

 [image: cover]

Web Performance in Action: Building Fast Web Pages

 Jeremy L. Wagner

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Susanna Kline
Review editor: Ivan Martinović
Technical development editor: Nick Watts
Project editor: Kevin Sullivan
Copyeditor: Sharon Wilkey
Proofreader: Elizabeth Martin
Technical proofreader: David Fombella Pombal
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617293771

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter 1. Understanding web performance

 Chapter 2. Using assessment tools

 Chapter 3. Optimizing CSS

 Chapter 4. Understanding critical CSS

 Chapter 5. Making images responsive

 Chapter 6. Going further with images

 Chapter 7. Faster fonts

 Chapter 8. Keeping JavaScript lean and fast

 Chapter 9. Boosting performance with service workers

 Chapter 10. Fine-tuning asset delivery

 Chapter 11. Looking to the future with HTTP/2

 Chapter 12. Automating optimization with gulp

 Appendix A. Tools reference

 Appendix B. Native equivalents of common jQuery functionality

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter 1. Understanding web performance

 1.1. Understanding web performance

 1.1.1. Web performance and the user experience

 1.1.2. How web browsers talk to web servers

 1.1.3. How web pages load

 1.2. Getting up and running

 1.2.1. Installing Node.js and Git

 1.2.2. Downloading and running the client’s website

 1.2.3. Simulating a network connection

 1.3. Auditing the client’s website

 1.4. Optimizing the client’s website

 1.4.1. Minifying assets

 1.4.2. Using server compression

 1.4.3. Optimizing images

 1.5. Performing the final weigh-in

 1.6. Summary

 Chapter 2. Using assessment tools

 2.1. Evaluating with Google PageSpeed Insights

 2.1.1. Appraising website performance

 2.1.2. Using Google Analytics for bulk reporting

 2.2. Using browser-based assessment tools

 2.3. Inspecting network requests

 2.3.1. Viewing timing information

 2.3.2. Viewing HTTP request and response headers

 2.4. Rendering performance-auditing tools

 2.4.1. Understanding how browsers render web pages

 2.4.2. Using Google Chrome’s Timeline tool

 2.4.3. Identifying problem events: thy enemy is jank

 2.4.4. Marking points in the timeline with JavaScript

 2.4.5. Rendering profilers in other browsers

 2.5. Benchmarking JavaScript in Chrome

 2.6. Simulating and monitoring devices

 2.6.1. Simulating devices in the desktop web browser

 2.6.2. Debugging websites remotely on Android devices

 2.6.3. Debugging websites remotely on iOS devices

 2.7. Creating custom network throttling profiles

 2.8. Summary

 Chapter 3. Optimizing CSS

 3.1. Don’t talk much and stay DRY

 3.1.1. Write shorthand CSS

 3.1.2. Use shallow CSS selectors

 3.1.3. Culling shallow selectors

 3.1.4. LESS is more and taming SASS

 3.1.5. Don’t repeat yourself

 3.1.6. Going DRY

 3.1.7. Finding redundancies with csscss

 3.1.8. Segment CSS

 3.1.9. Customize framework downloads

 3.2. Mobile-first is user-first

 3.2.1. Mobile-first vs. desktop-first

 3.2.2. Mobilegeddon

 3.2.3. Using Google’s mobile-friendly guidelines

 3.2.4. Verifying a site’s mobile-friendliness

 3.3. Performance-tuning your CSS

 3.3.1. Avoiding the @import declaration

 3.3.2. @import serializes requests

 3.3.3. <link> parallelizes requests

 3.3.4. Placing CSS in the <head>

 3.3.5. Preventing the Flash of Unstyled Content

 3.3.6. Increasing rendering speed

 3.3.7. Using faster selectors

 3.3.8. Constructing and running the benchmark

 3.3.9. Examining the benchmark results

 3.3.10. Using flexbox where possible

 3.3.11. Comparing box model and flexbox styles

 3.3.12. Examining the benchmark results

 3.4. Working with CSS transitions

 3.4.1. Using CSS transitions

 3.4.2. Observing CSS transition performance

 3.4.3. Optimizing transitions with the will-change property

 3.5. Summary

 Chapter 4. Understanding critical CSS

 4.1. What does critical CSS solve?

 4.1.1. Understanding the fold

 4.1.2. Understanding render blocking

 4.2. How does critical CSS work?

 4.2.1. Loading above-the-fold styles

 4.2.2. Loading below-the-fold styles

 4.3. Implementing critical CSS

 4.3.1. Getting the recipe website up and running

 4.3.2. Identifying and separating above-the-fold CSS

 4.3.3. Loading below-the-fold CSS

 4.4. Weighing the benefits

 4.5. Making maintainability easier

 4.6. Considerations for multipage websites

 4.7. Summary

 Chapter 5. Making images responsive

 5.1. Why think about image delivery?

 5.2. Understanding image types and their applications

 5.2.1. Working with raster images

 5.2.2. Working with SVG images

 5.2.3. Knowing what image formats to use

 5.3. Image delivery in CSS

 5.3.1. Targeting displays in CSS by using media queries

 5.3.2. Targeting high DPI displays with media queries

 5.3.3. Using SVG background images in CSS

 5.4. Image delivery in HTML

 5.4.1. The universal max-width rule for images

 5.4.2. Using srcset

 5.4.3. Using the <picture> element

 5.4.4. Polyfilling support with Picturefill

 5.4.5. Using SVG in HTML

 5.5. Summary

 Chapter 6. Going further with images

 6.1. Using image sprites

 6.1.1. Getting up and running

 6.1.2. Generating the image sprite

 6.1.3. Using the generated sprite

 6.1.4. Considerations for image sprites

 6.1.5. Falling back to raster image sprites with Grumpicon

 6.2. Reducing images

 6.2.1. Reducing raster images with imagemin

 6.2.2. Optimizing SVG images

 6.3. Encoding images with WebP

 6.3.1. Encoding lossy WebP images with imagemin

 6.3.2. Encoding lossless WebP Images with imagemin

 6.3.3. Supporting browsers that don’t support WebP

 6.4. Lazy loading images

 6.4.1. Configuring the markup

 6.4.2. Writing the lazy loader

 6.4.3. Accommodating users without JavaScript

 6.5. Summary

 Chapter 7. Faster fonts

 7.1. Using fonts wisely

 7.1.1. Selecting fonts and font variants

 7.1.2. Rolling your own @font-face cascade

 7.2. Compressing EOT and TTF font formats

 7.3. Subsetting fonts

 7.3.1. Manually subsetting fonts

 7.3.2. Delivering font subsets by using the unicode-range property

 7.4. Optimizing the loading of fonts

 7.4.1. Understanding font-loading problems

 7.4.2. Using the CSS font-display property

 7.4.3. Using the font-loading API

 7.4.4. Using Font Face Observer as a fallback

 7.5. Summary

 Chapter 8. Keeping JavaScript lean and fast

 8.1. Affecting script-loading behavior

 8.1.1. Placing the <script> element properly

 8.1.2. Working with asynchronous script loading

 8.1.3. Using async

 8.1.4. Using async reliably with multiple scripts

 8.2. Using leaner jQuery-compatible alternatives

 8.2.1. Comparing the alternatives

 8.2.2. Exploring the contenders

 8.2.3. Comparing file size

 8.2.4. Comparing performance

 8.2.5. Implementing an alternative

 8.2.6. Using Zepto

 8.2.7. Understanding caveats on using Shoestring or Sprint

 8.3. Getting by without jQuery

 8.3.1. Checking for the DOM to be ready

 8.3.2. Selecting elements and binding events

 8.3.3. Using classList to manipulate classes on elements

 8.3.4. Reading and modifying element attributes and content

 8.3.5. Making AJAX requests with the Fetch API

 8.3.6. Using the Fetch API

 8.3.7. Polyfilling the Fetch API

 8.4. Animating with requestAnimationFrame

 8.4.1. requestAnimationFrame at a glance

 8.4.2. Timer function-driven animations and requestAnimationFrame

 8.4.3. Comparing performance

 8.4.4. Implementing requestAnimationFrame

 8.4.5. Dropping in Velocity.js

 8.5. Summary

 Chapter 9. Boosting performance with service workers

 9.1. What are service workers?

 9.2. Writing your first service worker

 9.2.1. Installing the service worker

 9.2.2. Registering the service worker

 9.2.3. Intercepting and caching network requests

 9.2.4. Measuring the performance benefits

 9.2.5. Tweaking network request interception behavior

 9.3. Updating your service worker

 9.3.1. Versioning your files

 9.3.2. Cleaning up old caches

 9.4. Summary

 Chapter 10. Fine-tuning asset delivery

 10.1. Compressing assets

 10.1.1. Following compression guidelines

 10.1.2. Using Brotli compression

 10.2. Caching assets

 10.2.1. Understanding caching

 10.2.2. Crafting an optimal caching strategy

 10.2.3. Invalidating cached assets

 10.3. Using CDN assets

 10.3.1. Using CDN-hosted assets

 10.3.2. What to do if a CDN fails

 10.3.3. Verifying CDN assets with Subresource Integrity

 10.4. Using resource hints

 10.4.1. Using the preconnect resource hint

 10.4.2. Using the prefetch and preload resource hints

 10.4.3. Using the prerender resource hint

 10.5. Summary

 Chapter 11. Looking to the future with HTTP/2

 11.1. Understanding why we need HTTP/2

 11.1.1. Understanding the problem with HTTP/1

 11.1.2. Solving common HTTP/1 problems via HTTP/2

 11.1.3. Writing a simple HTTP/2 server in Node

 11.1.4. Observing the benefits

 11.2. Exploring how optimization techniques change for HTTP/2

 11.2.1. Asset granularity and caching effectiveness

 11.2.2. Identifying performance antipatterns for HTTP/2

 11.3. Sending assets preemptively with Server Push

 11.3.1. Understanding Server Push and how it works

 11.3.2. Using Server Push

 11.3.3. Measuring Server Push performance

 11.4. Optimizing for both HTTP/1 and HTTP/2

 11.4.1. How HTTP/2 servers deal with HTTP/2-incapable browsers

 11.4.2. Segmenting your users

 11.4.3. Serving assets according to browser capability

 11.5. Summary

 Chapter 12. Automating optimization with gulp

 12.1. Introducing gulp

 12.1.1. Why should I use a build system?

 12.1.2. How gulp works

 12.2. Laying down the foundations

 12.2.1. Structuring your project’s folders

 12.2.2. Installing gulp and its plugins

 12.3. Writing gulp tasks

 12.3.1. The anatomy of a gulp task

 12.3.2. Writing the core tasks

 12.3.3. Writing the utility tasks

 12.4. Going a little further with gulp plugins

 12.5. Summary

 Appendix A. Tools reference

 A.1. Web-based tools

 A.2. Node.js-based tools

 A.2.1. Web servers and related middleware

 A.2.2. Image processors and optimizers

 A.2.3. Minifiers/reducers

 A.2.4. Font conversion tools

 A.2.5. gulp and gulp plugins

 A.2.6. PostCSS and PostCSS plugins

 A.3. Other tools

 Appendix B. Native equivalents of common jQuery functionality

 B.1. Selecting elements

 B.2. Checking DOM readiness

 B.3. Binding events

 B.3.1. Simple event binding

 B.3.2. Triggering events programmatically

 B.3.3. Targeting elements that don’t exist yet

 B.3.4. Removing event bindings

 B.4. Iterating over a set of elements

 B.5. Manipulating classes on elements

 B.6. Accessing and modifying styles

 B.7. Getting and setting attributes

 B.8. Getting and setting element contents

 B.9. Replacing elements

 B.10. Hiding and showing elements

 B.11. Removing elements

 B.12. Going further

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 “May you live in interesting times,” goes the old half-curse. And I don’t know about you, but it feels like the web is perpetually
 stuck in interesting times. We’re designing for an ever-expanding number of mobile devices, each one more powerful than most
 laptops I’ve owned throughout my career. But we’re also designing for a web that travels over the aging infrastructure of
 developed economies, as well as to cheaper, low-powered mobile devices in younger, emerging markets.

 In other words, the web is more broadly accessed today than ever before—but over a network that’s far more fragile than we
 might like to think. Once a user requests one of our web pages, any number of things can fail. Maybe a connection drops, or
 a network’s latency is too high for an asset to load. Or maybe the users exceeded their data allotment for the month.

 We’re building digital experiences—some responsive, some not—that are more beautiful than anything produced at any other point
 in the web’s history. But we need to start designing for performance as well. We need to create sites and services optimized for the fragility of the network, as well as the widths of our users’
 screens.

 Thankfully, you’ve begun reading Web Performance in Action, a book that can help you do just that. Jeremy Wagner has written an invaluable, accessible reference for the modern web
 developer, one that demystifies even the most arcane-sounding acronyms and frames even the most arcane-seeming web optimization
 tricks in approachable, plain language. In interesting times like these, Jeremy’s guide is indispensable: As you travel through
 these pages, you’ll gain the skills to ensure your sites are as beautiful as they are fast, nimble, and bandwidth-friendly.

 Ethan Marcotte

 Designer, Ethanmarcotte.com

 Author of Responsive Web Design

Preface

 Well before I ever entertained the notion of writing a book, the idea that websites ought to be fast was a high priority in
 all my projects. In my humble opinion, slow websites are not a mere inconvenience. They are a critical sort of user experience
 problem. Until a website loads, no user experience exists. The longer it takes for a site to load, the more this absence is
 felt by the user.

 When I proposed this book to Manning in 2015, I was hardly the first to write on the topic of web performance. Many authors
 before me had written in this space, and I knew that I would be standing on the shoulders of giants. My goal with Web Performance in Action was to provide a modern guide for today’s web developers that would give them the knowledge they need to make their websites
 faster than ever. I think this book meets that goal.

 When web performance is discussed, it’s often tied to financial concepts. The idea that a poorly performing website can affect
 sales or ad revenues is hardly new. What we don’t hear enough about, however, is how such a website can be potentially costly
 for the user on a restricted data plan. Or how slow websites are an impassible sort of barrier for people mired in an antiquated
 internet infrastructure. So much of the world has such a difficult time accessing the web. While infrastructure is slowly
 improving, we as developers can move the needle for users by developing sites with performance in mind.

 I wrote Web Performance in Action to help you meet your goals, and the folks at Manning participated in refining it. In an age where the web is becoming increasingly
 complex, the time has never been more appropriate to tackle this problem. I think this book will help you get to where you
 want to be.

Acknowledgments

 It takes a ton of people, beyond the author, to put a book together. The people at Manning played a huge role in getting this
 book from a mere proposal to what you’re reading right now. Brace yourself, because this section is brimming with gratitude.

 I’ll start by thanking the first person from Manning I talked to, an acquisitions editor named Frank Pohlmann. The proposal
 phase of this book took quite some time, and Frank coached me on what to do and what not to do, and most importantly, let
 me know exactly what I was getting into. Thank you, Frank, for guiding me in the early part of this process.

 As this is my first book, I’d like to extend my gratitude to Manning’s publisher Marjan Bace, who saw fit to grant me this
 opportunity. Green-lighting any book proposal is a risk, and that’s especially true when the proposal comes from someone who
 hasn’t made a name for himself prior to that point, so it took some courage to take that risk. Thank you, Marjan.

 Behind every author is an editor pushing them to write the best manuscript they can. Susanna Kline was the development editor
 for this book, and here I offer my sincerest thanks and gratitude for her hard work and indispensable guidance on this project.
 Susanna not only played the role of an editor, she was also a great coach who understood the vulnerability I felt in this
 vast and new undertaking, especially when there was so much uncertainty in the early stages of development. Her guidance in
 this project was essential to its success. Thank you, Susanna, for all your help.

 Every technical book, of course, needs a technical editor. Nick Watts did a superb job in this role. His informed perspective,
 valuable input, and willingness to challenge my assertions and points of view certainly contributed positively to the quality
 of the final text. Thank you, Nick.

 This book was also reviewed by many people at various stages in its development, including Alexey Galiullin, Amit Lamba, Birnou
 Sebarte, Daniel Vasquez, John Huffman, Justin Calleja, Kevin Liao, Matt Harting, Michael Martinsson, Michael Sperber, Narayanan
 Jayaratchagan, Noreen Dertinger, Omer Faruk Celebi, Simone Cafiero, and William Ross. Their feedback gave valuable insight
 into what public perception of the book could be. I would like to thank them for their input and suggestions, which made this
 book better than what I could have achieved on my own.

 The final polish of a book is also very important. I’d like to thank David Fombella Pombal for his thorough and excellent
 technical proofing of the manuscript, which identified issues I would have otherwise missed. Sharon Wilkey meticulously combed
 through and copyedited the final manuscript, which further refined it, for which I’m grateful. Elizabeth Martin filed off
 the rough edges and reined in some of my excesses with keen precision. On top of all this, Kevin Sullivan did a great job
 of coordinating the preproduction and production phases. Thank you so much, guys. You did great work in that last, critical
 mile of the project.

 I also wish to extend my gratitude to Ethan Marcotte, a person whose work has irrevocably changed how we all develop for the
 web. When I contacted Ethan to see if he would be interested in writing the foreword to Web Performance in Action, I was pleasantly surprised that he had time to reply, let alone read the manuscript. A foreword is not a matter to be taken
 lightly. It’s an endorsement of a book’s quality. To know that Ethan endorses the material in this book is one of the proudest
 moments of my professional career. Thank you, Ethan.

 I’d like to thank my father Luke and my mother Georgia for supporting me in all that I’ve done and attempted to do, even the
 harebrained stuff. I’d also like to thank my brother Lucas who has always been an incredible example to me, and led the way
 in showing what’s possible if you’re willing to work hard for something. Thank you so much.

 Lastly, I owe gratitude and thanks to my wife Alexandria. Her unwavering support and selflessness has been a source of strength
 for me throughout this endeavor. Her gentle encouragement and belief in my potential has helped more than she knows.

 To anyone else I may have overlooked, know that you were a part of making this book what it is. For that, I thank you.

About this Book

 The purpose of Web Performance in Action is to teach you how to create faster websites, and through the course of this book, I’ll help you get here. The techniques
 you’ll learn as you read should also come in handy for improving performance on existing websites.

Who should read this book

 This book focuses heavily (though not exclusively) on improving website performance on the client side. This means that it’s
 targeted toward front-end developers who have a good command of HTML, CSS, and JavaScript. You, the reader, should be comfortable
 working with these technologies.

 This book occasionally strays into the server side where appropriate. For instance, some server-side code examples are in
 PHP. These examples are intended to be illustrative of a concept, and are often peripheral to the task at hand. Chapter 10 covers server compression, including the new Brotli compression algorithm, which fits into the server-side category. Chapter 11 explains HTTP/2, so having an interest in how this new protocol can affect how you optimize your site can be helpful.

 You should also be somewhat comfortable on the command line, but even if you’re not, you’ll still be able to follow along
 in the examples provided. Now, let’s talk about how this book is structured.

Roadmap

 Unlike most other Manning titles, this book is not divided into parts, but it does follow a logical flow of sorts. Chapter 1 is an introduction to the fundamentals of web performance—bedrock stuff, such as minification, server compression, and so
 forth. If you’re already a performance-minded developer, this chapter will feel familiar to you. It’s intended for the front-end
 developer who’s new to the concept of web performance. Chapter 2 covers performance assessment tools, both online and in the browser, with a focus on using Chrome’s developer tools.

 From there, we’ll venture into the realm of optimizing CSS. Chapter 3 is a grab bag of topics and examples of how you can make your CSS leaner, and use native CSS features that can help increase
 the responsiveness of your website to user input. Chapter 4 is about critical CSS, a technique that can give your site’s rendering performance a real shot in the arm.

 Then, we’ll tackle image optimization. Chapter 5 focuses on different image types and how to use them, as well as how to deliver them optimally to different devices both
 in CSS and inline in HTML. Chapter 6 covers how to reduce the file size of images, automating the creation of image sprites, Google’s WebP image format, and how
 to lazy load images by writing a custom lazy loading script.

 After all of that, we’ll turn our focus away from images toward fonts. Chapter 7 covers optimizing fonts. This ranges from creating an optimal @font-face cascade to font subsetting, using the unicode-range CSS property, compressing legacy font formats on the server, and how to control the loading and display of fonts with CSS
 and JavaScript.

 Chapters 8 and 9 focus on JavaScript. Chapter 8 speaks more to the need for minimalism in JavaScript by advocating the use of in-browser features, rather than relying on
 jQuery and other libraries. For those who can’t abandon jQuery, I talk about jQuery-compatible alternatives that offer a subset
 of what jQuery does, but with less overhead. This chapter also talks about proper placement of the <script> tag, as well as how to use the async attribute, and animating with the requestAnimationFrame method. Chapter 9 ventures into the territory of JavaScript service workers. In this chapter, you’ll learn how you can serve content to users
 who are offline, as well as how you can improve the performance of pages for online users with this technology.

 Chapter 10 is yet another grab bag of topics. It covers the impact of poorly configured server compression, the new Brotli compression
 algorithm, resource hints, configuring caching policies, and the benefits of using CDN-hosted resources.

 Chapter 11 covers HTTP/2, the performance problems that it solves, how optimization practices differ between it and HTTP/1, Server Push,
 and a proof of concept of how you can adapt the delivery of your website’s content to accommodate both versions of the protocol.

 Chapter 12 takes a good chunk of what you’ve learned and automates it with the gulp task runner. In this chapter, you’ll learn how to
 automate various aspects of optimizing your website’s performance, which will help you optimize your sites as you code them,
 saving you valuable time.

 There are two appendixes. Appendix A is a tools reference. Appendix B highlights common jQuery functions and shows you how to accomplish the same tasks by native means.

Tools used in this book

 While following examples in this book, you’ll have open your favorite text editor and a command-line window. Beyond that,
 two tools are used consistently throughout, so you’ll want to have them installed.

Node.js

 Node.js, sometimes referred to as Node, is a JavaScript runtime that allows you to use JavaScript outside of the browser.
 It can be used for all kinds of crazy stuff that, some years ago, no one would have thought that JavaScript would be used
 for. I’m talking about task runners, image processors, and even web servers. All these things are installed using the Node
 Package Manager (npm).

 In your optimization efforts throughout the book, you’ll use Node for all of that. You’ll often use it to run local web servers
 using the Express framework for examples that we’ll work through together. In chapter 11, you’ll even use it to run a local HTTP/2 server. You’ll use Node in chapter 6 to optimize images in bulk, and in chapter 12, you’ll use it to automate common optimization tasks with gulp. It’s used in nearly every chapter for one kind of function
 or another.

 If you’re serious about working your way through this book, you’ll need to have Node installed. If you don’t have it set up,
 go to https://nodejs.org and head to the downloads section. If you’re feeling trepidation because you don’t know Node, don’t worry! Everything is
 explained, and if you follow the directions, you should be fine. But, if you feel that you’d benefit from a deep dive into
 how Node works later on, check out Node.js in Action, another title from Manning (https://www.manning.com/books/node-js-in-action). Just know that a deep knowledge of Node is not necessary to navigate through this text.

Git

 Git is a version control system used for keeping track of changes in software applications. There’s a good chance you’ve used
 it, but if not, you’ll get to use it in this book. Git is used to download code for examples from this book’s collection of
 GitHub repositories hosted at https://github.com/webopt. You can download Git at https://git-scm.com.

 Why use Git instead of downloading zip files of code examples? For one, using a version control system like Git on the command
 line makes it easier to grab things and go. The biggest advantage, though, is that you’ll be able to easily skip ahead to
 finished code examples if you get stuck or just want to see the final result.

 If you’ve never used Git, don’t sweat it. All the instructions for using it are delineated clearly, and you’ll be able to
 follow along. If you prefer not to use Git, you can go to https://github.com/webopt and download zip files from each repository.

Other tools

 Most of the tools you’ll use in this book will be installed by Node Package Manager, and are thus dependent on Node. There
 are two instances, however, where you’ll get an opportunity to use tools beyond Node.

 In chapter 3, there’s an example where you’ll apply the DRY (don’t repeat yourself) principle to CSS, which entails combining redundant
 rules under multiple selectors. A Ruby-based tool named csscss is used in this example to detect redundancies. If you have a Mac or you’re running any other UNIX-like operating system,
 this may already be available for you. If you’re running Windows, you’ll have to download Ruby at http://rubyinstaller.org.

 In chapter 7, there’s an example where you’ll subset fonts to make them smaller. You’ll use a Python-based tool called pyftsubset. Like Ruby, there’s a good chance that on UNIX-like systems, Python will already be available. If you use Windows, you’ll
 want to head over to www.python.org and grab the installer.

Code conventions

 Code in this book is written in a fashion that most developers will be comfortable with. All source code in the book is in
 a fixed-width font like this, which sets it off from the surrounding text. In code snippets throughout the book, relevant portions are annotated for clarity.
 Changed portions of an existing snippet are typically set in bold font like this. Regarding the code you download from GitHub, indentations are done with tabs. When it comes to how many spaces you want
 a tab character to represent, that’s up to you. When I wrote the examples, I went with four spaces. The code snippets in the
 book follow that convention.

 Source code for all working examples is available on the publisher’s website (www.manning.com/books/web-performance-in-action) as well as GitHub (https://github.com/webopt).

Author Online

 Purchase of Web Performance in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/books/web-performance-in-action. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author challenging questions
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Author

 [image:]

 Jeremy Wagner is a professional front-end web developer with over ten years of experience in various agencies and large companies. In addition
 to his writings on web performance, he also speaks at conferences on a variety of web development–related topics. He can be
 found on the web at https://jeremywagner.me or @malchata on Twitter.

About the Cover Illustration

 The figure on the cover of Web Performance in Action is captioned “Man from Bednja, near Zagreb, Croatia.” The illustration is taken from a reproduction of an album of Croatian
 traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia,
 in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in
 the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304.
 The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of
 the costumes and of everyday life.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It’s now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Chapter 1. Understanding web performance

 This chapter covers

 	Why web performance matters

 	How web browsers talk to web servers

 	How poorly performing websites can be detrimental to the user experience

 	How to use basic web optimization techniques

 You’ve probably heard about performance as it relates to websites, but what is it and why should you and I care about it?
 Web performance refers primarily to the speed at which a website loads. This is important because shorter load times improve the user experience
 for your site on all internet connections. Because this improves the user experience, the user is more likely to see what
 your website has to offer. This helps you achieve goals as simple as getting more users to visit and read your website’s content,
 or as lofty as getting users to take action. Slow websites test users’ patience and might result in them abandoning your website
 before they ever see what it has to offer.

 If your website is a major source of revenue, it literally pays to take stock of your site’s performance. If you have an e-commerce
 site or a content portal that depends on advertising revenue, a slow site affects your bottom line.

 In this chapter, you’ll learn the importance of web performance, basic performance-boosting techniques, and ways to apply
 them in order to optimize a client’s single-page website.

1.1. Understanding web performance

 You may be a developer who has heard of web performance, but you don’t know a lot about it. Maybe you’ve used a few techniques
 for quick wins, or you may already be well versed in the subject, and picked up this book to discover new techniques you can
 use to further tune your own websites.

 Don’t worry! Whether you have little experience in this arena or fancy yourself somewhat of an expert on the subject, the
 goal of this book is to help you better understand web performance, the methods used to improve the performance of a website,
 and the ways to apply these methods to your own website.

 Before we can talk about the specifics of web performance, however, it’s important to understand the problem we’re trying
 to solve.

 1.1.1. Web performance and the user experience

 High-performing websites improve the user experience. By making sites faster, you improve the user experience by speeding
 up the delivery of content. Moreover, when your site is faster, users are more likely to care about what’s on it. Not one
 user cares about the content of a site that doesn’t load quickly.

 Slow websites also have a measurable effect on user engagement. On e-commerce sites in particular, nearly half of users expect
 a website to load within 2 seconds. And 40% of users will exit if it takes more than 3 seconds to load. A 1-second delay in
 page response can mean a 7% reduction in users taking action (https://blog.kissmetrics.com/loading-time). This means not only a loss of traffic, but a loss of revenue.

 In addition, the performance of your website impacts not only your users, but also your website’s position in Google search
 results. As early as 2010, Google indicated that page speed is a factor in ranking websites in its search results. Though
 the relevance of your site’s content is still the most important factor in your site’s search ranking, page speed does play
 a role.

 Let’s take the search rankings for Legendary Tones, a relatively popular blog about guitars and guitar accessories that receives
 about 20,000 unique visitors a month. This site receives much of its traffic from organic search results, and has well-written,
 relevant content. Using Google Analytics, you can get data on the average speed of all pages and correlate them to their average
 rankings. Figure 1.1 shows the graphed findings for a month in 2015.

 Figure 1.1. The average rankings of all pages on the Legendary Tones website according to its page download time by Google. Lower values
 are better.

 [image:]

 Search rankings remain stable, but when crawl times start straying beyond a second, the ranking slips. It pays to take performance
 seriously. If you’re running a content-driven site such as a blog, your organic search rankings are the greatest source of traffic you have. Reducing your
 website’s load time is one part of a formula for success.

 Now that you know why performance is important, we can begin to talk about how web servers communicate and how this process
 can lend itself to making websites slower.

 1.1.2. How web browsers talk to web servers

 To know why web optimization is necessary, you need to know where the problem lies, and that’s in the basic nature of the
 way web browsers and web servers communicate. Figure 1.2 illustrates an overview of this concept.

 Figure 1.2. A user’s request for example.com. The user sends the request for the web page via a browser and then must wait for the server
 to gather its response and send it. After the server sends the response, the user receives the web page in the browser.

 [image:]

 When it’s said that web performance focuses on making websites load faster, the primary focus is on reducing load time. The
 most simple interpretation of load time is the time between the instant a user requests a website and the instant it appears on the user’s screen. The mechanism
 driving this is the time it takes for the server’s response to reach the user after the user requests content.

 Think of this process as being similar to walking into a coffee shop and asking for a cup of dark roast. After a bit of a
 wait, you get a cup of coffee. At its most basic level, talking with a web server isn’t much different: you request something
 and eventually receive what you requested.

 When a browser fetches a web page, it talks to a server in a language called Hypertext Transfer Protocol, commonly known as HTTP. The browser makes an HTTP request, and the web server replies with an HTTP response, which consists of a status code and the requested content.

 In figure 1.3, you see a request being made to example.com (an actual website, believe it or not). The verb GET tells the server to locate /index.html. Because a few versions of HTTP are in use, the server wants to know which version of the protocol is being referenced (which
 in this case is HTTP/1.1). In the last step, the request is clarified with the host of the resource.

 Figure 1.3. The anatomy of an HTTP request to example.com.

 [image:]

 After making the request, you receive a response code of 200 OK, which assures you that the resource you’ve requested exists,
 along with a response containing the contents of /index.html. The content of /index.html is then downloaded and interpreted by the web browser.

 All of these steps incur what is called latency, the amount of time spent waiting for a request to reach the web server, the amount of time for the web server to collect
 and send its response, and the amount of time for the web browser to download the response. One of the primary aims of improving
 performance is to reduce latency, the amount of time it takes for a response to arrive in full. When latency occurs across
 a single request as in the example of example.com, it’s trivial. But loading practically any website involves more than a
 single request for content. As these requests increase in volume, the user experience becomes increasingly vulnerable to slower
 load times.

 In communication between HTTP/1 servers and browsers, a phenomenon known as head-of-line blocking can occur. This occurs because the browser limits the number of requests it will make at a single time (typically, six).
 When one or more of these requests are processing and others have finished, new requests for content are blocked until the
 remaining request has been fulfilled. This behavior increases page-load time.

 HTTP/2, a new version of HTTP, largely solves the head-of-line blocking problem and enjoys wide support among browsers. The
 responsibility is on servers to implement the protocol, however. As of July 2016, only approximately 8.5% of all web servers
 are using HTTP/2 (http://w3techs.com/technologies/details/ce-http2/all/all). Because HTTP/2 has the ability to fall back to HTTP/1 for clients that don’t support it, clients that understand only HTTP/1
 are still susceptible to the problems of the older protocol. Moreover, any browser communicating with an HTTP/1 server will
 encounter the same issues, regardless of its ability to support HTTP/2.

 Because we live in a complex world, we need to be able to accommodate both versions of the protocol for the time being. Going
 forward, we’ll discuss ways to optimize sites for HTTP/1, but also call out practices that may be counterintuitive on HTTP/2.
 To learn more about HTTP/2, as well as how to conditionally implement the best workflows for each version of the protocol,
 check out chapter 11.

 The next section covers how websites load content and how this behavior can lend itself to performance problems with websites.

 1.1.3. How web pages load

 In a boring world, all websites would be like example.com: one page with no images or JavaScript, and with minimal styling.
 But in reality, websites are often more complex than a single HTML file. Websites are an assortment of visual media that provides
 accompaniments to content, style sheets that apply design to bland markup, and JavaScript that turns static pages into applications
 capable of complex behaviors. It sounds neat, but these pieces come at a cost. Figure 1.4 shows a user’s request to get index.html from a web server.

 Figure 1.4. Steps to get index.html from a web server

 [image:]

 After the browser downloads index.html, it discovers a <link> tag to a style sheet, a couple of <script> tags linking to JavaScript files, and an tag referring to an image. When the browser discovers these references to other files, it makes new HTTP requests on the
 user’s behalf to retrieve them. What started off as one request for a web page has now turned into five requests. Although
 five requests aren’t much, a typical website can easily have ten times that many, or a complex one could have even a hundred
 or so. As these requests increase, so too does the amount of data downloaded. As requests and the data accompanying them increase,
 so does the amount of time it takes a page to load.

 Therein lies the challenge of enhancing website performance: balancing the requirements of modern websites with the importance
 of serving them as fast as possible. You need to know performance-enhancement techniques so you can keep complex web experiences
 from encroaching on the most valuable part of the user experience: the ability to access content.

1.2. Getting up and running

 Performance problems often signify issues in front end architecture. Although some issues can originate from a poorly configured application back end, those issues are specific to those application platforms (for example,
 PHP or .NET) and are admittedly outside the scope of this book. In this section, you’ll investigate how to fix common performance
 problems through an interactive exercise that enhances the performance of a client’s single-page website.

 This client, Coyle Appliance Repair, is an appliance repair company from the Upper Midwest. The owners have approached you
 and asked whether you can make their site faster. You’ll help them out by employing techniques that will decrease the load
 time of the website by 70% by the end of this chapter.

 In this section, you’ll get the client’s website running on your computer. To do this, you’ll use Node.js and Git. You’ll
 also use Google Chrome to simulate a network connection to a remote server so that you can measure the results of your work
 in a meaningful way.

 1.2.1. Installing Node.js and Git

 Node.js (informally called Node) is a JavaScript runtime that allows JavaScript to be used outside the browser. It can be used for
 numerous things, but in this case you’ll use a small Node program that runs as a local web server for running the client’s
 website. You’ll also use a couple of Node modules to achieve some optimization goals.

 You’ll use Node instead of a traditional web server (such as Apache) for simplicity. With Node, you can spin up a local web
 server quickly. It allows you to pull down exercises in this book without having to install or configure a web server. Using
 Node, you can pull down and run the example websites in this book in a matter of minutes, even if you have little or no experience
 with Node.

 To install Node, go to http://nodejs.org. In the Download section, find the installer for your operating system. When running the installer, choose the standard installation
 option to ensure that the Node Package Manager (npm) is installed. npm provides access to the vast Node package ecosystem available on http://npmjs.com, and is required to complete the client website exercise.

 You also need to install Git to pull down the client website in this chapter and the example websites later in this book.
 By using Git, you’ll be able to grab code in this book whenever you need it from a centralized location. If you’re familiar
 with Git, that’s great, but previous experience is unnecessary for following along in this book’s exercises. To download Git,
 head over to https://git-scm.com/downloads, choose the installer for your system, and run it. After you’ve installed Node and Git, continue on!

 1.2.2. Downloading and running the client’s website

 You can download the client’s website for this chapter from GitHub. To do this, download the repository into a folder of your
 choosing from the command line:

 git clone https://github.com/malchata/ch1-coyle.git
cd ch1-coyle

 This downloads the exercise files from the repository on GitHub into the current working directory on the command line. If
 you don’t have Git installed, or you don’t feel like cloning the repository, you can download the exercise as a zip file at
 https://github.com/webopt/ch1-coyle and extract it where you like.

 After the exercise has been downloaded, you’ll need to use npm to download the packages necessary for the web server to run. Run the following command in the same folder to download and
 install the needed packages:

 npm install express

 This command installs the Express framework to your current directory, which you can use to create a simple web server that
 serves static files for this and many other examples that you’ll run locally on your computer. You don’t need to know Express
 or how it works in order to follow along. None of the examples in this book makes heavy use of this framework beyond serving
 static files from your computer.

 	

 Permissions issues on UNIX-like operating systems

 npm usually installs packages without a problem on most operating systems, but if you run into problems on a Mac or any other
 UNIX-like environment, running the npm command with sudo should clear up any permissions issues. In Windows, opening a new command line as an administrator should help.

 	

 Depending on your connection speed, the installation could take 10 or more seconds. After it finishes, you can run the following
 command to start the local web server:

 node http.js

 When you run this command, a local web server running the client website will be accessible on your computer at http://localhost:8080
 and will appear as shown in figure 1.5.

 Figure 1.5. The client’s website in the web browser running from your local machine

 [image:]

 If you have another service running on port 8080, you can open the http.js file in your text editor and change the port number
 on line 8. To stop the server from running, press Ctrl-C.

 1.2.3. Simulating a network connection

 Because you’re running the client’s website on a local machine, no latency occurs when you make requests to localhost. Without latency, it’s difficult to measure any gains in performance, because no network bottleneck exists in this scenario.

 One way to get around this is to deploy the website to a remote web server as you complete the steps, but this can be convoluted
 for our purposes. A better way is to use Google Chrome Developer Tools.

 To get started, open Chrome. To open the Developer Tools on a Windows machine, press F12. On a Mac, press Command-Alt-I. The
 Developer Tools should appear within the Chrome window. Alternately, you can choose View > Developer > Developer Tools. When
 the Tools menu appears, click the Network tab that appears at the top of the window, as shown in figure 1.6.

 Figure 1.6. The location of the Network tab in the Google Chrome Developer Tools window. You can simulate internet connection speeds by
 using the throttling menu.

 [image:]

 Near the top and to the right of the Disable cache check box is a drop-down menu labeled No throttling. This is the network
 throttling menu. When you click it, a list of options appears. These options allow you to simulate conditions that can be
 useful for performance testing. For now, select the Regular 3G profile, which simulates a slower mobile network connection.

 	

 Don’t forget!

 When you’re finished optimizing the client’s website, make sure you switch this drop-down menu back to No throttling. If you
 forget, all of your web browsing will be throttled to the selected setting while the Developer Tools are open.

 	

 With your client’s website running and your network throttling set up, you’re ready to audit the client’s website and create
 a waterfall chart with Chrome’s Developer Tools.

1.3. Auditing the client’s website

 To optimize a website, you have to be able to identify areas of improvement. This means analyzing the number of requests on
 a page, the amount of data the page contains, and the amount of time it takes for the page to load. This is where Chrome’s
 network tools come in handy. In this section, you’ll learn how to create waterfall charts with these tools and how to quantify
 aspects of your client’s website so that you have a starting point for optimizing.

 Chrome’s network tools are accessible in the same place where you chose a network throttling profile, which is under the Network
 tab. To profile a site, the Record button in this pane must enabled, as shown in figure 1.7.

 Figure 1.7. The Record button must be in the enabled state (red) before you can generate a waterfall chart of assets. The Disable Cache
 check box should also be selected so that no caching is done when you reload the page to measure the results of your work.

 [image:]

 The first thing you’ll want to do in the Network tab is ensure that the Disable cache check box is selected. When a website
 is first visited, none of the assets are cached, and this is the scenario that you want to be able to replicate. Otherwise,
 the site’s assets will be served from the cache. Although a site loads faster when cached, it’s best to assume that your average
 user won’t have your site assets cached. For a small site such as this, this is likely.

 In the Network tab, make sure the Record button in the upper-left corner is in the enabled state (see figure 1.7). It’s red when enabled. If you haven’t already, navigate to the client website running on your computer at http://localhost:8080
 (or reload) to generate the waterfall chart. After the page is done loading, you can see the results. Figure 1.8 shows a waterfall chart for your client’s website.

 Figure 1.8. A waterfall chart generated for your client’s website. At the top, you can see the request for index.html, followed by the
 site’s CSS, JavaScript, and images. Each bar represents a request for a site asset. The bars are positioned on the x-axis
 according to the time they began downloading on the left, and the time they have finished downloading on the right. The length
 of a bar corresponds to the amount of time it takes for the asset to be requested and downloaded by the web browser.

 [image:]

 The waterfall chart generated for your client’s site shows eight requests. Although this isn’t an obscene number of requests,
 536 KB of data is spread across them, and that’s a significant amount for a small site like this. Because of the amount of
 data, the site loads in about 6.15 seconds on the Regular 3G throttling profile, which means that this site will take even
 longer to load on slower mobile networks than some users would like.

 Because this is a responsive website, it’s important to know that differences in load times will occur among devices. Responsive websites display differently at different screen widths because of mechanisms called media queries that are part of the site’s CSS. These are covered in more detail in chapter 3, but the important point to know is that this site renders differently across three types of devices: desktop computers,
 tablets, and mobile phones.

 More than that, screens across these devices vary not only in size, but in capabilities such as display density (the number
 of pixels per inch on the screen). If you’ve ever used an Apple product, for example, you’ve seen a high DPI (dots per inch)
 display at work. In order to retain high visual quality on these screens, a higher-resolution set of images is needed than
 for standard DPI displays. More information on these screen types and methods for serving images specific to them can be found
 in chapter 5.

 Don’t worry if you don’t understand all this talk of CSS media queries and screen sizes right now. The point is that the client
 website’s load time can differ not only because of the quality of its network connection, but also because of the characteristics
 of the device itself. Depending on the site visited, devices with higher display densities may download more data than devices
 with standard displays. Table 1.1 lists the amount of data transferred and website load times according to the device’s type and display density.

 Table 1.1. A comparison of page-load times across various devices. Results vary depending on the amount of data and the display density
 of the device.

 	
 Device type

 	
 Display density

 	
 Page weight

 	
 Load time

 	Mobile (phone and tablet)
 	Standard
 	378 KB
 	4.46 seconds

 	Mobile (phone and tablet)
 	High
 	526 KB
 	6.01 seconds

 	Desktop
 	Standard
 	383 KB
 	4.51 seconds

 	Desktop
 	High
 	536 KB
 	6.15 seconds

 As you proceed in performance-tuning the client’s website, you’ll keep tabs on load times and the amount of data you reduce
 for each scenario as it pertains to the Regular 3G throttling profile you’ve chosen. Let’s get to work!

1.4. Optimizing the client’s website

 When improving the performance of a website, the goal is simple: reduce the amount of data transferred. By pursuing this,
 you’ll decrease the amount of time that the site loads on any device. The best part of this pursuit is that it benefits the
 user on both HTTP/1 and HTTP/2 servers. If there’s one piece of advice that always wins out, it’s this: fewer bytes transferred
 means faster load times.

 Reducing requests can help, and some performance-boosting techniques that follow in this book will encourage you to do this,
 but be aware that this approach works best for an HTTP/1 workflow. This client’s site is already light on requests and won’t
 benefit much from it.

 In these optimization efforts, you’ll start by minifying the assets of the site, which includes the CSS, the JavaScript, and
 the HTML itself. Then you’ll move on to optimize the images on the site without compromising their visual integrity. Finally, you’ll finish by employing compression on the
 server for text assets.

 	

 Want to skip ahead?

 If you get stuck at any point while working on the client’s website (or you’re curious to see how it all comes together),
 you can skip to the final, optimized code by using the git command. Type git checkout -f optimized in the root folder of the web project, and the final, optimized site will be downloaded to your computer. Be aware that performing
 this action overwrites any work you’ve done locally, so back up your work!

 	

 1.4.1. Minifying assets

 Minification is a process by which all whitespace and unnecessary characters are stripped from a text-based asset without affecting the
 way that asset functions. Figure 1.9 illustrates the basic idea of minification as it applies to CSS.

 Figure 1.9. Minification of a CSS rule. In this example, a CSS rule is minified from 98 bytes down to 77, which represents a 21% reduction.
 When this concept is applied to all text assets on a site, the reductions can total many kilobytes.

 [image:]

 Many human-readable files such as CSS and JavaScript contain whitespace and characters that are inserted by developers during
 development. We use line breaks and indentation in our CSS and JavaScript to make them easier to read, as well as using comments
 in source code for documentation purposes.

 Web browsers need no such help when reading these files. The fewer unnecessary characters that are in these files, the faster
 the web browser will download and parse them.

 	

 Tip

 When minifying files, it’s important to preserve the original, unminified source. Chances are near certain that you’ll have
 to edit files in a web project again after you minify them. Chapter 12 will help you in this endeavor.

 	

 In this section, you’ll start by minifying the site’s CSS, then JavaScript, and finally the HTML. Before you continue, you’ll
 download a couple of packages by using npm that will allow you to minify files on the command line:

 npm install –g minifier html-minify

 This installation could take a minute or so. After the packages install, you’ll be ready to minify the site’s assets. When
 you’re finished with this section, you’ll have reduced the site’s total weight by 173 KB.

Minifying the website’s CSS

 The site’s CSS is 18.2 KB. By minifying it, you could reduce the weight of the page a bit. To minify the site’s CSS, you need
 to do two things: run the minifier program and then update the HTML to point to the newly minified file. To minify the CSS,
 run this command inside the website’s css folder:

 minify -o styles.min.css styles.css

 This command’s syntax is simple. It specifies the output file (styles.min.css) with the -o argument. After this argument, the input filename (styles.css) is specified. After the command finishes, check the size of
 the output file, and you’ll notice that the minified file is 14% smaller, at 15.6 KB. Not a huge savings, but it’s a good
 start. Let’s update the reference to this file in index.html by changing the <link> tag reference from styles.css to styles.min.css, like so:

 <link rel="stylesheet" type="text/css" href="css/styles.min.css">

 Next, reload the client’s website in your web browser to ensure that the website’s styles still work. You can verify that
 the minified styles are in place by checking the updated waterfall graph and looking for a reference to styles.min.css. Your
 client website’s CSS is now minified!

Minifying the website’s JavaScript

 The website’s JavaScript has a much larger share of data than the CSS does. This site uses two JavaScript files: jquery.js
 (the jQuery library) and behaviors.js (the site’s behaviors that are dependent on jQuery). These weigh in at 252.6 KB and
 3.1 KB, respectively. To minify these files, you run the minify command on them, as you did for the site’s CSS:

 minify -o jquery.min.js jquery.js
minify -o behaviors.min.js behaviors.js

 After the .js files are minified, check the size of the output files and compare them to the unminified versions. You’ll see
 that behaviors.js has been reduced by 46% to 1.66 KB, and jquery.js has been reduced by 66% to 84.4 KB. This tremendous improvement
 knocks off a large chunk of the site’s total weight (which you’ll measure and compare at the end of this section).

 You need to update the references to jquery.js and behaviors.js, to jquery.min.js and behaviors.min.js, in index.html. Locate
 the <script> tags that reference these files and change them to the following:

 <script src="js/jquery.min.js"></script>
<script src="js/behaviors.min.js"></script>

 Then reload the page and check the Network tab to see that the minified files are referenced. If they are, you’re ready to
 minify the last asset, which is the website’s HTML.

Minifying the website’s HTML

 Although not as large as the savings you’ve realized by minifying the site’s JavaScript, the site’s HTML is another asset
 that you can minify. Rather than using the minify Node package (which is intended for use with CSS and JavaScript files), you’ll use the htmlminify package instead.

 	

 Unintended consequences of minifying HTML

 Minification of HTML usually goes off without a hitch, but you may notice that minor shifts can occur to the layout. This
 is due to the influence of whitespace on CSS display types such as inline and inline-block. If you indent your HTML, these CSS display types could act a bit differently after the whitespace around them is removed. Some tweaking of your CSS may be necessary
 if the effects are dramatic. Also be aware of any properties or tags that treat whitespace literally, such as the CSS white-space property or the HTML <pre> tag.

 	

 Before you minify the site’s HTML, you need to copy index.html in the site’s root folder to a separate source file named index.src.html
 so you can preserve the original for changes. After you copy this file, you can minify it with htmlminify, like so:

 htmlminify -o index.html index.src.html

 You’ll see that the minified file is 19% smaller than its original size—from 4.57 KB to 3.71 KB. Not a huge savings, but it
 does squeeze a bit more toothpaste out of the tube, so to speak, and for not much more effort.

 With your site assets minified, you’ve managed to slim down your website by 173 KB. Because these assets are needed for the
 web page to work across all types of devices, this is a consistent performance gain for users of any device. Figure 1.10 compares load times before and after minification for all device types shown in table 1.1.

 Figure 1.10. Load times of the client’s website on the Regular 3G network throttling profile before and after minification. Improvements
 range anywhere from 31% to 41%, depending on the visitor’s device.

 [image:]

 Through a modest effort, you were able to decrease load times by anywhere from 31% to 41%! This is no small improvement, and
 more is yet to come. In the next section, you’ll further improve the yields on text assets via a server-side mechanism called
 server compression.

 1.4.2. Using server compression

 Surely you’ve been emailed compressed files. These files are often used in online communications as a handy way to package
 multiple files into a single one. Aside from the convenience of consolidation, compressing files can also reduce their size.
 Server compression works on a similar principle with respect to reduction of file sizes, and web browsers are able to accept
 and decompress compressed content on behalf of the user. Figure 1.11 provides an overview of this concept.

 Figure 1.11. The process of server compression

 [image:]

 Server compression works as follows: A user requests a web page from a server. The user’s request is accompanied by an Accept-Encoding header that tells the server the compression formats the browser is capable of using. If the server is capable of encoding
 the content as indicated in the Accept-Encoding header, it will reply with a Content-Encoding header that describes the compression method used along with the compressed content.

 This is useful because much of the content that’s downloaded from websites tends to be text, which compresses well. A compression
 method called gzip has nearly universal browser support, and is very effective in reducing the size of text assets. In this step of optimizing your client’s website, you’ll configure your server
 to serve compressed content. As a result of these efforts, you’ll reduce the weight of the page by an additional 70 KB and
 improve its load time by 18% to 32%, depending on the visitor’s device. Before you do this, though, go to your command line
 and stop the web server by pressing Ctrl-C. Then type the following command to install the compression module:

 npm install compression

 After the installation finishes, open http.js in your text editor and add the bold lines that you see in this listing.

 Listing 1.1. Configuring the Node HTTP server to use compression

 [image:]

 After you’ve made these changes, restart the web server. Reload the page and view the waterfall graph to see the results.
 Table 1.2 compares text assets before and after compression.

 Table 1.2. A comparison of text assets on the client’s website before and after the application of server compression

 	
 Asset filename

 	
 Size before

 	
 Size after

 	
 Reduction

 	index.html
 	4 KB
 	1.8 KB
 	55%

 	styles.min.css
 	15.9 KB
 	3.1 KB
 	80.5%

 	jquery.min.js
 	84.7 KB
 	30 KB
 	64.5%

 	behaviors.min.js
 	1.9 KB
 	1.1 KB
 	42.1%

 	Total:
 	106.5 KB
 	36 KB
 	66.2%

 The reduction of file sizes is clearly significant. The size of all text assets prior to applying compression was 106.5 KB.
 After using compression, you were able to reduce this by about 66%, to an even lower 36 KB! So what does this do for load
 times? Quite a bit. Figure 1.12 compares load times across devices.

 Figure 1.12. Load times of the client’s site on the Regular 3G throttling profile before and after applying compression. Depending on the
 visitor’s device, load times improve anywhere from 18% to 32%.

 [image:]

 This simple step has significantly improved the site’s load time. It’s important to note that different web servers require
 different steps to configure compression for assets. The following listing shows how to enable compression for common asset
 media types in the software’s httpd.conf configuration file.

 Listing 1.2. Enabling server compression on Apache web servers

 [image:]

 In Microsoft Internet Information Services (IIS), compression can be configured by entering the admin panel via the inetmgr executable, going to a specific website, and editing the compression settings through the utility’s GUI. No matter what kind
 of web server you use, the benefit of compression is largely the same. Some allow more configuration than others.

 With compression applied and working on your client’s website, you can move on to the final part of this optimization plan:
 optimizing images.

 	

 Compression pro tip

 Have you ever tried to zip a JPEG or an MP3 file? Not only does this provide no additional savings, but the final zip file
 may end up being larger. This is because those types of files are already compressed when they’re encoded. Compressing content
 on the web is no different. Avoid compressing file types that already use compression when they’re encoded, such as JPEG,
 PNG, and GIF images and WOFF and WOFF2 font files.

 	

 1.4.3. Optimizing images

 Image compression has come a long way since the days of Photoshop’s Save for Web dialog box. Today’s algorithms are so efficient
 at reducing the file size of full-color images that the end result is usually indistinguishable from the source image. The
 savings in file size, however, can be significant. Figure 1.13 compares two images, before and after optimization.

 Figure 1.13. Image optimization in action on a PNG image. Optimizing images in this manner uses a re-encoding technique that discards unnecessary
 data from the image, but doesn’t noticeably impact the image’s visual quality.

 [image:]

 If you can’t notice a difference between the two images, that’s the point. The idea behind this type of optimization is to
 retain as much visual quality as possible from the source, while discarding unnecessary data.

 That’s not to say that this type of optimization can’t lead to undesirable results. Any optimization can go too far, leading
 to a noticeable loss in quality. Chapter 6 delves into image optimization not only for PNG files, but for JPEG and SVG images as well. The rule of thumb is to compare
 the result of any optimization to the original source, and make sure that you’re satisfied with the results.

 Many services can compress images for you, including some command-line and automated tools covered in chapters 6 and 12. For the sake of simplicity, though, you’ll go with a web service named TinyPNG (http://tinypng.com), shown in figure 1.14.

 Figure 1.14. TinyPNG compressing the client website’s images and reporting a 61% reduction of total size

 [image:]

 Despite the name, this site compresses not only PNG images, but also JPEG images. Depending on the visitor’s device, four
 images show in the desktop view, and only three in the mobile views. The size of these images depends on the kind of screen viewing them. High DPI screens (such as
 Retina screens on Apple devices) need the larger set of images to provide the best visual experience, whereas standard DPI
 screens can use the smaller set of images. The differences between these screens and the ways to serve them based on a device’s
 capability are covered in chapter 5. At this point, the goal is to take whatever images are in the img folder, use the TinyPNG service to optimize them, and
 observe the gains.

 To compress these images, upload them to the TinyPNG site, and the site will automatically optimize them. When finished, download
 all of them and copy them to the img folder of the website. When prompted, select the Overwrite option for any conflicts.
 Then reload the page and check the waterfall graph again in Chrome’s Developer Tools to see the difference these smaller images
 have made. Table 1.3 lists images on the site before and after their optimization.

 Table 1.3. A comparison of image sizes before and after their optimization using the TinyPNG web service

 	
 Asset filename

 	
 Size before

 	
 Size after

 	
 Reduction

 	bg.png
 	56.6 KB
 	32.0 KB
 	-43%

 	bg@2x.jpg
 	147.4 KB
 	29.4 KB
 	-80%

 	brothers.jpg
 	11.9 KB
 	9.7 KB
 	-18%

 	brothers@2x.jpg
 	33.8 KB
 	29.8 KB
 	-12%

 	logo.png
 	31.6 KB
 	12.0 KB
 	-62%

 	logo@2x.png
 	70.5 KB
 	25.2 KB
 	-64%

 	states.png
 	4.9 KB
 	1.8 KB
 	-63%

 	states@2x.png
 	9.6 KB
 	3.5 KB
 	-63%

 By the looks of it, all images benefit to a varying degree from this optimization—some more than others, certainly. But the
 real question is, how does this impact page-load time? Figure 1.15 compares load times before and after this image optimization effort.

 Figure 1.15. Load times of the client’s website on the Regular 3G network throttling profile before and after optimizing images. Depending
 on the visitor’s device, load times improve anywhere from 23% to 53%.

 [image:]

 Optimizing images has had a pronounced effect on your load times. Load times for all devices have been reduced to less than
 2 seconds, which is significant, especially for 3G networks! With your work done, let’s take a look at the full impact of
 your efforts.

1.5. Performing the final weigh-in

 With your optimization efforts in the can, you can compare the amount of data transferred by the server before and after your
 efforts for each of the four scenarios in table 1.4.

 Table 1.4. A comparison of page weights for the client’s website for various device types before and after optimizations have been made

 	
 Device type

 	
 Page weight before

 	
 Page weight after

 	
 Reduction

 	Mobile (high DPI)
 	526 KB
 	118 KB
 	77.5%

 	Mobile
 	378 KB
 	87.4 KB
 	76.8%

 	Desktop (high DPI)
 	536 KB
 	121 KB
 	77.4%

 	Desktop
 	383 KB
 	89.5 KB

OEBPS/01fig03.jpg
Verb Resource Protocol

i

GET /index.html HTTP/1.1
Host: example.com

%(_/

Server

OEBPS/01fig04_alt.jpg
eDpege

GET /index.html
— =L o

GET /styles.css

Assets
s

styles.css

funceion()

Jauery.js

funceion()

seripts.js

-

Yk

index.heml

GET /jquery.js

GeT /scripts.js

GET /1ogo.png

OEBPS/01fig01.jpg
Page rank

12

10

10.8

10.9 10.75

11.5

0.7-08s

0.8-09s 09-10s
Crawl time

1.0-13s

OEBPS/01fig02_alt.jpg
User ‘Web server
1. User sends request for example.com

2. User waits for a response

3. User downloads page from example.com

OEBPS/common01.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/xixfig01.jpg

OEBPS/common02.jpg

OEBPS/01fig05.jpg
651-555-5555

FULL SERVICE RESTAURANT AND COMMERCIAL KITCHEN REPAIR. WE
SERVICE ALL COOKING, FOOD PREP, WAREWASH/DISHROOM, AND
REFRIGERATION EQUIPMENT.

o i et i, et it 0 s

COMMERCIAL BRANDS

OEBPS/01fig07_alt.jpg
Select to

pecord ble cache

button

\ e,
® O ™ V| Viw
Filte Hide data URLs () XHR JS CSS Img Media |

= . Preservelog @ Disable cache | No throttling

OEBPS/01fig06_alt.jpg
Network tab Throttiing menu

oo Developer Tools - htps com_fehvomelnewtab-
R O Semens Layers Console Sources

Timeine rofles Resolyces Scurty Audis
@O ™ T vVew:Z % Preserve log @ Disable cache | No throttling. v
. e s s Q) R CS5 img. Meda Fom oc WS Oibr

OEBPS/cover.jpg

OEBPS/01fig15_alt.jpg
Load times

5

3s

2s

1s

0s

Mobile
(high DP1)

Mobile

Desktop
(high DP1)

Desktop

OEBPS/01fig09_alt.jpg
Unminified: 986 bytes

1ogo

{
width: 282px;
height: 186px;
position: absolute;
top: 0;
lefe: -sapx;
2-index: 11;

}

+1ogo{width:282px; height :186px;position: absolute; top: 0; 1ef

54px;2-index:11}

Minified: 77 bytes

OEBPS/01fig08_alt.jpg
Site assets Asset-load time ‘Waterfall chart

oo Developer Tols | e focahost8080]
R &) [oemens Layers Console Sources 4 Network \Timelne PrfiesResources Securty Audts

® O [®™ ¥ Viw I . T Preservelog @Disable dyche | Regular 3G (750 kb/ v
e s @) o s

img Meda Font Doc WS Manifest Other

Name Mehod Sarus potocsl Type nor Time Tmelne-sanTioe o aoon &
Lllocibost G 200 ho/id docmen Oher 48K d62ms
Csmescss G 200 hprld seshes (o7 185K So7ms

B T —

Sewrss G 20 Wi e Genlts 4% m
———— |
| —

tezps O 20 /il e Gdeled 14X 44ls
lpogto CET 20 ol pg (et 91K 282

i brohersa2ups CET 200 /Ll e Gadedles BIKE 1635 —
suwseders CET 20 /il sy Gadled 06XS 630ms -

8 requests 1 536KB vansferred | Fnsh:6.105 | DOContetoaded: 6.155 | Load: 6155

/

Page-load statistics Asset-load start Asset-load end

OEBPS/01fig11_alt.jpg
1. User requests
‘compressed content

GET /index.html
Accept-Encoding: gzip, deflate

2. Web server sends
compressed response

</>

index. html
e

Content-Bncoding: gzip

OEBPS/01fig10_alt.jpg
Load imes

Mobile
(high DPI)

Mobile

Desktop
(high DP1)

Desktop

OEBPS/01fig12_alt.jpg
Load times

oS8

4s

3s

2s

1s

0s

Mobile
(high DP1)

Mobile

Desktop
(high DPI)

Desktop

After compression

OEBPS/016fig01_alt.jpg
VAL SXPIESS = ISqUire.”express’):
var compression = require ("compr:
var app = express();

don) ;

Compression module is
imported into the script.

// Run static server
app.use (compression()) 1

app.use (express .static(_dirname)) ;
st Liskenteosd)y

Script hooks the compression
module into the web server.

OEBPS/01fig13_alt.jpg
Unoptimized Optimized
(30.87 KB) (11.69 KB)

OEBPS/017fig01_alt.jpg
Checks i the mod_deflate
module s Toaded. Compresses files that match
the provided content types.
IfNodule mod_deflate.c>
AddOutputFilterByType DEFLATE text/html text/css text/javascript
s T

OEBPS/01fig14_alt.jpg
- o C—
vogzein ey
oy R
g e CE—
s oo CE—
P e
s o C—
s o C—

;’J\' © o 0ptoe | 0o | "7

O G

Shrink PNG files

n

H

!
$484454

7

Advanced lossy comgression for PNG Images that preserves full aipha transparency.

