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front matter




  
preface




  These days it is hard to find a real-world system or a product that is not driven or at least impacted by machine learning. Machine learning plays a paramount role in terms of boosting user experience as well as cutting costs and increasing savings for a company. TensorFlow is a machine learning framework that enables developers to develop machine learning solutions quickly for various bespoke use cases that can benefit from machine learning. If you are a machine learning practitioner or even a software engineer who touches on machine learning systems, it pays to have a well-grounded understanding of TensorFlow, as it’s used by millions of developers to build ML solutions.




  This book takes you through an informative journey covering most popular machine learning tasks as well as state-of-the-art models. You will learn about image classification and segmentation, and various natural language processing tasks, such as language modeling and sentiment analysis. While doing so, we will try to maintain our code production quality. This means we will explore ways in which we can standardize our code and models, such as building robust end-to-end data pipelines that can wrangle common data types such as images and text. We will also pay attention to other important dimensions, such as model explainability, current state-of-the-art performance on similar tasks, and so forth. We conclude the book with how TensorFlow can be used to build production-level machine learning pipelines to deliver a smooth operational experience for developers.




  TensorFlow has good documentation coverage (although certain topics can be better documented) that is available for free. You might be wondering why, then, you need this book. TensorFlow has evolved to become a complex ecosystem with many moving parts. For someone initially learning the technology, it is quite easy to get lost in the documentation and waste hours (if not days). The rapid pace at which new features and new releases come out exacerbates this problem. Therefore, it helps to have a resource that collates all the most up-to-date and important information and best practices of TensorFlow into a digestible, well-explained text.




  After reading this book, you will know how to build most of the common machine learning models, such as convolutional neural networks, recurrent neural networks, and Transformers. You will learn about the general machine learning life cycle and how it can be applied across many different tasks. Furthermore, you will become familiar with building data pipelines that can perform complex transformations in just a few lines of code.




  I wish readers all the success in their machine learning careers and sincerely hope they will immensely benefit from the wide variety of topics covered in this book.
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about this book




  In this section, we will discuss who this book is for, the different chapters and their contents, and where you can find the code.




  
Who should read this book?




  It is imperative that you are certain this book is for you. This book is written for a broad audience in the machine learning community to provide a low barrier for entry, so novices as well as machine learning practitioners with basic to medium knowledge and experience can push their TensorFlow skills further. To get the most out of this book, you need the following:




  

    	

      Experience in the model development life cycle (through a research/industry project)


    




    	

      Moderate knowledge in Python and object-oriented programming (OOP) (e.g., classes, generators, list comprehension)


    




    	

      Basic knowledge of NumPy/pandas libraries (e.g., computing summary statistics, what pandas series DataFrame objects are)


    




    	

      Basic knowledge of linear algebra (e.g., basic mathematics, vectors, matrices, n-dimensional tensors, tensor operations, etc.)


    




    	

      Basic familiarity with the different deep neural networks available


    


  




  However, if you have any of the following experience, you should also benefit greatly from this book:




  

    	

      At least several months of experience as a machine learning researcher, data scientist, or machine learning engineer, or even a student who used ML for a university or school project


    




    	

      Experience working closely with other machine learning libraries (e.g., scikit-learn), having heard of amazing feats of deep learning, and being keen to learn more about how to implement them


    




    	

      Experience with basic TensorFlow functionality but wanting to improve yourself to write better TensorFlow code


    


  




  
How this book is organized: A roadmap




  TensorFlow in Action is organized into three parts and 15 chapters that start with the basics in part 1, then move into moderately complex topics that ML practitioners should be comfortable with in part 2, and finish with coverage of advanced ML models, libraries, and tools in part 3.




  Part 1 focuses on the basics, such as how TensorFlow works and how to implement simple, stripped-down machine learning models such as convolutional neural networks, recurrent neural networks, and Transformers:




  

    	

      Chapter 1 introduces TensorFlow, the different types of hardware used in ML and their trade-offs, and when and when not to use TensorFlow.


    




    	

      Chapter 2 goes into detail about how TensorFlow works under the hood, the different building blocks found in TensorFlow, and how to implement some of the common operations, such as convolution, used in TensorFlow.


    




    	

      Chapter 3 discusses Keras, a sub-library in TensorFlow for building ML models easily, and how to load data into TensorFlow.


    




    	

      Chapter 4 takes a first look at building models. In this chapter, we build a fully connected network, a convolutional neural network, and a recurrent neural network.


    




    	

      Chapter 5 moves us on to the crown jewel of deep learning: Transformer models and what makes them tick.


    


  




  Part 2 goes through several popular machine learning tasks and some of the best performing models on those tasks:




  

    	

      Chapter 6 looks at the first use case: image classification. In this chapter, we work with a complex CNN model and train it on an image classification data set.


    




    	

      In chapter 7, we dive into more advanced topics such as regularization, even more complex models, and model interpretation techniques.


    




    	

      Chapter 8 introduces us to image segmentation, an important technique that empowers self-driving cars. We will train a model to segment image pixels according to the object class to which they belong.


    




    	

      Chapter 9 is our first look at an NLP task in depth. Here, we will train a model to classify the sentiments expressed in movie reviews.


    




    	

      In chapter 10, we take a closer look at the language modeling task, which is at the heart of the successful Transformer models we see today. Here, we leverage the language modeling task to build a model that can generate stories.


    


  




  Part 3 delves into more advanced topics such as using Transformer models and TensorBoard for monitoring and productionizing ML workflows in TensorFlow:




  

    	

      Chapter 11 discusses the sequence-to-sequence model, a predecessor of Transformer models that enjoyed success in tasks like machine translation. Here we train a sequence-to-sequence model to translate English to German.


    




    	

      In chapter 12, we continue our discussion of sequence-to-sequence models and introduce the reader to a very important concept: the attention mechanism. We learn how we can incorporate attention into our model, which will help boost performance as well as produce insightful visualizations.


    




    	

      Chapter 13 extends our discussion from chapter 5 on Transformers. In this chapter, we use the Transformer model to solve two NLP tasks: spam classification and question answering. You will be also introduced to the Hugging Face’s Transformers library.


    




    	

      Chapter 14 focuses on a handy tool shipped with TensorFlow: the TensorBoard. The TensorBoard is vital for monitoring and tracking model performance. It can also be used to visualize data and for performance profiling.


    




    	

      Chapter 15, the final chapter, focuses on building production-quality machine learning pipelines. TensorFlow provides a library called TFX that provides an API to standardize complex machine learning workflows as a series of steps.


    


  




  You can take different approaches to getting the most out of this book depending on your skill level. For example, if you’re a practitioner who has been in the field using TensorFlow for several years (e.g., 1-3 years), you will probably find part 3 more useful than the earlier sections. If you are a beginner, it makes the most sense to go through all of the chapters in chronological order.




  
About the code




  This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.




  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.




  You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/tensorflow-in-action/. All chapters in this book, except chapter 1, are accompanied by code. The full code is available on the Manning website (www.manning.com) and on GitHub at https://github.com/thushv89/manning_tf2_in_action.




  
liveBook discussion forum




  Purchase of TensorFlow in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/tensorflow-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.




  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.




  
about the author
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  Thushan Ganegedara is a seasoned ML practitioner with more than four years of experience in the industry. Currently, he is a senior machine learning engineer at Canva, an Australian start-up that founded the online visual design software Canva, serving millions of customers. His efforts are particularly concentrated in the search and recommendations group. Prior to Canva, Thushan was a senior data scientist at QBE Insurance, an Australian insurance company, where he developed ML solutions for use cases related to insurance claims. He also led efforts to develop a Speech2Text pipeline. Thushan obtained his PhD with a specialization in machine learning from the University of Sydney.




  
about the cover illustration




  The figure on the cover of TensorFlow in Action is captioned “Laitiere des Environs de Berne,” or “Milkmaid from the surroundings of Berne,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.




  In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.




  
Part 1 Foundations of TensorFlow 2 and deep learning




  It is difficult to name a company that has not adopted machine learning into its workflow. Tech giants like Google, Airbnb, and Twitter and even small startups are using machine learning to fuel their systems and products in both subtle and obvious ways. If you see an advertisement on Google or see an eye-catching listing on Airbnb, ML is at the heart of driving those decisions. And TensorFlow is an enabler for developing solutions for these machine learning use cases. In other words, TensorFlow is a deep learning framework that manages almost all the stages of a model’s life cycle, from development and deployment to monitoring performance.




  In part 1, you will be introduced to the TensorFlow framework. We will provide a gentle introduction to this versatile framework. We will first go through some high-level topics such as what machine learning is, how TensorFlow works, the Keras library, and how to handle data in TensorFlow. We will walk through simple scenarios to contextualize the knowledge gained during the discussions. We will look at basic versions of popular deep learning models such as fully connected networks, convolutional neural networks, recurrent neural networks, and Transformer models.




   




  
1 The amazing world of TensorFlow




  This chapter covers




  

    	
What TensorFlow is




    	
Hardware in machine learning: GPUs and CPUs




    	
When and when not to use TensorFlow




    	
What this book teaches




    	
Who this book is for




    	
Why we should care about TensorFlow


  




  More than 5 million gigabytes—that’s how much data is predicted to be generated a second by 2025 (https://www.weforum.org). Those tiny contributions we make using Google search queries, tweets, Facebook photos, and voice commands to Alexa will add up to unprecedented amounts of data. Therefore, there’s no better time than the present to fight on the frontier of artificial intelligence, to make sense of and most importantly leverage the ever-growing universe of digital data. It is a no-brainer that data itself is not very useful until we elicit information from it. For example, an image is more useful if the machine knows what’s in that image; a voice command is more useful if the machine can articulate/transcribe what was said. Machine learning is the gatekeeper that lets you cross from the world of data into the realm of information (e.g., actionable insights, useful patterns) by allowing machines to learn from data. Machine learning, particularly deep learning methods, deliver unparalleled performance in the presence of abundant data. With the explosive growth of data, more and more use cases will emerge for deep learning to be applied in. Of course, we cannot ignore the possibility of a better technique drowning the popular deep learning methods. However, it is an irrefutable reality that, to date, deep learning has been constantly outperforming other algorithms, particularly when ample data is present.




  

    What is machine learning?




    Machine learning is a process where we train and deploy a computational model to predict some output given the data as input. A machine learning problem typically consists of the following steps:




    

      	

        Understanding/exploratory analysis of data—This is where you will explore the data provided to you (e.g., understand the dependent/independent variables).


      




      	

        Cleaning data—Real-world data is usually messy, so data cleaning is of the utmost importance to make sure the model sees high-quality data.


      




      	

        Feature engineering—New features need to be engineered from the existing features or raw data.


      




      	

        Modeling—In this stage, you train a model using the selected features and corresponding targets.


      




      	

        Evaluation—After training the model, you must ensure it is reliable and can perform well on unseen data (e.g., test data).


      




      	

        Creating a user interface for stakeholders to use the model—In most cases, you will need to provide a dashboard/user interface for users to interact with the model.


      


    




    Though it looks like a well-defined set of steps, a typical machine learning problem does not involve a straight path from A to B, but a rather convoluted path consisting of repetitive cycles or iterations. For example, during the feature engineering phase, you might realize that you haven’t explored a certain aspect of the data, which warrants more data exploration.


  




  Deep learning models can easily exceed millions (and recently billions) of parameters (i.e., weights and biases), and they have a large appetite for data. This signifies the need for frameworks that allow us to train and infer from deep learning models efficiently while utilizing optimized hardware such as graphical processing units (GPUs) or tensor processing units (TPUs) (http://mng.bz/4j0g). One aspect of achieving this is to develop highly scalable data pipelines that can read and process data efficiently.




  
1.1 What is TensorFlow?




  TensorFlow is a machine learning framework and has been making its mark in the community of machine learning for almost five years. It is an end-to-end machine learning framework that is designed to run faster on optimized hardware (e.g., GPUs and TPUs). A machine learning framework provides the tools and operations needed to implement machine learning solutions easily. Though TensorFlow is not limited to implementing deep neural networks, that has been its main use. TensorFlow also supports the following:




  

    	

      Implementing probabilistic machine learning models (https://www.tensorflow.org/probability)


    




    	

      Computer graphics-related computations (https://www.tensorflow.org/graphics)


    




    	

      Reusing (pretrained) models (https://www.tensorflow.org/hub)


    




    	

      Visualizing/debugging TensorFlow models (https://www.tensorflow.org/tensorboard)


    


  




  TensorFlow was one of the earliest frameworks to enter the bustling market of machine learning. Developed and maintained by Google, TensorFlow has released more than 100 versions with around 2,500 contributors, making the product bigger and better every day. It has evolved to become a holistic ecosystem that moves from the early prototyping stage to productionizing the model. Between these stages, TensorFlow supports a range of functionalities:




  

    	

      Model development—Building deep learning models easily by stacking predefined layers or creating custom layers


    




    	

      Performance monitoring—Monitoring performance of the model as it is trained


    




    	

      Model debugging—Debugging any issues, such as numerical errors, that occur during model training/prediction


    




    	

      Model serving—Once the model is trained, deploying the model to the wider public so that it can be used in the real world


    


  




  As you can see, TensorFlow supports almost all the stages of building your machine learning solutions and eventually serving it to users in the real world. All these services are made into and shipped in a single convenient package, which will be at your disposal with a single line of installation instructions.




  

    Other deep learning frameworks




    There are several competing deep learning frameworks on the market that enable you to implement and productionize deep learning models quite easily:




    

      	

        PyTorch (https://pytorch.org)—PyTorch is a framework that is predominantly implemented using a machine library called Torch that is built on the programming language Lua. PyTorch and TensorFlow have similar functionality.


      




      	

        MXNet (https://mxnet.apache.org)—MXNet is another machine learning framework maintained by the Apache Software Foundation.


      




      	

        DeepLearning4J (https://deeplearning4j.konduit.ai/)—DeepLearning4J is a Java-based deep learning framework.


      


    


  




  The various components that come together to solve an ML problem will be discussed in detail in the coming sections.




  Next, we will discuss different components of TensorFlow. These components will go from raw data all the way to deploying models to be accessed by customers.




  
1.1.1 An overview of popular components of TensorFlow




  As previously mentioned, TensorFlow is an end-to-end machine learning framework. This means TensorFlow needs to support many different capabilities and stages of a machine learning project. After a business problem is identified, any machine learning project starts with data. An important step is to perform exploratory data analysis. Typically, this is done using a mix of TensorFlow and other data manipulating libraries (e.g., pandas, NumPy). In this step, we try to understand our data because that will determine how well we can use it to solve the problem. With a solid understanding of the data (e.g., data types, data-specific attributes, various cleaning/processing that needs to be done before feeding data to the model), the next step is to find an efficient way to consume data. TensorFlow provides a comprehensive API (application programming interface), known as the tf.data API (or tensorflow.data API) (https://www.tensorflow.org/guide/data), that enables you to harness the data found in the wild. Specifically, this API provides various objects and functions to develop highly flexible custom-input data pipelines. Depending on your needs, you have several other options for retrieving data in TensorFlow:




  

    	

      tensorflow-datasets—Provides access to a collection of popular machine learning data sets that can be downloaded with a single line of code.


    




    	

      Keras data generators—Keras is a submodule in TensorFlow and provides various high-level functionality built on top of the TensorFlow’s low-level API. The data generators provide ways to load specific types of data (e.g., images or time series data) from various sources (e.g., disk).


    


  




  

    A brief history of Keras




    Keras was initially founded by François Chollet as a platform-agnostic, high-level API that can use one of two popular low-level symbolic math libraries at a time: TensorFlow or Theano. Specifically, Keras provides layers (e.g., fully connected layers, convolution layers, etc.), which encapsulate core computations of neural networks.




    





    Furthermore, Keras provides pretrained models that can be downloaded and used conveniently. As Theano retired in 2017, TensorFlow became the go-to backend for Keras. In 2017 (TensorFlow v1.4 upward), Keras was integrated into TensorFlow and is now a submodule in TensorFlow that provides a wide variety of reusable layers that can be used to build deep learning models as well as pretrained models.


  




  Using any of these elements (or a combination of them), you can write a data-processing pipeline (e.g., a Python script). Data would vary depending on the problem you are trying to solve. For example, in an image recognition task, data would be images and their respective classes (e.g., dog/cat). For a sentiment analysis task, the data would be movie reviews and their respective sentiments (e.g., positive/negative/neutral). The purpose of this pipeline is to produce a batch of data from these data sets. The data sets typically fed to deep learning models can have tens of thousands (if not more) data points and would never fit fully in limited computer memory, so we feed a small batch of data (e.g., few hundred data points) at a time and iterate through the full data set in batches.




  Next up is the model-building phase. Deep learning models come in many flavors and sizes. There are four main types of deep networks: fully connected, convolutional neural, recurrent neural, and Transformer. These models have different capabilities, strengths, and weaknesses, as you will see in later chapters. TensorFlow also offers different APIs that have varying degrees of control for building models. First, in its most raw form, TensorFlow provides various primitive operations (e.g., matrix multiplication) and data structures to store inputs and outputs of the models (e.g., n-dimensional tensors). These can be used as building blocks to implement any deep learning models from the ground up.




  However, it can be quite cumbersome to build models using the low-level TensorFlow API, as you need to repetitively use various low-level operations in TensorFlow and ensure the correctness of the computations happening in the model. This is where Keras comes in. Keras (now a submodule in TensorFlow) offers several advantages over the TensorFlow API:




  

    	

      It provides Layer objects that encapsulate various common functionality that repeatedly happens in neural networks. We will learn what layers are available to us in more detail in the coming chapters.


    




    	

      It provides several high-level model-building APIs (e.g., Sequential, functional, and subclassing). For example, the Sequential API is great for building simple models that go from an input to an output through a series of layers, whereas the functional API is better if you are working with more complex models. We will discuss these APIs in more detail in chapter 3.


    


  




  As you can imagine, these features drastically lower the barriers for using TensorFlow. For example, if you need to implement a standard neural network, all you need to do is stack a few standard Keras layers, which, if you were to do the same with the low-level TensorFlow API, would cost you hundreds of lines of code. But, if you need the flexibility to go wild and implement complicated models, you still have the freedom to do so.




  Finally, TensorFlow offers its most abstract API known as the Estimator API (https://www.tensorflow.org/guide/estimator). This API is designed to be very robust against any user-induced errors. The robustness is guaranteed by a very restricted API, exposing the user to the bare minimum functionality to train, predict from, and evaluate models.




  When you build the model, TensorFlow creates what’s known as a data-flow graph. This graph is a representation of what your model looks like and the operations it executes. Then, if you have optimized hardware (e.g., a GPU), TensorFlow will identify those devices and place parts of this graph on that special hardware so that any operations you run on the model are executed as quickly as possible. Appendix A provides detailed instructions for setting up TensorFlow and other required dependencies to run the code.




  
1.1.2 Building and deploying a machine learning model




  After you build the model, you can train it with the data you prepared using the tf.data API. The model’s training process is critical, as for deep learning models, it is quite time-consuming, so you need a way to periodically monitor the progress of the model and make sure the performance stays at a reasonable level during the course of training. For that we write the loss value, the evaluation metric for performance on both training and validation data, so if something goes wrong, you can intervene as soon as possible. There are more advanced tools in TensorFlow that will allow you to monitor the performance and health of your model with more options and convenience. TensorBoard (https://www.tensorflow.org/tensorboard) is a visualization tool that comes with TensorFlow and can be used to visualize various model metrics (e.g., accuracy, precision, etc.) while the model is trained. All you need to do is log the metrics you’d like to visualize to a directory and then start the TensorBoard server, providing the directory as an argument. TensorBoard will automatically visualize the logged metrics on a dashboard. This way, if something goes wrong, you’ll quickly notice it, and the logged metrics will help pinpoint any issues with the model.




  After (or even during) the training process, you need to save the model; otherwise, it will be destroyed right after you exit the Python program. Also, if your training process gets interrupted during training, you can restore the model and continue training (if you saved it). In TensorFlow you can save models in several ways. You can simply save a model in HDF5 format (i.e., a format for large file storage). Another recommended method is saving it as a SavedModel (https://www.tensorflow.org/guide/saved_model), the standard way to save models adopted by TensorFlow. We will see how to save different formats in the coming chapters.




  All the great work you’ve done has paid off. Now you want to joyfully tell the world about the very smart machine learning model you built. You want users to use the model and be amazed by it and for it to find its way into a news headline on artificial intelligence. To take the model to users, you need to provide an API. For this, TensorFlow has what is known as TensorFlow serving (https://www.tensorflow.org/tfx/guide/serving). TensorFlow serving helps you to deploy the trained models and implement an API for users and customers to use. It is a complex topic and involves many different subtopics, and we’ll discuss it in a separate chapter.




  We have gone on a long journey from mere data to deploying and serving models to customers. Next, let’s compare several popular hardware choices used in machine learning.




  
1.2 GPU vs. CPU




  If you have implemented simple computer programs (e.g., a commercial website) or worked with standard data science tools like NumPy, pandas, or scikit-learn, you would have heard the term GPU. To reap real benefits, TensorFlow relies on special hardware, such as GPUs. In fact, the progress we have achieved so far in deep neural networks can be heavily attributed to the advancement of GPUs in the last few years. What is so special about GPUs? How are they different from the brains of the computer, the central processing unit (CPU)?




  Let’s understand this with an analogy. Remind yourself of how you commute to work. If you get ready early and have some time to spare, you might take the bus. However, if you only have 10 minutes to spare for the important meeting happening at 9:00 a.m., you might decide to take your car. What is the difference between these two types of transportation? What different purposes do they serve? A car is designed to get a few people (e.g., four) quickly to a destination (i.e., low latency). On the other hand, a bus is slow but carries more people (e.g., 60) in a single trip (i.e., high throughput). Additionally, a car is fitted with various sensors and equipment that will make your drive/ride comfortable (e.g., parking sensors, lane detection, seat heaters, etc.). But the design of a bus would focus more on providing basic needs (e.g., seats, stop buttons, etc.) for a lot of people with limited options to make your ride joyful (figure 1.1).
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  Figure 1.1 Comparing a CPU, a GPU, and a TPU. A CPU is like a car, which is designed to transport a few people quickly. A GPU is like a bus, which transports many people slowly. A TPU is also like a bus, but it operates well in only specific scenarios.




  A CPU is like a car, and a GPU is like a bus. A typical CPU has a handful of cores (e.g., eight). A CPU core does many things (I/O operations, coordinating communications between different devices, etc.) fast, but at a small scale. To support a variety of operations, CPUs need to support a large set of instructions. And to make these run fast, a CPU relies on expensive infrastructure (e.g., more transistors, different levels of caches, etc.). To summarize, CPUs execute a large set of instructions very fast at a small scale. In contrast, a typical GPU has many cores (e.g., more than a thousand). But a GPU core supports a limited set of instructions and focuses less on running them fast.




  In the context of machine learning, particularly in deep learning, we mostly need to perform lots of matrix multiplications repeatedly to train and infer from models. Matrix multiplication is a functionality GPUs are highly optimized for, which makes GPUs desirable.




  We shouldn’t forget our friends, TPUs, which are the latest well-known addition to an optimized hardware list. TPUs were invented by Google and can be thought of as stripped-down GPUs. They are application-specific integrated circuits (ASICs) targeted for machine learning and AI applications. They were designed for low-precision high-volume operations. For example, a GPU typically uses 32-bit precision, whereas a TPU uses a special data type known as bfloat16 (which uses 16 bits) (http://mng.bz/QWAe). Furthermore, TPUs lack graphic-processing capabilities such as rasterizing/ texture mapping. Another differentiating characteristic of TPUs is that they are much smaller compared to GPUs, meaning more TPUs can be fit in a smaller physical space.




  To extend our car-bus analogy to TPUs, you can think of a TPU as an economical bus that is designed to travel short distances in remote areas. It cannot be used as a normal bus to travel long distances comfortably or to suit a variety of road/weather conditions, but it gets you from point A to point B, so it gets the job done.




  
1.3 When and when not to use TensorFlow




  A key component in knowing or learning TensorFlow is knowing what and what not to use TensorFlow for. Let’s look at this through a deep learning lens.




  
1.3.1 When to use TensorFlow




  TensorFlow is not a silver bullet for any machine learning problem by any means. You will get the maximum output by knowing what TensorFlow is good for.




  Prototyping deep learning models




  TensorFlow is a great tool for prototyping models (e.g., fully connected networks, convolutional neural networks, long short-term memory networks), as it provides layer objects (in Keras), such as the following:




  

    	

      Dense layers for fully connected networks


    




    	

      Convolution layers for convolutional neural networks


    




    	

      RNN (recurrent neural network)/LSTM (long short-term memory)/GRU (gated recurrent unit) layers for sequential models


    


  




  (You do not need to know the underlying mechanics of these layers, as they will be discussed in depth in the chapters ahead.) TensorFlow even offers a suite of pretrained models, so you can develop a simple model with a few layers or a complex ensemble model that consists of many models with fewer lines of code.




  Implementing models that can run faster on optimized hardware




  TensorFlow contains kernels (implementations of various low-level operations; e.g., matrix multiplication) that are optimized to run faster on GPUs and TPUs. Therefore, if your model can take advantage of such optimized operations (e.g., linear regression), and you need to run the model on large amounts of data repetitively, TensorFlow will help to run your model faster.




  

    Controlling TensorFlow code on hardware




    As much as it’s important to leverage the power of GPUs/TPUs to run TensorFlow code, it’s also important to know that we can control resource utilization (e.g., memory) when running the code. The following are the main aspects you can control when running TensorFlow code:




    

      	

        Where specific TensorFlow operations should run—Normally you wouldn’t need to do this, but you can specify whether a certain operation should run on the CPU/GPU/TPU or which GPU/TPU to use, should you have multiple.


      




      	

        The amount of memory to be used on the GPU—You can tell TensorFlow to allocate only a certain percentage of the total GPU memory. This is quite handy for making sure that there will be some portion of GPU memory available for any graphics-related processes (e.g., used by the operating system).


      


    


  




  Productionize models/serving on cloud




  The most common goal of a machine learning model is to serve in solving a real-world problem; thus the model needs to be exposed for predictions to interested stakeholders via a dashboard or an API. A unique advantage of TensorFlow is that you do not need to leave it when your model reaches this stage. In other words, you can develop your model-serving API via TensorFlow. Additionally, if you have lavish hardware (e.g., GPUs/TPUs), TensorFlow will make use of that when making predictions.




  Monitoring models during model training




  During the training of the model, it is crucial that you keep tabs on model performance to prevent overfitting or underfitting. Training deep learning models can be tedious, even with access to GPUs, due to their high computational demand. This makes it more difficult to monitor these models than simpler ones that run in minutes. If you want to monitor a model that runs in a few minutes, you can print the metrics to the console and log to a file for reference.




  However, due to the high number of training iterations deep learning models go through, it is easier to absorb information when these metrics are visualized in graphs. TensorBoard provides exactly this functionality. All you need to do is log and persist your performance metrics in TensorFlow and point TensorBoard to the log directory. TensorBoard will take care of the rest by automatically converting this information in the log directory to graphs, which we can use to analyze the quality of our model.




  Creating heavy-duty data pipelines




  We have stated several times that deep learning models have a big appetite for data. Typically, data sets that deep learning models sit on do not fit in memory. This means that we need to feed large amounts of data with low latency in smaller, more manageable batches of data. As we have already seen, TensorFlow provides rich APIs for streaming data to deep learning models. Most of the heavy lifting has been done for us. All we need to do is understand the syntax of the functions provided and use them appropriately. Some example scenarios of such data pipelines include the following:




  

    	

      A pipeline that consumes large amounts of images and preprocesses them


    




    	

      A pipeline that consumes large amounts of structured data in a standard format (e.g., CSV [comma separated value]) and performs standard preprocessing (e.g., normalization)


    




    	

      A pipeline that consumes large amounts of text data and performs only simple preprocessing (e.g., text lowering, removing punctuation)


    


  




  
1.3.2 When not to use TensorFlow




  It’s important to know the don’ts as well as the do’s when it comes to mastering a tool or a framework. In this section, we will discuss some of the areas where other tools might make you more efficient than TensorFlow.




  Implementing traditional machine learning models




  Machine learning has a large portfolio of models (e.g., linear/logistic regression, supporting vector machines, decision trees, k-means) that fall under various categories (e.g., supervised versus unsupervised learning) and have different motivations, approaches, strengths, and weaknesses. There are many models used where you will not see much performance improvement using optimized hardware (e.g., decision trees, k-means, etc.) because these models aren’t inherently parallelizable. Sometimes you’ll need to run these algorithms as a benchmark for a new algorithm you developed or to get a quick ballpark figure as to how easy a machine learning problem is.




  Using TensorFlow to implement such methods would cost you more time than it should. In such situations, scikit-learn (https://scikit-learn.org/stable/) is a better alternative, as the library provides a vast number of models readily implemented. TensorFlow does support some algorithms, such as boosted-tree-based models (http://mng.bz/KxPn). But from my experience, using XGBoost (extreme gradient boosting) (https://xgboost.readthedocs.io/en/latest/) to implement boosted trees has been more convenient, as it is more widely supported by other libraries than the TensorFlow alternative. Furthermore, should you need GPU-optimized versions of scikit-learn algorithms, NVIDIA also provides some of these algorithms that are adapted and optimized for GPUs (https://rapids.ai/).




  Manipulating and analyzing small-scale structured data




  Sometimes we will work with relatively small-structure data sets (e.g., 10,000 samples) that can easily fit in memory. If the data can be loaded into memory fully, pandas and NumPy are much better alternatives for exploring and analyzing data. These are libraries that are equipped with highly optimized C/C++ implementations of various data manipulation (e.g., indexing, filtering, grouping) and statistics-related operations (e.g., mean, sum). For a small data set, TensorFlow can cause significant overhead (transferring data between the CPU and the GPU, launching computational kernels on the GPU), especially if a high volume of smaller, less expensive operations is run. Additionally, pandas/NumPy would be much more expressive in terms of how you can manipulate the data, as it’s their primary focus.




  Creating complex natural language processing pipelines




  If you are developing a natural language processing (NLP) model, you would rarely pass data to the model without doing at least simple preprocessing on the data (e.g., text lowering, removing punctuation). But the actual steps that dictate your preprocessing pipeline will depend on your use case and your model. For example, there will be instances where you will have a handful of simple steps (e.g., case lowering, removing punctuation), or you might have a fully blown preprocessing pipeline that requires complex tasks (e.g., stemming, lemmatizing, correcting spelling). In the former case, TensorFlow is a good choice as it provides some simple text preprocessing functionality (e.g., case lowering, replacing text, string splitting, etc.). However, in the latter case, where costly steps such as lemmatization, stemming, spelling correction, and so on dominate the preprocessing pipeline, TensorFlow will hinder your progress. For this, spaCy (https://spacy.io/) is a much stronger candidate, as it provides an intuitive interface and readily available models to perform standard NLP processing tasks.




  spaCy does support including TensorFlow models (through a special wrapper) when defining pipelines. But as a rule of thumb, try to avoid this when possible. Integrations between different libraries are generally time-consuming and can even be error prone in complex setups.




  Table 1.1 summarizes various strengths and weaknesses of TensorFlow.




  Table 1.1 Summary of TensorFlow benefits and drawbacks




  

    

      

      

      

    



    

      	

        Task


      



      	

        Yes


      



      	

        No


      

    




    

      	

        Prototyping deep learning models


      



      	

        X


      



      	

        


      

    




    

      	

        Implementing models (including non-deep learning) that can run faster on optimized hardware


      



      	

        X


      



      	

        


      

    




    

      	

        Productionizing models/serving on cloud


      



      	

        X


      



      	

        


      

    




    

      	

        Monitoring models during model training


      



      	

        X


      



      	

        


      

    




    

      	

        Creating heavy-duty data pipelines


      



      	

        X


      



      	

        


      

    




    

      	

        Implementing traditional machine learning models


      



      	

        


      



      	

        X


      

    




    

      	

        Manipulating and analyzing small-scale structured data


      



      	

        


      



      	

        X


      

    




    

      	

        Creating complex NLP pipelines


      



      	

        


      



      	

        X


      

    


  




  




  




  




  




  




  
1.4 What will this book teach you?




  In the coming chapters, this book will teach you some vital skills that will help you use TensorFlow principally and effectively for research problems.




  
1.4.1 TensorFlow fundamentals




  First, we will learn the basics of TensorFlow. We will learn the different execution styles it provides, primary building blocks that are used to implement any TensorFlow solution (e.g., tf.Variable, tf.Operation), and various functionalities as low-level operations. Then we will explore various model-building APIs exposed by Keras (a submodule in TensorFlow) to users and their benefits and limitations, which will help with making decisions such as when to use a certain model-building API. We will also study various ways we can retrieve data for TensorFlow models. Unlike traditional methods, deep learning models consume large amounts of data, so having an efficient and scalable data ingestion pipeline (i.e., input pipeline) is of paramount importance.




  
1.4.2 Deep learning algorithms




  Implementing efficient deep learning models is one of the primary purposes of TensorFlow. Therefore, we will be discussing the architectural details of various deep learning algorithms such as full connected neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs). Note that investigating theories of these models is not an objective of this book. We will only be discussing these models at a level that helps us understand how to implement them comfortably with TensorFlow/Keras.




  We will further hone our understanding of these models by implementing and applying these models to popular computer vision and NLP applications such as image classification, image segmentation, sentiment analysis, and machine translation. It will be interesting to see how well these models do when it comes to such tasks, with no human-engineered features.




  Then, we will discuss a new family of models that have emerged, known as Transformers. Transformers are very different from both convolutional and recurrent neural networks. Unlike CNNs and RNNs, which can only see part of a time-series sequence at a time, Transformers can see the full sequence of data, leading to better performance. In fact, Transformers have been surpassing the previously recorded state-of-the-art models in many NLP tasks. We will learn how we can incorporate such models in TensorFlow to improve the performance of various downstream tasks.




  
1.4.3 Monitoring and optimization




  It is not enough to know how to implement a model in TensorFlow. Close inspection and monitoring of model performance are vital steps in creating a reliable machine learning model. Using visualization tools such as TensorBoard to visualize performance metrics and feature representations is an important skill to have. Model explainability has also emerged as an important topic, as black-box models like neural networks are becoming commodities in machine learning. TensorBoard has certain tools for interpreting models or explaining why a model made a certain decision.




  Next, we will investigate ways we can make models train faster. The training time is one of the most prominent bottlenecks in using deep learning models, so we will discuss some techniques to make the models train faster!




  




  




  




  




  




  
1.5 Who is this book for?




  This book is written for a broader audience in the machine learning community to provide a somewhat easy entry for novices, as well as machine learning practitioners with basic to medium knowledge/experience, to push their TensorFlow skills further. In order to get the most out of this book, you need the following:




  

    	

      Experience in the model development life cycle (through a research/industry project)


    




    	

      Moderate knowledge of Python and object-oriented programming (OOP) (e.g., classes/generators/list comprehension)


    




    	

      Basic knowledge of NumPy/pandas libraries (e.g., computing summary statistics, what pandas series DataFrame objects are)


    




    	

      Basic knowledge of linear algebra (e.g., basic mathematics, vectors, matrices, n-dimensional tensors, tensor operations, etc.)


    




    	

      Basic familiarity with the different deep neural networks available


    


  




  You will greatly benefit from this book if you are someone who has




  

    	

      At least several months of experience as a machine learning researcher, data scientist, machine learning engineer, or even as a student during a university/ school project in which you used machine learning


    




    	

      Worked closely with other machine learning libraries (e.g., scikit-learn) and has heard of amazing feats of deep learning and is keen to learn more about how to implement them


    




    	

      Experience with basic TensorFlow functionality but wants to write better TensorFlow code


    


  




  You might be thinking, with the plethora of resources available (e.g., TensorFlow documentation, StackOverFlow.com, etc.), isn’t it easy (and free) to learn TensorFlow? Yes and no. If you just need “some” solution to a problem you’re working on, you might be able to hack one using the resources out there. But chances are that it will be a suboptimal solution, because to come up with an effective one, you need to build a strong mental image of how TensorFlow executes code, understand the functionality provided in the API, understand limitations, and so on. It is also important to understand TensorFlow and gain knowledge in an incremental and structured manner, which is very difficult to do by simply reading freely available resources at random. A strong mental image and solid knowledge come with many years of experience (while keeping a close eye on new features available, GitHub issues, and stackoverflow.com questions) or from a book written by a person with many years of experience. The million-dollar question here is not “How do I use TensorFlow to solve my problem?” but “How do I use TensorFlow effectively to solve my problem?” Coming up with an effective solution requires a solid grokking of TensorFlow. An effective solution, in my mind, can be one that does (but is not limited to) the following:




  

    	

      Keeps the code relatively concise without sacrificing readability too much (e.g., avoiding redundant operations, aggregating operations when possible)


    




    	

      Uses the latest and greatest features available in the API to avoid reinventing the wheel and to save time


    




    	

      Utilizes optimizations whenever possible (e.g., avoiding loops and using vectorized operations)


    


  




  If you asked me to summarize this book into a few words, I would say “enabling the reader to write effective TensorFlow solutions.”




  
1.6 Should we really care about Python and TensorFlow 2?




  Here we will get to know about the two most important technologies you’ll be studying heavily: Python and TensorFlow. Python is the foundational programming language we will be using to implement various TensorFlow solutions. But it is important to know that TensorFlow supports many different languages, such as C++, Go, JavaScript, and so on.




  The first question we should try to answer is “Why are we picking Python as our choice of programming language?” Python’s popularity has recently increased, especially in the scientific community, due to the vast number of libraries that have fortified Python (e.g., pandas, NumPy, scikit-learn), which has made conducting a scientific experiment/simulation and logging/visualizing/reporting the results much easier. In figure 1.2, you can see how Python has become the most popular search term (at least in the Google search engine). If you narrow the results to just the machine learning community, you will see an even higher margin.
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  Figure 1.2 Popularity of different programming languages (2015-2020)




  The next question to answer is “Why did we pick TensorFlow?” TensorFlow has been there almost since deep learning became popular (http://mng.bz/95P8). TensorFlow has been refined and revised over roughly five years, becoming more and more stable over time. Furthermore, unlike other counterpart libraries, TensorFlow provides an ecosystem of tools to satisfy your machine learning needs, from prototyping to model training to models. In figure 1.3, you can see how TensorFlow compares to one of its popular competitors, PyTorch.
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  Figure 1.3 Popularity of TensorFlow and PyTorch (2015-2020)




  It’s also worth inspecting how much of a performance increase we gain as the size of the data grows. Figure 1.4 compares a popular scientific computation library (NumPy) to TensorFlow in a matrix multiplication task. This was tested on an Intel i5 ninth-generation processor and an NVIDIA 2070 RTX 8 GB GPU. Here, we are multiplying two randomly initialized matrices (each having size n × n). We have recorded the time taken for n = 100, 1000, 5000, 7500, 1000. On the left side of the graph, you can see the difference in time growth. NumPy shows an exponential growth of time taken as the size of the matrix grows. However, TensorFlow shows approximately linear growth. On the right side you can see how many seconds it takes if a TensorFlow operation takes one second. The message is clear: TensorFlow does much better than NumPy as the amount of data grows.
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  Figure 1.4 Comparing NumPy and TensorFlow computing libraries in a matrix multiplication task




  
Summary




  

    	

      Deep learning has become a hot topic due to the unprecedented performance it delivers when provided ample amounts of data.


    




    	

      TensorFlow is an end-to-end machine learning framework that provides ecosystem-facilitating model prototyping, model building, model monitoring, model serving, and more.


    




    	

      TensorFlow, just like any other tool, has strengths and weaknesses. Therefore, it is up to the user to weigh these against the problem they are trying to solve.


    




    	

      TensorFlow is a great tool to quickly prototype deep learning models with a vast range of complexities.


    




    	

      TensorFlow is not suited to analyzing/manipulating a small-structure data set or developing complex text-processing data pipelines.


    




    	

      This book goes beyond teaching the reader to implement some TensorFlow solution and teaches the reader to implement effective solutions with minimal effort while reducing the chance of errors.


    


  




  
2 TensorFlow 2




  This chapter covers




  

    	
What TensorFlow 2 is




    	
Important data structures and operations in TensorFlow




    	
Common neural network related operations in TensorFlow


  




  In the previous chapter, we learned that TensorFlow is an end-to-end machine learning framework predominantly used for implementing deep neural networks. TensorFlow is skillful at converting these deep neural networks to computational graphs that run faster on optimized hardware (e.g., GPUs and TPUs). But keep in mind that this is not the only use for TensorFlow. Table 2.1 delineates other areas TensorFlow supports.




  Table 2.1 Various features offered in TensorFlow




  

    

      

      

    



    

      	

        Probabilistic machine learning


      



      	

        TensorFlow supports implementing probabilistic machine learning models. For example, models like Bayesian neural networks can be implemented with a TensorFlow API (https://www.tensorflow.org/probability).


      

    




    

      	

        Computer graphics-related computations


      



      	

        Computer graphic computations can be mostly achieved on GPUs (e.g., simulating various lighting effects, raytracing; https://www.tensorflow.org/graphics).


      

    




    

      	

        TensorFlow Hub: Reusable (pretrained) models


      



      	

        In deep learning we usually try to leverage models that have already been trained on large amounts of data for the downstream tasks we’re interested in solving. TensorFlow Hub is a repository in which such models implemented in TensorFlow are stored (https://www.tensorflow.org/hub).


      

    




    

      	

        Visualize/debug TensorFlow models


      



      	

        TensorFlow provides a dashboard for visualizing and monitoring model performance and even visualizing data (https://www.tensorflow.org/tensorboard).


      

    


  




  In the coming chapters, we will go on an exciting journey exploring the bells and whistles in TensorFlow and learning how to excel at things TensorFlow is good at. In other words, we will look at how to solve real-world problems with TensorFlow, such as image classification (i.e., recognizing objects in images), sentiment analysis (i.e., recognizing positive/negative tones in reviews/opinions), and so on. While solving these tasks, you will learn how to overcome real-world challenges such as overfitting and class imbalance that can easily throw a spanner in the works. This chapter specifically focuses on providing a strong foundational knowledge of TensorFlow before we head toward complex problems that can be solved with deep networks.




  First, we will implement a neural network in both TensorFlow 2 and TensorFlow 1 and see how much TensorFlow has evolved in terms of user friendliness. Then we will learn about basic units (e.g., variables, tensors, and operations) provided in TensorFlow, which we must have a good understanding of in order to develop solutions. Finally, we will understand the details of several complex mathematical operations through a series of fun computer vision exercises.




  
2.1 First steps with TensorFlow 2




  Let’s imagine you are taking a machine learning course and have been given an assignment to implement a multilayer perceptron (MLP) (i.e., a type of neural network) and compute the final output for a given datapoint using TensorFlow. You are new to TensorFlow, so you go to the library and start studying what TensorFlow is. While you research, you realize that TensorFlow has two major versions (1 and 2) and decide to use the latest and greatest: TensorFlow 2. You’ve already installed the required libraries, as outlined in appendix A.




  Before moving on, let’s learn about MLPs. An MLP (figure 2.1) is a simple neural network that has an input layer, one or more hidden layers, and an output layer. These networks are also called fully connected networks.




  NOTE Some research only uses the term MLP to refer to a network made of multiple perceptrons (http://mng.bz/y4lE) organized in a hierarchical structure. However, in this book, we will use the terms MLP and fully connected network interchangeably.




  In each layer, we have weights and biases, which are used to compute the output of that layer. In our example, we have an input of size 4, a hidden layer with three nodes, and an output layer of size 2.
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  Figure 2.1 Depiction of a multilayer perceptron (MLP) or a fully connected network. There are three layers: an input layer, a hidden layer (that has weights and biases), and an output layer. The output layer produces normalized probabilities as the output using softmax activation.




  The input values (x) are transformed to hidden values (h) using the following computation




  h = σ(x W1 + b1)




  where σ is the sigmoid function. The sigmoid function is a simple nonlinear element-wise transformation, as shown as in figure 2.2.
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  Figure 2.2 A visualization of the sigmoidal activation function for different inputs




  x is a matrix of size 1 × 4 (i.e., one row and four columns), W1 is a matrix of size 4 × 3 (i.e., four rows and three columns), and b1 is 1 × 4 (i.e., one row and four columns). This gives an h of size 1 × 3. Finally, the output is computed as




  y = softmax(h W2 + b2)




  Here, W2 is a 3 × 2 matrix, and b2 is a 1 × 2 matrix. Softmax activation normalizes the linear scores of the last layer (i.e., h W2 + b2) to actual probabilities (i.e., values sum up to 1 along columns). Assuming an input vector x of length K, the softmax activation produces a K-long vector y. The ith element of y is computed as
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  where yi is the ith output element and xi is the ith input element. As a concrete example, assume the final layer without the softmax activation produced,


  [16, 4]




  Applying the softmax normalization converts these values to


  [16/(16+4), 4/(16+4)] = [0.8, 0.2]




  Let’s see how this can be implemented in TensorFlow 2. You can find the code in the Jupyter notebook (Ch02-Fundamentals-of-TensorFlow-2/2.1.Tensorflow_Fundamentals.ipynb). How to install the necessary libraries and set up the development environment is delineated in appendix A. Initially, we need to import the required libraries using import statements:


  import numpy as np

import tensorflow as tf




  Then we define the input to the network (x) and the variables (or parameters) (i.e., w1, b1, w2, and b2) of the network:


  x = np.random.normal(size=[1,4]).astype('float32')

 

init = tf.keras.initializers.RandomNormal()

 

w1 = tf.Variable(init(shape=[4,3])) 

b1 = tf.Variable(init(shape=[1,3])) 

 

w2 = tf.Variable(init(shape=[3,2])) 

b2 = tf.Variable(init(shape=[1,2])) 




  Here, x is a simple NumPy array of size 1 × 4 (i.e., one row and four columns) that is filled with values from a normal distribution. Then we define the parameters of the network (i.e., weights and biases) as TensorFlow variables. A tf.Variable behaves similar to a typical Python variable. It has some value attached at the time of the definition and can change over time. tf.Variable is used to represent weights and biases of a neural network, which are changed during the optimization or the training procedure. When defining TensorFlow variables, we need to provide an initializer and a shape for the variables. Here we are using an initializer that randomly sample values from a normal distribution. Remember that W1 is 4 × 3 sized, b1 is 1 × 3 sized, W2 is 3 × 2 sized, and b2 is 1 × 2 sized, and that the shape argument for each of these is set accordingly. Next, we define the core computations of the MLP as a nice modular function. This way, we can easily reuse the function to compute hidden layer outputs of multiple layers:


  @tf.function

def forward(x, W, b, act):

    return act(tf.matmul(x,W)+b)




  Here, act is any nonlinear activation function of your choice (e.g., tf.nn.sigmoid). (You can look at various activation functions here: https://www.tensorflow.org/api_docs/python/tf/nn. Be mindful that not all of them are activation functions. The expression tf.matmul(x,W)+b elegantly wraps the core computations we saw earlier (i.e., x W1 + b1 and h W2 + b2) to a reusable expression. Here, tf.matmul performs the matrix multiplication operation. This computation is illustrated in figure 2.3.
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  Figure 2.3 The matrix multiplication and bias addition illustrated for example input, weights, and bias




  Having @tf.function on top of the function is a way for TensorFlow to know that this function contains TensorFlow code. We will discuss the purpose of @tf.function in more detail in the next section. This brings us to the final part of the code. As we have the inputs, all the parameters, and core computations defined, we can compute the final output of the network


  # Computing h

h = forward(x, w1, b1, tf.nn.sigmoid)

 

# Computing y

y = forward(h, w2, b2, tf.nn.softmax)

 

print(y)




  which will output


  tf.Tensor([[0.4912673 0.5087327]], shape=(1, 2), dtype=float32)




  Here, h and y are the resulting tensors (of type tf.Tensor) of various TensorFlow operations (e.g., tf.matmul). The exact values in the output might differ slightly (see the following listing).




  Listing 2.1 Multilayer perceptron network with TensorFlow 2


  import numpy as np                                  ❶

import tensorflow as tf                             ❶

 

x = np.random.normal(size=[1,4]).astype('float32')  ❷

 

init = tf.keras.initializers.RandomNormal()         ❸

 

w1 = tf.Variable(init(shape=[4,3]))                 ❹

b1 = tf.Variable(init(shape=[1,3]))                 ❹

 

w2 = tf.Variable(init(shape=[3,2]))                 ❹

b2 = tf.Variable(init(shape=[1,2]))                 ❹

 

@tf.function                                        ❺

def forward(x, W, b, act):                          ❻

    return act(tf.matmul(x,W)+b)                    ❻

 

h = forward(x, w1, b1, tf.nn.sigmoid)               ❼

 

y = forward(h, w2, b2, tf.nn.softmax)               ❽

 

print(y)




  ❶ Importing NumPy and TensorFlow libraries




  ❷ The input to the MLP (a NumPy array)




  ❸ The initializer used to initialize variables




  ❹ The parameters of layer 1 (w1 and b2) and layer 2 (w2 and b2)




  ❺ This line tells TensorFlow’s AutoGraph to build the graph.




  ❻ MLP layer computation, which takes in an input, weights, bias, and a nonlinear activation




  ❼ Computing the first hidden layer output, h




  ❽ Computing the final output, y




  Next, we will look at what happens behind the scenes when TensorFlow runs the code.




  
2.1.1 How does TensorFlow operate under the hood?




  In a typical TensorFlow program, there are two main steps:




  

    	

      Define a data-flow graph encompassing the inputs, operations, and the outputs. In our exercise, the data-flow graph will represent how x, w1, b1, w2, b2, h, and y are related to each other.


    




    	

      Execute the graph by feeding values to the inputs and computing outputs. For example, if we need to compute h, we will feed a value (e.g., a NumPy array) to x and get the value of h.


    


  




  TensorFlow 2 uses an execution style known as imperative style execution. In imperative style execution, declaration (defining the graph) and execution happen simultaneously. This is also known as eagerly executing code.




  You might be wondering what a data-flow graph looks like. It is a term TensorFlow uses to describe the flow of computations you defined and is represented as a directed acyclic graph (DAG): a graph structure where arrows represent the data and nodes represent the operations. In other words, tf.Variable and tf.Tensor objects represent the edges in the graph, whereas operations (e.g., tf.matmul) represent the nodes. For example, the data-flow graph for




  h = x W1 + b1




  would look like figure 2.4. Then, at runtime, you could get the value of y by feeding values to x, as y is dependent on the input x.
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  Figure 2.4 An example computational graph. The various elements here are covered in more detail in section 2.2.




  How does TensorFlow know to create the data-flow graph? You might have noticed the line starting with the symbol @ hanging on top of the forward(...) function. This is known as a decorator in Python language. The @tf.function decorator takes in a function that performs various TensorFlow operations, traces all the steps, and turns that into a data-flow graph. How cool is that? This encourages the user to write modular code while enabling the computational advantages of a data-flow graph. This feature in TensorFlow 2 is known appropriately as AutoGraph (https://www.tensorflow.org/guide/function).




  

    What is a decorator?




    A decorator modifies the behavior of a function by wrapping it, which happens before/after the function is invoked. A good example of a decorator is logging the inputs and outputs of a function whenever it is invoked. Here’s how you would use decorators for this:


    def log_io(func):

    def wrapper(*args, **kwargs):

        print("args: ", args)

        print(“kwargs: “, kwargs)

        out = func(*args, **kwargs)

        print("return: ", out)

    return wrapper

 

@log_io

def easy_math(x, y):

    return x + y + ( x * y)

 

res = easy_math(2,3)




    This will output


    args:  (2, 3)

kwargs:  {}

return:  11




    as expected. Therefore, when you add the @tf.function decorator, it essentially modifies the behavior of the invoked function by building a computational graph of the computations happening within the given function.


  




  The diagram in figure 2.5 depicts the execution path of a TensorFlow 2 program. The first time the functions a(...) and b(...) are invoked, the data-flow graph is created. Then, inputs passed to the functions will be fed to the graph and obtain the outputs you are interested in.
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  Figure 2.5 Typical execution of a TensorFlow 2 program. In the first run, TensorFlow traces all functions annotated with @tf.function and builds the data-flow graph. In the subsequent runs, corresponding values are fed to the graph (according to the function call) and the results are retrieved.




  

    AutoGraph




    AutoGraph is a great feature in TensorFlow that reduces the developer’s workload by working hard behind the scene. To build true appreciation for the feature, read more at https://www.tensorflow.org/guide/function. Though it is quite amazing, AutoGraph is not a silver bullet. Therefore, it is important to understand its advantages as well as its limitations and caveats:




    

      	

        AutoGraph will provide a performance boost if your code consists of lots of repetitive operations (e.g., training a neural network for many iterations).


      




      	

        AutoGraph might slow you down if you run many different operations that only run once; because you run the operation only once, building the graph is just an overhead.


      




      	

        Be careful of what you include inside the function you are exposing to AutoGraph. For example




        

          	

            NumPy arrays and Python lists will be converted to tf.constant objects.


          




          	

            for loops will be unwrapped during function tracing, which might result in large graphs that eventually run out of memory.


          


        


      


    


  




  TensorFlow 1, the predecessor of TensorFlow 2, used an execution style known as declarative graph-based execution, which consists of two steps:




  

    	

      Explicitly define a data-flow graph using various symbolic elements (e.g., placeholder inputs, variables, and operations) of what you need to achieve. Unlike in TensorFlow 2, these do not hold values at declaration.


    




    	

      Explicitly write code to run the defined graph and obtain or evaluate results. You can feed actual values to the previously defined symbolic elements at runtime and execute the graph.


    


  




  This is very different from TensorFlow 2, which hides all the intricacies of the data-flow graph by automatically building it in the background. In TensorFlow 1, you have to explicitly build the graph and then execute it, leading to code that’s more complex and difficult to read. Table 2.2 summarizes the differences between TensorFlow 1 and TensorFlow 2.




  Table 2.2 Differences between TensorFlow 1 and TensorFlow 2




  

    

      

      

    



    

      	

        TensorFlow 1


      



      	

        TensorFlow 2


      

    




    

      	

        Does not use eager execution by default


      



      	

        Uses eager execution by default


      

    




    

      	

        Uses symbolic placeholders to represent inputs to the graph


      



      	

        Directly feeds actual data (e.g., NumPy arrays) to the data-flow graph


      

    




    

      	

        Difficult to debug as results are not evaluated imperatively


      



      	

        Easy to debug as operations are evaluated imperatively


      

    




    

      	

        Needs to explicitly and manually create the data-flow graph


      



      	

        Has AutoGraph functionality, which traces TensorFlow operations and creates the graph automatically


      

    




    

      	

        Does not encourage object-oriented programming, as it forces you to define the computational graph in advance


      



      	

        Encourages object-oriented programming


      

    




    

      	

        Results in poor readability of code due to having separate graph definition and runtime code


      



      	

        Has better readability of code


      

    


  




  In the next section, we discuss the basic building blocks of TensorFlow that set the foundation for writing TensorFlow programs.




  Exercise 1




  Given the following code,


  # A

import tensorflow as tf

# B

def f1(x, y, z):

    return tf.math.add(tf.matmul(x, y) , z)

#C

w = f1(x, y, z)




  where should the tf.function decorator go?




  

    	

      A


    




    	

      B


    




    	

      C


    




    	

      Any of above


    


  




  
2.2 TensorFlow building blocks




  We have seen the core differences between TensorFlow 1 and TensorFlow 2. While doing this, you were exposed to various data structures (e.g., tf.Variable) and operations (e.g., tf.matmul) exposed by the TensorFlow API. Let’s now see where and how you might use these data structures and operations.




  In TensorFlow 2, there are three major basic elements we need to learn about:




  

    	

      tf.Variable


    




    	

      tf.Tensor


    




    	

      tf.Operation


    


  




  You have already seen all of these being used. For example, from the previous MLP example, we have these elements, as shown in table 2.3. Having knowledge of these primitive components is helpful in understanding more abstract components, such as a Keras layer and model objects, and will be discussed later.




  Table 2.3 tf.Variable, tf.Tensor, and tf.Operation entities from the MLP example




  

    

      

      

    



    

      	

        Element


      



      	

        Example


      

    




    

      	

        tf.Variable


      



      	

        w1, b1, w2 and b2


      

    




    

      	

        tf.Tensor


      



      	

        h and y


      

    




    

      	

        tf.Operation


      



      	

        tf.matmul


      

    


  




  It is important to firmly grok these basic elements of TensorFlow for several reasons. The main reason is that everything you see in this book, from this point on, is built on top of these elements. For example, if you are using a high-level API like Keras to build a model, it still uses tf.Variable, tf.Tensor, and tf.Operation entities to do the computations. Therefore, it is important to know how to use these elements and what you can and cannot achieve with them. The other benefit is that the errors returned by TensorFlow are usually presented to you using these elements. So, this knowledge will also help us understand errors and resolve them quickly as we develop more complex models.




  
2.2.1 Understanding tf.Variable




  When building a typical machine learning model, you have two types of data:




  

    	

      Model parameters that change over time (mutable) as the model is optimized with regard to a chosen loss function


    




    	

      Outputs of the model that are static given data and model parameters (immutable)


    


  




  tf.Variable is ideal for defining model parameters, as they are initialized with some value and can change the value over time. A TensorFlow variable must have the following:




  

    	

      A shape (size of each dimension of the variable)


    




    	

      An initial value (e.g., randomly initialized from values sampled from a normal distribution)


    




    	

      A data type (e.g., int32, float32)


    


  




  You can define a TensorFlow variable as follows


  tf.Variable(initial_value=None, trainable=None, dtype=None)




  where




  

    	

      initial_value contains the initial value provided to the model. This is typically provided using a variable initializer provided in the tf.keras.initializers submodule (the full list of initializers can be found at http://mng.bz/M2Nm). For example, if you want to initialize the variable randomly with a 2D matrix having four rows and three columns using a uniform distribution, you can pass tf.keras.initializers.RandomUniform()([4,3]). You must provide a value to the initial_value argument.


    




    	

      trainable parameter accepts a Boolean value (i.e., True or False) as the input. Setting the trainable parameter to True allows the model parameters to be changed by means of gradient descent. Setting the trainable parameter to False will freeze the layer so that the values cannot be changed using gradient descent.


    




    	

      dtype specifies the data type of the data contained in the variable. If unspecified, this defaults to the data type provided to the initial_value argument (typically float32).


    


  




  Let’s see how we can define TensorFlow variables. First, make sure you have imported the following libraries:


  import tensorflow as tf

import numpy as np




  You can define a TensorFlow variable with one dimension of size 4 with a constant value of 2 as follows:


  v1 = tf.Variable(tf.constant(2.0, shape=[4]), dtype='float32')

print(v1)

 

>>> <tf.Variable 'Variable:0' shape=(4,) dtype=float32, numpy=array([2., 2., 2., 2.], dtype=float32)>




  Here, tf.constant(2.0, shape=[4]) produces a vector of four elements having a value 2.0, which then is used as the initial value of tf.Variable. You can also define a TensorFlow variable with a NumPy array:


  v2 = tf.Variable(np.ones(shape=[4,3]), dtype='float32')

print(v2)

 

>>> <tf.Variable 'Variable:0' shape=(4, 3) dtype=float32, numpy=

array([[1., 1., 1.],

       [1., 1., 1.],

       [1., 1., 1.],

       [1., 1., 1.]], dtype=float32)>




  Here, np.ones(shape=[4,3]) generates a matrix of shape [4,3], and all the elements have a value of 1. The next code snippet defines a TensorFlow variable with three dimensions (3×4×5) with random normal initialization:


  v3 = tf.Variable(tf.keras.initializers.RandomNormal()(shape=[3,4,5]), dtype='float32')

print(v3)

 

>>> <tf.Variable 'Variable:0' shape=(3, 4, 5) dtype=float32, numpy=

array([[[-0.00599647, -0.04389469, -0.03364765, -0.0044175 ,

          0.01199682],

        [ 0.05423453, -0.02812728, -0.00572744, -0.08236874,

         -0.07564012],

        [ 0.0283042 , -0.05198685,  0.04385028,  0.02636188,

          0.02409425],

        [-0.04051876,  0.03284673, -0.00593955,  0.04204708,

         -0.05000611]],

 

       ...

 

       [[-0.00781542, -0.03068716,  0.04313354, -0.08717368,

          0.07951441],

        [ 0.00467467,  0.00154883, -0.03209472, -0.00158945,

          0.03176221],

        [ 0.0317267 ,  0.00167555,  0.02544901, -0.06183815,

          0.01649506],

        [ 0.06924769,  0.02057942,  0.01060928, -0.00929202,

          0.04461157]]], dtype=float32)>




  Here, you can see that if we print a tf.Variable it is possible to see its attributes such as the following:




  

    	

      The name of the variable


    




    	

      The shape of the variable


    




    	

      The data type of the variable


    




    	

      The initial value of the variable


    


  




  You can also convert your tf.Variable to a NumPy array with a single line using


  arr = v1.numpy()




  You can then validate the result yourself by printing the Python variable arr using


  print(arr) 




  which will return


  >>> [2. 2. 2. 2.]




  A key characteristic of a tf.Variable is that you can change the value of its elements as required even after it is initialized. For example, to manipulate individual elements or slices of a tf.Variable, you can use the assign() operation as follows.




  For the purpose of this exercise, let us assume the following TensorFlow variable, which is a matrix initialized with zeros that has four rows and three columns:


  v = tf.Variable(np.zeros(shape=[4,3]), dtype='float32')




  You can change the element in the first (i.e., index 0) row and third (i.e., index 2) column as follows:


  v = v[0,2].assign(1)




  This will produce the following array:


  >>> [[0. 0. 1.]

     [0. 0. 0.]

     [0. 0. 0.]

     [0. 0. 0.]]




  NOTE Remember that Python uses zero-based indexing. This means that indexing starts from zero (not one). For example, if you want to get the second element of a vector vec, you would use vec[1].




  You can also change values using slicing as follows. Here, we are changing the values that lie in the last two rows and first two columns:


  v = v[2:, :2].assign([[3,3],[3,3]])




  This results in


  >>> [[0. 0. 1.]

     [0. 0. 0.]

     [3. 3. 0.]

     [3. 3. 0.]]




  Exercise 2




  Can you write the code to create a tf.Variable that has the following values and has type int16? You can use np.array() for this purpose.


  1 2 3

4 3 2




  
2.2.2 Understanding tf.Tensor




  As we have seen, tf.Tensor is the output of performing a TensorFlow operation on some data (e.g., on a tf.Variable or a tf.Tensor). tf.Tensor objects are heavily used when defining machine learning models, as they are used to store inputs, interim outputs of layers, and final outputs of the model. So far, we have looked mostly at vectors (one dimension) and matrices (two dimension). However, there’s nothing stopping us from creating n-dimensional data structures. Such an n-dimensional data structure is known as a tensor. Table 2.4 shows a few examples of tensors.




  Table 2.4 Examples of tensors




  

    

      

      

    



    

      	

        Description


      



      	

        Example


      

    




    

      	

        A 2D tensor with two rows and four columns


      



      	

        


        [

 [1,3,5,7],

 [2,4,6,8]

]


      

    




    

      	

        A 4D tensor of size 2 × 3 × 2 × 1


      



      	

        


        [

  [

    [[1],[2]],

    [[2],[3]],

    [[3],[4]]

  ],

  [

    [[1],[2]],

    [[2],[3]],

    [[3],[4]]

  ]

]


      

    


  




  Tensors also have axes. Each dimension of the tensor is considered an axis. Figure 2.6 depicts the axes of a 3D tensor.
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  Figure 2.6 A 2 × 4 × 3 tensor with the three axes. The first axis (axis 0) is the row dimension, the second axis (axis 1) is the column axis, and the final axis (axis 2) is the depth axis.




  Technically, a tensor can also have just a single dimension (i.e., vector) or be a scalar. An important distinction to make is how the terms tensor and tf.Tensor are used. We will use tensor/vector/scalar to refer to a tensor when we are discussing mathematical aspects of our models. We will refer to any data-related output produced by our TensorFlow code as a tf.Tensor.




  Next we will discuss a few instances where you will end up with a tf.Tensor. For example, you can produce a tf.Tensor by multiplying a tf.Variable with a constant:


  v = tf.Variable(np.ones(shape=[4,3]), dtype='float32')

b = v * 3.0




  If you analyze the type of the object produced after the previous operation using print(type(b).__name__), you will see the following output:


  >>> EagerTensor




  EagerTensor is a class inherited from tf.Tensor. It is a special type of tf.Tensor, the value of which is evaluated eagerly (i.e., immediately after defined). You can verify that EagerTensor is, in fact, a tf.Tensor by executing the following command:


  assert isinstance(b, tf.Tensor)




  You can also produce a tf.Tensor by adding a tf.Tensor to another tf.Tensor


  a = tf.constant(2, shape=[4], dtype='float32')

b = tf.constant(3, shape=[4], dtype='float32')

c = tf.add(a,b)




  where print(c) will yield


  >>> [5. 5. 5. 5]




  Here, tf.constant() is used to produce tf.Tensor objects a and b. By adding a and b, you will get a tensor c of type tf.Tensor. As before, you can validate this claim by running


  assert isinstance(c, tf.Tensor)




  The key difference between a tf.Variable and a tf.Tensor is that tf.Variable allows its values to change even after the variable is initialized (known as a mutable structure). However, once you initialize a tf.Tensor, you cannot change it during the lifetime of the execution (known as an immutable data structure). tf.Variable is a mutable data structure, whereas tf.Tensor is an immutable data structure.




  Let’s see what happens if you try to change the value of a tf.Tensor after it’s initialized:


  a = tf.constant(2, shape=[4], dtype='float32')

a = a[0].assign(2.0)




  You will get the following error:


  ---------------------------------------------------------------------------

 

AttributeError                            Traceback (most recent call last)

 

<ipython-input-19-6e4e6e519741> in <module>()

      1 a = tf.constant(2, shape=[4], dtype='float32')

----> 2 a = a[0].assign(2.0)

 

AttributeError: 'tensorflow.python.framework.ops.EagerTensor' object has no attribute 'assign'




  Clearly, TensorFlow isn’t amused by our rebellious act of trying to modify tf.Tensor objects.




  

    Tensor Zoo




    TensorFlow has an arsenal of different Tensor types for attacking various problems. Here are a few different Tensor types available in TensorFlow:




    





    RaggedTensor—A type of data used for variable sequence-length data sets that cannot be represented as a matrix efficiently




    TensorArray—A dynamic-sized data structure that can start small and stretch as more data is added (similar to a Python list)




    SparseTensor—A type of data used to represent sparse data (e.g., a user-by-movie rating matrix)


  




  In the next subsection, we will discuss some of the popular TensorFlow operations.




  Exercise 3




  Can you write the code to create a tf.Tensor that is initialized with values sampled from a normal distribution and that has the shape 4 × 1 × 5? You can use np.random .normal() for this purpose.




  
2.2.3 Understanding tf.Operation




  The backbone of TensorFlow that allows you to do useful things with the data are the operations available. For example, one of the core operations in a deep network is matrix multiplication, which makes TensorFlow a great tool for implementing core operations. Like matrix multiplication, TensorFlow offers a wide range of low-level operations that can be used in TensorFlow. A full list of operations available via the TensorFlow API can be found at http://mng.bz/aDWY.




  Let’s discuss some popular arithmetic operations you have at your disposal. First, you have basic arithmetic operations such as addition, subtraction, multiplication, and division. You can perform these just like you would with normal Python variables. To demonstrate this, let’s assume the following vectors:


  import tensorflow as tf

import numpy as np

 

a = tf.constant(4, shape=[4], dtype='float32')

b = tf.constant(2, shape=[4], dtype='float32')




  We can look at what a and b look like by executing the following


  print(a)

print(b)




  which gives


  >>> tf.Tensor([4. 4. 4. 4.], shape=(4,), dtype=float32)

>>> tf.Tensor([2. 2. 2. 2.], shape=(4,), dtype=float32)




  Performing addition on a and b


  c = a+b

print(c)




  gives


  >>> tf.Tensor([6. 6. 6. 6.], shape=(4,), dtype=float32)




  Performing multiplication on a and b


  e = a*b

print(e)




  gives


  >>> tf.Tensor([8. 8. 8. 8.], shape=(4,), dtype=float32)




  You can also do logical comparisons between tensors. Assuming


  a = tf.constant([[1,2,3],[4,5,6]])

b = tf.constant([[5,4,3],[3,2,1]])




  and checking for element-wise equality


  equal_check = (a==b)

print(equal_check)




  gives


  >>> tf.Tensor(

    [[False False  True]

     [False False False]], shape=(2, 3), dtype=bool) 




  Checking less than or equal elements


  leq_check = (a<=b)

print(leq_check)




  gives


  >>> tf.Tensor(

    [[ True  True  True]

     [False False False]], shape=(2, 3), dtype=bool)




  Next, you have reduction operators that allow you to reduce a tensor (e.g., minimum/ maximum/sum/product) on a specific axis or all axes:


  a = tf.constant(np.random.normal(size=[5,4,3]), dtype='float32')




  Here, a is a tf.Tensor that looks like this:


  >>> tf.Tensor(

    [[[-0.7665215   0.9611947   1.456347  ]

      [-0.52979267 -0.2647674  -0.57217133]

      [-0.7511135   2.2282166   0.6573406 ]

      [-1.1323775   0.3301812   0.1310132 ]]

     ...

     [[ 0.42760614  0.17308706 -0.90879506]

      [ 0.5347165   2.569637    1.3013649 ]

      [ 0.95198756 -0.74183583 -1.2316796 ]

      [-0.03830088  1.1367576  -1.2704859 ]]], shape=(5, 4, 3), dtype=float32)




  Let’s first get the sum of all elements of this tensor. In other words, reduce the tensor on all axes:


  red_a1 = tf.reduce_sum(a)




  This produces


  >>> -4.504758




  Next, let’s get the product on axis 0 (i.e., element-wise product of each row of a):


  red_a2 = tf.reduce_prod(a, axis=0)




  This produces


  >>> [[-0.04612858  0.45068324  0.02033644]

     [-0.27674386 -0.03757533 -0.33719817]

     [-1.4913832  -2.1016302  -0.39335614]

     [-0.00213956  0.14960718  0.01671476]]




  We will now get the minimum over multiple axes (i.e., 0 and 1):


  red_a3 = tf.reduce_min(a, axis=[0,1])




  This produces


  >>> [-1.6531237 -1.6245098 -1.4723392]




  You can see that whenever you perform a reduction operation on a certain dimension, you are losing that dimension. For example, if you have a tensor of size [6,4,2] and reduce that tensor on axis 1 (i.e., second axis), you will have a tensor of size [6,2]. In certain instances, you need to keep this dimension there while reducing the tensor (resulting in a [6,1,2]-shaped tensor). One such instance is to make your tensor broadcast compatible with another tensor (http://mng.bz/g4Zn). Broadcasting is a term used to describe how scientific computation tools (e.g., NumPy/TensorFlow) treat tensors during arithmetic operations. In such situations, you can set the keepdims parameter to True (which defaults to False). You can see the difference in the shape of the final output


  # Reducing with keepdims=False

red_a1 = tf.reduce_min(a, axis=1)

print(red_a1.shape)




  which produces


  >>> [5,3]

 

# Reducing with keepdims=True

red_a2 = tf.reduce_min(a, axis=1, keepdims=True)

print(red_a2.shape)




  This produces


  >>> red_a2.shape = [5,1,3]




  Several other important functions are outlined in table 2.5.




  Table 2.5 Mathematical functions offered in TensorFlow




  

    

      

      

      

    



    

      	

        tf.argmax


      



      	

        Description


      



      	

        Computes the index of a maximum value on a given axis. For example, the following example shows how to compute tf.argmax on axis 0.


      

    




    

      	

        Usage


      



      	

        d = tf.constant([[1,2,3],[3,4,5],[6,5,4]])d_max1 = tf.argmax(d, axis=0)


      

    




    

      	

        Result


      



      	

        tf.Tensor ([2,2,0])


      

    




    

      	

        tf.argmin


      



      	

        Description


      



      	

        Computes the index of a minimum value on a given axis. For example, the following example shows how to compute tf.argmin on axis 1.


      

    




    

      	

        Usage


      



      	

        d = tf.constant([[1,2,3],[3,4,5],[6,5,4]])d_min1 = tf.argmin(d, axis=1)


      

    




    

      	

        Result


      



      	

        tf.Tensor([[0],[0],[0]])


      

    




    

      	

        tf.cumsum


      



      	

        Description


      



      	

        Computes the cumulative sum of a vector or a tensor on a given axis


      

    




    

      	

        Usage


      



      	

        e = tf.constant([1,2,3,4,5])e_cumsum = tf.cumsum(e)


      

    




    

      	

        Result


      



      	

        tf.Tensor([1,3,6,10,15])


      

    


  




  We conclude our discussion about basic primitives of TensorFlow here. Next we will discuss some of the computations that are commonly used in neural network models.




  Exercise 4




  There is another function for computing mean called tf.reduce_mean(). Given the tf.Tensor object a, which contains the following values, can you compute the mean for each column?


  0.5 0.2 0.7

0.2 0.3 0.4

0.9 0.1 0.1




  
2.3 Neural network-related computations in TensorFlow




  Here we will talk about some key low-level operations that underpin deep neural networks. Let’s say you are taking a computer vision class at school. For your assignment, you have to manipulate an image using various mathematical operations to achieve various effects. We will be using the famous image of a baboon (figure 2.7), which is a popular choice for computer vision problems.




  [image: 02-07]





  Figure 2.7 Image of a baboon




  
2.3.1 Matrix multiplication




  Your first task is to convert the image from RGB to grayscale. For this, you must employ matrix multiplication. Let’s first understand what matrix multiplication is.




  

    Story of Lena




    Though we are using an image of a baboon for the exercises, there’s a long-standing tradition of using Lena’s (a Swedish model) photo to demonstrate various computer vision algorithms. There is a very interesting backstory behind how this became a norm for computer vision problems, which you can read at http://mng.bz/enrZ.


  




  You perform matrix multiplication between two tensors using the tf.matmul() function. For two matrices, tf.matmul() performs matrix multiplication (e.g., if you have a of size [4,3] and b of size [3,2], matrix multiplication results in a [4,2] tensor. Figure 2.8 illustrates the matrix multiplication operation.
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  Figure 2.8 Matrix multiplication between a 4 × 3 matrix and 3 × 2 matrix, resulting in a 4 × 2 matrix




  More generally, if you have an n x m matrix (a) and a m x p matrix (b), the result of matrix multiplication c is given by




  [image: 02_08a]


  




  However, if you have high-dimensional tensors a and b, the sum product over the last axis of a and second-to-last axis of b will be performed. Both a and b tensors need to have identical dimensionality except for the last two axes. For example, if you have a tensor a of size [3,5,7] and b of size [3,7,8], the result would be a [3,5,8]-sized tensor.




  Coming back to our problem, given three RGB pixels, you can convert it to a grayscale pixel using




  0.3 * R + 0.59 * G + 0.11 * B




  This is a common operation for converting any RGB image to grayscale (http://mng.bz/p2M0), which can be important depending on the problem at hand. For example, to recognize digits from images, color is not so important. By converting images to grayscale, you are essentially helping the model by reducing the size of the input (one channel instead of three) and by removing noisy features (i.e., color information).




  Given a 512 × 512 × 3 image, if you multiply that with a 3 × 1 array representing the weights provided, you will get the grayscale image of size 512 × 512 × 1. Then we need to remove the last dimension of the grayscale image (as it is one), and we end up with a matrix of size 512 × 512. For this you can use the tf.squeeze() function, which removes any dimensions that are of size one (see the next listing).




  Listing 2.2 Converting an RGB image to grayscale using matrix multiplication


  from PIL import Image                                          ❶

import tensorflow as tf

import numpy as np

 

x_rgb = np.array(Image.open("baboon.jpg")).astype('float32')   ❷

x_rgb = tf.constant(x_rgb)                                     ❸

 

grays = tf.constant([[0.3], [0.59] ,[0.11]])                   ❹

 

x = tf.matmul(x_rgb, grays)                                    ❺

x = tf.squeeze(x)                                              ❻




  ❶ PIL is a Python library for basic image manipulation




  ❷ The RGB image of size 512 × 512 × 3 loaded as a NumPy array




  ❸ The NumPy array is converted to a tf.Tensor.




  ❹ The RGB weights as a 3 × 1 array




  ❺ Performing matrix multiplication to get the black-and-white image




  ❻ Getting rid of the last dimension, which is 1




  Matrix multiplication is an important operation in fully connected networks as well. To go from an input layer to a hidden layer, we employ matrix multiplication and add operation. For the moment, we will ignore the nonlinear activation, as it is just an element-wise transformation. Figure 2.9 visualizes the hidden layer computation of the MLP you built earlier.
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  Figure 2.9 An illustration of the computations taking place in a hidden layer. x is the input (1 × 4), W is the weight matrix (4 × 3), b is the bias (1 × 3), and finally, h is the output (1 × 3).




  
2.3.2 Convolution operation




  The next task is to implement an edge-detection algorithm. Knowing that you can detect edges using the convolution operation, you also want to show your skills off by achieving this with TensorFlow. The good news is, you can!




  The convolution operation is essential in convolutional neural networks, which are deep networks heavily utilized for image-related machine learning tasks (e.g., image classification, object detection). A convolution operation shifts a window (also known as a filter or a kernel) over the data while producing a single value at every position. The convolution window will have some value at each location. And at a given position, the values in the convolution window are element-wise multiplied and summed over with what’s overlapping with that window in the data to produce the final value for that location. The convolution operation is shown in figure 2.10.
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  Figure 2.10 Computational steps of the convolution operation




  Depending on the values you choose for the convolution window, you can produce some unique effects. You can try out some popular kernels at https://setosa.io/ev/image-kernels/. Edge detection is also a popular computer vision technique that can be achieved using the convolution operation. TensorFlow provides the tf.nn.convolution() function to perform convolution.




  Initially, we have our black-and-white image of the baboon stored as a tf.Tensor in the variable x. x is a matrix of size 512 × 512. Let’s create a new variable y from this:


  y = tf.constant(x)




  Next, let’s define our edge detection filter. We will use an edge detection filter known as an approximate Laplacian filter, which is a 3 × 3 matrix filled with value -1 except for the middle-most value, which is 8. Note how the sum of the kernel is zero:


  filter = tf.Variable(np.array([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]]).astype('float32'))




  Next, we need to reshape y and filter, because the tf.nn.convolution() function accepts a very specifically shaped input and a filter. The first constraint is that your y and filter should have the same rank. Rank here refers to the number of dimensionalities in the data. Here we have rank 2 tensors and will perform 2D convolution. To perform 2D convolution, both the input and the kernel need to be of rank 4. Therefore, we need to reshape the input and the kernel in a few steps:




  

    	

      Add two more dimensions at the beginning and end of the input. The dimension at the beginning represents the batch dimension, and the last dimension represents the channel dimension (e.g., RGB channels of an image). Though the values will be 1 in our example, we still need those dimensions to be present (e.g., an image of size [512,512] will be reshaped to [1,512,512,1]).


    




    	

      Add two more dimensions of size 1 at the end of the filter. These new dimensions represent the incoming and outgoing channels. We have a single channel (i.e., grayscale) coming in, and we want to produce a single channel (i.e., grayscale) as well (e.g., a kernel of size [3,3] will be reshaped to [3,3,1,1]).


    


  




  NOTE Rank of a tensor refers to the number of dimensions of that tensor. This is different from the rank of a matrix.




  Don’t worry if you don’t fully understand why we added these additional dimensions. This will make more sense when we discuss the convolution operation in the context of convolutional neural networks in a later chapter. For now, you only need to understand the high-level behavior of the convolution operation. In TensorFlow, you can reshape y and filter as follows:


  y_reshaped = tf.reshape(y, [1,512,512,1])

filter_reshaped = tf.reshape(filter, [3,3,1,1])




  Here, y is a 512 × 512 tensor. The expression tf.reshape(y, [1,512,512,1]) converts y (i.e., a 2D tenor) to a 4D tensor of size 1 × 512 × 512 × 1. Similarly, the filter (i.e., a 2D tensor of size 3 × 3) is reshaped to a 4D tensor of size 3 × 3 × 1 × 1. Note that the total number of elements is unchanged during the reshaping. Now you can compute the convolution output as follows:


  y_conv = tf.nn.convolution(y_reshaped, filter_reshaped)




  You can visualize the result of edge detection and compare that to the original image, as shown in figure 2.11.
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  Figure 2.11 Original black-and-white image versus result of edge detection




  In the next section, we will discuss another operation known as the pooling operation.




  
2.3.3 Pooling operation




  We are off to the next task, which is to resize the image resultant after edge detection by halving the width and height of the image. For example, if we have a 512 × 512 image and need to rescale it to 256 × 256, the pooling operation is the best way to achieve this easily. The pooling (or sub-sampling) operation is commonly used in convolutional neural networks for this reason: to reduce the size of the output so fewer parameters can be used to learn from data.




  

    Why is it called the pooling operation?




    The reason why the sub-sampling operation is also called “pooling” probably has its roots in the word’s meaning, as well as in statistics. The word pooling is used to describe combining things into a single entity, which is exactly what is done in this operation (e.g., by means of averaging or taking maximum). In statistics, you will find the term pooled variance, which is a weighted average of the variance between two populations (http://mng.bz/OGdO), essentially combining two variances into a single variance.




    





    In TensorFlow, you can call the tf.nn.max_pool() function to perform max pooling and tf.nn.avg_pool() for average pooling:


    z_avg = tf.nn.avg_pool(y_conv, (1,2,2,1), strides=(1,2,2,1), padding='VALID')

z_max = tf.nn.max_pool(y_conv, (1,2,2,1), strides=(1,2,2,1), padding='VALID')


  




  The pooling operation is another commonly found operation in convolutional neural networks and works similarly to the convolution operation. But unlike the convolution operation, the pooling operation does not have values in the kernel. At a given location, it takes either the average or maximum value of what’s overlapping the kernel in the data. The operation that produces the average at a given location is known as average pooling, whereas the operation that produces the maximum is known as max pooling. Figure 2.12 illustrates the max pooling operation.
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  Figure 2.12 Max-pooling operation. The pooling window goes from one position to another on the image, while producing a single value (i.e., maximum value in the image overlapping the pooling window) at a time.




  We have y_conv, which is a 4D tensor having the shape [1,510,510,1]. You might notice that the dimensions are slightly smaller than the original image size (i.e., 512). This is because, when doing convolution with a window of size c x c (without extra padding) on an image having h height and w width, the resulting image has the dimensions h-c+1 and w-c+1. We can perform pooling as shown. You can perform either average pooling or max pooling with the following functions:


  z_avg = tf.nn.avg_pool(y_conv, (1,2,2,1), strides=(1,2,2,1), padding='VALID')

z_max = tf.nn.max_pool(y_conv, (1,2,2,1), strides=(1,2,2,1), padding='VALID')




  This will result in two images, z_avg and z_max; both have the shape [1,255,255,1]. In order to keep just the height and width dimensions and remove redundant dimensions of size 1, we use the tf.squeeze() function:


  z_avg = np.squeeze(z_avg.numpy())

z_max = np.squeeze(z_max.numpy())




  You can plot z_avg and z_max using matplotlib (a plotting library in Python) and get the result shown in figure 2.13. The code is provided in the notebook.
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  Figure 2.13 Result after edge detection versus result after average or max pooling




  Figure 2.13 shows the different effects we get with different types of pooling. If you look closely, you will see that average pooling results in more consistent and continuous lines, whereas max pooling results in a noisier image.




  Note that, unlike in the convolution operation, we are not providing a filter (or a kernel), as the pooling operation doesn’t have a kernel. But we need to pass in the dimensions of the window. These dimensions represent the corresponding dimensions of the input (i.e., it is a [batch dimension, height, width, channels] window). In addition to that, we are also passing two arguments, stride and padding. We will discuss these in detail in a later chapter.




  Exercise 5




  You are given a grayscale image img of size 256 × 256 and a convolution filter f of size 5 × 5. Can you write the tf.reshape() function calls and the tf.nn.convolution() operation? What would be the size of the output?




  Great work! Now you know most common operations used in deep learning networks. We will end our discussion about TensorFlow basics here. In the next chapter, we will discuss a high-level API available in TensorFlow called Keras, which is particularly useful for model building.




  
Summary




  

    	

      TensorFlow is an end-to-end machine learning framework.


    




    	

      TensorFlow provides an ecosystem facilitating model prototyping, model building, model monitoring, and model serving.


    




    	

      TensorFlow 1 uses declarative graph execution style (define then run), whereas TensorFlow 2 uses imperative graph execution style (define by run).


    




    	

      TensorFlow provides three main building blocks: tf.Variable (for values that change over time), tf.Tensor (values that are fixed over time), and tf.Operation (transformations performed on tf.Variable and tf.Tensor objects).


    




    	

      TensorFlow provides several operations that are used to build neural networks such as tf.matmul, tf.nn.convolution, and tf.nn.max_pool.


    




    	

      You can use tf.matmul to convert an RGB image to grayscale.


    




    	

      You can use tf.nn.convolution to detect edges in an image.


    




    	

      You can use tf.nn.max_pool to resize an image.


    


  




  
Answers to exercises




  Exercise 1: 2




  Exercise 2: tf.Variable(np.array([[1,2,3],[4,3,2]], dtype=”int16”)




  Exercise 3: tf.constant(np.random.normal(size=[4,1,5]))




  Exercise 4: tf.reduce_mean(a, axis=1)




  Exercise 5:


  img_reshaped = tf.reshape(img, [1,256,256,1])

f_reshaped = tf.reshape(f, [5,5,1,1])

y = tf.nn.convolution(img_reshaped, f_reshaped)




  The shape of the final output would be [1,252,252,1]. The resulting size of the convolution operation is image size - convolution window size + 1.




  
3 Keras and data retrieval in TensorFlow 2




  This chapter covers




  

    	
Different APIs for building models in Keras




    	
Retrieving and manipulating persisted data


  




  We have explored the details of the low-level TensorFlow API, such as defining tf.Variable objects and tf.Tensor objects, which can be used to store things like numbers and strings. We also looked at some of the commonly used functionality provided in TensorFlow in the form of tf.Operation. Finally, we looked at some complex operations, such as matrix multiplication and convolution, in detail. If you analyze any standard deep neural network, you will see that it is made from standard mathematical operations such as matrix multiplication and convolution.




  However, if you were to implement these networks using the low-level TensorFlow API, you’d find yourself replicating these operations in code many times, costing you valuable hours and making the code unmaintainable. But the good news is that you don’t have to. TensorFlow provides a submodule called Keras that takes care of this problem, and this is the focus of this chapter. Keras is a sub-library in TensorFlow that hides building blocks and provides a high-level API for developing machine learning models. In this chapter, we will see that Keras has several different APIs to choose from, depending on the complexity of your solution.




  We will conclude this chapter by discussing another important aspect of machine learning: feeding data to models. Typically, we need to retrieve data from the disk (or web) and clean and process the data before feeding it to the model. We will discuss several different data retrieval facilities in TensorFlow such as the tf.data and tensorflow-datasets APIs and how they simplify reading and manipulating data that eventually feeds into models.




  
3.1 Keras model-building APIs




  You are developing a flower species classifier as part of a hackathon. Your team is going to create several different variations of multilayer perceptron to compare their performance against a flower species identification data set. The goal is to train the models that can output the flower species given several measurements of the flowers. The models you have to develop are as follows:




  

    	

      Model A—A model that learns only from the provided features (baseline)


    




    	

      Model B—A model that uses the principal components of the features in addition to the features themselves (details discussed in section 3.1.3)


    




    	

      Model C—A model that uses an unorthodox hidden layer computation, which uses a multiplicative bias, in addition to the additive bias, not typically found in neural networks (details discussed in section 3.1.4)


    


  




  You are planning to use Keras, and you know it offers multiple model-building APIs. In order to provide the results quickly, you need to know which Keras API to use for which model.




  Keras (https://keras.io/) initially started as a high-level API that can use multiple low-level backends (e.g., TensorFlow, Theano) and allow developers to build machine learning models easily. In other words, Keras hides the gory details of low-level operations and provides an intuitive API with which you can build models with a few lines of code. Since TensorFlow 1.4, Keras has been integrated into TensorFlow (https://www.tensorflow.org/guide/keras/overview). You can import Keras using import tensorflow.keras. Keras has three main APIs:




  

    	

      Sequential


    




    	

      Functional


    




    	

      Sub-classing


    


  




  The Sequential API is the easiest to use. However, it is a very constrictive API that only allows you to create a network that starts with one input, go through a sequence of layers, and end with one input. Next, the functional API requires more work to use. But it also provides more flexibility, such as having multiple inputs, parallel layers, and multiple outputs. Finally, the sub-classing API can be identified as the most difficult to wield. The idea is to create a Python object that represents your model or a layer in your model while using the low-level functionality provided by TensorFlow to achieve what’s needed. Let’s briefly go over how you can use these APIs. But we won’t stop there; we will look at these APIs in more detail in the coming chapters. Figure 3.1 highlights the main differences between the APIs.
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  Figure 3.1 Sequential, functional, and sub-classing APIs in comparison.




  Here, for model A we will use the Sequential API, as it is the simplest. To implement model B, which will have two input layers, we will use the functional API. Finally, to implement model C, for which we will need to implement a custom layer, we will use the sub-classing API.




  
3.1.1 Introducing the data set




  Say you decided to use a popular machine learning data set known as the Iris data set (https://archive.ics.uci.edu/ml/datasets/Iris). This data set records sepal length, sepal width, petal length, and petal width for several different species of Iris flowers: Iris-setosa, Iris-versicolor, and Iris-virginica. For each flower, we have the sepal length/width and the petal length/width. As you can see, each input has four features, and each input can belong to one of three classes. To start, let’s download the data, do some quick analysis on it, and put it in a format that we can readily use for model training.




  Initially, you need to make sure the environment is set up and the libraries are installed, as outlined in appendix A. Next, open the Jupyter notebook found at Ch03-Keras-and-Data-Retrieval/3.1.Keras_APIs.ipynb. Now, as shown in the code found in the notebook, we need to import the requests library for downloading data, pandas for manipulating that data, and, of course, TensorFlow:


  import requests

import pandas as pd

import tensorflow as tf




  Now we will download the data and save the data to a file:


  url = "https:/ /archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"

r = requests.get(url)

 

# Writing data to a file

with open('iris.data', 'wb') as f:

  f.write(r.content)




  We then read the data using pandas library’s read_csv() function (http://mng.bz/j2Op):


  iris_df = pd.read_csv('iris.data', header=None)




  Here, iris_df is a pandas DataFrame (http://mng.bz/Wxaw). In its simplest form, a data frame can be thought as an informative matrix organized into rows and columns. You can inspect the first few rows of the data using the iris_df.head() command, which produces the following result:


  0     1       2       3       4

0     5.1     3.5     1.4     0.2     Iris-setosa

1     4.9     3.0     1.4     0.2     Iris-setosa

2     4.7     3.2     1.3     0.2     Iris-setosa




  Then, we will make some cosmetic changes to the data to make it look better. We will provide appropriate column names (available from the data set’s webpage)


  iris_df.columns = ['sepal_length', 'sepal_width', 'petal_width', 'petal_length', 'label']




  and mapping the string label to an integer:


  iris_df["label"] = iris_df["label"].map({'Iris-setosa':0, 'Iris-versicolor':1, 'Iris-virginica':2})




  We end up with the following improved pandas DataFrame in our possession:


        sepal_length   sepal_width   petal_width   petal_length   label

0     5.1             3.5           1.4           0.2            0

1     4.9             3.0           1.4           0.2            0

2     4.7             3.2           1.3           0.2            0




  As the last step, we will shuffle the data by and separate the data features as x and data labels as y. We will also center the data by subtracting the mean from each column, as this usually leads to better performance:


  iris_df = iris_df.sample(frac=1.0, random_state=4321)

x = iris_df[["sepal_length", "sepal_width", "petal_width", "petal_length"]]

x = x - x.mean(axis=0)

y = tf.one_hot(iris_df["label"], depth=3)




  Here, print(x) will print out


          sepal_length  sepal_width  petal_width  petal_length

31      -0.443333        0.346    -2.258667     -0.798667

23      -0.743333        0.246    -2.058667     -0.698667

70       0.056667        0.146     1.041333      0.601333

100      0.456667        0.246     2.241333      1.301333

44      -0.743333        0.746    -1.858667     -0.798667

..            ...          ...          ...           ...




  Note how the indices are not in order after shuffling the data. print(y) will output


  tf.Tensor(

    [[1. 0. 0.]

     [1. 0. 0.]

     [0. 1. 0.]

     ...

     [0. 0. 1.]

     [0. 0. 1.]

     [0. 1. 0.]], 

shape=(150, 3), dtype=float32)




  Shuffling the data is an important step: the data is in a very specific order, with each class appearing one after another. But you achieve the best results when data has been shuffled so that each batch presented to the network has a good mix of all classes found in the full data set. You can also see that we used a transformation on y (or labels), known as one-hot encoding. One-hot encoding converts each label to a unique vector of zeros, where a single element is one. For example, the labels 0, 1, and 2 are converted to the following one-hot encoded vectors:




  0 → [1, 0, 0]




  1 → [0, 1, 0]




  2 → [0, 0, 1]




  
3.1.2 The Sequential API




  With the data ready to be fed in, it’s time to implement model A, the first neural network. The first model is quite straightforward and only needs to take the provided features and predict the flower species. You can use the Keras Sequential API, as it is the simplest, and all we need to do is stack several layers on top of each other sequentially. Figure 3.2 depicts the Sequential API compared to other APIs.
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  Figure 3.2 The Sequential API compared to other APIs (grayed out)




  Let’s create a network that has the following:




  

    	

      An input layer of 4 nodes


    




    	

      A 32-node hidden layer


    




    	

      A 16-node hidden layer


    




    	

      A 3-node output layer


    


  




  Note The number of nodes for each layer is a hyperparameter of the model. In this case, we chose these values arbitrarily. But to obtain the best results, we should use a hyperparameter optimization algorithm (http://mng.bz/8MJB) to find the best hyperparameters for a given problem.




  Before we define the model, we need to import certain layers and the sequential model from TensorFlow. Then you can implement this model using just a single line of code (see the next listing).




  Listing 3.1 Model A implemented with the Sequential API


  from tensorflow.keras.layers import Dense            ❶

from tensorflow.keras.models import Sequential       ❶

import tensorflow.keras.backend as K                 ❶

 

K.clear_session()                                    ❷

model = Sequential([                                 ❸

    Dense(32, activation='relu', input_shape=(4,)),  ❸

    Dense(16, activation='relu'),                    ❸

    Dense(3, activation='softmax')                   ❸

])




  ❶ Import necessary modules and classes.




  ❷ Clear the TensorFlow computational graph before creating the model.




  ❸ Define the model with the Sequential API.




  Let’s analyze what we just did. You can create a sequential model using the Sequential object and then pass a sequence of layers, such as the Dense layer. A layer encapsulates typical reusable computations you can find in a neural network (e.g., hidden layer computation, convolution operations).




  The Dense layer offers the core computation that happens in a fully connected network (i.e., going from an input (x) to a hidden output (h) using h = activation(xW + b)). The Dense layer has two important parameters: the number of hidden units and the nonlinear activation. By stacking a set of Dense layers, you have a multilayer, fully connected network. We are building the network using the following layers:




  

    	

      Dense(32, activation='relu', input_shape=(4,))


    




    	

      Dense(16, activation='relu')


    




    	

      Dense(3, activation='softmax')


    


  




  In the first Dense layer you can see that an additional parameter called input_shape has been passed. input_shape is a key attribute in any model you create with TensorFlow. It is imperative that you know the exact shape of the input you want to pass to a model because the output of all the layers that follow depends on the shape of the input. In fact, certain layers can only process certain input shapes.




  In this example, we are saying the input will be of shape [None, 4]. Though we have only specified 4 in the shape, Keras automatically adds an unspecified (i.e., None) dimension to the input_shape, which represents the batch dimension of the input. As you probably already know, deep neural networks process data in batches (i.e., more than a single example at once). The other dimension (of size 4) is the feature dimension, meaning that the network can accept an input that has four features in it. Having the batch dimension as None leaves the batch dimension unspecified, allowing you to pass any arbitrary number of examples at model training/ inference time.




  Another important aspect of a layer is the nonlinear activation used in the layer. Here, we can see that the first two layers use ReLU (rectified linear units) activation. It is a very simple yet powerful activation that’s prevalent in feed-forward models. ReLU does the following:




  y = max (0, x)




  The final layer has a softmax activation. As previously discussed, softmax activation normalizes the final scores of the last layer (i.e., logits) to a valid probability distribution. Specifically,




  [image: 03_02a]


  




  As an example, assume the final layer without the softmax activation produced


  [15, 30, 5]




  Applying the softmax normalization converts these values to


  [15/(15+30+5), 30/(15+30+5), 5/(15+30+5)]

= [0.3, 0.6, 0.1]




  Now that the model is defined, we need to perform a crucial step, known as model compilation, if we are to successfully use it. For our model we will use


  model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])




  Here, we are setting the model up with a loss function, optimizer, and metric. The loss function says how good or bad the model is doing on the given data (e.g., categorical cross-entropy). The lower the loss, the better. Along with that loss function, we use an optimizer, which knows how to change the weights and biases of the model in such a way that the loss is reduced. Here, we chose the loss categorical_crossentropy (http://mng.bz/EWej), which typically works well for multiclass classification problems and the optimizer adam (https://arxiv.org/pdf/1412.6980.pdf), which is a common choice due to its remarkable performance in a variety of problems. We can also optionally define metrics to keep an eye on the model (e.g., model accuracy). Finally, we can inspect the model you just created using


  model.summary()




  which outputs


  Model: "sequential"

_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

dense_3 (Dense)              (None, 32)                160       

_________________________________________________________________

dense_4 (Dense)              (None, 16)                528       

_________________________________________________________________

dense_5 (Dense)              (None, 3)                 51        

=================================================================

Total params: 739

Trainable params: 739

Non-trainable params: 0

_________________________________________________________________




  The model summary clearly shows the number of layers, type of layers, output shape of each layer, and number of parameters in each layer. Let’s train this model to classify various iris flowers using the data set we prepared earlier. We train a Keras model using the convenient fit() function:
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