

 [image:]

 Operations Anti-patterns, DevOps Solutions

 Jeffery D. Smith

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Toni Arritola

 	
 Technical development editor:

 	
 Karl Geoghagen

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Sharon Wilkey

 	
 Proofreader:

 	
 Keri Hales

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617296987

 dedication

 To my children, Ella and Xander.

 You can change the world.

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 The DevOps ingredients

 What is DevOps?

 A little DevOps history

 What DevOps is not

 CAMS, the pillars of DevOps

 Another DevOps book?

 2 The paternalist syndrome

 Creating barriers instead of safeguards

 Introducing the gatekeepers

 Examining the gatekeepers

 Curing paternalism through automation

 Capturing the purpose of the approval

 Structuring code for automation

 Approval process

 Automating approvals

 Logging process

 Notification process

 Error handling

 Ensuring continuous improvement

 3 Operational blindness

 War stories

 Changing the scope of development and operations

 Understanding the product

 Creating operational visibility

 Creating custom metrics

 Deciding what to measure

 Defining healthy metrics

 Failure mode and effects analysis

 Making logging useful

 Log aggregation

 What should I be logging?

 The hurdles of log aggregation

 4 Data instead of information

 Start with the user, not the data

 Widgets, the dashboard building blocks

 The line graph

 The bar graph

 The gauge

 Giving context to your widgets

 Giving context through color

 Giving context through threshold lines

 Giving context through time comparisons

 Organizing your dashboard

 Working with dashboard rows

 Leading the reader

 Naming your dashboards

 5 Quality as a condiment

 The testing pyramid

 Testing structure

 Unit tests

 Integration tests

 End-to-end tests

 Confidence in your test suite

 Restoring confidence in your test suite

 Avoiding vanity metrics

 Continuous deployment vs. continuous delivery

 Feature flags

 Executing pipelines

 Managing the testing infrastructure

 DevSecOps

 6 Alert fatigue

 War story

 The purpose of on-call rotation

 Defining on-call rotations

 Time to acknowledge

 Time to begin

 Time to resolve

 Defining alert criteria

 Thresholds

 Noisy alerts

 Staffing on-call rotations

 Compensating for being on call

 Monetary compensation

 Time off

 Increased work-from-home flexibility

 Tracking on-call happiness

 Who is being alerted?

 What level of urgency is the alert?

 How is the alert being delivered?

 When is the team member being alerted?

 Providing other on-call tasks

 On-call support projects

 Performance reporting

 7 The empty toolbox

 Why internal tools and automation matter

 Improvements made by automation

 Business impact to automation

 Why organizations don’t automate more

 Setting automation as a cultural priority

 Staffing for automation and tooling

 Fixing your cultural automation problems

 No manual tasks allowed

 Supporting “no” as an answer

 The cost of manual work

 Prioritizing automation

 Defining your automation goals

 Automation as a requirement in all your tools

 Prioritizing automation in your work

 Reflecting automation as a priority with your staff

 Providing time for training and learning

 Filling the skill-set gap

 But if I build it, I own it

 Building the new skill set

 Approaching automation

 Safety in tasks

 Designing for safety

 Complexity in tasks

 How to rank tasks

 Automating simple tasks

 Automating complicated tasks

 Automating complex tasks

 8 Off-hour deployments

 War story

 The layers of a deployment

 Making deployments routine affairs

 Accurate preproduction environments

 Staging will never be exactly like production

 Frequency reduces fear

 Reducing fear by reducing risk

 Handling failure in the layers of the deployment process

 Feature flags

 When to toggle off your feature flag

 Fleet rollbacks

 Deployment artifact rollbacks

 Database-level rollbacks

 Creating deployment artifacts

 Leveraging package management

 Configuration files in packages

 Automating your deployment pipeline

 Safely installing the new application

 9 Wasting a perfectly good incident

 The components of a good postmortem

 Creating mental models

 Following the 24-hour rule

 Setting the rules of the postmortem

 The incident

 Running the postmortem

 Choosing whom to invite to the postmortem

 Running through the timeline

 Defining action items and following up

 Documenting your postmortem

 Sharing the postmortem

 10 Information hoarding: Only Brent knows

 Understanding how information hoarding happens

 Recognizing unintentional hoarders

 Documentation isn’t valued

 Abstraction vs. obfuscation

 Access restrictions

 Evaluating gatekeeper behavior

 Structuring your communication effectively

 Defining your topic

 Defining your audience

 Outlining your key points

 Presenting a call to action

 Making your knowledge discoverable

 Structuring your knowledge stores

 Creating learning rituals

 Using chat tools effectively

 Establishing company etiquette

 Moving beyond just chat

 11 Culture by decree

 What is culture?

 Cultural values

 Cultural rituals

 Underlying assumptions

 How does culture influence behavior?

 How do you change a culture?

 Sharing a culture

 An individual can change a culture

 Examining your company’s values

 Creating rituals

 Using rituals and language to change cultural norms

 Talent that matches your culture

 Old roles, new mindset

 The obsession with senior engineers

 Interviewing candidates

 Evaluating candidates

 How many candidates to interview?

 12 Too many yardsticks

 Tiers of goals

 Organizational goals

 Departmental goals

 Team goals

 Getting the goals

 Consciousness around what you work on

 Priority, urgency, and importance

 The Eisenhower decision matrix

 How to say no to a commitment

 Structuring your team’s work

 Time-slice your work

 Populating the iteration

 Unplanned work

 Controlling unplanned work

 Dealing with unplanned work

 Wrapping it all up

 index

 front matter

preface

 I’m an avid reader of things related to the DevOps space. I came up in the technology field in a regional insurance office in upstate New York. The company was a pretty good size for the local economy but wouldn’t exactly be considered a powerhouse in the world of technology. Many of my friends worked in similar companies where technology was important, but it wasn’t the product the company sold. It was a means to deliver the goods and services that their customers paid for.

 Fast-forward 10 years. I’ve moved to Chicago and become involved in the local technology scene. There are a lot more companies in Chicago that have technology as the product. As a result, many of the companies are more technologically sophisticated and at the forefront of new ideas and practices than I’d previously experienced.

 But in these tech circles, you’re surrounded by people who are in a similar space. This homogeny creates a sort of bubble or echo chamber. You quickly begin thinking everyone is at the same stage of evolution in their journey. That couldn’t be further from the truth. That disconnect is what inspired this book.

 People read blog posts from Facebook, Apple, Netflix, Uber, and Spotify and assume that because these wildly successful and popular companies are doing things in a certain way, matching that success requires following the same pattern. The same is happening with regards to DevOps practices. After having a few conversations with people doing DevOps, you conclude that you need to be running Docker in a public cloud provider, deploying 30 times per day in order to be doing DevOps right.

 But DevOps is an iterative journey. The journey starts similarly in most companies, but where it ultimately heads depends greatly on your situation and circumstances. Maybe deploying 30 times per day isn’t the end goal for your organization. Maybe your company can’t adopt Kubernetes because of problems running legacy applications. That doesn’t mean that you can’t achieve some of the benefits of a DevOps transformation.

 DevOps is as much about people as it is about technology and tools. I wanted to write this book as a toolkit to show how some of the common problems that besiege teams have DevOps solutions that don’t require rewriting your entire technical stack. You can find positive change in DevOps by modifying the way teams interact, communicate, and share goals and resources. I hope that you recognize these patterns in your organization and that the book provides you with the tools necessary to break them.

acknowledgments

 There are so many people in my life who have contributed to this book in ways both large and small. I’ll start by thanking my biggest fan, my best friend, and my partner in life. My wife, Stephanie, endured my absenteeism, my frustrations, and my doubts with support, love, and understanding. You are my rock, and this book doesn’t exist without you. I love you deeply.

 I’d like to thank my mother, Evelyn, for all that she has done and continues to do for me. For seeing my love for computers and encouraging it. For stretching our checking account to buy me my first computer. For not getting angry when I kept the phone line busy for hours at a time. For teaching me right from wrong. For bragging for me when I was too embarrassed to do it. For making me stand up and speak in church. For making me do all the other things that I hated then but made me who I am now. I am forever grateful.

 To my sister, Gloria, for always being in my corner. You carry the weight of our family, and your heart is so large, your love so bottomless that you don’t even realize it. It isn’t your selflessness that impresses me most, but how effortlessly it comes to you. You are the example that drives me to be a better person every single day.

 To Debbie Maxwell, my high school math teacher. You wouldn’t give up on me no matter how many reasons I gave you to. I graduated high school because of your tutelage, your support, and continued belief in me. Thank you.

 And last but not least, to Mickey McDonald, my first manager and mentor. You saw me reading a book on TCP/IP that I barely understood. But you took a shot. You hired a black kid doing data entry who had no formal schooling, no formal training, but a ton of desire. You helped change my life.

 I would also like to thank the awesome team at Manning for making this book possible. In particular, I thank Toni Arritola, the development editor, for her patience and support. I also thank Karl Geoghagen, the technical development editor, for his review and feedback. Thank you also to review editor Aleksandar Dragosavljevic, project editor Deirdre Hiam, copy editor Sharon Wilkey, proofreader Keri Hales, and typesetter Gordan Salinovic.

 To all the reviewers--your suggestions helped make this a better book: Adam Wendell, Alain Couniot, Andrew Courter, Asif Iqbal, Chris Viner, Christian Thoudahl, Clifford Thurber, Colin Joyce, Conor Redmond, Daniel Lamblin, Douglas Sparling, Eric Platon, Foster Haines, Gregory Reshetniak, Imanol Valiente, James Woodruff, Justin Coulston, Kent R. Spillner, Max Almonte, Michele Adduci, Milorad Imbra, Richard Tobias, Roman Levchenko, Roman Pavlov, Simon Seyag, Slavomir Furman, Stephen Goodman, Steve Atchue, Thorsten Weber, and Hong Wei Zhuo.

about this book

 Operations Anti-patterns, DevOps Solutions was written to help individual contributors and team leads begin a series of actions that lead to a DevOps transformation. It begins by setting up the primary pillars of any DevOps transformation and attempts to frame organizational problems within those contexts.

Who should read this book

 This book is intended for engineers from either the operations or development side of the technology team. It’s aimed at team leads and individual contributors. Higher-level managers and senior leaders will find many useful takeaways in this book, but the solutions and the approaches outlined take into account the limited role of the reader. Leaders further up the organization’s hierarchy will have a much wider set of tools available to them that are not covered in this book.

 If you’re an executive looking to implement DevOps, this book will be helpful but incomplete. As an executive, you have access to options for cultural change that are beyond my target reader. While I still recommend reading this book (and purchasing a copy for every member of your staff and optionally as stocking stuffers for your friends and family), I’d be remiss if I didn’t point you to other books that take the scope of your hard power into account as an agent for change. Two good options are The Phoenix Project by Gene Kim, Kevin Behr, and George Spafford (IT Revolution Press, 2018) and The DevOps Handbook by Gene Kim, John Willis, Patrick Debois, and Jez Humble (IT Revolution Press, 2016).

How this book is organized: A roadmap

 This book is organized around a series of antipatterns that are commonly found in organizations. Each chapter starts with a definition of the antipattern and begins to explain methods and solutions for reversing said patterns:

 	
 Chapter 1 discusses the ingredients of a DevOps organization and sets up common terminology in the DevOps community.

 	
 Chapter 2 presents the first antipattern, the paternalist syndrome, and dives into the impact of low-trust organizations. It examines the role of gatekeepers in processes and their impact on the speed of change. The chapter tackles ways to automate these gatekeeper concerns to empower staff members and increase the rate of change safely.

 	
 Chapter 3 describes the operational blindness antipattern and discusses the need to have operational visibility into our systems. It walks through processes for confirming that systems are working as expected through systems understanding, data, and metrics.

 	
 Chapter 4 covers the data instead of information antipattern. It discusses how data can be structured and presented in a way that makes it more useful to its audience. Sometimes data is useful, but other times it needs to be presented in a way to convey a specific story.

 	
 Chapter 5 introduces the quality as a condiment antipattern and discusses the need for ensuring that the quality of the system is part of all the individual ingredients. Attempting to ensure quality at the complete end of the process leads to a sort of quality theatrics.

 	
 Chapter 6 defines the alert fatigue antipattern. When teams support production systems, they often set up a wide array of alerting. But those alerts can be detrimental when they are noisy without always needing remediation. This chapter discusses approaches to solving for this condition by being more deliberate in alert creation and understanding the alert’s true goal.

 	
 Chapter 7 explains the empty toolbox antipattern. As teams expand in their roles or duties, it’s important that time and energy is invested in the tools they use to perform those duties. The process of adding responsibility without the corresponding tooling results in a general slowdown of the team as they perform repetitive tasks.

 	
 Chapter 8 presents the off-hours deployment antipattern and discusses the fear around the deployment process. Instead of managing the fears, this chapter discusses how your approach to the deployment process can create safety in the process. By using automation, you can create repeatable deployment processes with defined rollback checkpoints.

 	
 Chapter 9 covers the wasting a perfectly good incident antipattern. Many incidents get resolved but never discussed. Incidents occur when our understanding of the system collides with the reality of the system. This chapter gives a structured approach to tackling those moments to create continuous learning in your organization.

 	
 Chapter 10 deals with the information hoarding antipattern. Sometimes information hoarding is accidental, based on permissions in tools, lack of opportunities for sharing, and other innocuous causes. This chapter walks through practices to reduce information hoarding and increase sharing among teams.

 	
 Chapter 11 talks about organizational culture and how it is formed. The culture is created not through slogans and value statements, but through actions, rituals, and behaviors that are rewarded and/or punished.

 	
 Chapter 12 talks about how organizations measure teams and set their goals. Sometimes these measurements create conflict among teams. If one team is measured by stability and another team is measured by a rate of change, you create conflict between the teams. This chapter covers sharing goals and priorities to better align teams.

 In general, the chapters can be read individually in any order, although some concepts do occasionally build on others. The focus may sound as if the burden lays more on the operations teams or the development teams, but I encourage you to read all of the chapters at some point in order to understand how their concepts are interconnected across teams.

About the code

 This book contains only a handful of code examples, and all of the code is really only for illustrative purposes. The code that is displayed does follow a standard formatting.

liveBook discussion forum

 Purchase of Operations Anti-patterns, DevOps Solutions includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/book/operations-anti-patterns-devops-solutions/welcome/v-6/. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Jeff Smith has been in the technology industry for more than 20 years, oscillating between management and individual contributor. Jeff currently serves as the director of production operations for Centro, an advertising software company headquartered in Chicago, Illinois.

 Jeff is passionate about DevOps transformations in organizations large and small, with a particular interest in the psychological aspects of problems in companies. He lives in Chicago with his wife, Stephanie, and their two children, Ella and Xander.

about the cover illustration

 The figure on the cover of Operations Anti-patterns, DevOps Solutions is captioned “Indien du Mexique en voyage,” or Mexican Indian traveling. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life--certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

1 The DevOps ingredients

 This chapter covers

 	
Defining DevOps

 	
Introducing the CAMS model

 It’s 11:30 p.m. on a Friday, when John, the IT operations manager, hears his phone ring. The ringtone is distinct, one that John has programmed so that he can instantly recognize a call from the office. He answers the phone, and on the other end is Valentina, one of the senior software developers at John’s office. There’s a problem in the production environment.

 The last software release included additional functionality that changed how the application interacted with the database. But because of a lack of adequate hardware in the testing environments, the entire application couldn’t be tested prior to release. Around 10:30 this evening, a scheduled task that runs only quarterly began executing. The job was missed during the testing phase, and even if it wasn’t, there isn’t enough data in the test environment to create an accurate test. Valentina needs to stop the process, but she doesn’t have access to the production servers. She’s spent the last 45 minutes searching through the company intranet site to find John’s contact information. John is the only person Valentina knows who has the production access she needs.

 Killing the scheduled task isn’t straightforward. The task usually runs overnight and wasn’t designed to be stopped midway through processing. Because Valentina doesn’t have production access, her only alternative is to dictate a series of cryptic commands to John over the phone. After a few missteps, John and Valentina finally manage to stop the task. The two plan to regroup on Monday to figure out what went wrong and how to fix it for the next quarter. Now both John and Valentina must stay on guard over the weekend in case the behavior repeats itself with another job.

 Chances are this story feels familiar to you. Having production code that hasn’t been properly tested feels like a scenario that could have been avoided, especially when it interrupts a team member on their off-time. Why is the testing environment insufficient for the needs of the development group? Why wasn’t the scheduled task written in such a way to make stopping and restarting it straightforward? What’s the value of the interaction between John and Valentina if John is just going to blindly type what Valentina dictates? Not to mention the two probably skipped the organization’s change approval process. Nothing raises the safety of a change like five people approving something they don’t understand!

 The questions raised here have become so commonplace that many organizations don’t even think to examine them in detail. The dysfunction detailed is often accepted as inescapable, due to the difference in roles between development and IT operations teams. Instead of addressing the core issues, organizations continue to heap more approvals, more processes, and tighter restrictions onto the problem. Leadership thinks that they’re trading agility for safety, but in reality, they’re getting neither. (When was the last time you said, “Thank goodness for change control”?) These negative and sometimes wasteful interactions between teams and processes is exactly what DevOps is attempting to solve.

1.1 What is DevOps?

 These days, “What is DevOps?” feels like a question you should ask a philosopher more than an engineer. I’ll give you the story and the history of DevOps before presenting my definition. If you ever want to start a fight at a conference, though, you can ask the “What is DevOps?” question to a group of five people, and then walk away and watch the carnage. Luckily, you’re reading this and not talking to me in the hallway, so I don’t mind putting my definition out there and seeing what happens. But first, the story.

1.1.1 A little DevOps history

 In 2007, a systems administrator by the name of Patrick Debois was consulting on a large data center migration project for the Belgium government. He was in charge of the testing for this migration, so he spent a fair amount of time working and coordinating with both the development and operations teams. Seeing the stark contrast between how development and operations teams functioned, Debois got frustrated and started thinking of solutions to this problem.

 Fast-forward to 2008. Developer Andrew Clay Shafer, attending the Agile Conference in Toronto, proposes an ad hoc discussion session called “Agile Infrastructure.” He received such poor feedback on his proposal that he didn’t even attend the session himself. In fact, only a single attendee joined the session, Patrick Debois. But because Debois was so passionate about discussing this topic, he tracked Shafer down in the hallway, where they had an extensive discussion about their ideas and goals. Directly out of those conversations, they formed the Agile Systems Administrator Group.

 In June 2009, Debois was back in Belgium, watching a live stream of the O’Reilly Velocity 09 conference. At this conference, two employees from Flickr, John Allspaw and Paul Hammond, gave a talk titled “10 Deploys per Day: Dev & Ops Cooperation at Flickr.” Debois, moved by the talk, was inspired to start his own conference in Ghent, Belgium. He invited developers and operations professionals to discuss various approaches to working together, managing infrastructure, and rethinking the way the teams worked together. Debois called this two-day conference DevOps Days. A lot of the conversations about the conference were happening on Twitter, which then limited the number of characters per message to 140. To save as many precious characters as possible, Debois shortened the conference’s Twitter hashtag from #devopsdays to just plain #devops, and with that, DevOps was born.

 Definition DevOps is a set of software-development practices that combines a software development mentality with other functions in the organization. DevOps puts a heavy emphasis on shared responsibilities across all teams throughout the software development life cycle. The edges of job functions soften, as operations team members take on tasks that were traditionally more developer-focused, and development team members do the same. The term DevOps is most commonly associated with development (Dev) and IT operations (Ops), but the approach can be extended to other groups as well, including but not limited to security (DevSecOps), QA, database operations, and networking.

 It’s been more than 10 years since that fateful meeting. Since then, DevOps has moved beyond small web startups and has begun to penetrate larger enterprises. The success of DevOps, however, has brought the most cantankerous enemy of any movement: market forces.

 According to LinkedIn Talent Solutions, in 2018 the most recruited job overall, not just in tech, was DevOps engineer. Considering we’ve defined DevOps as a set of practices, it’s strange how a style of work quickly became a job title. You’ve never heard of an Agile engineer, because it just sounds silly. As transformational as DevOps is, it couldn’t escape market forces. With that much demand, the job title of DevOps has led to scores of candidates rebranding themselves as DevOps engineers.

 Product marketers are looking to cash in on the DevOps craze. Simple products like metrics and monitoring get rebranded into “DevOps dashboards,” further diluting the meaning of the word. With the market pulling the term “DevOps” in different directions, it has splintered into different meanings for different people. I could spend an entire chapter arguing about what DevOps should and shouldn’t mean; instead, I’ll use the definition that I proposed previously. But if you ever see me at a conference and want to see me go on a tirade, ask me what it’s like being a “DevOps manager.”

1.1.2 What DevOps is not

 Ironically it might be easier to define what DevOps is not rather than what it is. Thanks to market forces, these details will probably fall on deaf ears, but since this is my book, I figure I might as well go for it! For starters, it’s not about tools. If you purchased this book hoping to learn about Jenkins or Docker or Kubernetes or AWS, you’re going to be sorely disappointed. I don’t do refunds, but you can feel free to scream into the ether with your disdain.

 DevOps isn’t about tools, but about how teams work together. Technology is definitely involved, but, honestly, the tools are less important than the people. You can install the latest version of Jenkins or sign up for CircleCI, but if you don’t have a solid test suite, it’s useless. If you don’t have a culture that considers automated testing valuable, the tool doesn’t provide value. DevOps is about people first, then process, then tools.

 You need the people on-board and ready for change. Once the people are on-board, they need to be involved and engaged with creating the process. Once a process is created, you now have the necessary input to pick the right tool!

 So many people focus on the tool first and try to work backward from there. This is probably one of the top DevOps follies. You can’t choose a tool and then tell the people that they have to change all their processes. Our brains are wired to immediately be hostile to that type of approach. When tools are launched like that, the tool feels like it’s happening to them, not through them. That approach differs significantly from the way people accept new ideas. You have to have buy-in.

 In addition, when you get excited about a new tool, you begin applying it to problems you never had. When you buy a new table saw, suddenly everything in your home becomes a construction project. It’s the same thing with software tools.

 All this is to say that the major focus of this book and DevOps is about people and their interactions. While I may reference specific tools here and there, the book avoids giving specific examples based on architecture. Instead, the examples focus on capabilities, regardless of which tool provides that capability. To highlight this approach, the DevOps philosophy is structured on top of the CAMS model, which aims to place people first when addressing problems.

 DevOps as the “new” systems administrator

 When I attend technology events, I’m often greeted by someone who believes that the popularity of DevOps means certain doom for the “traditional” systems administrator. With the rise of virtual machines, software-defined networking, and API access for creating infrastructure, it is no surprise that software development skills are becoming increasingly important for systems administrators and, in many companies, is already a strict requirement. This push toward more development-focused systems administrators has led many to speculate that DevOps is the beginning of the end for systems administration.

 But the demise of the operations function has been greatly exaggerated. The way operations teams go about their work is definitely in a state of flux, but it has been since about 1960. I agree that developers will take more of a role in operations work, but operations work will continue to be separate and distinct from the work that developers do on a daily basis.

 Regardless of who does that work, tasks like infrastructure architecture planning, capacity planning, operating the system at runtime, monitoring, implementing patches, overseeing security, developing internal tools, and managing the platform will continue to exist. Operations engineering will continue to be a specialized form of engineering. There is no doubt that system administrators have a new set of skills that they’ll need to learn, but again, this is nothing new. If system administrators survived the transition from token ring to IPX/SPX, to TCP/IP, to IPv6, I’m sure learning Python is not an insurmountable task.

1.2 CAMS, the pillars of DevOps

 DevOps is structured around four pillars of attention and focus. Those pillars are culture, automation, metrics, and sharing: CAMS, as it’s called for short. As illustrated in figure 1.1, these pillars for DevOps are crucial to holding up the entire structure.

 [image:]

 Figure 1.1 Culture, automation, metrics, and sharing are all necessary for a successful DevOps transformation.

 The details of the four pillars are as follows:

 	
 Culture is about changing the norms by which your teams operate. These norms might be new communication patterns between teams or completely new team structures. Cultural changes are dictated by the type of cultural problems you have. I outline specific examples in this book, but you’ll also learn how to identify these problem areas yourself so that you can apply the problems beyond the examples highlighted here. Don’t underestimate the value and impact of a company’s culture on its technology outcomes. As you’ll find in this book, most problems are people problems, not technology problems.

 	
 Automation is not just about writing shell scripts. (I mean, that’s definitely part of it, but stick with me.) Automation is about freeing human capital from the mundane. It’s about empowering people to do their jobs safely and autonomously. Automation should be used as a cultural re-enforcer of the way work gets done within your organization. Simply saying, “Automated testing is a cultural value” is one thing, but embedding that cultural value into your processes through automated checks and merge requirements enforces that cultural norm. When implemented properly, it sets a new standard for how work is completed.

 	
 Metrics are the way you tell whether or not something is working. The absence of errors is not sufficient. Metrics should also be used as a cultural re-enforcer for the way we evaluate our systems. It’s not enough for order processing to not produce errors; we should be able to show successful orders flowing through the system as well.

 	
 Sharing is based on the idea that knowledge wants to be free! Humans often learn best when they’re teaching something to someone else. Sharing is about creating that--ready for it--cultural re-enforcer! Knowledge management is incredibly important in a world where we continue to build more and more complex systems.

 While my focus on CAMS varies throughout the book, understand that these four pillars are the underpinning for everything in a DevOps transformation. If you think back to these four pillars, you can solve a lot of problems inside your organization.

 Why are you leaving out the “L” in CALMS?

 Recently some people, including Andrew Clay Shafer himself, have taken to using the term CALMS, with the “L” standing for “lean.” I prefer the original version and will be sticking to it. I highlight this difference in case you hear the term in the wild.

 The idea behind CALMS is that delivering smaller, more frequent software updates is a preferred approach and that sometimes a minimal product in the hands of a customer is better than waiting six months for a more fleshed-out version.

 I completely agree with this approach, but at the same time I recognize that your mileage may vary, depending on your industry. Some companies have customers who don’t want frequent updates. Maybe they have a hardware certification process that makes allowing the latest updates a bit more cumbersome in smaller organizations. Maybe you’re in an industry where a minimal product just isn’t functional enough for customers to even experiment with. If you’re in an already entrenched market, it’s tough to get people to even consider your tool without meeting a wide range of capabilities.

 I think a lean approach is incredibly smart. But I also think the cultural benefits of DevOps can apply even to sectors where the lean approach isn’t practical. I leave out the “L” to divorce the two approaches and ensure that people can still benefit from DevOps, even if they’re not releasing software to customers on a frequent basis.

1.3 Another DevOps book?

 You’re probably looking at this book and asking yourself, “Do I need another book that’s going to tell me my company culture is toxic?” You probably don’t. In all my years in this industry, I’ve never “enlightened” someone by saying that their company has a bad culture. Instead, most employees fall short in the understanding of why their company has a bad culture.

 It’s true that culture often comes from the top of the organizational chart, but it is equally true that various cultures exist within the same organization--some good, some bad. I can’t promise that I can help you transform your entire organization with a few sips from the DevOps Kool-Aid, but I can promise you that I can help you transform your corner of the organization.

 My motivation for writing this was driven by the number of people I meet who feel that because their manager isn’t on board, they can’t do DevOps. To some extent, that’s true. For some areas, you need senior leadership buy-in. But there’s still a lot of change that an individual contributor or a team lead can push through to make your lives and processes better. A little bit of investment will also free up some of your time that’s currently spent on wasteful, low-value tasks and unleash that freed time on more productive work. This book takes a lot of the lessons that I’ve learned and distills them into a specific set of actions that you can take to bring the DevOps transformation out of the C-suite and down into the trenches.

 Lastly, this book will be a little more prescriptive about the changes that are needed in your corner of the organization. Together we’ll dive deeper than just case studies about how things are handled at Company X. Instead, we will come up with a specific set of actions that you will implement, tweak, and iterate on within your organization. Notice that I said “you.” This isn’t a book that will paint you as a hapless victim of poor management. You have the power to make your situation better. You will be the change agent that your organization needs to start this DevOps journey. All you need is a plan. Let’s get started on that.

Summary

 	
 DevOps is more than just a new set of tools. DevOps is truly about redefining the way you look at work and the relationship between tasks across different teams. The changes that a DevOps transformation brings will go beyond pure technology and stretch into the fabric of how we look at the nature of our work.

 	
 To introduce change, you need a way to examine the problems within your organization and address these productivity killers. That’s the meat of this book.

 	
 Despite the need for culture, I recognize that most of you reading this will be engineers, biased toward action. I open up the first part of the book with examples of problems your organization is most likely experiencing and a few concrete approaches to solving them. Even in these scenarios, I highlight how company culture influences the current state of affairs. Let’s start with the reasons Valentina has to call John in the middle of the night.

2 The paternalist syndrome

 This chapter covers

 	
Replacing barriers in your process with safeguards

 	
Understanding the concept of gatekeeping

 	
Eliminating gatekeepers through automation

 	
Addressing key items when building approval automation

 In some organizations, a group or groups seem to wield outsized power relative to their peers. The power is sometimes granted or enforced through things like access controls or approvals. The operations group may refuse to allow changes to systems without an extensive review process. The security team may prevent other teams from adopting technology created after 1984. The development group may refuse to build tools that allow people to make changes without their watchful eye.

 The rules or mandates can typically be traced back to some inciting event that justified draconian action. But the very thing that was supposed to make the teams more effective instead drags them to a crawl. If you’ve seen this in your own company or teams, you’re not alone.

 I call this the paternalist syndrome, named after the parental relationship one group assumes over others. The paternalistic syndrome relies on gatekeepers to decide how and when work gets done. This concentration in power initially seems like a prudent decision but can quickly devolve into a productivity strain.

 In this chapter, I’ll walk you through a common example of how gatekeepers get introduced into a process. Then I’ll break down the often-overlooked negative impact that introducing gatekeepers to a process can have. Stepping through the example, I’ll challenge the expected gains in safety that the process and gatekeepers were intending to add.

 Next, I’ll discuss using automation to achieve the same goals more effectively. Automation is incredibly valuable because of its repeatability. Performing the same tasks in exactly the same way through scripts and programs will reduce variability and make your processes more audit friendly because of their consistent approach. I’ll break down the true purpose of the approval process, followed by steps on following an automation approach to each of those core concerns.

2.1 Creating barriers instead of safeguards

 Sometimes approval processes from other teams or groups adds real value. But often the involvement of another team is about something else. It’s about a lack of trust between each other and a lack of safety inside your systems. Imagine I tell you to eat soup, but I give you no silverware to do it. My justification is that you might cut your mouth open when you try to eat your soup with a steak knife. It sounds insane, but that’s the metaphor for what many companies do--and it’s lazy. The better option, if I’m concerned about system safety, would be to give you a spoon and only a spoon: the best tool you need for a specific task.

 For some of you, this idea of system safety might be a new concept. But I’m sure you’ve experienced in your career an unforgiving system that might allow you to do something catastrophic. Think of a system that allows you to permanently delete work without a confirmation prompt. (Thanks, Linux!) You become bewildered by how something like this could happen. You take extra precautions like saving multiple copies of the file in case the unexpected behavior happens again. Compare that with the same system that verifies and confirms the dangerous action with the user. That’s the type of safety in systems that I’m referring to.

 A design approach that prevents you from unknowingly performing a dangerous action should be one of the objectives of system usability. Because so many systems lack these safeguards, organizations compensate by limiting the number of people who can perform these tasks to an anointed few. But being selected as an “authorized” performer of a task doesn’t make you infallible. Even an authorized performer can make a mistake, type the wrong command, or misunderstand the impact of an action.

 What are you really accomplishing by limiting access to these types of tasks? You’re not truly reducing risk, just concentrating the pressures of it on a select few. You also represent the problem as a personnel issue as opposed to a system issue. These engineers are competent enough to understand the impact, while others are not. When safety is missing in your systems, it manifests in the form of handoffs, approvals, and overly restrictive access controls.

 Here are some problems that are introduced with overly restrictive access controls:

 	
 Many organizations have teams with overlapping sets of responsibilities. This blurring of lines on technical teams can make it difficult to delineate when one scope of responsibility ends and when another begins between team members. As a developer, if I’m responsible for supporting a test suite, am I allowed to install software to support the test suite? Do I need to inform operations of an installation?

 	
 If that installation breaks the server or is somehow incompatible, who is responsible for resolving the issue?

 	
 Who has the access to actually troubleshoot it?

 These are the types of questions that arise when responsibilities overlap. These steps are internally justified as safety protections, which have good intentions but can often spill into the area of the nonsensical.

 In the case of an approval process, the process grows with every incident that occurs that isn’t specifically handled by the current process. Every incident then leads to an addendum to the approval process, or worse, an extra approver. Before long, you have a heavy, burdensome process that isn’t providing the value it’s supposed to.

 If you’ve ever attended an approval meeting, you’re probably familiar with the situation. A room full of individuals, often managers, tries to assess the risk of a proposal. The meeting over time devolves into a rubber-stamp committee. A large portion of the changes cause zero negative impact, leading to a lower bar for acceptance. In many organizations, it’s not long before change approval is considered a hurdle rather than a value-added process. You’ve been there. Deep down inside, you know it’s that bad.

 In many traditional organizations, the goal of removing artificial barriers and increasing collaboration is talked about and given a ton of lip service. But this talk is immediately sidelined when an incident occurs. Traditional organizations often reach into the approval toolbox to prevent future incidents. In a DevOps organization, the teams try to resist this urge at all costs. The goal is always to remove the artificial barriers, while still preserving the ones that add value.

 Artificial barriers create a power dynamic between teams that can result in a paternalistic relationship between the requestor and the approver. Requestors can feel like a child asking their parents to borrow the Ferrari for a date night. This leads to a friction between teams due to an imbalance of power.

 You might be reading and recognizing some of the problems discussed and the way they manifest themselves in your own environment. But the question on your mind might be, “Why DevOps?” There are several ways to solve these organizational problems, but the DevOps movement has caught on for a few reasons.

 First, it tackles the cultural problems front and center. Some engineers may find it hard to think of things outside technical solutions. But if you take a look at your organization and think critically about what’s plaguing it, you’ll realize that your problem is more often people (and how they work together) than technology. No technology will solve your prioritization process. No technology will magically align your goals so that teams are working with each other instead of against each other. Email was supposed to solve our communications issues. Then it was cell phones, and now it’s instant messaging and chat applications. All these tools have done is allowed us to communicate poorly, faster. This isn’t to say that technology isn’t part of the DevOps transformation. It just happens to be the easy part.

 Another important part of the DevOps movement is its focus on the cost of wasted human potential. If you think about your role, I’m sure you do certain things on a regular basis that could be replaced with a program or a script, freeing you up to do more impactful things. DevOps focuses on maximizing the work you do that will bring lasting value to the organization. It means taking the task that would normally take just five minutes to complete and turning it into a week-long automation task. The value of spending the time on the automation means someone will be waiting a lot longer for their request, but it’ll be the last time they’ll have to wait. You’ll never have to waste those five minutes again. Eliminating the wasted minutes in our workdays leads to a boon in productivity. From a technology viewpoint, it also helps when it comes to retaining talent, as engineers are free to work on more complicated and interesting tasks, versus the common rote tasks of the day.

 The goals of DevOps are the following:

 	
 Increase collaboration among teams

 	
 Decrease unnecessary gates and handoffs

 	
 Empower development teams with the tools and authority to own their systems

 	
 Create repeatable, predictable processes

 	
 Share responsibilities for the application production environment

 DevOps helps organizations deliver on these areas by following the CAMS model. As you learned in the preceding chapter, CAMS is an abbreviation for culture, automation, metrics, and sharing (see section 1.2). These four areas help create the conditions necessary for DevOps adoptions to thrive.

 A change in culture or mindset around how you work can enable people to do their jobs and eliminate wasteful gates. This culture change will lead teams to the need for automation. Automation is a powerful tool in creating repeatable processes and, when properly implemented, allows anyone on the team to perform an action consistently. The culture changes and the increase in shared responsibilities creates a need for metrics to help everyone understand the state of the systems. Being able to confirm that something is working is more valuable than just being able to confirm there are no errors. Finally, the sharing component helps ensure that the DevOps philosophy continues to grow throughout the team as opposed to being constrained to a select few. Sharing knowledge is a requirement for sharing responsibility. You cannot ask for your team members to take additional ownership without some sort of on-ramp for their learning needs. People need to understand parts of the system, at least at a high level, to accommodate the increase in responsibility. You’re going to need to create a structure to facilitate that sharing. As the level of automation and the amount of shared responsibility increases, the incentives for information hoarding begin to crumble.

 You can’t achieve these goals when every interaction between teams is stuck behind layers of approvals, requests, and power trips. These types of activities in processes are gatekeeper tasks. If you’re not careful, they can add unnecessary delays, create friction among teams, and incentivize people to avoid the gate at any cost, sometimes creating a less-than-optimal solution.

 DEFINITION Gatekeeping occurs when a person or process serves as an artificial barrier that regulates access to a resource of some kind.

 Gatekeepers are at the heart of the paternalist syndrome. The paternalist syndrome happens when a gatekeeper function is introduced because of an absence of trust. That trust could have been eroded by an earlier incident or it may have never existed in the first place. The paternalist syndrome thrives on the idea that only a certain person or group of people are qualified and trustworthy enough to perform or approve an action. This creates friction between teams because the gate process creates a barrier for teams to get their work done. When the gate adds no real value, it’s viewed as a parental function, with the requestor needing to explain or justify their request.

2.2 Introducing the gatekeepers

 Stephanie works in the IT operations department for a local health-care organization. She receives a request from Terrance, a developer on the billing team, to deploy the billing application at 4 p.m. this afternoon. Terrance wants to apply a patch before the billing run that is scheduled to happen over the weekend and wants to make sure there’s ample time to roll back the application if necessary.

 Stephanie gets all the details and agrees that 4 p.m. is a reasonable time for the deployment. She works with the billing team regularly and knows that the group is usually done using the application by noon each day. Stephanie waits until the 4 p.m. start time and begins the deployment. The process is smooth and goes without a hitch. She notices that two people were logged into the application when she began the deployment, but that’s not uncommon because many people remain logged in long after they’ve finished their use of the system. Terrance verifies that the application is functioning as intended, and they consider the deployment a success.

 The following morning, Stephanie is pulled into her manager’s office. Terrance is already there, head hung low. Stephanie’s manager informs her that a couple of billing team members were working in the system later than usual in order to fulfill a last-minute request by the accounts receivable team. Because of the request, they were manually updating a large volume of bills, which is done in a three-step process. The deployment occurred in the middle of that process, and a lot of valuable data-entry time was lost and would need to be reentered. The manager of the billing department is irate and demands that something be done to prevent this from happening again. This gives birth to the company’s very first change management policy.

 DEFINITION Change management is an organization’s standardized process for introducing changes to an application or system. The process typically involves a statement of the work to be done, which is submitted to a governing body to be approved for a given window of time.

 In discussing the situation with the billing and the IT department, it’s decided that all deployments should go through a formal review process. Stephanie and the rest of the operations staff will be required to get approval from the billing department before any deployments. The billing department will coordinate among themselves to approve a requested deployment window, but they ask that they get at least a one-day notice, so that they can receive sign-off from everyone in the billing department. Stephanie is responsible for supporting more than just the billing system, so she needs to be able to plan this work out on her end as well.

 Stephanie asks that any deployment requests coming from the development teams be submitted at least three days before the requested date. This ensures that Stephanie and her team members have enough time to work the request into their schedules and give the billing team enough notice, so that they can gather the appropriate signatures on their end as well. In addition, the teams agree that a deployment should not continue if users are logged into the system, in order to prevent a user from being disconnected. After a few rounds of discussion, the team agrees to the following process steps:

 	
 A developer submits a change ticket to Operations.

 	
 If the change ticket doesn’t give the operations department at least a three-day notice, it’s immediately rejected, and the developer is asked to resubmit with new dates.

 	
 The billing team reviews their work schedule. If there is a scheduling conflict with other billing team work, the change is rejected, and the developer is asked to resubmit with new dates.

 	
 The change is officially approved.

 	
 The change is implemented.

 The process as defined appears to assuage the concerns of the group. But this is a traditional response to a traditional problem. In a DevOps organization, the focus is on removing these types of gated requests and placing a focus on efficient and fast delivery, which is enabled by favoring automated solutions versus adding additional bottlenecks to delivery. Additionally, this process has several subtle side effects that will impact the team. The next section takes a deeper dive at the proposed process and highlights where it falls a bit short.

2.3 Examining the gatekeepers

 Everyone agrees that this new process should ensure that they no longer have this problem going forward and that communication regarding these sorts of changes will be greatly enhanced as a by-product of the new policy. But the new policy introduces a few new problems to the equation. Because the team is so focused on preventing future occurrences, they don’t think about the additional strain being placed on the organization.

 Additionally, gatekeepers are not thinking of the system holistically. Instead, they opt for local optimization of a problem, which might solve one problem but leads to new problems from a complete systems perspective. As an example, the deployment process now requires a three-day notification. In practice, this limits the billing application to being deployed only once per week. This can make addressing pressing items like bug fixes difficult to deploy quickly. In fact, urgent deploys may force you to circumvent the new process. By optimizing for one specific issue (approvals to ensure that work isn’t lost), you’ve slowed and hampered the system as a whole by limiting the ability for the billing application to be deployed quickly.

 The new process also requires a lot of extra communication between teams. Talking to team members isn’t a bad thing, usually, but the overhead of the approval process can grind the deployment process to a halt if the billing team isn’t responsive. These artificial delays build up a resentment toward the process, inviting people to avoid the process at all costs. I personally have never exaggerated a problem so that it could be justified as an emergency change situation and bypass the approval process--all so I could avoid getting paged over the weekend and attend a barbeque in peace. But you could see how someone might do that.

 Lastly, another unintended side effect could be that user inaction could result in a deployment being cancelled. If users aren’t good about logging off at the end of the day, an innocent mistake could lead to a cancelled deployment. This cancellation deprives customers of new features or functionality with no gain to the business. Plus, it’s extremely hard to explain to people why the release was cancelled. “We were ready to deploy, but Frank never replied to our email, so we cancelled the whole release.” Sounds a little lame.

 If users continue to forget to log off, over time it creates confusion for operations teams as they try to evaluate whether users are genuinely active or merely forgot to log off for the evening. Table 2.1 outlines a few of the new problems introduced by the change management policy that need to be taken into consideration when making a decision on the policy’s efficacy..

 Table 2.1 New problems introduced by the change management policy

 	
 Change

 	
 Problem introduced

 	
 Discussion

 	
 Three days’ notification required.

 	
 Limits billing application deployment to one per week.

 	
 How does this impact the capability to release bug fixes quickly?

 	
 Extra communication between teams.

 	
 Approval process slows further if the billing team isn’t available.

 	
 How does the billing team reach consensus? How much does that cost the company in time?

 	
 If users are in the system, the deployment is aborted.

 	
 Users might forget to log off at the end of their shift.

 	
 How does the operations team evaluate whether a user session is valid or a user forgot to log off?

 This is the sort of overreaction that fuels the paternalist syndrome. Instead of examining the system and how it contributes to the problem, the team has focused their energy on the individual decisions of team members. This is unproductive and puts the blame on the people instead of the process. Even more damning, it doesn’t solve the problem; instead, it just adds more time to the overall workflow.

 For starters, we’ve increased the communication time to at least three days. This means that without careful planning, we’re limited to a single deployment per week for the billing application. Depending on how fast the team develops features, this might be acceptable. But we’re introducing this delay as the result of a single occurrence. Every other deployment has completed without an issue. Now the teams are forcing every single deployment to go through this process! In addition, we risk every deployment being potentially blocked by users who have not properly logged out at the end of their day. Figure 2.1 illustrates the process and some of the problems that are introduced as a result.

 [image:]

 Figure 2.1 The new approval process introduces new issues.

 The stated goal of the new process is to prevent a disruption of work due to a deployment of the application. But the process doesn’t meet that goal. And it not only doesn’t meet the goal, but also actively slows down all future changes in a poor attempt to remove this specific type of failure.

 In reality, a simple missed step in the process can create a deployment that disrupts a user’s work and results in lost productivity. Figure 2.2 highlights a few points in the process that might be susceptible to human error, resulting in lost or disrupted work.

 You may be thinking, “But then that means someone didn’t follow the rules!” That’s true; the process creates ample opportunity for finger-wagging and telling people just how important the rules are. But I can think of a few scenarios in which an operator follows the process but still risks losing work. Maybe a billing user forgot that today was the day for the deployments. Or perhaps a particular user wasn’t consulted about the change. In fact, the entire approval process within the billing department could be highly suspect!

 [image:]

 Figure 2.2 A few key areas in the process are susceptible to error, resulting in possible data loss.

 This is why DevOps advocates for automation over manual approvals. The approval process can be easily circumvented and leads to variance in one deployment versus another. This variance is a source of pain when you need to audit a process or when you need to ensure that the exact process is followed every single time it’s executed.

2.4 Curing paternalism through automation

 You can use technology to replace a lot of the manual approval processes in a flow. Using the preceding deployment process example, think about how automation might solve some of the problems raised. The three-day notification window is intended to give humans enough time to review the work in progress and make sure things are OK to deploy. But machines can do this instantly, without all of the scheduling and prioritization conflicts that human approvers would have. Automation is a perfect solution for this and many other approval types of processes.

 Depending on the nature of your process, some components will be easily automated, while others might require a bit more consideration based on the risks involved. Because the feasibility of automating approvals varies, you’ll need to examine the purpose of the approval process.

 You’ll want to begin by assembling your team. The team needs to extend beyond just the engineers who are looking to automate the process. You want this solution to be holistic, so the team should expand to include the gatekeepers and others involved in the process. This helps to account for all viewpoints of the system.

 You also want to be sure that you’re including those gatekeepers in the design of the process. Gatekeepers come into existence to help alleviate a perceived risk, real or imagined. They may feel that their concerns are being dismissed or downplayed if they’re not involved in the design of a new process or solution. This lack of involvement will make getting their support an uphill battle.

 Once your team has been assembled, you’ll want to begin to have them commit to the effort of automating the process. It sounds basic, but so many automation efforts fail because the team can’t create a mental model of what an automated process flow looks like. They’re rooted in these ideas of human evaluation and can’t think of how that might be replaced by an automation algorithm and what those steps look like. As a result, the idea of automation is rejected out of hand. “It’s too complicated to automate” is a common excuse. If the world can automate a jet-liner landing, I assure you that you’re up to the task of automating your approval process.

 An initial discussion with the team highlighting the benefits of automating the process is in line. You can focus on topics like the following:

 	
 Reducing time spent in the approval process

 	
 Reducing time spent on administrative tasks

 	
 Reducing iteration time

 	
 Creating consistency in the process flow

 Getting consensus that the approval process can be improved is more important than hashing out the solution in this initial discussion. It’s not uncommon for members to disagree about the value of the current process (especially the actual gatekeepers). As a group, you cannot solve a problem if you don’t all agree on what the problem is. Spend this initial discussion getting the group to understand why the approval process needs improvement. This is going to be unique to your organization and specific process, but be sure to examine the unintended side effects of your process. Don’t concentrate on the solution at this stage. That’s for later. Use this time to get agreement on the problems and the ultimate goal.

 Through subsequent meetings, you can begin to work with the team to construct a high-level outline of your approach. You might not tackle everything at once. If there are easy wins you can make, do it! Plenty of value is to be had by iterating on your automation and expanding it over time. You may decide that parts of the process need to remain as manual approvals because of various risks. That’s fine, as long as the working group agrees on the risk and the manual approval being the best remedy. Remember, you’re not attempting to automate all of the manual approvals, just the ones that aren’t adding any real value.

 With these items as discussion topics, you can create consensus around the team so that everyone agrees on the deficiencies of the manual process, as opposed to throwing up roadblocks for why automation will fail. Now that the team has consensus, you can take the request to any leadership that needs to approve or prioritize this work.

 When bringing the request for prioritization to leadership, be sure to highlight not just the gains in efficiencies that the team expects, but also places where the current process falls short. You can be assured that almost any manual process will involve variability. Automation can help to eliminate or greatly reduce the variability, lowering the chance for any sort of human error or process mistake. If necessary, you can also assign a dollar value to the meetings and coordination necessary for every change. With leadership on board and your work ready to prioritize, you can move on to the details of implementing your change.

 In our specific example, approvals are required by a person. This may seem difficult to automate at first. But the gated approval process is just a proxy for another concern. If you can concretely define that concern, automating the concern becomes easier.

2.5 Capturing the purpose of the approval

 Only a really sick person would create an approval process just for the sake of it. An approval process is typically created to ensure that all necessary concerns surrounding the process have been addressed. Those concerns will vary from process to process. But whenever you’re automating an approval step, you should think about the concern that the approval process is a proxy for.

 As a nontechnical example, when you go to borrow money from a bank, you must answer a series of questions that may seem a bit invasive. But once you understand that those questions are an attempt to alleviate a larger concern, the questions make sense. If you apply for a loan personally, the loan giver wants to know about your other debts. It’s not because they’re interested in whom else you owe, but they’re using your debt as a proxy to understand your other outstanding commitments and how that might impact your ability to repay their loan.

 As a technical example, an approver may want to be sure that a change was peer-reviewed. It’s not that the original work is untrustworthy, but it’s important to ensure that it’s been viewed from multiple angles and perspectives. This is an example of capturing the purpose of an approval.

 The approval step in a manual process is typically trying to capture and convey a few facts, as follows:

 	
 All parts of the process are in an appropriate state for the work to continue.

 	
 The necessary people are informed that the work is occurring.

 	
 There are no conflicting actions that should prevent the change from happening.

 	
 The risk of the change is acceptable to the organization.

 Each of these concerns can be streamlined to a degree with automation, preventing the need for the tedious approval process.

2.6 Structuring code for automation

 Continuing our example from earlier in the chapter, the billing deployment process was working fine until a deployment caused the billing team to lose work that was in progress. This deployment incident created the desire for an approval process. In the team’s haste to ensure that everything was in order, several manual approval steps and delivery timelines were established. This, however, is an overreaction to the problem.

 It may seem faster to quickly implement manual gating, but the team could have focused on making the deployment process smarter and safer. The task may seem daunting initially, but you can start your automation small and modestly. Plan for the case where things are working out as you would normally expect them to. If anything deviates, simply error out with a message and use your manual process as a backup. This section walks through an approach to codifying various approval concerns.

 When you attempt to automate the process, it’s important that steps be structured appropriately. Every automated workflow will have to handle a series of concerns:

 	
 Approval process --What are the checks necessary to ensure that this is allowed to execute?

 	
 Logging process --Where does automation log the request, the approval, the execution, and the results?

 	
 Notification process --Where does automation notify people that the action was taken? (This notification process can be the same as the logging process, but some people may opt for a notification that gets pushed to the user like email, instead of a passive process like logging, where the user has to proactively look for the notification themselves.)

 	
 Error handling --How much automatic recovery do you perform?

 The needs of your automation might grow and contract over time as changing requirements and guidelines begin to muddy the waters on your original concept. This is a common problem in application design. The catch here, though, is that the automation of processes is often looked at as a series of simple scripts that are quickly cobbled together. But to echo the immortal words of Admiral Ackbar, “It’s a trap!”

 By not treating these automation tasks with the respect they demand, you end up with automation that is often inflexible, error prone, and difficult to understand and maintain. Structure even the most mundane of scripts with the thoughtfulness you would afford a full-blown application. Try to think about how the script has different concerns and try to separate those concerns into manageable, maintainable code. Let’s start with the approval process.

2.6.1 Approval process

 When implementing an approval process, you need to think about the reasons the manual approval process came into being. To reiterate, at a minimum, an approval process is typically trying to mitigate four areas of concern:

 	
 All parts of the process are in an appropriate state for the work to continue.

 	
 The necessary people are informed that the work is occurring.

 	
 There are no conflicting actions that should prevent the change from happening.

 	
 The risk of the change is acceptable to the organization.

 Work is in the appropriate state

 During the approval process, an approver may want to verify that work steps are in a place so teams can move forward. This is an important concern for approvers and will be one of several checks you’ll need to automate. This might be something as simple as ensuring that the request was peer reviewed, or more complex like ensuring that the database is in the correct state before executing.

 In our example, the billing team wants to approve deployments to ensure that no scheduling conflicts exist among other billing team members, because a deployment while people are updating the system could result in lost work. A good approval process isn’t just a gut check. Deciding whether the deployment should be approved could easily be completed via automation by describing the things that an approver would normally look for. There should be specific states and conditions that an approver evaluates to determine whether to approve or not. What those conditions are will be specific to your solution and organization. I’ve seen a few common factors in process approvals:

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F01_Smithje.png
DevOps

i

Buueys
SOUIBIN

uonewony

Riie]

OEBPS/cover.jpeg
Jeffery D. Smith

OEBPS/OEBPS/Images/CH02_F01_Smithje.png
Review process reduces the
frequency at which you can
deploy per week.

[
\

\
v

Change
submitted i
Bill
w Submit change j‘ 3-day to billing team téal:?
notice? Yes reviews
Developers Operations
No
Request new dates from developer Change No 1-day
rejected notice?
Yes
End Yes Schedule
conflicts,
Yes
No
Change No Are users Change
implemented

\ogged in? ~ approved

Users forget to log out,
causing deployment

cancellations.

How does the /

billing team

build consensus?

Is their task schedule
published?

OEBPS/OEBPS/Images/CH02_F02_Smithje.png
Change

submitted —

to billing team Billing

team
reviews

No

Change |, No 1-day
rejected notice?
Yes
Yes chedule
conflicts

Yes

No

Are users Change
logged in? approved

| If an operator skips
\\ this check, they could
~ log off a vital process.

What if the
schedule hasn’t
been updated? A
user’s work might
not be captured and
scheduled over.

/

|

/

/

OEBPS/OEBPS/Images/Manning_copyright.png

