

 [image: cover]

Gnuplot in Action

 Philipp K. Janert

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editors: Marina Michaels
Technical development editor: Ravishankar Rajagopalan
Copyeditor: Tiffany Taylor
Proofreader: Toma Mulligan
Technical proofreader: Clark Gaylord
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781633430181

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Dedication

 The purpose of computing is insight, not numbers.

 R. W. Hamming

 The purpose of computing is insight, not pictures.

 L. N. Trefethen

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Acknowledgments

 About this Book

 1. Getting started

 Chapter 1. Prelude: understanding data with gnuplot

 Chapter 2. Tutorial: essential gnuplot

 Chapter 3. The heart of the matter: the plot command

 2. Creating graphs

 Chapter 4. Managing data sets and files

 Chapter 5. Practical matters: strings, loops, and history

 Chapter 6. A catalog of styles

 Chapter 7. Decorations: labels, arrows, and explanations

 Chapter 8. All about axes

 3. Mastering technicalities

 Chapter

 Chapter 9. Color, style, and appearance

 Chapter 10. Terminals and output formats

 Chapter 11. Automation, scripting, and animation

 Chapter 12. Beyond the defaults: workflow and styles

 4. Understanding data

 Chapter 13. Basic techniques of graphical analysis

 Chapter 14. Topics in graphical analysis

 Chapter 15. Coda: understanding data with graphs

 Appendix A. Obtaining, building, and installing gnuplot

 Appendix B. Resources

 Appendix C. Surface and contour plots

 Appendix D. Palettes and false-color plots

 Appendix E. Special plots

 Appendix F. Higher math

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Acknowledgments

 About this Book

 1. Getting started

 Chapter 1. Prelude: understanding data with gnuplot

 1.1. A busy weekend

 1.1.1. Planning a marathon

 1.1.2. Determining the future

 1.2. What is graphical analysis?

 1.2.1. Why graphical analysis?

 1.2.2. Limitations of graphical analysis

 1.3. What is gnuplot?

 1.3.1. Gnuplot isn’t GNU

 1.3.2. Why gnuplot?

 1.3.3. Limitations

 1.3.4. Gnuplot 5: the best gnuplot there ever was!

 1.4. Summary

 Chapter 2. Tutorial: essential gnuplot

 2.1. Simple plots

 2.1.1. Invoking gnuplot and first plots

 2.1.2. Plotting data from a file

 2.1.3. Abbreviations and defaults

 2.2. Saving commands and exporting graphics

 2.2.1. Saving and loading commands

 2.2.2. Exporting graphs

 2.3. Managing options with set and show

 2.4. Getting help

 2.5. Summary

 Chapter 3. The heart of the matter: the plot command

 3.1. Plotting functions and data

 3.1.1. Plotting functions

 3.1.2. Plotting data

 3.2. Math with gnuplot

 3.2.1. Mathematical expressions

 3.2.2. Built-in functions

 3.2.3. User-defined variables and functions

 3.2.4. Mathematically undefined values and NaN (not a number)

 3.3. Data transformations

 3.3.1. Simple data transformations

 3.4. Logarithmic plots

 3.5. Smooth interpolation and approximation

 3.5.1. Interpolation curves

 3.5.2. Point distributions

 3.5.3. Deduping repeated entries

 3.6. Summary

 2. Creating graphs

 Chapter 4. Managing data sets and files

 4.1. Quickstart: the standard data-file format

 4.1.1. Comments and header lines

 4.1.2. Selecting columns

 4.2. Managing structured data sets

 4.2.1. Multiple data sets per file: index

 4.2.2. Records spanning multiple lines: the every directive

 4.3. File format options in detail

 4.3.1. Number formats

 4.3.2. Comments

 4.3.3. Field separator

 4.3.4. Missing values

 4.3.5. Strings in data files

 4.4. Accessing columns and pseudocolumns

 4.4.1. Accessing columns by position or name

 4.4.2. Pseudocolumns

 4.4.3. Column-access functions

 4.5. Pseudofiles

 4.5.1. Reading data from standard input

 4.5.2. Heredocs

 4.5.3. Reading data from a subprocess

 4.5.4. Writing to a pipe

 4.5.5. Generating data

 4.6. Metadata in data files

 4.7. Other file formats

 4.8. Summary

 Chapter 5. Practical matters: strings, loops, and history

 5.1. Strings

 5.1.1. Quotes

 5.1.2. String operations

 5.1.3. Worked example: plotting the Unix password file

 5.2. String expressions and string macros

 5.2.1. String expressions in commands

 5.2.2. Executing a string with eval

 5.2.3. String macros inside commands

 5.3. Generating textual output

 5.3.1. The print and set print commands

 5.3.2. The set table command and the with table style

 5.3.3. Reading and writing heredocs

 5.4. Simplifying work with inline loops

 5.4.1. Loops over numbers

 5.4.2. Loops over strings

 5.4.3. Summary of inline loops

 5.5. Gnuplot’s internal variables

 5.6. Inspecting file contents with the stats command

 5.6.1. The stats command and internal variables

 5.6.2. Further options for the stats command

 5.7. Command history

 5.7.1. Redrawing a graph

 5.7.2. The general history feature

 5.7.3. Restoring session defaults

 5.8. Summary

 Chapter 6. A catalog of styles

 6.1. Why use different plot styles?

 6.2. Styles and aspects

 6.2.1. Choosing styles inline through with

 6.2.2. The default sequence

 6.2.3. Customizing graph elements

 6.3. A catalog of plotting styles

 6.3.1. Core styles: lines and points

 6.3.2. Indicating uncertainty: styles with error bars or ranges

 6.3.3. Styles with steps and boxes

 6.3.4. Filled styles

 6.3.5. Beyond lines and points: multivariate visualization

 6.4. Putting it together

 6.5. Other styles

 6.6. Summary

 Chapter 7. Decorations: labels, arrows, and explanations

 7.1. Quick start: minimal context for data

 7.2. Understanding layers and locations

 7.2.1. Locations

 7.2.2. Layers

 7.3. Additional graph elements: decorations

 7.3.1. Common conventions

 7.3.2. Arrows

 7.3.3. Text labels

 7.3.4. Shapes or objects

 7.4. The graph’s legend or key

 7.4.1. Turning the key on and off

 7.4.2. Placement

 7.4.3. Layout

 7.4.4. Appearance

 7.4.5. Explanations

 7.4.6. Default settings

 7.5. Worked example: features of a spectrum

 7.6. Summary

 Chapter 8. All about axes

 8.1. Multiple axes

 8.1.1. Terminology

 8.1.2. Plotting with two coordinate systems

 8.1.3. Linking axes

 8.2. Selecting plot ranges

 8.2.1. What you need to know for interactive work

 8.2.2. What you might want to know for batch processing

 8.3. Tic marks

 8.3.1. Overview and common conventions

 8.3.2. Tic mark appearance and placement

 8.3.3. Tic labels

 8.3.4. Tic mark location and frequency

 8.3.5. Reading tic labels from file

 8.3.6. Grid and zero axis

 8.4. Special case: time series

 8.4.1. Turning numbers into names: months and weekdays

 8.4.2. General time series: the gory details

 8.4.3. Beyond tic labels: processing date/time information

 8.5. Summary

 3. Mastering technicalities

 Chapter

 Chapter 9. Color, style, and appearance

 9.1. Color

 9.1.1. Explicit colors

 9.1.2. Alpha shading and transparency

 9.1.3. Selecting a color through indexed lookup

 9.1.4. Mapping a value into a continuous gradient

 9.1.5. Using data-dependent colors

 9.1.6. The built-in color sequences

 9.1.7. Tips and tricks

 9.2. Lines and points

 9.2.1. Point types and shapes

 9.2.2. Dash pattern

 9.3. Customizing color, dash, and point sequences

 9.3.1. Customizing line types

 9.3.2. Special line types

 9.4. Global styles

 9.4.1. Data and function styles

 9.4.2. Line styles

 9.4.3. Arrow styles

 9.4.4. Fill styles

 9.4.5. Other global styles

 9.5. Overall appearance: aspect ratio and borders

 9.5.1. Size and aspect ratio

 9.5.2. Borders

 9.5.3. Margins

 9.5.4. Internal variables

 9.6. Summary

 Chapter 10. Terminals and output formats

 10.1. The terminal abstraction

 10.1.1. Historical digression

 10.1.2. The terminal workflow

 10.1.3. Terminal capabilities and the test command

 10.2. Font selection and enhanced text mode

 10.2.1. Font selection

 10.2.2. Font resolution

 10.2.3. Enhanced text mode

 10.2.4. Worked example

 10.3. Generating PNG and PDF with cairo-based terminals

 10.4. Using gnuplot with LaTeX

 10.4.1. Including a graph in a LaTeX document

 10.4.2. Using the cairolatex terminal

 10.4.3. Letting LaTeX generate the graph

 10.5. Scalable graphics for the Web with SVG and HTML5

 10.5.1. The svg terminal

 10.5.2. The canvas terminal

 10.6. Interactive terminals

 10.6.1. Common options

 10.6.2. The wxt and qt terminals

 10.6.3. The aqua terminal

 10.6.4. The windows terminal

 10.7. Other terminals

 10.8. Summary

 Chapter 11. Automation, scripting, and animation

 11.1. Loops and conditionals

 11.1.1. Worked example: making graph paper

 11.1.2. Worked examples: iterating over files

 11.1.3. Worked examples: Taylor series and Newton’s method

 11.2. Command files

 11.2.1. Scripts as subroutines

 11.2.2. Worked example: export script

 11.3. Batch processing

 11.3.1. Using gnuplot in shell pipelines

 11.4. Calling gnuplot from other programs

 11.4.1. Worked example: calling gnuplot from Perl

 11.4.2. Worked example: calling gnuplot from Python

 11.4.3. Helpful hints

 11.5. Animations

 11.5.1. Introducing a delay

 11.5.2. Waiting for a user event

 11.5.3. Further examples

 11.6. Case study: continuously monitoring a live data stream

 11.6.1. Using gnuplot to monitor a file

 11.6.2. Using a driver to monitor arbitrary data sources

 11.7. Summary

 Chapter 12. Beyond the defaults: workflow and styles

 12.1. The standard interactive workflow

 12.1.1. Extracting specifics from command files

 12.1.2. Extending the command set

 12.1.3. Session variables, loops, and macros

 12.2. Using external editors and viewers

 12.3. Invoking shell commands from gnuplot

 12.3.1. Worked example: plotting each file in a directory

 12.4. Hotkeys and mousing

 12.4.1. Default hotkeys

 12.4.2. Mousing

 12.4.3. Custom hotkeys

 12.4.4. Capturing mouse events

 12.4.5. Case study: placing arrows and labels with the mouse

 12.5. Startup configurations and initialization

 12.5.1. Startup and initialization files

 12.5.2. Environment variables

 12.5.3. Gnuplot command-line flags

 12.6. Stylesheets

 12.6.1. Worked example: stylesheets

 12.7. Summary

 4. Understanding data

 Chapter 13. Basic techniques of graphical analysis

 13.1. Representing relationships

 13.1.1. Scatter plots

 13.1.2. Highlighting trends

 13.2. Logarithmic plots

 13.2.1. Large variations in data

 13.2.2. Power-law behavior

 13.3. Point distributions

 13.3.1. Summary statistics and box plots

 13.3.2. Jitter plots and histograms

 13.3.3. Kernel density estimates and rug plots

 13.3.4. Cumulative distribution functions

 13.4. Ranked data

 13.5. Pie charts

 13.6. Organizational issues

 13.6.1. The lifecycle of a graph

 13.6.2. Input data files

 13.6.3. Output files

 13.7. Presentation graphics

 13.8. Summary

 Chapter 14. Topics in graphical analysis

 14.1. Techniques for time-series plots

 14.1.1. Plotting an Apache web server log

 14.1.2. Smoothing and differencing

 14.1.3. Monitoring and control charts

 14.1.4. Changing composition and stacked curves

 14.2. Graphical techniques for multivariate data sets

 14.2.1. Introduction

 14.2.2. Distribution of values by attribute

 14.2.3. Distribution by level

 14.2.4. Scatter-plot matrix

 14.2.5. Parallel-coordinates plot

 14.3. Visual perception

 14.3.1. Banking

 14.3.2. Judging lengths and distances

 14.3.3. Plot ranges and whether to always include zero

 14.4. Summary

 Chapter 15. Coda: understanding data with graphs

 Appendix A. Obtaining, building, and installing gnuplot

 A.1. Inspecting compile-time options

 A.2. Release and development versions

 A.3. Installing a prebuilt package

 A.3.1. Linux

 A.3.2. Mac OS X

 A.3.3. Windows

 A.4. Building from source

 A.4.1. Obtaining the development version from CVS

 A.4.2. Layout of the source tree

 A.4.3. Building and installing

 Appendix B. Resources

 B.1. Gnuplot

 B.1.1. Websites

 B.1.2. Books

 B.2. Data repositories

 B.3. Books

 Appendix C. Surface and contour plots

 C.1. Surface plots

 C.1.1. The splot command

 C.1.2. Special options for surface plots

 C.2. View point and coordinate axes

 C.2.1. Borders and base plane

 C.2.2. View point

 C.3. Contour lines and contour plots

 C.3.1. Contour plots

 C.3.2. Customizing contour lines and their labels

 C.4. Plotting data from a file using splot

 C.4.1. Grid format

 C.4.2. Matrix format

 C.5. Smooth surfaces

 C.5.1. The set dgrid3d facility

 Appendix D. Palettes and false-color plots

 D.1. Warm-up examples

 D.2. Creating palettes

 D.2.1. Color models and components

 D.2.2. Defining palettes through nodes

 D.2.3. Defining palettes with functions

 D.2.4. Displaying and exporting palettes

 D.2.5. Some example palettes

 D.3. The colorbox

 D.3.1. Mapping the plot range to the palette

 D.4. Using palettes

 D.4.1. Colored surface plots with pm3d

 D.5. False-color plots

 D.5.1. Using points

 D.5.2. Using the pm3d style

 D.5.3. Using the image style

 D.6. Case study: coloring the Mandelbrot set

 D.7. Case study: an interactive palette explorer

 D.8. Further reading

 Appendix E. Special plots

 E.1. Multiplot

 E.1.1. Using multiplot mode

 E.1.2. Layout options and the set multiplot command

 E.1.3. Regular arrays of graphs with layout

 E.1.4. Accommodating marginal labels with margins and spacing

 E.1.5. Graphs within a graph

 E.2. Box-and-whisker plots

 E.2.1. Individual box-and-whisker plots

 E.2.2. Serial box-and-whisker plots

 E.3. Parallel coordinates

 E.3.1. Creating parallel-coordinates graphs

 E.3.2. Worked example: Iris data, again

 E.4. Histograms

 Appendix F. Higher math

 F.1. Parametric plots

 F.2. Non-Cartesian coordinates

 F.2.1. Polar coordinates

 F.2.2. Cylindrical and spherical coordinates

 F.3. Vector fields

 F.3.1. Plane vector fields with plot

 F.3.2. Three-dimensional vectors with splot

 F.4. Built-in mathematical functions

 F.5. Complex numbers

 F.5.1. Application: Mandelbrot set (pure gnuplot)

 F.6. Probability plots

 F.6.1. Adding a probability scale

 F.7. Curve fitting

 F.7.1. Background

 F.7.2. A worked example

 F.7.3. Using the fit command

 F.7.4. Practical advice

 F.7.5. Options for the fit command

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 Knee-deep in data? This is your guidebook to exploring it with gnuplot.

 Austin King Mozilla

 Sparkles with insight about visualization, image perception, and data exploration.

 Richard B. Kreckel GiNaC.de

 Incredibly useful for beginners—indispensable for advanced users.

 Mark Pruett Dominion

 Bridges the gap between gnuplot’s reference manual and real-world problems.

 Mitchell Johnson Border Stylo

 A Swiss Army knife for plotting data.

 Nishanth Sastry University of Cambridge / IBM

 Plain and simple: if you use Gnuplot and would like to understand it better, this book is for you. If you are looking for
 an excellent plotting tool—one that is highly configurable and can easily handle millions of data points, then download Gnuplot
 and get this book.

 Amazon reviewer

Preface

 On New Year’s Day, 2015, the gnuplot development team released version 5.0—the first major new gnuplot release in over 10
 years! I decided to take this opportunity to bring Gnuplot in Action up to date and to cover all the new features gnuplot has acquired since the first edition of this book was written (in 2007).

 It quickly became apparent it wouldn’t be sufficient to just add a couple of chapters explaining the new features. In fact,
 the book you’re reading now has been almost entirely rewritten from scratch. Most of the material from the first edition has
 been retained, but it’s been heavily rearranged to accommodate the addition of new topics and to reflect the changes in my
 own understanding and priorities.

 Gnuplot 5 is largely backward compatible with previous versions, and hence most of the first edition remains valid. At the
 same time, new features have been added to all parts of gnuplot, either to add new functionality or to streamline and improve
 the existing usage. Although many of the new features are small by themselves, when taken together, their cumulative effect
 leads to a significantly different, more sophisticated user experience.

 In the process, the book’s page count has increased substantially from the first edition. To keep the physical dimensions
 of the printed book in check without having to sacrifice important and useful material, some topics of a more specialized
 nature have been relegated to the electronic (e-book) version. Access to the e-book is included in the purchase of a print
 copy of the book.

 Today, gnuplot is still going strong. Despite increased competition, gnuplot’s two most attractive features are still largely
 unmet by other tools:

 	The ability to explore data graphically, with an absolute minimum of effort, protocol, overhead, or boilerplate

 	The ability to create immaculate, very high-quality graphs, with text labels and other decorations, for presentation purposes

 What’s new is that gnuplot has arrived in the 21st century. Color is now the standard, font handling is up to date, and the
 graphing backend makes use of all contemporary technologies to create the best-looking graphs possible.

 In the first edition, I wrote that gnuplot was “an indispensable part of my toolbox: one of the handful of programs I can’t
 do without.” Several years on, this is still true.

Acknowledgments

 During the preparation of this book, I enjoyed conversations and correspondence with Austin King, Richard Kreckel, Ethan Merritt,
 Dawid Weiss, Bastian Märkisch, Daniel Sebald, Petr Mikulik, Chris Mague, Luis Moux-Dominguez, and Lee Phillips. Christoph
 Bersch, Zoltán Vörös, and Clark Gaylord read drafts of this book and provided many detailed suggestions; Mojca Miklavec answered
 several specific questions with meticulous care. Others who read the draft manuscript include Ryan Balfanz, Martin Beer, Andrew
 Bovill, Vitaly Bragilevsky, Anthony Cramp, Wolfgang Ecker-Lala, Wesley R. Elsberry, Nitin Gode, David Kerns, Pavol Kral, Mathew
 Peet, Ravishankar Rajagopalan, Karl-Friedrich Ratzsch, Jonathan Rioux, Mike Shepard, and Arthur Zubarev.

 I would also like to acknowledge the tremendous impact that Wikipedia has had on the way I work. When I prepared the first
 edition, obtaining even basic information on topics such as color spaces, Bézier curves, and the Mandelbrot set was a real
 challenge—difficult, time consuming, and not always successful. For all its faults and deficiencies, Wikipedia has made it
 tremendously much easier to obtain at least an initial introduction (and often quite a bit more) to an incredibly wide range
 of topics. It is a stunning achievement.

 Finally, I want to thank the people at Manning who made this book possible: publisher Marjan Bace and everyone on the editorial
 and production teams, including Mary Piergies, Marina Michaels, Kevin Sullivan, Tiffany Taylor, Dottie Marsico, and many others
 who worked behind the scenes.

About this Book

 This book is intended to be a comprehensive introduction to gnuplot: from the basics to the power features and beyond. In
 addition to providing a tutorial on gnuplot itself, it demonstrates how to apply and use gnuplot to extract insight from data.

 The gnuplot program has always had complete and detailed reference documentation, but what was often missing was a continuous
 presentation that tied all the different bits and pieces of gnuplot together and demonstrated how to use them to achieve certain
 tasks. This book attempts to fill that gap. It should also serve as a handy reference for more advanced gnuplot users and
 as an introduction to graphical ways of knowledge discovery.

 And finally, this book tries to show you how to use gnuplot to achieve some surprisingly nifty effects that will make everyone
 say, “How did you do that?”

Contents of this book

 This book is divided into four parts. Part 1 consists of chapters 1 through 3 and is intended as a tutorial introduction to get you started with gnuplot. These three chapters cover all the truly essential
 material so that by the end of chapter 3, you should be able to handle most basic plotting tasks in gnuplot.

 Whereas part 1 only skims the surface, part 2 goes into depth. First, chapters 4 and 5 lay more groundwork by talking about the ins and outs of file formats, string handling, and other practical matters. Then,
 chapters 6 through 8 discuss the various ways to change the appearance of a plot: using different plotting styles; adding labels, arrows, or other
 decorations; and changing the axes and their subdivisions. These chapters cover the tactical aspects of working with gnuplot
 in detail.

 Part 3 turns its attention away from individual graphs and addresses a variety of more technical aspects. First, in chapter 9, you’ll learn more about color specification, point and line types, and other relatively low-level graph elements. Chapter 10 explains how to export plots to common graphics file formats. Finally, chapters 11 and 12 address ways to improve the overall workflow through scripting and configuration changes.

 In the last part, I’ll mostly take gnuplot’s features for granted and concentrate on the things you can do with them. Chapter 13 presents various fundamental types of graphs and explains when and how to use them. Chapter 14 is more advanced and offers solutions to some recurring topics in graphical analysis, before we end the book with a reminder
 of what it’s all about in chapter 15.

 The book has several appendixes. Appendix A explains how to obtain, build, and install gnuplot. Appendix B provides pointers to some relevant resources.

 Finally, some topics of a more specialized character have been relegated to a set of supplemental appendixes: appendixes C and D discuss three-dimensional surface plots and false-color plots (heatmaps), appendix E treats some special types of graphs, and appendix F covers more mathematical topics. To reduce the physical dimensions of the print book, these four appendixes are only available
 in the electronic (e-book) version of this book. The purchase of a hard copy includes access to the e-book as well—you can
 find instructions in the front of the print book.

 	

 Tip

 Appendixes C through F are only available in the e-book version of this book, which is included with the purchase of the hard-copy version. Check
 the front of the print book for instructions on how to obtain the e-book.

 	

How to read this book

 This book was written as if readers were going to read it sequentially, cover to cover. New material is presented in order,
 with later chapters relying only on topics introduced earlier and avoiding forward references as much as possible. I realize
 that this is not a realistic picture and that the need for technical information tends to arise in a much more disjointed
 manner. In this spirit, I offer a few different “trail maps” to the material presented here:

 	If you’re new to gnuplot, begin with chapters 2 and 3 and then dive into chapters 4–8 as required to pick up the skills you need to complete whatever task you want to accomplish.

 	If you’re comfortable creating day-to-day graphs with gnuplot, then the material in chapters 9–12 should help you achieve greater efficiency in your work and fine-tune the results.

 	If you’ve been using gnuplot for a long time already, then make sure you read up on the new features in gnuplot 5. Chapters 5, 9, and 10, as well as parts of chapters 11 and 12 will probably be of the most immediate interest to you.

 	If you’re new to graphical analysis, you may want to begin with chapter 13 to learn some of the basic methods and concepts.

 Finally, keep in mind that some interesting and useful material is only available in the e-book. Three-dimensional surface
 and contour plots are discussed in appendix C. False-color plots (heatmaps) are treated in appendix D, together with guidelines for how to construct effective color gradients for data visualization. Appendix E explains how to combine individual graphs into composites and also discusses some other specialized types of graphs. Appendix F treats topics of a more mathematical nature.

Whom this book is for

 This book is intended for anyone who wants to plot and visualize data, either to explore data sets graphically, or to create
 attractive, high-quality graphs for presentation and publication purposes. I had two kinds of people in mind when writing
 this book—those who already know gnuplot, and those who don’t:

 	If you already know gnuplot, I hope you’ll still find it a useful reference, in particular in regard to some of the more advanced
 topics later in the book. I’ve tried to provide exactly the big-picture explanations and examples that have always been missing
 from the standard gnuplot reference documentation.

 	If you’re new to gnuplot, I think you’ll find it easy enough to pick up—in fact, I can promise you that by the end of chapter 2, you’ll be productive with gnuplot; and by the end of chapter 3, you’ll be well equipped for most day-to-day data graphing tasks that may come your way.

 This book doesn’t require a strong background in mathematical methods or any in statistics, but I occasionally do expect you
 to have at least a fleeting familiarity with simple programming concepts. A few sections naturally require some special preliminaries
 (for instance, some of the discussions in chapter 10 require knowledge of LaTeX, and some sections in chapter 11 use Perl or Python code), but you can safely skip those sections if their material doesn’t apply to you.

Conventions

 I spell the name of the program in all lowercase (gnuplot), except at the beginning of a sentence, when I capitalize it normally.
 This is in accordance with the usage recommended in the gnuplot FAQ.

 The gnuplot documentation is extensive, and I refer to it occasionally for additional details on topics covered only briefly
 or not at all here. Traditionally, the gnuplot documentation has been called the online help or online documentation, owing
 to the fact that it’s available online during a gnuplot session. But since the advent of the internet, the word online seems to suggest network connectivity—falsely, in this context. To avoid confusion, I’ll always refer to it as the standard gnuplot reference documentation.

Code examples

 Gnuplot commands are shown using a monospace font, like this: plot sin(x). Gnuplot commands can be entered at the gnuplot command prompt as shown in the text; the prompt itself has been suppressed
 to save space.

 Single command lines can be long; to make them fit on a page, I occasionally had to break them across multiple lines. If so,
 a gray arrow ([image:]) has been placed at the beginning of the next line, to indicate that it is the continuation of the previous one:

 plot "data" using 1:2 smooth csplines title "data" with lines,
[image:] sin(x) title "model"

 The break in the original line isn’t indicated separately. When using gnuplot in an interactive session, your terminal program
 should automatically wrap a line that’s too long. Alternatively, you can break lines by escaping the newline with a backslash
 as usual. This is useful in command files for batch processing (and you’ll see some examples in chapter 12 in the context of string macros).

 Some code snippets are only intended to demonstrate the syntax and don’t have a graph associated with them. In this case,
 I use the generic name “data” as a placeholder for the actual filename. No file named data exists in the downloads (in the same way that no key named any can be found on a computer keyboard). It’s just a generic placeholder.

 Occasionally, I show Unix commands that need to be entered in a Unix shell; to emphasize that these aren’t gnuplot commands,
 I prefix them with a generic shell prompt, like this: shell>. Similarly, Python commands to be entered in a Python session are prefixed with python>>>.

Downloads

 The code for all numbered listings is available for download from www.manning.com/books/gnuplot-in-action-second-edition, and so are the data sets. The only exception to this are publicly available data sets: for these, I provide the URL where
 they can be found.

 Gnuplot searches for data files in the current directory, so the easiest way to run the supplied command files is as follows:

 1. Change into the data directory of the downloaded bundle.

 2. Start gnuplot.

 3. Issue plot commands at the gnuplot prompt the way they’re shown in the text (for example, plot "marathon" using 1:2), or give the full pathname to the gnuplot command file that you wish to run (for example, load "../gnuplot/shapes.gp").

Command synopses

 Gnuplot has a large number of options, and keeping all of them and their sub-options and optional parameters straight is a
 major theme running through this book. Frequently, I’ll display all available options to a command in a command synopsis before
 discussing the options in detail. To distinguish a synopsis of available options from actual gnuplot code, a synopsis uses
 an italic font, like so:

 set datafile commentschar ["{str:chars}"]

 Within these summaries, I use a few syntactic conventions. My intent here is to stay close to the usage familiar from the
 standard gnuplot reference documentation, but also to follow more general conventions (such as those used for Unix man pages):

 [image:]

 For parameters supplied by the user, it’s often not clear from the context what kind of information the command expects: is
 it a string or a number? If it’s a number, is it a value selected from a fixed range of integers or a numerical factor? And
 so on. I’ve tried to clarify this situation by prefixing each user-supplied input parameter with a type indicator, terminated
 by a colon. I summarize the prefixes and their meanings in table 1.

 Table 1. Type indicators for user-supplied parameters

 	
 Prefix

 	
 Description

 	str:
 	A string

 	int:
 	An integer number

 	flt:
 	A floating-point number

 	idx:
 	An integer number, which is interpreted as a selection from a fixed range of values

 	clr:
 	A color specification—for example, rgbcolor "red" or rgb "#FFFF00"

 	pos:
 	A pair of comma-separated coordinates, optionally containing coordinate system specifiers—for example, 0,0 or first 1.1, screen
 0.9

 	enum:
 	A gnuplot keyword as unquoted string

Abbreviations

 Many gnuplot commands have abbreviated forms, which I use frequently. The essential plot command, in particular, takes a large number of keyword directives, which I usually abbreviate to save space and keystrokes.
 I strongly recommend that you quickly become familiar with these shorthands and use them yourself. Table 2 lists both the abbreviated and the full forms. The plot command also understands a large number of appearance options (controlling aspects such as line width, style, and color),
 which are generally also abbreviated. A comprehensive summary of appearance options, together with their shorthands, can be
 found in table 6.1.

 Table 2. Abbreviations for frequently used directives to the plot command

 	
 Abbreviation

 	
 Full

 	i
 	index

 	ev
 	every

 	u
 	using

 	s
 	smooth

 	s acs
 	smooth acsplines

 	s f
 	smooth frequency

 	s kdens
 	smooth kdensity

 	t
 	title

 	w
 	with

 	w l
 	with lines

 	w linesp or w lp
 	with linespoints

 	w p
 	with points

 	w vec
 	with vectors

 Table 3 lists three frequently occurring commands that are also usually abbreviated.

 Table 3. Abbreviations for frequently occurring commands

 	
 Abbreviation

 	
 Full

 	set t
 	set terminal

 	set o
 	set output

 	set logsc
 	set logscale

The figures in this book

 The graphs in this book were generated with gnuplot; some special cases were handled using pic. All graphs were originally
 prepared in color, using my own set of preferred colors instead of one of gnuplot’s default color schemes. The color versions
 of the graphs are used in the electronic (e-book) version of this book. For the print book, I prepared black-and-white versions
 through the application of an appropriate stylesheet (see chapter 12). A handful of graphs required manual touch-ups in addition to the monochrome stylesheet to yield an optimal appearance.

 You’ll find the line-type definitions of both the color and the black-and-white stylesheets in table 4. The same colors and dash patterns are discussed in listings 12.7 and 12.9.

 In particular in the latter part of the book, I frequently use point types (point shapes) that aren’t the default, because
 the visual appearance of the graphs can often be improved greatly this way. If so, the point type is usually chosen explicitly
 in the appropriate code examples and listings.

 The final version of each figure was generated using the pdfcairo terminal, using a (non-default) aspect ratio of √2 to 1 and Helvetica as the requested font.

 Table 4. Colors and dash patterns used for the color and monochrome figures in this book

 	
 Color

 	
 Monochrome

 	set linetype 1 lc rgb '0xee0000'
 	set linetype 1 lc black dt solid

 	set linetype 2 lc rgb '0x008b00'
 	set linetype 2 lc black dt (8,6)

 	set linetype 3 lc rgb '0x0000cd'
 	set linetype 3 lc black dt (4,3)

 	set linetype 4 lc rgb '0xff3fb3'
 	set linetype 4 lc black dt (3,6)

 	set linetype 5 lc rgb '0x00cdcd'
 	set linetype 5 lc black dt (12,5,2,5,2,5)

 	set linetype 6 lc rgb '0xcd9b1d'
 	set linetype 6 lc black dt (16,8)

 	set linetype 7 lc rgb '0x8968cd'
 	set linetype 7 lc black dt (20,6,2,6)

 	set linetype 8 lc rgb '0x8b8b83'
 	set linetype 8 lc black dt (30,10)

Hardware and software requirements

 This book describes gnuplot version 5.0 or higher, which was initially released in early 2015. Not all examples in this book
 will work with earlier gnuplot versions. If you have an earlier version of gnuplot, you should upgrade to a more current version—appendix A tells you how.

 I assume you have access to a reasonably modern computer running any flavor of Unix/Linux, a recent release of MS Windows,
 or Mac OS X. Gnuplot has been ported to many other platforms but is actively supported primarily on the three operating systems
 just mentioned, and so I concentrate on them in this book.

Reference materials

 Command and option references are distributed throughout the book, wherever the material is first introduced. The following
 pointers are intended to help you find these summaries more easily.

Graphical styles and specifications

 	Appearance specifiers and line options
 	Table 6.1
 	page 104

 	Graph locations
 	Figure 7.2
 	page 128

 	Graph layers
 	Figure 7.3
 	page 129

 	Explicit color-specification formats
 	Table 9.1
 	page 184

 	Point types
 	Figure 9.7
 	page 196

 	Dash patterns
 	Table 9.2
 	page 197

File access

 	Column-access methods and functions
 	Table 4.2
 	page 67

 	Pseudofiles
 	Table 4.3
 	page 71

 	Metadata in data files
 	Table 4.4
 	page 76

String handling and formatting

 	String functions
 	Table 5.1
 	page 81

 	General conversion specifiers
 	Table 8.2
 	page 160

 	Accuracy specifiers
 	Table 8.3
 	page 160

 	Time-series conversions, sorted alphabetically
 	Table 8.4
 	page 172

 	Time-series conversions, sorted by topic
 	Table 8.5
 	page 173

 	Time functions
 	Table 8.6
 	page 176

 	Enhanced text mode
 	Table 10.1
 	page 218

Operators and mathematical functions

 	Unary operators
 	Table 3.1
 	page 35

 	Binary operators
 	Table 3.2
 	page 35

 	Mathematical functions
 	Table F.1
 	page F11

 	Complex numbers
 	Table F.2
 	page F13

Programming constructs

 	Inline loops
 	Listing 5.3
 	page 92

 	General loops and conditionals
 	Table 11.1
 	page 238

About the author

 PHILIPP K. JANERT was born and raised in Germany. He obtained a Ph.D. in theoretical physics from the University of Washington
 in 1997 and has been working in the tech industry ever since, including four years at Amazon.com, where he initiated and led
 several projects to improve Amazon’s order-fulfillment process. He’s the author of several books on data analysis and applied
 math, including the best-selling Data Analysis with Open Source Tools (O’Reilly, 2010). He has contributed to CPAN and is an occasional committer on the gnuplot project. Visit his company website
 at www.principal-value.com.

Author Online

 Purchase of Gnuplot in Action, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the lead author and from other users. To access the forum and subscribe to it, point your
 web browser to www.manning.com/books/gnuplot-in-action-second-edition. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to Author Online remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions lest his interest stray! The Author Online forum and the archives of previous discussions will be accessible from
 the publisher’s website as long as the book is in print.

About the cover

 The figure on the cover of Gnuplot in Action, Second Edition is captioned “A peer of France.” The title of Peer in France was held by the highest-ranking members of the French nobility.
 It was an extraordinary honor granted only to a few dukes, counts, and princes of the church. The illustration is taken from
 a 19th-century edition of Sylvain Maréchal’s four-volume compendium of regional dress customs published in France. Each illustration
 is finely drawn and colored by hand.

 The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just
 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside,
 it was easy to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It’s now hard to tell
 apart the inhabitants of different continents, let along different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it’s hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Getting started

 Gnuplot is a tool for visualizing data and mathematical functions. The chapters in this first part will give a first introduction
 to gnuplot and its most important features. Chapter 1 introduces gnuplot and describes the kinds of problems it’s designed to solve. Chapter 2 provides a quick tutorial to gnuplot. By the end of this chapter, you’ll be able to prepare simple plots with gnuplot and
 to save and export your work. Chapter 3 takes a detailed look at the all-important plot command, which is used to generate most graphs in gnuplot. You’ll also learn about inline transformations and built-in smoothing
 methods.

Chapter 1. Prelude: understanding data with gnuplot

 This chapter covers

 	Warmup examples

 	What is graphical analysis?

 	What is gnuplot?

 	

 Note to Print Book Readers

 Some material of a more specialized nature is only available in the e-book version of this book. The e-book also shows all
 the graphs in color. To get your free e-book in PDF, ePub, or Kindle format, go to www.manning.com/books/gnuplot-in-action-second-edition to register your print book.

 	

 Gnuplot has long been one of the most popular open source programs for plotting and visualizing data. In this book, I want
 to show you how to use gnuplot to make plots and graphs of your data: both quick and easy graphs for your own use and highly
 polished graphs for presentations and publications.

 But I also want to show you something else: how to solve data-analysis problems using graphical methods. The art of discovering
 relationships in data and extracting information from it by visual means is called graphical analysis, and I believe gnuplot to be an excellent tool for it.

 As a teaser, let’s look at some problems and how you might be able to approach them using graphical methods. The graphs here
 and in the rest of the book (with very few exceptions) have been, of course, generated with gnuplot.

1.1. A busy weekend

 To get a feeling for the kinds of problems you may be dealing with and for the kinds of solutions gnuplot can help you find,
 let’s look at two examples. Both take place during a long, busy weekend.

 1.1.1. Planning a marathon

 Imagine you’re in charge of organizing the local city marathon. There will be more than 2,000 starters, traffic closed around
 the city, plenty of spectators—and a major Finish Line Festival to celebrate the victors. The big question is: when should
 the Finish Line crew be ready to deal with the majority of runners? At what point do you expect the big influx of the masses?

 You have the results from last year’s event. Assuming that the starters haven’t improved dramatically over the last year (probably
 a safe assumption), you do a quick average of the completion times and find that last year’s average was 282 minutes. To be
 on the safe side, you calculate the standard deviation as well, which comes out to about 50 minutes. So you tell your crew
 to be ready for the big rush starting three and a half hours (210 minutes) after the start, and you feel reasonably well prepared
 for the event.

 So it comes as a surprise when on the big day, plenty of runners start showing up at the finish line after only two hours—a
 good 90 minutes earlier than the expected onset of the rush. In terms of event management, the number of runners who show
 up early isn’t overwhelming, but it’s a bit strange. The next day you wonder: what went wrong?

 Let’s look at the data to see what you can learn about it. So far, all you know are the mean and the standard deviation.

 The mean is convenient: it’s easy to calculate, and it summarizes the entire data set in a single number. But in forming the
 mean, you lost a lot of information. To understand the entire data set, you have to look at it. And because you can’t understand data by looking at more than 2,000 individual finish times, this means you have to
 plot it.

 It will be convenient to group the runners by completion time and to count the number of participants who finished during
 each five-minute interval. The resulting file might start like this:

 # Minutes Runners
135 1
140 2
145 4
150 7
155 11
160 13
165 35
170 29
...

 Now you plot the number of runners against the completion time (see figure 1.1). It’s immediately obvious where you went wrong: the data is bimodal, meaning it has two peaks. There is an early peak at around 180 minutes and a later main peak at 300 minutes.

 Figure 1.1. Number of finishers vs. time to complete (in minutes)

 [image:]

 Actually, this makes sense: a major sporting event such as a city marathon attracts two very different groups of people: athletes,
 who train and compete throughout the year and are in it to win, and a much larger group of amateurs, who come out once a year
 for a big event and are mostly there to participate. The problem is that for such data, the mean and standard deviation are
 obviously bad representations—so much so. that at the time when you expected the big rush (200 minutes), there’s a lull at
 the finish line!

 The take-home message here is that it’s usually not a good idea to rely on summary statistics (such as the mean) for unknown
 data sets. You always should investigate what the data looks like. Once you’ve confirmed the basic shape, you can choose how to summarize your
 findings best.

 And of course, there is always more to learn. In this example, for instance, you see that after about 400 minutes, almost
 everybody has made it, and you can start winding down the operation. The actual “tail” of the distribution is quite small—surprisingly
 so. (I would’ve expected to see a greater number of stragglers, but possibly many runners who are really slow drop out of the race when they realize they’ll place badly.)

Using Gnuplot

 Let’s look at the gnuplot command that was used to generate figure 1.1. Gnuplot is command-line oriented: after you start gnuplot, it drops you into an interactive command session, and all commands
 are typed at the interactive gnuplot prompt.

 Gnuplot reads data from simple text files, with the data arranged in columns as shown previously. To plot a data file takes
 only a single command, plot, like this:[1]

 1

Depending on your gnuplot setup and initialization, your graphs may look slightly different from the figures shown in this
 chapter. We’ll discuss user-defined appearance options starting with chapter 6.

 plot "marathon" using 1:2 with boxes

 The plot command requires the name of the data file as argument in quotes. By default, gnuplot looks for the data file in the current
 working directory—normally the directory from which you started gnuplot. The filename provided to the plot command may contain path information to refer to a file that doesn’t reside in the current directory.

 The rest of the command line specifies which columns to use for the plot and in which way to represent the data. The using 1:2 declaration tells gnuplot to use the first and second columns in the file called marathon. The final part of the command,
 with boxes, selects a box style, which is often suitable to display counts of events.

 Gnuplot handles most everything else by itself: it sizes the graph and selects the most interesting plot range, it draws the
 border, and it draws the tic marks and their labels. All these details can be customized, but gnuplot typically does a good
 job at anticipating what the user wants.

 	

 Note

 The little markers along the edge that define the scale of the corresponding axis are called tick marks (or tic marks). The gnuplot standard reference documentation uses the spelling tic mark; the relevant commands are called set xtics, set ytics, and so on. In order to avoid confusion, I use the same spelling (tic) throughout this book.

 	

 1.1.2. Determining the future

 The same weekend when 2,000 runners are running through the city, a diligent graduate student is working on his research topic.
 He studies diffusion limited aggregation (DLA), a process wherein a particle performs a random walk until it comes into contact
 with a growing cluster of particles. At the moment of contact, the particle sticks to the cluster at the location where the
 contact occurred and becomes part of the cluster. Then a new random walker is released to perform a random walk, until it sticks to the cluster. And so on. Clusters grown through this process have a remarkably open, tenuous structure (as shown
 in figure 1.2): they’re fractals.[2]

 2

The original paper on DLA was “Diffusion Limited Aggregation, A Kinetic Critical Phenomenon” by T. A. Witten and L. M. Sander,
 Physical Review Letters 41 (1981): 1400. It’s one of the most-quoted papers from that journal of all time. If you want to learn more about DLA and
 similar processes, check out Fractals, Scaling, and Growth Far From Equilibrium by Paul Meakin (Cambridge University Press, 1998).

 Figure 1.2. A DLA cluster of N=50,000 particles, drawn with gnuplot

 [image:]

 The DLA process is simple, so it seems straightforward to write a program to grow such clusters in a computer, and this is
 what the busy graduate student has done. Initially, all seems well; but as the simulation progresses, the cluster appears
 to grow more and more slowly—excruciatingly slowly, in fact. The goal was to grow a DLA cluster in excess of 100,000 particles.
 Will the program ever finish?

 Luckily, the simulation program periodically writes information about its progress to a log file: for each new particle added
 to the cluster, the time (in seconds) since the start of the simulation is recorded. The grad student should be able to predict
 the completion time from this data, but an initial plot (figure 1.3) isn’t helpful; there are too many ways this curve can be extrapolated to larger cluster sizes.

 Figure 1.3. Time required to grow a DLA cluster

 [image:]

 The time consumed by many computer algorithms grows as a simple power of the size of the problem. In this case, this would
 be the number N of particles in the cluster T ~ Nk, for some value of k. The research student therefore plots the running time of his simulation program on a double-logarithmic plot versus the
 cluster size (see figure 1.4). The data points fall on a straight line, indicating a power law. (I’ll explain later how and why this works.) Through a
 little trial and error, he also finds an equation that approximates the data quite well. The equation can be extended to any
 cluster size desired and will give the time required. For N=100,000 (which was the original goal), he can read off almost T=100,000 seconds (or more), corresponding to more than 24 hours, so there is no point in your friend spending the weekend
 in the lab—he should go out (maybe run a marathon) and come back on Monday, or perhaps work on a better algorithm. (For simulations
 of DLA cluster growth, dramatic speedups over the naive implementation are possible. Try it if you like.)

 Figure 1.4. Time required to grow a DLA cluster in a double-logarithmic plot, together with an approximate mathematical model

 [image:]

Using gnuplot

 Again, let’s see how the graphs in this section were created. The easiest to understand is figure 1.3. Given a file containing two columns, one listing the cluster size and the other listing the completion time, the command
 is just

 plot "runtime" using 1:2 with lines

 The only difference compared to figure 1.1 is the style: rather than boxes, I use line segments to connect consecutive data points: with lines.

 Did you notice that figure 1.3 and figure 1.4 contain more than just data? Both axes are now labelled! Details such as labels and other helpful decorations often make
 the difference between a mediocre and a high-quality graph, because they provide the observer with the necessary context to
 fully understand the graph.

 In gnuplot, all details of a graph’s appearance are handled by setting the appropriate options. To place the labels on the
 x and y axes in figure 1.3, I used

 set xlabel "Cluster size"
set ylabel "Run time [sec]"

 Figure 1.4 is drawn using double-logarithmic axes. This is another option, which is set as follows:

 set logscale

 Figure 1.4 shows two curves: the data together with a best “fit.” Plotting several data sets or mathematical functions together in one
 plot is easy—you list them one after another on the command line for the plot command:

 plot "runtime" using 1:2 title "Data" with lines,
[image:] (x/2500)**3 title "Model"

 This command introduces a further gnuplot feature: the title directive. It takes a string as argument, which is displayed together with a line sample in the plot’s key or legend (visible
 at upper left in figure 1.4).

 Finally, we come to figure 1.2. It’s a somewhat different beast. Notice that the border and the tic marks are missing. The aspect ratio (the ratio of the
 graph’s width to its height) has been constrained to 1, and a single dot has been placed at the position of each particle
 in the cluster. Here are the most important commands that I used:

 unset border
unset xtics
unset ytics

set size square

plot "cluster" using 1:2 with dots

 You can see that gnuplot is simple to use. In the next section, I talk more about using graphical methods to understand a
 data set, before coming back to gnuplot and discussing why it’s my favorite tool for this kind of activity.

1.2. What is graphical analysis?

 The previous two examples should have given you an idea of what graphical analysis is and how it works. The basic steps are
 always the same:

 1. Plot the data.

 2. Inspect it, trying to find some recognizable behavior.

 3. Compare the actual data to data that represents the hypothesis from the previous step (as in the second example earlier,
 when our grad student plotted the running time of the simulation program together with a power-law function).

 4. Repeat.

 You may try more sophisticated things, but this is the basic idea. If the hypothesis in the second step seems reasonably justified,
 you can try to remove its effect—for instance, by subtracting a formula from the data—to see whether there is any recognizable pattern in the residual.
 And so on.

 Iteration is a crucial aspect of graphical analysis: plotting the data this way and that way; comparing it to mathematical
 functions or to other data sets; zooming in on interesting regions or zooming out to detect the overall trend; applying logarithms
 or other data transformations to change its shape; using a smoothing algorithm to tame a noisy data set; and so on. During
 an intense analysis session using a new but promising data set, it’s not uncommon to produce literally dozens of graphs.

 None of these graphs will be around for long. They’re transient, persisting just long enough for you to form a new hypothesis,
 which you’ll try to justify in the next graph you draw. This also means these graphs aren’t polished in any way, because they’re
 the graphical equivalent of scratch paper: notes of work in progress, not intended for anyone but ourselves.

 This isn’t to say that polishing doesn’t have its place. But it comes later in the process: once you know the results of your
 analysis, you need to communicate them to others. At this point, you’ll create permanent graphs, which will be around for
 a long time—maybe until the next departmental presentation, or (if the graph will be part of a scientific publication, for
 instance) possibly forever!

 Such permanent graphs have different requirements: other people must be able to understand them, possibly years later, and
 most likely without you there to explain them. Therefore, graph elements such as labels, captions, and other contextual information
 become very important. Presentation graphs must be able to stand by themselves.

 Presentation graphs also should make their point clearly. Now that you know the results of your analysis, you should find
 the clearest and most easily understood way of presenting your findings. A presentation graph should make one point and make
 it well.

 Finally, some would argue that a presentation graph should look good. Maybe. If it makes its point well, there is no reason
 it shouldn’t be visually pleasing, too. But that’s an afterthought. Even a presentation graph is about the content, not the
 packaging.

 1.2.1. Why graphical analysis?

 Graphical analysis is a discovery tool. You can use it to reveal as-yet-unknown information in data. In comparison to statistical
 methods, it helps you discover new and possibly unexpected behavior.

 Moreover, it helps you develop an intuitive understanding of the data and the information it contains. Because it doesn’t
 require particular math skills, it’s accessible to anyone with an interest and a certain amount of intuition.

 Even if rigorous model building is your ultimate goal, graphical methods still need to be the first step so that you can develop
 a sense for the data, its behavior, and its quality. Knowing this, you can then select the most appropriate formal methods.

 1.2.2. Limitations of graphical analysis

 Of course, graphical analysis has limitations and its own share of problems:

 	
Graphical analysis doesn’t scale. It’s a manual process that can’t easily be automated. Each data set is treated as a separate special case, which isn’t feasible
 if there are thousands of data sets.
 But this problem is sometimes more apparent than real. It can be remarkably effective to generate a large number of graphs
 and browse them without studying each one in great depth. It’s totally possible to scan a few hundred graphs visually, and
 doing so may already lead to a high-level hypothesis regarding the classification of the graphs into a few subgroups, which
 can then be investigated in detail. (Thank goodness gnuplot is scriptable, so preparing a few hundred graphs poses no problem.)

 	
Graphical analysis yields qualitative—not quantitative—results. Whether you regard this as a strength or a weakness depends on your situation. If you’re looking for new behavior, graphical
 analysis is your friend. But if you’re trying to determine the percentage by which a new fertilizer treatment increases crop
 production, quantitative methods are the way to go.

 	
It takes skill and experience. Graphical analysis is a creative process, using inductive logic to move from observations to hypothesis. There is no prescribed
 set of steps to move from a data set to conclusions about the underlying phenomena, and not much can be taught in a conventional
 classroom format.

 But by the same token, it doesn’t require formal training, either. Ingenuity, intuition, and curiosity are the most important
 character traits. Everyone can play this game, if they’re interested in finding out what the data tries to tell them.

1.3. What is gnuplot?

 Gnuplot is a program for exploring data graphically. Its purpose is to generate plots and graphs from data or functions. It
 can produce highly polished graphs, suitable for publication, or simple throw-away graphs when you’re merely playing with
 an idea.

 Gnuplot is command-line–driven: you issue commands at a prompt, and gnuplot redraws the current plot in response. Gnuplot
 is also interactive: the output is generated and displayed immediately in an output window. Although gnuplot can be used as
 a background process in batch mode, typical use is highly interactive. On the other hand, its primary user interaction is
 through a command language, not through a point-and-click GUI interface.

 Don’t let the notion of a command language throw you: gnuplot is easy to use—really easy to use! It takes only one line to read and plot a data file, and most of the command syntax is straightforward and intuitive.
 Gnuplot doesn’t require programming or any deeper understanding of its command syntax to get started.

 This is the fundamental workflow of all work with gnuplot: plot, examine, repeat—until you have found out whatever you wanted
 to learn from the data. Gnuplot perfectly supports the iterative process model required for exploratory work.

 1.3.1. Gnuplot isn’t GNU

 To dispel one common point of confusion right away, gnuplot isn’t GNU software, has nothing to do with the GNU project, and
 isn’t released under the GNU Public License (GPL). Gnuplot is released under a permissive open source license.

 Gnuplot has been around a long time—a very long time! It was started by Thomas Williams and Colin Kelley in 1986. On the gnuplot
 FAQ, Thomas has this to say about how gnuplot was started and why it’s named the way it is:

 I was taking a differential equation class and Colin was taking Electromagnetics, we both thought it’d be helpful to visualize
 the mathematics behind them. We were both working as sys admin for an EE VLSI lab, so we had the graphics terminals and the
 time to do some coding. The posting was better received than we expected, and prompted us to add some, albeit lame, support
 for file data. Any reference to GNUplot is incorrect. The real name of the program is “gnuplot.” You see people use “Gnuplot”
 quite a bit because many of us have an aversion to starting a sentence with a lower case letter, even in the case of proper
 nouns and titles. gnuplot isn’t related to the GNU project or the FSF in any but the most peripheral sense. Our software was
 designed completely independently and the name “gnuplot” was actually a compromise. I wanted to call it “llamaplot” and Colin
 wanted to call it “nplot.” We agreed that “newplot” was acceptable but, we then discovered that there was an absolutely ghastly
 pascal program of that name that the Computer Science Dept. occasionally used. I decided that “gnuplot” would make a nice
 pun and after a fashion Colin agreed.

 1.3.2. Why gnuplot?

 I have already indicated why I like gnuplot, but three primary reasons stand out to me:

 	Gnuplot lends itself to ad hoc, iterative work with a minimum of effort or overhead. Plotting a data file involves only a single command, without the need (for example)
 to load the file into an internal data structure first. Common tasks can be accomplished simply. The absence of most programming
 features helps to keep the workflow focused on creating and analyzing graphs and figures.

 	
Gnuplot is mature and robust. Edge cases are generally detected and handled properly. Gnuplot isn’t picky about input formats and is tolerant of messy
 or poorly formatted data sets.

 	Gnuplot makes it easy to produce polished, high-quality figures, using good colors, fonts, and symbols. The default appearance of most graph elements is generally well-chosen or can be
 customized easily. Manipulating low-level graph elements, although possible, is rarely necessary.

 In addition, gnuplot is scriptable and can handle large data sets. Its reliance on plain text files for data sets makes it
 easy to use gnuplot in combination with other tools or programs. Finally, gnuplot is free and open source, actively supported,
 and available for all major platforms (Linux, Windows, and Mac OS X).

 1.3.3. Limitations

 It’s important to remember that gnuplot is a data-plotting tool, nothing more, nothing less. In particular, it’s neither a
 numeric nor a symbolic workbench, nor a statistics package. It can therefore only perform simple calculations on the data.
 On the other hand, it has a flat learning curve, requiring no programming knowledge and only the most basic math skills.

 Gnuplot is also not a drawing tool. All of its graphs are depictions of some data set or mathematical function. It has only
 very limited support for arbitrary box-and-line diagrams, and none at all for freehand graphics.

 Finally, gnuplot isn’t a tool to create dashboards, infographics, or virtual-reality visualizations. It’s a tool for quantitative
 analysis, and therefore its bread and butter are dot and line plots. It has only rudimentary support for three-dimensional
 solid-body imaging and none whatsoever for ray-tracing, fisheye functionality, and similar techniques.

 Overall, I regard these limitations more as strengths in disguise: in the Unix tradition, gnuplot is a simple tool, doing
 (mostly) one thing, and doing it very, very well.

 1.3.4. Gnuplot 5: the best gnuplot there ever was!

 On New Year’s Day, 2015, the gnuplot development team released gnuplot 5.0—the first major new release in over 10 years! It goes without saying that gnuplot 5 is the best, most modern, and most complete gnuplot there
 ever was.

 Most of the new features and changes to previous versions are relatively small and incremental, but in aggregate their effect
 is pronounced. A few major themes stand out that make gnuplot 5 distinct from the previous major release:

 	
Color— The greatest change that I perceive is the universal use of color throughout. Gnuplot assumes that you’re working on a color
 terminal and are producing graphs for a color device. Producing black-and-white graphs is now the exception case.
 If you’re familiar with previous gnuplot versions, the most visible change is probably gnuplot’s new default color sequence, which replaces the familiar red/green/blue sequence of colors. (Hint: you can restore the previous behavior through the
 command set colorsequence classic. More on that topic in chapter 9.)
 Support for color has been enhanced in various ways. Most styles and facilities support partial transparency (alpha shading).
 You can generally choose the color of a plot element based on the numerical value of the data (data-dependent coloring).

 	
Terminals— Handling of terminals and output file formats has been greatly improved and unified. A major breakthrough is the development
 of a family of terminals that are all based on a single set of contemporary libraries for graphics and text rendering. Because these
 terminals all share the same back end, you can now create bitmaps (PNG), vector images (PDF), and graphs for interactive viewing
 (wxWidgets) with consistent appearance across all formats. Gnuplot takes advantage of the contemporary features of the underlying
 libraries to produce high-quality graphs through the use of over-sampling, anti-aliasing, and so on.

 	
Fonts— Another huge improvement compared to previous gnuplot versions is the unified font handling. Current terminals all rely on the same system libraries for font handling, which means generally all locally available fonts
 can be used for text labels in gnuplot graphs with a minimum of fuss. By default, enhanced text mode, which allows the inclusion of sub- and superscripts, is now enabled in all current terminals. Enhanced text mode has also
 been extended to include support for characters in boldface and italics.
 In the past, gnuplot’s support for PDF was relatively weak, particularly in comparison to the very full-featured PostScript
 terminal. This situation has now been reversed, and the Cairo-based PDF terminal is probably to be preferred over the classic
 PostScript terminal.

 	
Styles for points and lines— You have a greater deal of control over the appearance of points and lines than ever before. In addition to line color, line
 width, point size, and point shape, you can now control and customize the dash pattern of lines. The syntax has been unified, and the appearance of points and lines can be customized locally wherever lines and
 points are used. Moreover, there is now a universal set of (at least) eight standard point and line styles, which are consistent
 across all contemporary terminals.

 	
Unicode— Strings and string expressions in gnuplot support Unicode. This is a big deal, because it makes the entire universe of Unicode
 characters and symbols seamlessly available within gnuplot. Greek letters, mathematical symbols, and dingbats are now as easy
 to use as ASCII characters. (You still need a font that provides glyphs for all these characters, but several freely available
 fonts exist that provide extensive coverage of Unicode characters.)

 	
Loops and programming constructs— Gnuplot has acquired support for some programming constructs, most notably for loops. This promises to simplify certain repetitive tasks significantly; but because gnuplot doesn’t (yet) include an iterable
 data type (that is, an array type), the use of loops often leads to somewhat haphazard constructs and ad hoc data manipulations.[1]
 1

This may be changing. Merely days before this book went to the printer, Ethan Merritt published an experimental patch that
 adds an array-type to gnuplot. Check it out: http://sourceforge.net/p/gnuplot/patches/724/.

 In addition, there of course are many smaller improvements and enhancements, such as an improved multiplot mode, more consistent
 commands to control tic marks on coordinate axes, additional plotting styles, and more.

1.4. Summary

 In this chapter, I showed you a couple of examples that demonstrate the power of graphical methods for understanding data.
 I also suggested a suitable method for dealing with data-analysis problems. Start with a plot of the data, and use it to identify
 the essential features of the data set. Then iterate the process to bring out the behavior you’re most interested in. And
 finally (not always, but often), develop a mathematical description for the data, which can then be used to make predictions
 (which, by their nature, go beyond the information contained in the actual data set).

 Your tool in doing this kind of analysis will be gnuplot. And it’s gnuplot, and how to use it, that we’ll turn to next. Once
 you’ve developed the skills to use gnuplot well, we’ll return to graphical analysis and discuss useful techniques for extracting
 the most information possible from a data set, using graphs.

Chapter 2. Tutorial: essential gnuplot

 This chapter covers

 	Invoking gnuplot

 	Plotting functions and data

 	Saving and exporting

 	Managing options

 	Getting help

 This chapter introduces gnuplot’s most important features: generating plots, saving them to a file, and exporting graphs to
 common graphics file formats. I’ll also explain briefly how to set options and how to access gnuplot’s built-in documentation.
 This chapter covers those commands that you’ll find yourself using almost every time you start up gnuplot. In the next couple
 of chapters, you’ll learn about further features for graphical analysis and how to manage data sets and files. By the end
 of chapter 4, you’ll know most of the commands you’ll use on a day-to-day basis.

 Are you surprised that just a few chapters are sufficient to get you this far? Congratulations! You just discovered why gnuplot
 is cool: it makes easy things easy, and hard things possible. This chapter and the next two cover the easy parts. As to the
 hard parts ... well, that’s what the rest of this book is about.

2.1. Simple plots

 Because gnuplot is a plotting program, it should come as no surprise that the most important gnuplot command is plot. It can be used to plot both functions (such as sin(x)) and data (typically from a file). The plot command has a variety of options and subcommands, through which you can control the appearance of the graph as well as the
 interpretation of the data in the file. The plot command can even perform arbitrary transformations on the data as you plot it.

 2.1.1. Invoking gnuplot and first plots

 Gnuplot is a text-based plotting program: you interact with it through command-line-like syntax, as opposed to manipulating graphs using the mouse
 in a WYSIWYG fashion.[2] Gnuplot is also interactive: it provides a prompt at which you type commands. When you enter a complete command, the resulting graph immediately pops
 up in a separate window. This is in contrast to a graphics programming language (such as PIC), where writing the command, generating the graph, and viewing the result are separate activities, requiring
 separate tools. Gnuplot has a history feature, making it easy to recall, modify, and reissue previous commands. The entire
 setup encourages you to play with the data: making a simple plot, changing some parameters to hone in on the interesting sections,
 eventually adding decorations and labels for final presentation, and in the end exporting the finished graph in a standard
 graphics format.

 2

The Windows version of gnuplot contains a menu you can use to build up command strings using the mouse.

 If gnuplot is installed on your system, it can usually be invoked by issuing the command

 shell> gnuplot

 at the shell prompt. (Check appendix A for instructions on obtaining and installing gnuplot, if your system doesn’t have it already.) Once launched, gnuplot displays
 a welcome message and then replaces the shell prompt with a gnuplot> prompt. Anything entered at this prompt is interpreted as gnuplot commands until you issue an exit or quit command, or type an end-of-file (EOF) character, usually by pressing Ctrl-D on Unix.

 Probably the simplest plotting command you can issue is

 plot sin(x)

 (Here and in the following, the gnuplot> prompt is suppressed to save space. Any code shown should be understood as having been entered at the gnuplot> prompt, unless otherwise stated.)

 On Unix running a GUI (an arbitrary window manager running on top of X11), this command opens a new window showing the resulting
 graph, something like figure 2.1. Note how gnuplot has selected a “reasonable” range for the x values automatically (by default, from -10 to +10) and adjusted
 the y range according to the values of the function.

 Figure 2.1. Your first plot: plot sin(x)

 [image:]

 Let’s say you want to add more functions to plot together with the sine. You recall the last command (using the up-arrow key
 or Ctrl-P for “previous”) and edit it to give

 plot sin(x), x, x-(x**3)/6

 This will plot the sine together with the linear function x and the third-order polynomial x - ⅙x3, which are the first few terms in the Taylor expansion of the sine.[3] (Gnuplot’s syntax for mathematical expressions is straightforward and similar to that found in almost any other programming
 language. Note the ** exponentiation operator, familiar from Fortran or Perl. Section 3.2 contains tables of all available operators and their precedences.) The resulting plot (see figure 2.2) is probably not what you expected.

 3

A Taylor expansion is a local approximation of an arbitrary, possibly complicated, function in terms of powers of x. You won’t need this concept in the rest of this book. Check your favorite calculus book if you want to know more.

 Figure 2.2. An unsuitable default plot range: plot sin(x), x, x-(x**3)/6

 [image:]

 The range of y values is far too large, compared to the previous graph. You can’t even see the wiggles of the original function
 (the sine wave) anymore. Gnuplot adjusts the y range to fit in all function values, but for this plot, you’re only interested
 in points with small y values. So, you recall the last command again (using the up-arrow key) and define the plot range you’re
 interested in:

 plot [][-2:2] sin(x), x, x-(x**3)/6

 The range is given in square brackets immediately after the plot command. The first pair of brackets defines the range of x values (leave it empty, because you’re happy with the defaults
 in this case); the second restricts the range of y values shown. This results in the graph shown in figure 2.3.

 Figure 2.3. Using explicit plot ranges: plot [][-2:2] sin(x), x, x-(x**3)/6

 [image:]

 You can play much longer with function plots, zoning in on different regions of interest and trying different functions (section F.4 contains a table of all built-in mathematical functions). But let’s move on and discuss what gnuplot is most useful for:
 plotting data from a file.

 2.1.2. Plotting data from a file

 Gnuplot reads data from text files. The data is expected to be numerical and to be stored in the file in whitespace-separated columns. Lines beginning with a hash mark (#) are considered to be comment lines and are ignored. The following listing shows a typical data file containing the share
 prices of two fictitious companies, with the equally fictitious ticker symbols PQR and XYZ, over a number of years.

 Listing 2.1. A typical data file: stock prices over time (file: prices)

 # Average PQR and XYZ stock price (in dollars per share) per calendar year
1975 49 162
1976 52 144
1977 67 140
1978 53 122
1979 67 125
1980 46 117
1981 60 116
1982 50 113
1983 66 96
1984 70 101
1985 91 93
1986 133 92
1987 127 95
1988 136 79
1989 154 78
1990 127 85
1991 147 71
1992 146 54
1993 133 51
1994 144 49
1995 158 43

 The canonical way to think about this is that the x value is in column 1 and the y value is in column 2. If there are additional
 y values corresponding to each x value, they’re listed in subsequent columns. (You’ll see later that there’s nothing special
 about the first column. In fact, any column can be plotted along either the x or the y axis.)

 This format, simple as it is, has proven to be extremely useful—so much so that long-time gnuplot users usually generate data
 this way to begin with. In particular, the ability to keep related data sets in the same file is a big help (so you don’t
 need to keep PQR’s stock price in a separate file from XYZ’s—although you could if you wanted to).

 Although whitespace-separated numerical data is what gnuplot expects natively, gnuplot can parse and interpret significant
 deviations from this norm, including text columns (with embedded whitespace if enclosed in double quotes), missing data, and a variety of textual representations for
 calendar dates, as well as binary data. (See chapter 4 for a more detailed discussion of input file formats, chapter 5 for strings, and chapter 8 for the special case when one of the columns represents date/time information.)

 Plotting data from a file is simple. Assuming that the file shown in listing 2.1 is called prices and is in the current working directory (typically, the directory from which gnuplot was started), you can
 type

 plot "prices"

 Because data files typically contain many different data sets, you’ll usually want to select the columns to be used as x and y values. This is done through the using directive to the plot command:

 plot "prices" using 1:2

 This plots the price of PQR shares as a function of time: the first argument to the using directive specifies the column in the input file to be plotted along the horizontal (x) axis, and the second argument specifies
 the column for the vertical (y) axis. If you want to plot the price of XYZ shares in the same plot, you can do so easily (as
 shown in figure 2.4):

 Figure 2.4. Plotting from a file: plot "prices" using 1:2, "prices" using 1:3

 [image:]

 plot "prices" using 1:2, "prices" using 1:3

 	

 Tip

 The using directive tells the plot command which columns to use. plot "data" using 1:2 selects the first column for the x axis and the second column for the y axis.

 	

 By default, data points from a file are plotted using unconnected symbols. Often this isn’t what you want, so you need to
 tell gnuplot what style to use for the data. You do so using the with directive. Many different styles are available. Among the most useful are with linespoints, which plots each data point as a symbol and also connects subsequent points, and with lines, which just plots the connecting lines, omitting the individual symbols:

 plot "prices" using 1:2 with lines,
[image:] "prices" using 1:3 with linespoints

 	

 Tip

 The with directive to the plot command selects the plotting style. The most frequently used styles include with points, with lines, and with linespoints.

 	

 This looks good, but it’s not clear from the graph which line is which. Gnuplot automatically provides a key, which shows a sample of the line or symbol type used for each data set together with a text description, but the default
 description isn’t very meaningful in this case. You can do much better by including a title for each data set as part of the plot command:

 plot "prices" using 1:2 title "PQR" with lines,
[image:] "prices" using 1:3 title "XYZ" with linespoints

 This changes the text in the key to the string given as the title (see figure 2.5). The title has to come after the using directive in the plot command. A good way to memorize this order is to remember that you must specify the data set to plot first and provide the description second: define it first, then describe what you defined.

 Figure 2.5. Introducing styles and the title keyword: plot "prices" using 1:2 title "PQR" with lines, "prices" using 1:3 title "XYZ" with linespoints

 [image:]

 	

 Tip

 You can use the title directive to place a descriptive string in the graph’s legend.

 	

 Want to see how PQR’s price correlates with XYZ’s? No problem; plot one against the other, using PQR’s share price for x values
 and XYZ’s for y values, like so:

 plot "prices" using 2:3 with points

 You see here that there’s nothing special about the first column. Any column can be plotted against either the x or the y
 axis; you pick whichever combination you need through the using directive. Because it makes no sense to connect the data points in the last plot, I chose the style with points, which plots a symbol for each data point but no connecting lines (see figure 2.6).

 A graph like figure 2.6 is known as a scatter plot and can show correlations between two data sets. In this graph, you can see a clear negative correlation: as the stock price
 of PQR is going up, the price of XYZ is going down. We’ll revisit scatter plots and their uses in chapter 13.

 Figure 2.6. Any column can be used for either the x or y axis: plot "prices" using 2:3 with points.

 [image:]

 Now that you’ve seen the most important basic commands, let’s step back for a moment and quickly introduce some creature comforts
 that gnuplot provides to the more experienced user.

 2.1.3. Abbreviations and defaults

 Gnuplot is good at encouraging iterative, exploratory data analysis. Whenever you complete a command, the resulting graph
 is shown immediately, and all changes take effect at once. Writing commands isn’t a different activity from generating graphs,
 and there’s no need for a separate viewer program. (Graphs are also created almost instantaneously; only for data sets including
 millions of points is there any noticeable delay.) Previous commands can be recalled, modified, and reissued, making it easy
 to keep playing with the data.

 Gnuplot offers two more features to the more proficient user: abbreviations and sensible defaults. Any command and subcommand or option can be abbreviated to the shortest, non-ambiguous form. So the command

 plot "prices" using 1:2 with lines,
[image:] "prices" using 1:3 with linespoints

 is more likely to be issued as

 plot "prices" u 1:2 w l, "prices" u 1:3 w linesp

 You can shorten the linespoints style description even further to lp, so the command becomes

 plot "prices" u 1:2 w l, "prices" u 1:3 w lp

 This compact style is useful when you’re doing interactive work, and you should master it. From here on, I’ll increasingly
 use it. (You can find a table with the most frequently used abbreviations at the beginning of this book in the “About this
 book” section.)

 But this is still not the most compact form possible. Whenever part of a command isn’t given explicitly, gnuplot first tries
 to interpolate the missing values with values the user has provided; failing that, it falls back to sensible defaults. You’ve
 already seen how gnuplot defaults the range of x values to [-10:10] but adjusts the y range to include all data points.

 	

 Tip

 Abbreviations for common keywords facilitate quick, interactive, iterative work. You can find a table of common abbreviations
 in the “About this book” section at the start of the book.

 	

 Whenever a filename is missing, the most recent filename is interpolated. You can use this to abbreviate the previous command
 even further:

 plot "prices" u 1:2 w l, "" u 1:3 w lp

 Note that the second set of quotation marks must be there.

 In general, any user input (or part of user input) remains unaffected until explicitly overridden by subsequent input. The
 way the filename is interpolated in the preceding example is a good example of this behavior. In later chapters, you’ll see
 how options can be built up step by step, by subsequently providing values for different suboptions. Gnuplot helps to keep
 commands short by remembering previous commands as much as possible.

 One last example concerns the using directive. If it’s missing entirely and the data file contains multiple columns, gnuplot plots the second column versus the
 first (this is equivalent to using 1:2). If a using directive is given but lists only a single column, gnuplot uses this column for y values and provides x values as integers
 starting at zero. This is also what happens when no using is given and the data file contains only a single column.

2.2. Saving commands and exporting graphics

 There are two ways to save your work in gnuplot: you can save the gnuplot commands used to generate a plot, so that you can regenerate the plot at a later time. Or you can export the graph to a file in a standard graphics file format, so that you can print it or include it in web pages, documents, or
 presentations.

 	

 Tip

 Saving a graph is the act of storing the gnuplot commands used to create the graph. Exporting a graph means creating a version of the graph in a commonly used graphics file format (such as PNG, PDF, or SVG).

 	

 2.2.1. Saving and loading commands

 If you save to a file the commands you used to generate a plot, you can later load them again and regenerate the plot where
 you left off. Gnuplot commands can be saved to a file using the save command:

 save "graph.gp"

 This saves the current values of all options, as well as the most recent plot command, to the specified file. This file can later be loaded again using the load

OEBPS/01fig02.jpg
X1
3

OEBPS/01fig03_alt.jpg
Run time [sec]

8000

7000

6000

5000

4000

3000

2000

1000

0

0

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Cluster size

OEBPS/xxivfig01.jpg
Square brackets for optional parts
Vertical bars to separate alternatives
Curly braces for user-supplied input

OEBPS/01fig01.jpg
100

480

420

260

300

240

180

120

OEBPS/common01.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common02.jpg

OEBPS/01fig04_alt.jpg
100000

10000

1000

100

Run time [sec]

10

0.1 -
1000 10000 100000

Cluster size

OEBPS/02fig02_alt.jpg
200

150

100 [

50 |-

sin(x)
x

x(x"*8)/6 —— 7]

50 |

-100 |-

150 |-

200

10

10

OEBPS/02fig01_alt.jpg
08

sin

10

OEBPS/cover.jpg
Covers gnuplot version 5

Understanding data with graphs

SECOND EDITION

Philipp K. Janert

| | FTYTHY

OEBPS/02fig04_alt.jpg
180 T T
“prices”u 2 +
“prices” u x
160 - k!
4
X Tk +
40~ x i
+ & +
s + +
120 * % 4
% X
100 |- xy & R
e
2
80 5%]
x
+ + 4 ¥
60 - + a
x
i Y @ + LI
40 H L .

1975 1980 1985 1990 1995

OEBPS/02fig03_alt.jpg
sin(x)
x
x-(x*3)y6 —— 7|

OEBPS/02fig06_alt.jpg
180

160

140

120

100

80

60

40

L

T
"prices”u23 +

40

60

80

100

120

140

160

OEBPS/02fig05_alt.jpg
180 T T T

PQR ——
XYZ —¢—

160

140

120

100

80

60

40
1975 1980 1985 1990 1995

