 ❸ Providing a relevant appName helps in identifying which programs run on your Spark cluster (see chapter 11).

 Note By using the getOrCreate() method, your program will work in both interactive and batch mode by avoiding the creation of a new SparkSession if one already exists. Note that if a session already exists, you won’t be able to change certain configuration settings (mostly related to JVM options). If you need to change the configuration of your SparkSession, kill everything and start from scratch to avoid any confusion.

 In chapter 1, we spoke briefly about the Spark entry point called SparkContext, which is the liaison between your Python REPL and the Spark cluster. SparkSession is a superset of that. It wraps the SparkContext and provides functionality for interacting with the Spark SQL API, which includes the data frame structure we’ll use in most of our programs. Just to prove our point, see how easy it is to get to the SparkContext from our SparkSession object—just call the sparkContext attribute from spark:

 $ spark.sparkContext
<SparkContext master=local[*] appName=Analyzing the vocabulary of [...]>

 The SparkSession object is a more recent addition to the PySpark API, making its way in version 2.0. This is due to the API evolving in a way that makes more room for the faster, more versatile data frame as the main data structure over the lower-level RDD. Before that time, you had to use another object (called the SQLContext) to use the data frame. It’s much easier to have everything under a single umbrella.

 This book will focus mostly on the data frame as our main data structure. I’ll discuss the RDD in chapter 8 when we discuss lower-level PySpark programming and how to embed our Python functions in our programs. In the next section, I explain how we can use Spark to provide more (or less!) information about its underpinning via the log level.

 Reading older PySpark code

 While this book shows modern PySpark programming, we are not living in a vacuum. Online you might face older PySpark code that uses the former SparkContext/sqlContext combo. You’ll also see the sc variable mapped to the SparkContext entry point. With what we know about SparkSession and SparkContext, we can reason about old PySpark code by using the following variable assignments:

 sc = spark.sparkContext
sqlContext = spark

 You’ll see traces of SQLContext in the API documentation for backward compatibility. I recommend avoiding using this, as the new SparkSession approach is cleaner, simpler, and more future-proof.

 If you are running pyspark from the command line, all of this is defined for you, as seen in listing 2.1.

2.1.2 Configuring how chatty spark is: The log level

 This section covers the log level, probably the most overlooked (and annoying) element of a PySpark program. Monitoring your PySpark jobs is an important part of developing a robust program. PySpark provides many levels of logging, from nothing at all to a full description of everything happening on the cluster. The pyspark shell defaults on WARN, which can be a little chatty when we’re learning. More importantly, a non-interactive PySpark program (which is how you’ll run your scripts for the most part) defaults to the oversharing INFO level. Fortunately, we can change the settings for your session by using the code in the next listing.

 Listing 2.3 Deciding how chatty you want PySpark to be

 spark.sparkContext.setLogLevel("KEYWORD")

 Table 2.1 lists the available keywords you can pass to setLogLevel (as strings). Each subsequent keyword contains all the previous ones, with the obvious exception of OFF, which doesn’t show anything.

 Table 2.1 Log-level keywords

 	
 Keyword

 	
 Signification

 	
 OFF

 	
 No logging at all (not recommended).

 	
 FATAL

 	
 Only fatal errors. A fatal error will crash your Spark cluster.

 	
 ERROR

 	
 Will show FATAL, as well as other recoverable errors.

 	
 WARN

 	
 Add warnings (and there are quite a lot of them).

 	
 INFO

 	
 Will give you runtime information, such as repartitioning and data recovery (see chapter 1).

 	
 DEBUG

 	
 Will provide debug information on your jobs.

 	
 TRACE

 	
 Will trace your jobs (more verbose debug logs). Can be quite informative but very annoying.

 	
 ALL

 	
 Everything that PySpark can spit, it will spit. As useful as OFF.

 Note When using the pyspark shell, anything chattier than WARN might appear when you’re typing a command, which makes it quite hard to input commands into the shell. You’re welcome to play with the log levels as you please, but we won’t show any output unless it’s valuable for the task at hand. Setting the log level to ALL is a very good way to annoy oblivious coworkers if they don’t lock their computers. You didn’t hear this from me.

 You now have the REPL fired up and ready for your input. This is enough housekeeping for now. Let’s start planning our program and get coding!

2.2 Mapping our program

 This section maps the blueprint of our simple program. Taking the time to design our data analysis beforehand pays dividends since we can construct our code knowing what’s coming. This will eventually speed up our coding and improve the reliability and modularity of our code. Think of it like reading the recipe when cooking: you never want to realize you’re missing a cup of flour when mixing the dough!

 In this chapter’s introduction, we introduced our problem statement: “What are the most popular words used in the English language?” Before we can even hammer out code in the REPL, we have to start by mapping the major steps our program will need to perform:

 	
 Read—Read the input data (we’re assuming a plain text file).

 	
 Token—Tokenize each word.

 	
 Clean—Remove any punctuation and/or tokens that aren’t words. Lowercase each word.

 	
 Count—Count the frequency of each word present in the text.

 	
 Answer—Return the top 10 (or 20, 50, 100).

 Visually, a simplified flow of our program would look like figure 2.1.

 [image:]

 Figure 2.1 A simplified flow of our program, illustrating the five steps

 Our goal is quite lofty: the English language has produced, throughout history, an unfathomable amount of written material. Since we are learning, we’ll start with a relatively small source, get our program working, and then scale it to accommodate a larger body of text. For this, I chose to use Jane Austen’s Pride and Prejudice, since it’s already in plain text and freely available. In the next section, we ingest and explore our data to start building our program.

 Data analysis and Pareto’s principle

 Pareto’s principle, also known as the 80/20 rule, is often summarized as “20% of the efforts will yield 80% of the results.” In data analysis, we can consider that 20% to be analysis, visualization, or machine learning models, anything that provides tangible value to the recipient.

 The remainder is what I call invisible work: ingesting the data, cleaning it, figuring out its meaning, and shaping it into a usable form. If you look at your simple steps, steps 1 to 3 can be considered invisible work: we’re ingesting data and getting it ready for the counting process. Steps 4 and 5 are the visible ones that are answering our question (one could argue that only step 5 is performing visible work, but let’s not split hairs here). Steps 1 to 3 are there because the data requires processing for it to be usable for our problem. The steps aren’t core to our problem, but we can’t do without them.

 When building your project, this will be the part that will be the most time-consuming, and you might be tempted (or pressured!) to skimp on it. Always keep in mind that the data you ingest and process is the raw material of your programs, and that feeding it garbage will yield, well, garbage.

2.3 Ingest and explore: Setting the stage for data transformation

 This section covers the three operations every PySpark program will encounter, regardless of the nature of your program: ingesting data into a structure, printing the structure (or schema) to see how the data is organized, and finally showing a sample of the data for review. Those operations are fundamental to any data analysis, whether it is text (this chapter and chapter 3), tabular (most chapters, but especially chapter 4 and 5), or even binary or hierarchical data (chapter 6); the general blueprint and methods will apply everywhere in your PySpark journey.

2.3.1 Reading data into a data frame with spark.read

 The first step of our program is to ingest the data in a structure we can perform work in. This section introduces the basic functionality PySpark provides for reading data and how it is specialized for plain text.

 Before ingesting any data, we need to choose where it’s going to go. PySpark provides two main structures for storing data when performing manipulations:

 	
 The RDD

 	
 The data frame

 The RDD was the only structure for a long time. It looks like a distributed collection of objects (or rows). I visualize this as a bag that you give orders to. You pass orders to the RDD through regular Python functions over the items in the bag.

 The data frame is a stricter version of the RDD. Conceptually, you can think of it like a table, where each cell can contain one value. The data frame makes heavy usage of the concept of columns, where you operate on columns instead of on records, like in the RDD. Figure 2.2 provides a visual summary of the two structures. The data frame is now the dominant data structure, and we will almost exclusively use it in this book; chapter 8 covers the RDD (a more general and flexible structure, from which the data frame inherits) for cases that need record-by-record flexibility.

 [image:]

 Figure 2.2 An RDD versus a data frame. In the RDD, we think of each record as an independent entity. With the data frame, we mostly interact with columns, performing functions on them. We still can access the rows of a data frame via RDD if necessary.

 If you’ve used SQL in the past, you’ll find that the data frame implementation takes a lot of inspiration from SQL. The module name for data organization and manipulation is even named pyspark.sql! Furthermore, chapter 7 teaches how to mix PySpark and SQL code within the same program.

 Reading data into a data frame is done through the DataFrameReader object, which we can access through spark.read. The code in listing 2.4 displays the object, as well as the methods it exposes. We recognize a few file formats: CSV stands for comma-separated values (which we’ll use as early as chapter 4), JSON for JavaScript Object Notation (a popular data exchange format), and text is, well, just plain text.

 Listing 2.4 The DataFrameReader object

 In [3]: spark.read
Out[3]: <pyspark.sql.readwriter.DataFrameReader at 0x115be1b00>

In [4]: dir(spark.read)
Out[4]: [<some content removed>, _spark', 'csv', 'format', 'jdbc', 'json',
'load', 'option', 'options', 'orc', 'parquet', 'schema', 'table', 'text']

 PySpark reads your data

 PySpark can accommodate the different ways you can process data. Under the hood, spark.read.csv() will map to spark.read.format('csv').load(), and you may encounter this form in the wild. I usually prefer using the direct csv method as it provides a handy reminder of the different parameters the reader can take.

 orc and parquet are also data formats that are especially well suited for big data processing. ORC (which stands for “optimized row columnar”) and Parquet are competing data formats that pretty much serve the same purpose. Both are open sourced and now part of the Apache project, just like Spark.

 PySpark defaults to using Parquet when reading and writing files, and we’ll use this format to store our results throughout the book. I’ll provide a longer discussion about the usage, advantages, and trade-offs of using Parquet or ORC as a data format in chapter 6.

 Let’s read our data file in listing 2.5. I am assuming you launched PySpark at the root of this book’s repository. Depending on your case, you might need to change the path where the file is located. The code is all available on the book’s companion repository on GitHub (http://mng.bz/6ZOR).

 Listing 2.5 “Reading” our Jane Austen novel in record time

 book = spark.read.text("./data/gutenberg_books/1342-0.txt")

book
DataFrame[value: string]

 We get a data frame, as expected! If you input your data frame, conveniently named book, into the shell, you see that PySpark doesn’t output any data to the screen. Instead, it prints the schema, which is the name of the columns and their type. In PySpark’s world, each column has a type: it represents how the value is represented by Spark’s engine. By having the type attached to each column, you can instantly know what operations you can do on the data. With this information, you won’t inadvertently try to add an integer to a string: PySpark won’t let you add 1 to “blue.” Here, we have one column, named value, composed of a string. A quick graphical representation of our data frame would look like figure 2.3: each line of text (separated by a newline character) is a record. Besides being a helpful reminder of the content of the data frame, types are integral to how Spark processes data quickly and accurately. We will explore the subject extensively in chapter 6.

 [image:]

 Figure 2.3 A high-level logical schema of our book data frame, containing a value string column. We can see the name of the column, its type, and a small snippet of the data.

 When working with data frames, we will most often worry about the logical schema, which is the organization of the data as if the data were on a single node. We use schemas to understand the data and its type (integer, string, date, etc.) for a given data frame. Spark displays the logical schema when we input the variable in the REPL: columns and types. In practice, your data frame will be distributed across multiple nodes, each one having a segment of the records. When performing data transformation and analysis, it is more convenient to work with the logical schema. Chapter 11 provides a deeper look into the logical versus physical world through query planning, which gives us insight into how Spark moves from high-level instruction to optimized machine instructions.

 When working with a larger data frame (think hundreds or even thousands of columns), you may want to see the schema displayed more clearly. PySpark provides printSchema() to display the schema in a tree form. I use this method probably more than any other one as it gives you direct information on the structure of the data frame. Since printSchema() directly prints to the REPL with no other option, should you want to filter the schema, you can use the dtypes attributes of the data frame, which gives you a list of tuples (column_name, column_type). You can also access the schema programmatically (as a data structure) using the schema attribute (see chapter 6 for more information).

 Listing 2.6 Printing the schema of our data frame

 book.printSchema()

root ❶
|-- value: string (nullable = true) ❷

print(book.dtypes)

[('value', 'string')] ❸

 ❶ Each data frame tree starts with a root, which the columns are attached to.

 ❷ We have one column value, containing strings that can be null (or None in Python terms).

 ❸ The same information is stored as a list of tuples under the data frame’s dtypes attribute.

 In this section, we ingested our textual data into a data frame. This data frame inferred a simple columnar structure that we can explore through the variable name in the REPL, the printSchema() method, or the dtypes attribute. In the next section, we go beyond the structure to peek at the data inside.

 Speeding up your learning by using the shell

 Using the shell doesn’t just apply to PySpark, but using its functionality can often save a lot of searching in the documentation. I am a big fan of using dir() on an object when I don’t remember the exact method I want to apply, as I did in listing 2.4.

 PySpark’s source code is very well documented. If you’re unsure about the proper usage of a function, class, or method, you can print the __doc__ attribute or, for those using IPython, use a trailing question mark (or two, if you want more details).

 Listing 2.7 Using PySpark’s documentation directly in the REPL

 # you can use `print(spark.__doc__)` if you don't have iPython.
In [292]: spark?
Type: SparkSession
String form: <pyspark.sql.session.SparkSession object at 0x11231eb80>
File: ~/miniforge3/envs/pyspark/lib/python3.8/site-packages/pyspark/sql/session.py
Docstring:
The entry point to programming Spark with the Dataset and DataFrame API.

A SparkSession can be used create :class:`DataFrame`, register :class:`DataFrame` as
tables, execute SQL over tables, cache tables, and read parquet files.
To create a SparkSession, use the following builder pattern:

.. autoattribute:: builder
 :annotation:

[... more content, examples]

OEBPS/OEBPS/Images/01-02.png
Instructions

old_column

1

4

old_column

5

7

old_column

7

10

old_column

1

Heree e = Worker 4

2

Each worker has a sample of the
data and performs an intermediate
step to get the sum and the count of

each chunk (or partition)
frame.

of the data

The intermediate data, much
smaller than the original
data frame, is then sent to a
single worker for further
reduction.

We finally get our desired
answer. Spark effectively hides
the complexity of efficiently
distributing the computation
across nodes. We get our
average, no fuss.

OEBPS/OEBPS/Images/IFC_F01.png
Resilient distributed data set (RDD) Data frame (DF)

[Record/Object 1] [cot][caz | .. [con]
Record/Object 2 an |[az) AN
Record/Object 3 @1 @2) @N)

ool s e

@ || @z2) @)
Record/Object 5 o || 62) P
Record/Object 6 o || 29 P
Record/Object N ool vz o

In an RDD, we think of each record as
being an independent object on which

we perform functions to transform them.

Think “collection,” not “structure.”

A data frame organizes the records in columns.
We perform transformations either directly on
those columns or on the data frame as a whole;
we typically don’t access records horizontally
(record by record) as we do with the RDD.

OEBPS/OEBPS/Images/02-02.png
Resilient distributed data set (RDD) Data frame (DF)
Record/Object 1 Col1 |[o2] .. [ColN
Record/Object 2 (S (.2) (LN
Record/Object 3 @1 .2) (2N)
Record/Object 4 ()] (3.2) (3N)

@ || @2) @N)
Record/Object 5

61 || 6.2) [
Recod/Obect @ 61 || 62) 6N)
Record/Object N aas el oo

In an RDD, we think of each record as
being an independent object on which

we perform functions to transform them.

Think “collection,” not “structure.”

A data frame organizes the records in columns.
We perform transformations either directly on
those columns or on the data frame as a whole;
we typically don’t access records horizontally
(record by record) as we do with the RDD.

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/02-01.png
Read

Token

Clean

Count

Answer (top 1)

This is a very, very simple sentence.

This || is || a very, very | | simple | | sentence.

this s || a very very | | simple | | sentence
thisi1 | i1 || a1 || very:2 | | simple:1 || sentence:1
very: 2

OEBPS/OEBPS/Images/Rioux_author_photo.png

OEBPS/cover.jpeg
Jonathan Rioux

/'I MANNING

OEBPS/OEBPS/Images/01-03.png
PySpark does not evaluate all data
transformations (including reading
data). A variable containing a series
of data frame transformations will
return almost immediately, as no
data work is being performed.

spark.read.csv

withColumn

where

groupby

count

write.csv.

write.csv explicitly writes data to

disk. An operation where PySpark
actually writes or shows data is

called an action and triggers the
actual data work. No action, no
visible result, no worlk. That's laziness!

OEBPS/OEBPS/Images/02-03.png
book

value: string

OEBPS/OEBPS/Images/01-01.png
Spark
Factory

i R

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/01-04.png
Eager
evaluation

Lazy
evaluation

[}

withColumn where groupby count

read)
withColumn

where

groupby

