

[image: Cover Page]

Camel in Action

Second Edition

Claus Ibsen

Jonathan Anstey

[image: ManningBlackSized.png]

MANNING

Shelter Island

Praise for the First Edition

I highly recommend this book. It kicks ass!
—James Strachan, cofounder of Apache Camel

Strikes the right balance between core concepts and running code.
—Gregor Hohpe, coauthor of Enterprise Integration Patterns

Great content from the source developers.
—Domingo Suarez Torres, SynergyJ

Comprehensive guide to enterprise integration with Camel.
—Gordon Dickens, Chariot Solutions

A deep book... with great examples.
—Jeroen Benckhuijsen, Atos Origin

A tech library essential!
—Mick Knutson, BASE Logic

If you want to get a good understanding of what Camel can do and how Camel does it, this book should be your first choice.
—Willem Jiang, Progress Software

This is my go-to book when using Camel in several real-world commercial projects. Highly recommended!
—Michael Nash, Point2 Technologies

Provides developers an excellent treatise on building integration applications.
—Bruce Snyder, SpringSource

A must-have for solving integration issues.
—Tijs Rademakers, Atos Origin

For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Development editor: Cynthia Kane

Technical development editor: Alain Couniot

Project editors: Kevin Sullivan and Janet Vail

Copyeditor: Sharon Wilkey

Proofreader: Corbin Collins

Technical proofreader: John Guthrie

Typesetter: Happenstance Type-O-Rama

Cover designer: Marija Tudor

ISBN 9781617292934

Printed in the United States

1 2 3 4 5 6 7 8 9 10 - EBM - 23 22 21  20 19 18

To the Apache Camel community—may this book be a helpful companion on your journeys with Camel

foreword

When I first saw Gregor Hohpe and Bobby Woolf’s Enterprise Integration Patterns book, I knew the patterns and ideas from the book would change the face of integration software. I figured it was time for a simple, easy-to-use implementation of those patterns, so I created the first version of Apache Camel over 10 years ago now. I had no idea how large and vibrant the Apache Camel community would become, how rich and diverse its capabilities would become, how great the number of patterns supported would be, nor how many connectors, languages, and tools would be integrated.

When Camel was still a relative toddler, along came Claus Ibsen, who soon became Mr. Camel—the main leader, maintainer, and evangelist behind Apache Camel. I can’t think of a better set of authors to write about Apache Camel than Claus “Mr. Camel” Ibsen and our fellow colleague and long-time Camel committer, Jonathan Anstey.

I loved the first edition of the book and am amazed at how much has changed for the second edition from the Apache Camel project and ecosystem, in particular how much better Camel works in the cloud. I highly recommend that anyone with even a passing interest in Apache Camel buy this book—and please, enjoy the ride and don’t get the hump! :)

James Strachan

Senior Architect, CloudBees

Original author of Apache Camel

foreword

The open source Apache Camel project has been at the forefront of the widespread adoption of Enterprise Integration Patterns on the JVM for many years. In fact it’s been so popular that some developers of other popular programming languages have cited it as a strong influence when they’ve implemented similar efforts. Apache Camel’s easy, intuitive, and extensible approach has made it possible for even novice developers to produce reliable solutions to complex problems in a realistic period of time. The vibrant open source community of contributors and users has helped evolve the project into new areas such as the cloud, mobile, and the Internet of Things (IoT). This positive feedback loop looks strong. Innovation continues on a daily basis led by a number of key contributors, most notably the authors of this book, Claus and Jon.

I first heard of Claus and Jon when I became an early user of Apache Camel in a previous role. Their programming style was clear and concise, matched only by their patience, ability to communicate complex concepts at all levels, and their insatiable thirst to learn from the community of Apache Camel users and contributors in order to continually evolve and grow the project. Fast-forward a few years, and I was able to work much more closely with them and the rest of the Fuse team when Red Hat acquired FuseSource. I've learned that my initial love of Apache Camel was not misplaced, and we’ve seen huge success internally and externally with it.

In this revised edition of their incredibly popular book, Claus and Jon stay true to the original formula that helped make the first version so approachable: they know their subject better than most and obviously like to help others to learn and gain that same level of understanding. The book has been structured well and encourages you to jump around and across topics, dipping in and out where it helps you to accomplish your task. Claus and Jon are great writers too, relying on figures and diagrams where needed, with lots of code snippets and worked examples, which are always necessary in good technical books.

As I mentioned, Apache Camel has seen a lot of changes over the years, as has the industry, and the authors manage to reflect this within the updated edition. There is coverage of how the project is used within IoT, for instance. But probably one of the biggest changes in the software landscape relevant to Apache Camel since the book’s first edition is the evolution of service-oriented architectures (SOAs) toward smaller-grained services known as microservices, as well as a move to the cloud with technologies such as Docker and Kubernetes. Claus and Jon manage to cover these relatively new and fast-moving topics, showing how Apache Camel should remain a key part of the software architect’s toolbox.

Dr. Mark Little

Technical Director of JBoss

Vice President of Engineering, Red Hat

foreword to the first edition

Languages are a critical aspect of software development. They give us the vocabulary to express what a program should do. They force us to encode our requirements in precise and unambiguous terms. Lastly, they enable the sharing of knowledge between developers. No, I’m not talking about Java, Haskell, or PL/1. I’m talking about the languages we use to communicate from human to human, from developer to developer, or from end user to product manager. For a long time, the world of enterprise integration (or EAI, as it was commonly known in the “dark ages of integration”) lacked such a vocabulary. Each vendor offered a proprietary solution that not only failed to integrate at a technical level with other vendors’ offerings, but also used a different language to describe the main components and their functions. This caused confusion and was also a key inhibitor to creating a community of developers that could span the vast space of enterprise integration. Each “tribe” was essentially held hostage by the language bestowed upon them. Ironically, integration developers were faced with the same Tower of Babel problem that their software was designed to solve!

Establishing a common vocabulary that enables knowledge sharing and collaboration was the key motivator for us to write the Enterprise Integration Patterns book. Each of the 65 patterns has a descriptive name that represents the solution to a design challenge in the integration space. Besides supporting effective communication, this vocabulary also raises the level of abstraction at which we can describe integration problems and solutions.

A shared vocabulary is a big step forward, but a giant step we could not imagine at the time was that our language would spur the development of a whole family of open source messaging and enterprise service bus (ESB) products. These tools embrace the EIP vocabulary by implementing many patterns directly in the platform. With Apache Camel, a Splitter pattern translates directly into a “split” element in the Camel DSL. We couldn’t have wished for a more direct translation of the pattern language into an implementation platform.

Claus and Jon bring the saga to a grand finale by showing us how to use the Camel pattern language to compose real-life messaging solutions. In doing so, they not only cover fundamental concepts like routing and transformation, but also dig into often-neglected parts of the development process, including testing, monitoring, and deploying. They find the right balance of the pattern language, Camel core concepts, and running code to help you build easy-to-understand and robust messaging solutions.

Gregor Hohpe

Coauthor of Enterprise Integration Patterns

www.eaipatterns.com

preface

Developers who have done integration work know what a difficult task it can be. IT systems may not have been designed to be accessible from other systems, and if they were designed for interoperability, they may not speak the protocol you need. As a developer, you end up spending a considerable amount of time working with the plumbing of the integration protocols to open up the IT systems to the outside world.

In Enterprise Integration Patterns, Gregor Hohpe and Bobby Woolf gave us a standard way to describe, document, and implement complex integration problems. Developers and architects alike can use this common language and catalog of solutions to tackle their integration problems. But although Hohpe and Woolf gave us the theory, the industry still needed an open source implementation of the book.

In his foreword, James Strachan explains how Apache Camel came to life. In the beginning of 2007, James created Apache Camel as an implementation of the EIP book, and by summer, version 1.0 was released.

Apache Camel is an integration framework with the main goal of making integration easier. It implements many of the EIP patterns and allows you to focus on solving business problems, freeing you from the burden of plumbing. Using connectivity components has never been easier, because you don’t have to implement JMS message listeners, FTP clients, or deal with the complexity of integrating with the massive set of SalesForce APIs and services. Camel also has great support for converting data between protocols, abstracting away lower-level raw details of such things as HTTP requests. All this is taken care of by Camel, which makes mediation and routing as easy as writing a few lines of Java code or using XML.

Since its creation Apache Camel has become very popular, and today it has an ever-growing community. As with many open source projects that become popular, a logical next step was for someone to write a book about it, and so we did. In 2008, when we started our journey on writing the first edition of this book, which was published in late 2010. After the success of the first edition, Michael Stephens from Manning got in touch with us again in March 2015 to discuss our next Camel book. We went down the rabbit hole again and in July 2015 signed up for writing Camel in Action, Second Edition.

Writing this second edition has been a long journey, proven by the fact that we started over two years ago! This extended time was partly due to us both being much busier in our personal lives, but also you may have noticed that the second edition is nearly twice as long as the first. We just couldn’t stop writing! Although this may make the print book a little uncomfortable to hold, it also means you get more in-depth coverage of Camel than ever before. It’s a good trade-off, we think! Despite the length, we’ve managed to keep up with the fast-moving Camel project. This book uses the latest Camel release at the time of writing (Camel 2.20.1).

We hope this book proves to be of great value to you and helps you prosper in the Camel community.

Claus Ibsen

Senior Principal Software Engineer, Red Hat

Jonathan Anstey

Engineering Manager, Red Hat

acknowledgments

We first want to thank Cynthia Kane, Kevin Sullivan, and Janet Vail, our development and project editors at Manning, who helped steer the project and ensure progress. We’d also like to thank our awesome proofreader, Corbin Collins, for turning our writing into an enjoyable reading experience. A big thank you to Susan Harkins, who helped us with our final review, ensuring our book meets the high standard you’d expect from a Manning title. The greater Manning team deserves kudos as well; they’ve made for a very pleasant writing experience over the past two years. We’d also like to thank Michael Stephens for getting in touch with us again and pitching the idea of a second edition. Special thanks to Alain Couniot for being our technical proofreader, catching those bugs we missed, and helping improve the source code for the book.

Big thanks to our team of reviewers, who provided invaluable feedback during various stages of the book’s development: Andrea Barisone, Ethien Daniel Salinas Dominquez, Fabrizio Cucci, Gregor Zurowski, Grzegorz Grzybek, Ivan Brencsics, José Diaz, Mark Stofferahn, Philippe Van Bergen, Phillip A. Sorensen, Rambabu Posa, Rick Wagner, Tobias Kilian, Werner Aernouts, and Yan Guo.

We’re also very grateful for all the help we received from people in our circles who volunteered to review the material during the two years of development. A big thank you to the following: Antoine Dessaigne, Aurélien Pupier, Bilgin Ibryam, Christian Posta, Clement Escoffier, Joseph Kampf, Kevin Earls, Lars Heinemann, Luca Burgazzoli, Nicola Ferraro, and Scott Cranton.

The accompanying source code for any technical book plays a vital role to readers in allowing them to try the examples and experiment—to learn by doing. We want to thank the following who have helped by contributing to the source code: Aurélien Pupier, Babak Vahdat, Christoph Deppisch, Grzegorz Grzybek, Kevin Earls, Luca Burgazzoli, Morten Erik Banzon, Ryota Sato, Scott Cranton, and Willem Jiang.

We also wish to thanks all our readers of the first edition who were so kind to submit errata. We’ve made sure to fix those items for this second edition.

Thanks to Henryk Konsek for being our guest author of chapter 21, which is all about using Camel with the IoT (Internet of Things).

We’d like to thank Gregor Hohpe, James Strachan, and Mark Little for writing the forewords to our book. Gregor’s book Enterprise Integration Patterns has been one of our favorite tech books for years now, so it’s an honor to have Gregor on board to write a foreword. Without the EIP book, Apache Camel would look a lot different than it does today, if it existed at all. James Strachan is an inspiration to many developers out there—including us. He’s founded tons of successful open source projects; Camel is just one of them. If James hadn’t decided to create Camel, we wouldn’t be writing this book. So, again, thanks!

Mark Little at Red Hat has been very supportive of our work on the JBoss Fuse team, and we want to thank Mark for believing in us and Apache Camel.

A warm thank you goes to our manager Aileen Cunningham at Red Hat, who has been supportive of our work and given us company time to focus on finishing this book.

Finally, we’d like to give a big warm thank you to the Camel community. Without them, the Apache Camel project wouldn’t be as successful as it is today. And without that success, both of us would have different kinds of jobs today, which wouldn’t involve hacking on Camel on a daily basis.

Claus

Writing this book the second time was an emotional rollercoaster. My 12-year relationship ended, and I moved from Sweden back to my home country of Denmark. I want to thank my parents for openly welcoming me back home and allowing me to live under their roof while my new condo was being renovated. I enjoyed every day I spent together with my father until his sudden passing on November 4, 2017. Father, I love you and I will see you in heaven when it’s my turn. I will stay strong and look after Mother.

Jon

I would like to thank my amazing wife, Lisa, for the patience, support, and encouragement I needed throughout the writing of this book. We took way longer than expected this time, and so the burden on you was heavy. I truly appreciate all you do, hon. To Georgia, my beautiful daughter, and Jake, my superman heart warrior: thank you for cheering me up each and every day. Love you guys!!

about this book

Apache Camel exists because integration is hard and Camel’s creators wanted to make things easier for users. Camel’s online documentation serves as a reference for its many features and components. This book aims to guide readers through those features, starting with the simple points and building up to advanced Camel usage by the end of the book. Throughout the book, Camel’s features are put into action in real-life scenarios.

Roadmap

The book is divided into six parts:

	
Part 1—First steps

	
Part 2—Core Camel

	
Part 3—Developing and testing

	
Part 4—Going further with Camel

	
Part 5—Running and managing Camel

	
Part 6—Out in the wild

Part 1 starts off simply, by introducing you to Camel’s core functionality and concepts, and it presents some basic examples:

	Chapter 1 introduces you to Camel and explains what Camel is and where it fits into the bigger enterprise software picture. You’ll also start learning the concepts and terminology of Camel.

	Chapter 2 covers Camel’s main feature: message routing. Java DSL and XML DSL are covered, as are several Enterprise Integration Patterns (EIPs). EIPs are basically canned solutions to integration problems.

Part 2 builds on the foundation of part 1 and covers the core features of Camel. You’ll need many of these features when using Camel:

	Chapter 3 explains how Camel can help you transform your data to different formats while it’s being routed.

	Chapter 4 takes a look at how you can use Java beans in Camel.

	Chapter 5 explores in depth the most powerful and complex EIPs.

	Chapter 6 covers the most frequently used components from Camel’s large selection.

Having absorbed all the core concepts of Camel, you’re ready to learn how to develop and test your Camel applications in part 3:

	Chapter 7 is an extensive chapter that teaches you all about how to use Camel with microservices. You’ll find details on making the most of Camel with Spring Boot, WildFly Swarm, and other popular microservice containers.

	Chapter 8 explains how to create new Camel projects, which could be Camel applications, custom components, or data formats. This chapter doesn’t require much additional Camel knowledge, so you could read it right after part 1.

	Chapter 9 looks at the testing facilities shipped with Camel. You can use these features for testing your own Camel applications or applications based on other stacks.

	Chapter 10 provides in-depth coverage of using RESTful services with Camel, including Camel’s Rest DSL, and you’ll see how to document your APIs using Swagger with Camel.

In part 4 we cover topics that are useful when you’ve gained a better understanding of Camel from earlier chapters:

	Chapter 11 covers all of Camel’s error-handling features. Error handling is one of the more complex issues you’ll have to deal with, so make sure to read this chapter.

	Chapter 12 explains how you can use transactions in your Camel applications.

	Chapter 13 discusses how to deal with concurrency and scalability in your Camel applications.

	Chapter 14 covers how to secure your Camel applications.

Part 5 is a two-chapter part that focuses on the deployment and management aspects of Camel, so you can run your Camel applications the best way possible in production:

	Chapter 15 talks about the many ways to reliably start and stop Camel. Deployment to several of the most popular containers is also discussed.

	Chapter 16 covers how to manage and monitor Camel applications—including, among other things, how to read the Camel logs and how to control Camel with JMX.

The last part is where we take you the extra mile and off the beaten track and show you a wide variety of things you can do with Camel:

	Chapter 17 covers the important topic of how to cluster your Camel applications.

	Chapter 18 discusses Camel, containers, and the cloud, and you’ll learn how to containerize Camel to run with Docker and Kubernetes.

	Chapter 19 covers the most popular Camel tooling that comes out of the box and what’s available from third parties on the internet.

The appendixes at the end of the book contain useful reference material on the Simple expression language and the Camel community.

There are also two bonus chapters available online at www.manning.com/books/camel-in-action-second-edition:

	Chapter 20 gives an introduction to Reactive systems and the Reactive Streaming API, along with information on how to use them with Camel. You’ll also find an introduction to Vert.X, a popular Reactive toolkit that works well with Camel.

	Chapter 21, written by Henryk Konsek, introduces the Internet of Things (IoT) and covers how you can integrate IoT devices with Camel.

Who should read this book

We wrote this book primarily for developers who have found the online Camel documentation lacking and need a guidebook that explains things in a more detailed and organized way. Although we mainly targeted existing Camel users, Camel in Action is a great way to start learning about Camel. Experienced engineers and architects are also encouraged to read this book, as it explains advanced Camel concepts that you just can’t find elsewhere. Test and Q&A engineers will find Camel and this book useful as a means of driving tests that require communication with various transports and APIs. System administrators may also find the management, monitoring, and deployment topics of great value.

Camel’s features are focused on the enterprise business community and its needs, but it’s also a general and very useful integration toolkit. Any Java developer who needs to send a message somewhere will probably find Camel and this book useful.

Code conventions

The code examples in this book are abbreviated in the interest of space. In particular, some of the namespace declarations in the XML configurations and package imports in Java classes have been omitted. We encourage you to use the source code when working with the examples. The line lengths of some of the examples exceed the page width, and in those cases the line continuation arrow (➥) is used to indicate that a line has been wrapped for formatting.

All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered bullets link to explanations that follow the listing.

Source code downloads

The source code for the examples in this book is available online at GitHub: https://github.com/camelinaction/camelinaction2.

Software requirements

The following software is required to run the examples:

	JDK 8

	Maven 3.5 or better

	Apache Camel 2.20.1 or better

Apache Camel itself can be downloaded from its official website: http://camel.apache.org/download.html.

All the examples can be run using Maven. Chapter 1 shows you how to get started with Maven and run the examples.

Author Online

The purchase of Camel in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/books/camel-in-action-second-edition. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions, lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

[image: Author Photo]

Claus Ibsen has worked as a software engineer and architect for more than 20 years. He has often worked with integration in various forms, from integrating with legacy systems on AS/400s to building custom in-house integration frameworks. Claus has designed and architected a large solution for custom clearance for the district of Shanghai, China. He tracks the trends in the open source integration space, and it led him to Apache Camel in late 2007.

He became a committer in March 2008. In the beginning of 2009, he joined FuseSource as full-time developer on Camel and has not looked back since. He currently holds a position as senior principal software engineer at Red Hat, working as project lead on Apache Camel.

Claus also works on other open source projects related to integration, such as JBoss Fuse, Apache ActiveMQ, fabric8, hawtio, Syndesis, and Vert.X. Claus is a regular speaker at conferences, so you may have the chance to meet him face to face.

In his spare time Claus is a keen runner of half marathons. (Thank you, Jonas, for pushing me to run longer distances.) He has plans to go the full distance. He also enjoys traveling, and if the work-travel isn’t sufficient he may consider going on leave to become a backpacker once again.

Claus lives in his hometown of Esbjerg, Denmark.

[image: Author Photo]

Jonathan Anstey is a software engineer with varied experience in manufacturing control systems, build infrastructure, and enterprise integration. He got involved in the Apache Camel project in early 2008 and hasn’t looked back since. Most recently, Jon has been overseeing maintenance for Apache Camel and other open source projects as an engineering manager at Red Hat, Inc.

When Jon isn’t hacking on Camel, he likes to spend time with his wife and two kids in Paradise, Newfoundland.

about the cover illustration

The illustration on the cover of Camel in Action bears the caption “A Bedouin” and is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection, and we’ve so far been unable to track it down. The book’s table of contents identifies the figures in both English and French, and each illustration also bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer programming book 200 years later.

The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan. The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation seemed hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with a handshake. The seller proposed that the money be transferred to him by wire, and the editor walked out with the bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear on Manning’s covers, bring to life the richness and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every other historic period except our own hyperkinetic present. Dress codes have changed since then certainly, and the diversity by region, so rich at the time, has faded away. It’s now often hard to tell the inhabitant of one continent from that of another. Perhaps, viewed optimistically, we’ve traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based on the rich diversity of regional life as it was two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

First steps

Apache Camel is an open source integration framework that aims to make integrating systems easier. In the first chapter of this book, we’ll introduce you to Camel and show you how it fits into the bigger enterprise software picture. You’ll also learn the concepts and terminology of Camel.

Chapter 2 focuses on message routing, one of Camel’s most important features. Camel has two main ways of defining routing rules: the Java-based domain specific language (DSL) and the XML configuration format. In addition to these route-creation techniques, we’ll show you how to design and implement solutions to integration problems using enterprise integration patterns (EIPs) and Camel.

1

Meeting Camel

This chapter covers

	An introduction to Camel

	Camel’s main features

	Your first Camel ride

	Camel’s architecture and concepts

Building complex systems from scratch is a costly endeavor, and one that’s almost never successful. An effective and less risky alternative is to assemble a system like a jigsaw puzzle from existing, proven components. We depend daily on a multitude of such integrated systems, making possible everything from phone communications, financial transactions, and health care to travel planning and entertainment.

You can’t finalize a jigsaw puzzle until you have a complete set of pieces that plug into each other simply, seamlessly, and robustly. That holds true for system integration projects as well. But whereas jigsaw puzzle pieces are made to plug into each other, the systems we integrate rarely are. Integration frameworks aim to fill this gap. As a developer, you’re less concerned about how the system you integrate works and more focused on how to interoperate with it from the outside. A good integration framework provides simple, manageable abstractions for the complex systems you’re integrating and the “glue” for plugging them together seamlessly.

Apache Camel is such an integration framework. In this book, we’ll help you understand what Camel is, how to use it, and why we think it’s one of the best integration frameworks out there. This chapter starts off by introducing Camel and highlighting some of its core features. We’ll then present the Camel distribution and explain how to run the Camel examples in the book. We’ll round off the chapter by bringing core Camel concepts to the table so you can understand Camel’s architecture.

Are you ready? Let’s meet Camel.

1.1	Introducing Camel

Camel is an integration framework that aims to make your integration projects productive and fun. The Camel project was started in early 2007 and now is a mature open source project, available under the liberal Apache 2 license, with a strong community.

Camel’s focus is on simplifying integration. We’re confident that by the time you finish reading these pages, you’ll appreciate Camel and add it to your must-have list of tools.

This Apache project was named Camel because the name is short and easy to remember. Rumor has it the name may be inspired by the Camel cigarettes once smoked by one of the founders. At the Camel website, a FAQ entry (http://camel.apache.org/why-the-name-camel.html) lists other lighthearted reasons for the name.

1.1.1	What is Camel?

At the core of the Camel framework is a routing engine—or more precisely, a routing-engine builder. It allows you to define your own routing rules, decide from which sources to accept messages, and determine how to process and send those messages to other destinations. Camel uses an integration language that allows you to define complex routing rules, akin to business processes. As shown in Figure 1.1, Camel forms the glue between disparate systems.

One of the fundamental principles of Camel is that it makes no assumptions about the type of data you need to process. This is an important point, because it gives you, the developer, an opportunity to integrate any kind of system, without the need to convert your data to a canonical format.

[image: c01_01.png]
Figure 1.1 Camel is the glue between disparate systems.

Camel offers higher-level abstractions that allow you to interact with various systems by using the same API regardless of the protocol or data type the systems are using. Components in Camel provide specific implementations of the API that target different protocols and data types. Out of the box, Camel comes with support for more than 280 protocols and data types. Its extensible and modular architecture allows you to implement and seamlessly plug in support for your own protocols, proprietary or not. These architectural choices eliminate the need for unnecessary conversions and make Camel not only faster but also lean. As a result, it’s suitable for embedding into other projects that require Camel’s rich processing capabilities. Other open source projects, such as Apache ServiceMix, Karaf, and ActiveMQ, already use Camel as a way to carry out integration.

We should also mention what Camel isn’t. Camel isn’t an enterprise service bus (ESB), although some call Camel a lightweight ESB because of its support for routing, transformation, orchestration, monitoring, and so forth. Camel doesn’t have a container or a reliable message bus, but it can be deployed in one, such as the previously mentioned Apache ServiceMix. For that reason, we prefer to call Camel an integration framework rather than an ESB.

If the mere mention of ESBs brings back memories of huge, complex deployments, don’t fear. Camel is equally at home in tiny deployments such as microservices or internet-of-things (IoT) gateways.

To understand what Camel is, let’s take a look at its main features.

1.1.2	Why use Camel?

Camel introduces a few novel ideas into the integration space, which is why its authors decided to create Camel in the first place. We’ll explore the rich set of Camel features throughout the book, but these are the main ideas behind Camel:

	Routing and mediation engine

	Extensive component library

	Enterprise integration patterns (EIPs)

	Domain-specific language (DSL)

	Payload-agnostic router

	Modular and pluggable architecture

	Plain Old Java Object (POJO) model

	Easy configuration

	Automatic type converters

	Lightweight core ideal for microservices

	Cloud ready

	Test kit

	Vibrant community

Let’s dive into the details of each of these features.

Routing and mediation engine

The core feature of Camel is its routing and mediation engine. A routing engine selectively moves a message around, based on the route’s configuration. In Camel’s case, routes are configured with a combination of enterprise integration patterns and a domain-specific language, both of which we’ll describe next.

Extensive component library

Camel provides an extensive library of more than 280 components. These components enable Camel to connect over transports, use APIs, and understand data formats. Try to spot a few technologies that you’ve used in the past or want to use in the future in figure 1.2. Of course, it isn’t possible to discuss all of these components in the book, but we do cover about 20 of the most widely used. Check out the index if you’re interested in a particular one.

[image: c01_02.png]
Figure 1.2 Connect to just about anything! Camel supports more than 280 transports, APIs, and data formats.

Enterprise integration patterns

Although integration problems are diverse, Gregor Hohpe and Bobby Woolf noticed that many problems, and their solutions are quite similar. They cataloged them in their book Enterprise Integration Patterns (Addison-Wesley, 2003), a must-read for any integration professional (www.enterpriseintegrationpatterns.com). If you haven’t read it, we encourage you to do so. At the very least, it’ll help you understand Camel concepts faster and easier.

The enterprise integration patterns, or EIPs, are helpful not only because they provide a proven solution for a given problem, but also because they help define and communicate the problem itself. Patterns have known semantics, which makes communicating problems much easier. Camel is heavily based on EIPs. Although EIPs describe integration problems and solutions and provide a common vocabulary, the vocabulary isn’t formalized. Camel tries to close this gap by providing a language to describe the integration solutions. There’s almost a one-to-one relationship between the patterns described in Enterprise Integration Patterns and the Camel DSL.

Domain-specific language

At its inception, Camel’s domain-specific language (DSL) was a major contribution to the integration space. Since then, several other integration frameworks have followed suit and now feature DSLs in Java, XML, or custom languages. The purpose of the DSL is to allow the developer to focus on the integration problem rather than on the tool—the programming language. Here are some examples of the DSL using different formats and staying functionally equivalent:

	Java DSL

from("file:data/inbox").to("jms:queue:order");

	XML DSL

<route>
 <from uri="file:data/inbox"/>
 <to uri="jms:queue:order"/>
</route>

These examples are real code, and they show how easily you can route files from a folder to a Java Message Service (JMS) queue. Because there’s a real programming language underneath, you can use the existing tooling support, such as code completion and compiler error detection, as illustrated in figure 1.3.

[image: c01_03.png]
Figure 1.3 Camel DSLs use real programming languages such as Java, so you can use existing tooling support.

Here you can see how the Eclipse IDE’s autocomplete feature can give you a list of DSL terms that are valid to use.

Payload-agnostic router

Camel can route any kind of payload; you aren’t restricted to carrying a normalized format such as XML payloads. This freedom means you don’t have to transform your payload into a canonical format to facilitate routing.

Modular and pluggable architecture

Camel has a modular architecture, which allows any component to be loaded into Camel, regardless of whether the component ships with Camel, is from a third party, or is your own custom creation. You can also configure almost anything in Camel. Many of its features are pluggable and configurable—anything from ID generation, thread management, shutdown sequencer, stream caching, and whatnot.

POJO model

Java beans (or Plain Old Java Objects, POJOs) are considered first-class citizens in Camel, and Camel strives to let you use beans anywhere and anytime in your integration projects. In many places, you can extend Camel’s built-in functionality with your own custom code. Chapter 4 has a complete discussion of using beans within Camel.

Easy configuration

The convention over configuration paradigm is followed whenever possible, which minimizes configuration requirements. In order to configure endpoints directly in routes, Camel uses an easy and intuitive URI configuration.

For example, you could configure a Camel route starting from a file endpoint to scan recursively in a subfolder and include only .txt files, as follows:

from("file:data/inbox?recursive=true&include=.*txt$")...

Automatic type converters

Camel has a built-in type-converter mechanism that ships with more than 350 converters. You no longer need to configure type-converter rules to go from byte arrays to strings, for example. And if you need to convert to types that Camel doesn’t support, you can create your own type converter. The best part is that it works under the hood, so you don’t have to worry about it.

The Camel components also use this feature; they can accept data in most types and convert the data to a type they’re capable of using. This feature is one of the top favorites in the Camel community. You may even start wondering why it wasn’t provided in Java itself! Chapter 3 covers more about type converters.

Lightweight core ideal for microservices

Camel’s core can be considered lightweight, with the total library coming in at about 4.9 MB and having only 1.3 MB of runtime dependencies. This makes Camel easy to embed or deploy anywhere you like, such as in a standalone application, microservice, web application, Spring application, Java EE application, OSGi, Spring Boot, WildFly, and in cloud platforms such as AWS, Kubernetes, and Cloud Foundry. Camel was designed not to be a server or ESB but instead to be embedded in whatever runtime you choose. You just need Java.

Cloud Ready

In addition to Camel being cloud-native (covered in chapter 18), Camel also provides many components for connecting with SaaS providers. For example, with Camel you can hook into the following:

	Amazon DynamoDB, EC2, Kinesis, SimpleDB, SES, SNS, SQS, SWF, and S3

	Braintree (PayPal, Apple, Android Pay, and so on)

	Dropbox

	Facebook

	GitHub

	Google Big Query, Calendar, Drive, Mail, and Pub Sub

	HipChat

	LinkedIn

	Salesforce

	Twitter

	And more...

Test kit

Camel provides a test kit that makes it easier for you to test your own Camel applications. The same test kit is used extensively to test Camel itself, and it includes more than 18,000 unit tests. The test kit contains test-specific components that, for example, can help you mock real endpoints. It also allows you to set up expectations that Camel can use to determine whether an application satisfied the requirements or failed. Chapter 9 covers testing with Camel.

Vibrant community

Camel has an active community. It’s a long-lived one too. It has been active (and growing) for more than 10 years at the time of writing. Having a strong community is essential if you intend to use any open source project in your application. Inactive projects have little community support, so if you run into issues, you’re on your own. With Camel, if you’re having any trouble, users and developers alike will come to your aid. For more information on Camel’s community, see appendix B.

Now that you’ve seen the main features that make up Camel, you’ll get more hands-on by looking at the Camel distribution and trying an example.

1.2	Getting started

This section shows you how to get your hands on a Camel distribution and explains what’s inside. Then you’ll run an example using Apache Maven. After this, you’ll know how to run any of the examples from the book’s source code.

Let’s first get the Camel distribution.

1.2.1	Getting Camel

Camel is available from the official Apache Camel website at http://camel.apache.org/download.html. On that page, you’ll see a list of all the Camel releases and the downloads for the latest release.

For the purposes of this book, we’ll be using Camel 2.20.1. To get this version, click the Camel 2.20.1 Release link. Near the bottom of the page, you’ll find two binary distributions: the zip distribution is for Windows users, and the tar.gz distribution is for macOS/Linux users. After you’ve downloaded one of the distributions, extract it to a location on your hard drive.

Open a command prompt and go to the location where you extracted the Camel distribution. Issuing a directory listing here will give you something like this:

[janstey@ghost apache-camel-2.20.1]$ ls
doc examples lib LICENSE.txt NOTICE.txt README.txt

As you can see, the distribution is small, and you can probably guess what each directory contains already. Here are the details:

	
doc—Contains the Camel manual in HTML format. This manual is a download of a large portion of the Apache Camel website at the time of release. As such, it’s a decent reference for those unable to access the Camel website (or if you misplaced your copy of Camel in Action).

	
examples—Includes 97 Camel examples.

	
lib—Contains all Camel libraries. You’ll see later in the chapter how Maven can be used to easily download dependencies for the components outside the core.

	
LICENSE.txt—Contains the license of the Camel distribution. Because this is an Apache project, the license is the Apache License, version 2.0.

	
NOTICE.txt—Contains copyright information about the third-party dependencies included in the Camel distribution.

	
README.txt—Contains a short intro to Camel and a list of helpful links to get new users up and running.

Now let’s try the first Camel example from this book.

1.2.2	Your first Camel ride

So far, we’ve shown you how to get a Camel distribution and offered a peek at what’s inside. At this point, feel free to explore the distribution; all examples have instructions to help you figure them out.

From this point on, though, we won’t be using the distribution at all. All the examples in the book’s source use Apache Maven, which means that Camel libraries will be downloaded automatically for you—there’s no need to make sure the Camel distribution’s libraries are on the classpath.

You can get the book’s source code from the GitHub project that’s hosting the source (https://github.com/camelinaction/camelinaction2).

The first example you’ll look at can be considered the “hello world” of integrations: routing files. Suppose you need to read files from one directory (data/inbox), process them in some way, and write the result to another directory (data/outbox). For simplicity, you’ll skip the processing, so your output will be merely a copy of the original file. Figure 1.4 illustrates this process.

[image: c01_04.png]
Figure 1.4 Files are routed from the data/inbox directory to the data/outbox directory.

It looks simple, right? Here’s a possible solution using pure Java (with no Camel).

Listing 1.1 Routing files from one folder to another in plain Java

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;

public class FileCopier {

 public static void main(String args[]) throws Exception {
 File inboxDirectory = new File("data/inbox");
 File outboxDirectory = new File("data/outbox");
 outboxDirectory.mkdir();
 File[] files = inboxDirectory.listFiles();
 for (File source : files) {
 if (source.isFile()) {
 File dest = new File(
 outboxDirectory.getPath()
 + File.separator
 + source.getName());
 copyFile(source, dest);
 }
 }
 }

 private static void copyFile(File source, File dest)
 throws IOException {
 OutputStream out = new FileOutputStream(dest);
 byte[] buffer = new byte[(int) source.length()];
 FileInputStream in = new FileInputStream(source);
 in.read(buffer);
 try {
 out.write(buffer);
 } finally {
 out.close();
 in.close();
 }
 }
}

This FileCopier example is a simple use case, but it still results in 37 lines of code. You have to use low-level file APIs and ensure that resources get closed properly—a task that can easily go wrong. Also, if you want to poll the data/inbox directory for new files, you need to set up a timer and keep track of which files you’ve already copied. This simple example is getting more complex.

Integration tasks like these have been done thousands of times before; you shouldn’t ever need to code something like this by hand. Let’s not reinvent the wheel here. Let’s see what a polling solution looks like if you use an integration framework such as Apache Camel.

Listing 1.2 Routing files from one folder to another with Apache Camel

import org.apache.camel.CamelContext;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.impl.DefaultCamelContext;

public class FileCopierWithCamel {

 public static void main(String args[]) throws Exception {
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(new RouteBuilder() {
 public void configure() {
 from("file:data/inbox?noop=true") ❶

❶Routes files from inbox to outbox

 .to("file:data/outbox");
 }
 });
 context.start();
 Thread.sleep(10000);
 context.stop();
 }
}

Most of this code is boilerplate stuff when using Camel. Every Camel application uses a CamelContext that’s subsequently started and then stopped. You also add a sleep method to allow your simple Camel application time to copy the files. What you should focus on in listing 1.2 is the route ❶.

Routes in Camel are defined in such a way that they flow when read. This route can be read like this: consume messages from file location data/inbox with the noop option set, and send to file location data/outbox. The noop option tells Camel to leave the source file as is. If you didn’t use this option, the file would be moved. Most people who’ve never seen Camel before will be able to understand what this route does. You may also want to note that, excluding the boilerplate code, you created a file-polling route in just two lines of Java code ❶.

To run this example, you need to download and install Apache Maven from the Maven site at http://maven.apache.org/download.html. When you have Maven up and working, open a terminal and browse to the chapter1/file-copy directory of the book’s source. If you take a directory listing here, you’ll see several things:

	
data—Contains the inbox directory, which itself contains a single file named message1.xml.

	
src—Contains the source code for the listings shown in this chapter.

	
pom.xml—Contains information necessary to build the examples. This is the Maven Project Object Model (POM) XML file.

Note  We used Maven 3.5.0 during the development of the book. Different versions of Maven may not work or appear exactly as we’ve shown.

The POM is shown in the following listing.

Listing 1.3 The Maven POM required to use Camel’s core library

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.camelinaction</groupId> ❶

Parent POM

 <artifactId>chapter1</artifactId>
 <version>2.0.0</version>
 </parent>

 <artifactId>chapter1-file-copy</artifactId>
 <name>Camel in Action 2 :: Chapter 1 :: File Copy Example</name>

 <dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId> ❷

❷Camel’s core library

 <artifactId>camel-core</artifactId> ❷
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId> ❸

Logging support

 <artifactId>slf4j-log4j12</artifactId> ❸
 </dependency>
 </dependencies>
</project>

Maven itself is a complex topic, and we don’t go into great detail here. We’ll give you enough information to be productive with the examples in this book. Chapter 8 also covers using Maven to develop Camel applications, so there’s a good deal of information there too.

The Maven POM in listing 1.3 is probably one of the shortest POMs you’ll ever see—almost everything uses the defaults provided by Maven. Besides those defaults, some settings are configured in the parent POM ❶. Probably the most important section to point out here is the dependency on the Camel library ❷. This dependency element tells Maven to do the following:

	Create a search path based on the groupId, artifactId, and version. The version element is set to the camel-version property, which is defined in the POM referenced in the parent element ❶, and resolves to 2.20.1. The type of dependency isn’t specified, so the JAR file type is assumed. The search path is org/apache/camel/camel-core/2.20.1/camel-core-2.20.1.jar.

	Because listing 1.3 defines no special places for Maven to look for the Camel dependencies, it looks in Maven’s central repository, located at http://repo1.maven.org/maven2.

	Combining the search path and the repository URL, Maven tries to download http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.20.1/camel-core-2.20.1.jar.

	This JAR is saved to Maven’s local download cache, which is typically located in the home directory under the .m2/repository. This is ~/.m2/repository on Linux/macOS, and C:\Users\<Username>\.m2\repository on recent versions of Windows.

	When the application code in listing 1.2 is started, the Camel JAR is added to the classpath.

To run the example in listing 1.2, change to the chapter1/file-copy directory and use the following command:

mvn compile exec:java

This instructs Maven to compile the source in the src directory and to execute the FileCopierWithCamel class with the camel-core JAR on the classpath.

Note   To run any of the examples in this book, you need an internet connection. Apache Maven will download many JAR dependencies of the examples. The whole set of examples will download several hundred megabytes of libraries.

Run the Maven command from the chapter1/file-copy directory, and after it completes, browse to the data/outbox folder to see the file copy that’s just been made. Congratulations—you’ve run your first Camel example! It’s a simple one, but knowing how it’s set up will enable you to run pretty much any of the book’s examples.

We now need to cover Camel basics and the integration space in general to ensure that you’re well prepared for using Camel. We’ll turn our attention to the message model, the architecture, and a few other Camel concepts. Most of the abstractions are based on known EIP concepts and retain their names and semantics. We’ll start with Camel’s message model.

1.3	Camel’s message model

Camel uses two abstractions for modeling messages, both of which we cover in this section:

	
org.apache.camel.Message—The fundamental entity containing the data being carried and routed in Camel.

	
org.apache.camel.Exchange—The Camel abstraction for an exchange of messages. This exchange of messages has an in message, and as a reply, an out message.

We’ll start by looking at messages so you can understand the way data is modeled and carried in Camel. Then we’ll show you how a “conversation” is modeled in Camel by the exchange.

1.3.1	Message

Messages are the entities used by systems to communicate with each other when using messaging channels. Messages flow in one direction, from a sender to a receiver, as illustrated in figure 1.5.

[image: c01_05.png]
Figure 1.5 Messages are entities used to send data from one system to another.

Messages have a body (a payload), headers, and optional attachments, as illustrated in figure 1.6.

[image: c01_06.png]
Figure 1.6 A message can contain headers, attachments, and a body.

Messages are uniquely identified with an identifier of type java.lang.String. The identifier’s uniqueness is enforced and guaranteed by the message creator, it’s protocol dependent, and it doesn’t have a guaranteed format. For protocols that don’t define a unique message identification scheme, Camel uses its own ID generator.

Headers and attachments

Headers are values associated with the message, such as sender identifiers, hints about content encoding, authentication information, and so on. Headers are name-value pairs; the name is a unique, case-insensitive string, and the value is of type java.lang.Object. Camel imposes no constraints on the type of the headers. There are also no constraints on the size of headers or on the number of headers included with a message. Headers are stored as a map within the message. A message can also have optional attachments, which are typically used for the web service and email components.

Body

The body is of type java.lang.Object, so a message can store any kind of content and any size. It’s up to the application designer to make sure that the receiver can understand the content of the message. When the sender and receiver use different body formats, Camel provides mechanisms to transform the data into an acceptable format, and in those cases the conversion happens automatically with type converters, behind the scenes. Chapter 3 fully covers message transformation.

Fault flag

Messages also have a fault flag. A few protocols and specifications, such as SOAP Web Services, distinguish between output and fault messages. They’re both valid responses to invoking an operation, but the latter indicates an unsuccessful outcome. In general, faults aren’t handled by the integration infrastructure. They’re part of the contract between the client and the server and are handled at the application level.

During routing, messages are contained in an exchange.

1.3.2	Exchange

An exchange in Camel is the message’s container during routing. An exchange also provides support for the various types of interactions between systems, also known as message exchange patterns (MEPs). MEPs are used to differentiate between one-way and request-response messaging styles. The Camel exchange holds a pattern property that can be either of the following:

	
InOnly—A one-way message (also known as an event message). For example, JMS messaging is often one-way messaging.

	
InOut—A request-response message. For example, HTTP-based transports are often request-reply: a client submits a web request, waiting for the reply from the server.

Figure 1.7 illustrates the contents of an exchange in Camel.

[image: c01_07.png]
Figure 1.7 A Camel exchange has an ID, MEP, exception, and properties. It also has an in message to store the incoming message, and an out message to store the reply.

Let’s look at the elements of figure 1.7 in more detail:

	
Exchange ID—A unique ID that identifies the exchange. Camel automatically generates the unique ID.

	
MEP—A pattern that denotes whether you’re using the InOnly or InOut messaging style. When the pattern is InOnly, the exchange contains an in message. For InOut, an out message also exists that contains the reply message for the caller.

	
Exception—If an error occurs at any time during routing, an Exception will be set in the exception field.

	
Properties—Similar to message headers, but they last for the duration of the entire exchange. Properties are used to contain global-level information, whereas message headers are specific to a particular message. Camel itself adds various properties to the exchange during routing. You, as a developer, can store and retrieve properties at any point during the lifetime of an exchange.

	
In message—This is the input message, which is mandatory. The in message contains the request message.

	
Out message—This is an optional message that exists only if the MEP is InOut. The out message contains the reply message.

The exchange is the same for the entire lifecycle of routing, but the messages can change, for instance, if messages are transformed from one format to another.

We discussed Camel’s message model before the architecture because we want you to have a solid understanding of what a message is in Camel. After all, the most important aspect of Camel is routing messages. You’re now well prepared to learn more about Camel and its architecture.

1.4	Camel’s architecture

You’ll first take a look at the high-level architecture and then drill down into the specific concepts. After you’ve read this section, you should be caught up on the integration lingo and be ready for chapter 2, where you’ll explore Camel’s routing capabilities.

1.4.1	Architecture from 10,000 feet

We think that architectures are best viewed first from high above. Figure 1.8 shows a high-level view of the main concepts that make up Camel’s architecture.

[image: c01_08.png]
Figure 1.8 At a high level, Camel is composed of routes, processors, and components. All of these are contained within CamelContext.

The routing engine uses routes as specifications indicating where messages are routed. Routes are defined using one of Camel’s DSLs. Processors are used to transform and manipulate messages during routing as well as to implement all the EIPs, which have corresponding names in the DSLs. Components are the extension points in Camel for adding connectivity to other systems. To expose these systems to the rest of Camel, components provide an endpoint interface.

With that high-level view out of the way, let’s take a closer look at the individual concepts in figure 1.8.

1.4.2	Camel concepts

Figure 1.8 reveals many new concepts, so let’s take some time to go over them one by one. We’ll start with CamelContext, which is Camel’s runtime.

CamelContext

You may have guessed that CamelContext is a container of sorts, judging from figure 1.8. You can think of it as Camel’s runtime system, which keeps all the pieces together.

Figure 1.9 shows the most notable services that CamelContext keeps together.

[image: c01_09.png]
Figure 1.9 CamelContext provides access to many useful services, the most notable being components, type converters, a registry, endpoints, routes, data formats, and languages.

As you can see, CamelContext has a lot of services to keep track of. These are described in table 1.1.

Table 1.1 The services that CamelContext provides

	Service
	Description

	Components
	Contains the components used. Camel is capable of loading components on the fly either by autodiscovery on the classpath or when a new bundle is activated in an OSGi container. Chapter 6 covers components in more detail.

	Endpoints
	Contains the endpoints that have been used.

	Routes
	Contains the routes that have been added. Chapter 2 covers routes.

	Type converters
	Contains the loaded type converters. Camel has a mechanism that allows you to manually or automatically convert from one type to another. Type converters are covered in chapter 3.

	Data formats
	Contains the loaded data formats. Data formats are covered in chapter 3.

	Registry
	Contains a registry that allows you to look up beans.We cover registries in chapter 4.

	Languages
	Contains the loaded languages. Camel allows you to use many languages to create expressions. You’ll get a glimpse of the XPath language in just a moment. A complete reference to Camel’s own Simple expression language is available in appendix A.

The details of each service are discussed throughout the book. Let’s now take a look at routes and Camel’s routing engine.

Routing engine

Camel’s routing engine is what moves messages under the hood. This engine isn’t exposed to the developer, but you should be aware that it’s there and that it does all the heavy lifting, ensuring that messages are routed properly.

Routes

Routes are obviously a core abstraction for Camel. The simplest way to define a route is as a chain of processors. There are many reasons for using routers in messaging applications. By decoupling clients from servers, and producers from consumers, routes can do the following:

	Decide dynamically what server a client will invoke

	Provide a flexible way to add extra processing

	Allow for clients and servers to be developed independently

	Foster better design practices by connecting disparate systems that do one thing well

	Enhance features and functionality of some systems (such as message brokers and ESBs)

	Allow for clients of servers to be stubbed out (using mocks) for testing purposes

Each route in Camel has a unique identifier that’s used for logging, debugging, monitoring, and starting and stopping routes. Routes also have exactly one input source for messages, so they’re effectively tied to an input endpoint. That said, there’s some syntactic sugar for having multiple inputs to a single route. Take the following route, for example:

from("jms:queue:A", "jms:queue:B", "jms:queue:C").to("jms:queue:D");

Under the hood, Camel clones the route definition into three separate routes. So, it behaves similarly to three separate routes as follows:

from("jms:queue:A").to("jms:queue:D");
from("jms:queue:B").to("jms:queue:D");
from("jms:queue:C").to("jms:queue:D");

Even though it’s perfectly legal in Camel 2.x, we don’t recommend using multiple inputs per route. This ability will be removed in the next major version of Camel. To define these routes, we use a DSL.

Domain-specific language

To wire processors and endpoints together to form routes, Camel defines a DSL. The term DSL is used a bit loosely here. In Camel, DSL means a fluent Java API that contains methods named for EIP terms.

Consider this example:

from("file:data/inbox")
 .filter().xpath("/order[not(@test)]")
 .to("jms:queue:order");

Here, in a single Java statement, you define a route that consumes files from a file endpoint. Messages are then routed to the filter EIP, which will use an XPath predicate to test whether the message is not a test order. If a message passes the test, it’s forwarded to the JMS endpoint. Messages failing the filter test are dropped.

Camel provides multiple DSL languages, so you could define the same route by using the XML DSL, like this:

<route>
 <from uri="file:data/inbox"/>
 <filter>
 <xpath>/order[not(@test)]</xpath>
 <to uri="jms:queue:order"/>
 </filter>
</route>

The DSLs provide a nice abstraction for Camel users to build applications with. Under the hood, though, a route is composed of a graph of processors. Let’s take a moment to see what a processor is.

Processor

The processor is a core Camel concept that represents a node capable of using, creating, or modifying an incoming exchange. During routing, exchanges flow from one processor to another; as such, you can think of a route as a graph having specialized processors as the nodes, and lines that connect the output of one processor to the input of another. Processors could be implementations of EIPs, producers for specific components, or your own custom creation. Figure 1.10 shows the flow between processors.

[image: c01_10.png]
Figure 1.10 Flow of an exchange through a route. Notice that the MEP determines whether a reply will be sent back to the caller of the route.

A route first starts with a consumer (think “from” in the DSL) that populates the initial exchange. At each processor step, the out message from the previous step is the in message of the next. In many cases, processors don’t set an out message, so in this case the in message is reused. At the end of a route, the MEP of the exchange determines whether a reply needs to be sent back to the caller of the route. If the MEP is InOnly, no reply will be sent back. If it’s InOut, Camel will take the out message from the last step and return it.

NOTE    Producers and consumers in Camel may seem a bit counterintuitive at first. After all, shouldn’t producers be the first node and consumers be consuming messages at the end of a route? Don’t worry—you’re not the first to think like this! Just think of these concepts from the point of view of communicating with external systems. Consumers consume messages from external systems and bring them into the route. Producers, on the other hand, send (produce) messages to external systems.

How do exchanges get in or out of this processor graph? To find out, you need to look at components and endpoints.

Component

Components are the main extension point in Camel. To date, the Camel ecosystem has more than 280 components that range in function from data transports, to DSLs, to data formats, and so on. You can even create your own components for Camel—we discuss this in chapter 8.

From a programming point of view, components are fairly simple: they’re associated with a name that’s used in a URI, and they act as a factory of endpoints. For example, FileComponent is referred to by file in a URI, and it creates FileEndpoints. The endpoint is perhaps an even more fundamental concept in Camel.

Endpoint

An endpoint is the Camel abstraction that models the end of a channel through which a system can send or receive messages. This is illustrated in figure 1.11.

[image: c01_11.png]
Figure 1.11 An endpoint acts as a neutral interface allowing systems to integrate.

In Camel, you configure endpoints by using URIs, such as file:data/inbox?delay=5000, and you also refer to endpoints this way. At runtime, Camel looks up an endpoint based on the URI notation. Figure 1.12 shows how this works.

[image: c01_12.png]
Figure 1.12 Endpoint URIs are divided into three parts: a scheme, a context path, and options.

The scheme ❶ denotes which Camel component handles that type of endpoint. In this case, the scheme of file selects FileComponent. FileComponent then works as a factory, creating FileEndpoint based on the remaining parts of the URI. The context path data/inbox ❷ tells FileComponent that the starting folder is data/inbox. The option, delay=5000 ❸ indicates that files should be polled at a 5-second interval.

There’s more to an endpoint than meets the eye. Figure 1.13 shows how an endpoint works together with an exchange, producers, and consumers. At first glance, figure 1.13 may seem a bit overwhelming, but it will all make sense in a few minutes. In a nutshell, an endpoint acts as a factory for creating consumers and producers that are capable of receiving and sending messages to a particular endpoint. We didn’t mention producers or consumers in the high-level view of Camel in figure 1.8, but they’re important concepts. We’ll go over them next.

Producer

A producer is the Camel abstraction that refers to an entity capable of sending a message to an endpoint. Figure 1.13 illustrates where the producer fits in with other Camel concepts.

When a message is sent to an endpoint, the producer handles the details of getting the message data compatible with that particular endpoint. For example, FileProducer will write the message body to a file. JmsProducer, on the other hand, will map the Camel message to javax.jms.Message before sending it to a JMS destination. This is an important feature in Camel, because it hides the complexity of interacting with particular transports. All you need to do is route a message to an endpoint, and the producer does the heavy lifting.

[image: c01_13.png]
Figure 1.13 How endpoints work with producers, consumers, and an exchange

Consumer

A consumer is the service that receives messages produced by some external system, wraps them in an exchange, and sends them to be processed. Consumers are the source of the exchanges being routed in Camel.

Looking back at figure 1.13, you can see where the consumer fits in with other Camel concepts. To create a new exchange, a consumer will use the endpoint that wraps the payload being consumed. A processor is then used to initiate the routing of the exchange in Camel via the routing engine.

Camel has two kinds of consumers: event-driven consumers and polling consumers. The differences between these consumers are important, because they help solve different problems.

Event-driven consumer

The most familiar consumer is probably the event-driven consumer, which is illustrated in figure 1.14.

[image: c01_14.png]
Figure 1.14 An event-driven consumer remains idle until a message arrives, at which point it wakes up and consumes the message.

This kind of consumer is mostly associated with client-server architectures and web services. It’s also referred to as an asynchronous receiver in the EIP world. An event-driven consumer listens on a particular messaging channel, such as a TCP/IP port, JMS queue, Twitter handle, Amazon SQS queue, WebSocket, and so on. It then waits for a client to send messages to it. When a message arrives, the consumer wakes up and takes the message for processing.

Polling consumer

The other kind of consumer is the polling consumer, illustrated in figure 1.15.

[image: c01_15.png]
Figure 1.15 A polling consumer actively checks for new messages.

In contrast to the event-driven consumer, the polling consumer actively goes and fetches messages from a particular source, such as an FTP server. The polling consumer is also known as a synchronous receiver in EIP lingo, because it won’t poll for more messages until it’s finished processing the current message. A common flavor of the polling consumer is the scheduled polling consumer, which polls at scheduled intervals. File, FTP, and email components all use scheduled polling consumers.

We’ve now covered all of Camel’s core concepts. With this new knowledge, you can revisit your first Camel ride and see what’s happening.

1.5	Your first Camel ride, revisited

Recall that in your first Camel ride (section 1.2.2), you read files from one directory (data/inbox) and wrote the results to another directory (data/outbox). Now that you know the core Camel concepts, you can put this example in perspective.

Take another look at the Camel application in the following listing.

Listing 1.4 Routing files from one folder to another with Camel

import org.apache.camel.CamelContext;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.impl.DefaultCamelContext;

public class FileCopierWithCamel {

 public static void main(String args[]) throws Exception {
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(new RouteBuilder() {
 public void configure() {
 from("file:data/inbox?noop=true") ❶

❶Java DSL route

 .to("file:data/outbox"); ❶
 }
 });
 context.start();
 Thread.sleep(10000);
 context.stop();
 }
}

In this example, you first create CamelContext, which is the Camel runtime. You then add the routing logic by using RouteBuilder and the Java DSL ❶. By using the DSL, you can cleanly and concisely let Camel instantiate components, endpoints, consumers, producers, and so on. All you have to focus on is defining the routes that matter for your integration projects. Under the hood, though, Camel is accessing the FileComponent, and using it as a factory to create the endpoint and its producer. The same FileComponent is used to create the consumer side as well.

NOTE   You may be wondering whether you always need that ugly Thread.sleep call. Thankfully, the answer is no! The example was created in this way to demonstrate the low-level mechanics of Camel’s API. If you were deploying your Camel route to another container or runtime (as you’ll see in chapters 7 and 15) or as a unit test (covered in detail in chapter 9, but also used in chapter 2), you wouldn’t need to explicitly wait a set amount of time. Even for standalone routes not deployed to any container, there’s a better way. Camel provides the org.apache.camel.main.Main helper class to start up a route of your choosing and wait for the JVM to terminate. We cover this in chapter 7.

1.6	Summary

In this chapter, you met Camel. You saw how Camel simplifies integration by relying on enterprise integration patterns (EIPs). You also saw Camel’s DSL, which aims to make Camel code self-documenting and keeps developers focused on what the glue code does, not how it does it.

We covered Camel’s main features, what Camel is and isn’t, and where it can be used. We showed how Camel provides abstractions and an API that work over a large range of protocols and data formats.

At this point, you should have a good understanding of what Camel does and its underlying concepts. Soon you’ll be able to confidently browse Camel applications and get a good idea of what they do.

In the rest of the book, you’ll explore Camel’s features and learn practical solutions you can apply in everyday integration scenarios. We’ll also explain what’s going on under Camel’s tough skin. To make sure you get the main concepts from each chapter, from now on we’ll present you with best practices and key points in the summary.

In the next chapter, you’ll investigate routing, which is an essential feature and a fun one to learn.

2

Routing with Camel

This chapter covers

	An overview of routing

	Introducing the Rider Auto Parts scenario

	The basics of FTP and JMS endpoints

	Creating routes using the Java DSL

	Configuring routes in XML

	Routing using EIPs

One of the most important features of Camel is routing; without it, Camel would be a library of transport connectors. In this chapter, you’ll dive into routing with Camel.

Routing happens in many aspects of everyday life. When you mail a letter, for instance, it may be routed through several cities before reaching its final address. An email you send will be routed through many computer network systems before reaching its final destination. In all cases, the router’s function is to selectively move the message forward.

In the context of enterprise messaging systems, routing is the process by which a message is taken from an input queue and, based on a set of conditions, sent to one of several output queues, as shown in figure 2.1. The input and output queues are unaware of the conditions in between them. The conditional logic is decoupled from the message consumer and producer.

[image: c02_01.png]
Figure 2.1 A message router consumes messages from an input channel and, depending on a set of conditions, sends the message to one of a set of output channels.

In Camel, routing is a more general concept. It’s defined as a step-by-step movement of the message, which originates from an endpoint in the role of a consumer. The consumer could be receiving the message from an external service, polling for the message on a system, or even creating the message itself. This message then flows through a processing node, which could be an enterprise integration pattern (EIP), a processor, an interceptor, or another custom creation. The message is finally sent to a target endpoint that’s in the role of a producer. A route may have many processing components that modify the message or send it to another location, or it may have none, in which case it would be a simple pipeline.

This chapter introduces the fictional company that we use as the running example throughout the book. To support this company’s use case, you’ll learn how to communicate over FTP and Java Message Service (JMS) by using Camel’s endpoints. Following this, you’ll look in depth at the Java-based domain-specific language (DSL) and the XML-based DSL for creating routes. We’ll also give you a glimpse of how to design and implement solutions to enterprise integration problems by using EIPs and Camel. By the end of the chapter, you’ll be proficient enough to create useful routing applications with Camel.

To start, let’s look at the example company used to demonstrate the concepts throughout the book.

2.1	Introducing Rider Auto Parts

Our fictional motorcycle parts business, Rider Auto Parts, supplies parts to motorcycle manufacturers. Over the years, Rider Auto Parts has changed the way it receives orders several times. Initially, orders were placed by uploading comma-separated values (CSV) files to an FTP server. The message format was later changed to XML. Currently, the company provides a website through which orders are submitted as XML messages over HTTP.

Rider Auto Parts asks new customers to use the web interface to place orders, but because of service-level agreements (SLAs) with existing customers, the company must keep all the old message formats and interfaces up and running. All of these messages are converted to an internal Plain Old Java Object (POJO) format before processing. A high-level view of the order-processing system is shown in figure 2.2.

[image: c02_02.png]
Figure 2.2 A customer has two ways of submitting orders to the Rider Auto Parts order-handling system: either by uploading the raw order file to an FTP server or by submitting an order through the Rider Auto Parts web store. All orders are eventually sent via JMS for processing at Rider Auto Parts.

Rider Auto Parts faces a common problem: over years of operation, it has acquired software baggage in the form of transports and data formats that were popular at the time. This is no problem for an integration framework like Camel, though. In this chapter, and throughout the book, you’ll help Rider Auto Parts implement its current requirements and new functionality by using Camel.

As a first assignment, you’ll need to implement the FTP module in the Rider order front-end system. Later in the chapter, you’ll see how back-end services are implemented too. Implementing the FTP module involves the following steps:

	Polling the FTP server and downloading new orders

	Converting the order files to JMS messages

	Sending the messages to the JMS incomingOrders queue

To complete steps 1 and 3, you need to understand how to communicate over FTP and JMS by using Camel’s endpoints. To complete the entire assignment, you need to understand routing with the Java DSL. Let’s first take a look at how to use Camel’s endpoints.

2.2	Understanding endpoints

As you read in chapter 1, an endpoint is an abstraction that models the end of a message channel through which a system can send or receive messages. This section explains how to use URIs to configure Camel to communicate over FTP and JMS. Let’s first look at FTP.

2.2.1	Consuming from an FTP endpoint

One of the things that makes Camel easy to use is the endpoint URI. With an endpoint URI, you can identify the component you want to use and the way that component is configured. You can then decide to either send messages to the component configured by this URI, or to consume messages from it.

Take your first Rider Auto Parts assignment, for example. To download new orders from the FTP server, you need to do the following:

	Connect to the rider.com FTP server on the default FTP port of 21

	Provide a username of rider and password of secret

	Change the directory to orders

	Download any new order files

As shown in figure 2.3, you can easily configure Camel to do this by using URI notation.

[image: c02_03.png]
Figure 2.3 A Camel endpoint URI consists of three parts: a scheme, a context path, and a list of options.

Camel first looks up the ftp scheme in the component registry, which resolves to FtpComponent. FtpComponent then works as a factory, creating FtpEndpoint based on the remaining context path and options.

The context path of rider.com/orders tells FtpComponent that it should log into the FTP server at rider.com on the default FTP port and change the directory to orders. Finally, the only options specified are username and password, which are used to log in to the FTP server.

Tip  For the FTP component, you can also specify the username and password in the context path of the URI, so the following URI is equivalent to the one in figure 2.3: ftp://rider:secret@rider.com/orders. Speaking of passwords, defining them in plain text isn’t usually a good idea! You’ll find out how to use encrypted passwords in chapter 14.

FtpComponent isn’t part of the camel-core module, so you have to add a dependency to your project. Using Maven, you add the following dependency to the POM:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ftp</artifactId>
 <version>2.20.1</version>
</dependency>

Although this endpoint URI would work equally well in a consumer or producer scenario, you’ll be using it to download orders from the FTP server. To do so, you need to use it in a from node of Camel’s DSL:

from("ftp://rider.com/orders?username=rider&password=secret")

That’s all you need to do to consume files from an FTP server.

The next thing you need to do, as you may recall from figure 2.2, is send the orders you downloaded from the FTP server to a JMS queue. This process requires a little more setup, but it’s still easy.

2.2.2	Sending to a JMS endpoint

Camel provides extensive support for connecting to JMS-enabled providers, and we cover all the details in chapter 6. For now, though, we’re going to cover just enough so that you can complete your first task for Rider Auto Parts. Recall that you need to download orders from an FTP server and send them to a JMS queue.

What is JMS?

Java Message Service (JMS) is a Java API that allows you to create, send, receive, and read messages. It also mandates that messaging is asynchronous and has specific elements of reliability, such as guaranteed and once-and-only-once delivery. JMS is probably the most widely deployed messaging solution in the Java community.

In JMS, message consumers and producers talk to one another through an intermediary—a JMS destination. As shown in figure 2.4, a destination can be either a queue or a topic. Queues are strictly point-to-point; each message has only one consumer. Topics operate on a publish/subscribe scheme; a single message may be delivered to many consumers if they’ve subscribed to the topic.

[image: c02_04.png]
Figure 2.4 There are two types of JMS destinations: queues and topics. The queue is a point-to-point channel; each message has only one recipient. A topic delivers a copy of the message to all clients that have subscribed to receive it.

JMS also provides a ConnectionFactory that clients (for example, Camel) can use to create a connection with a JMS provider. JMS providers are usually referred to as brokers because they manage the communication between a message producer and a message consumer.

How to configure Camel to use a JMS provider

To connect Camel to a specific JMS provider, you need to configure Camel’s JMS component with an appropriate ConnectionFactory.

Apache ActiveMQ is one of the most popular open source JMS providers, and it’s the primary JMS broker that the Camel team uses to test the JMS component. As such, we’ll be using it to demonstrate JMS concepts within the book. For more information on Apache ActiveMQ, we recommend ActiveMQ in Action by Bruce Snyder et al. (Manning, 2011).

In the case of Apache ActiveMQ, you can create an ActiveMQConnectionFactory that points to the location of the running ActiveMQ broker:

ConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory("vm://localhost");

The vm://localhost URI means that you should connect to an embedded broker named localhost running inside the current JVM. The vm transport connector in ActiveMQ creates a broker on demand if one isn’t running already, so it’s handy for quickly testing JMS applications; for production scenarios, it’s recommended that you connect to a broker that’s already running. Furthermore, in production scenarios, we recommend that connection pooling be used when connecting to a JMS broker. See chapter 6 for details on these alternate configurations.

Next, when you create your CamelContext, you can add the JMS component as follows:

CamelContext context = new DefaultCamelContext();
context.addComponent("jms",
 JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));

The JMS component and the ActiveMQ-specific connection factory aren’t part of the camel-core module. To use these, you need to add dependencies to your Maven-based project. For the plain JMS component, all you have to add is this:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jms</artifactId>
 <version>2.20.1</version>
</dependency>

The connection factory comes directly from ActiveMQ, so you need the following dependency:

<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>activemq-all</artifactId>
 <version>5.15.2</version>
</dependency>

Now that you’ve configured the JMS component to connect to a JMS broker, it’s time to look at how URIs can be used to specify the destination.

Using URIs to specify the destination

After the JMS component is configured, you can start sending and receiving JMS messages at your leisure. Because you’re using URIs, this is a real breeze to configure.

Let’s say you want to send a JMS message to the queue named incomingOrders. The URI in this case would be as follows:

jms:queue:incomingOrders

This is self-explanatory. The jms prefix indicates that you’re using the JMS component you configured before. By specifying queue, the JMS component knows to send to a queue named incomingOrders. You could even omit the queue qualifier, because the default behavior is to send to a queue rather than a topic.

Note  Some endpoints can have an intimidating list of endpoint URI properties. For instance, the JMS component has more than 80 options, many of which are used only in specific JMS scenarios. Camel always tries to provide built-in defaults that fit most cases, and you can always determine the default values by browsing to the component’s page in the online Camel documentation. The JMS component is discussed here: http://camel.apache.org/jms.html.

Using Camel’s Java DSL, you can send a message to the incomingOrders queue by using the to keyword like this:

...to("jms:queue:incomingOrders")

This can be read as sending to the JMS queue named incomingOrders.

Now that you know the basics of communicating over FTP and JMS with Camel, you can get back to the routing theme of this chapter and start routing messages!

2.3	Creating routes in Java

In chapter 1, you saw that RouteBuilder can be used to create a route and that each CamelContext can contain multiple routes. It may not have been obvious, though, that RouteBuilder isn’t the final route that CamelContext will use at runtime; it’s a builder of one or more routes, which are then added to CamelContext. This is illustrated in figure 2.5.

[image: c02_05.png]
Figure 2.5  RouteBuilders are used to create routes in Camel. Each RouteBuilder can create multiple routes.

IMportant  This distinction between RouteBuilder and routes is an important one. The DSL code you write in RouteBuilder, whether that’s with the Java or XML DSL, is merely a design-time construct that Camel uses once at startup. So, for instance, the routes that are constructed from RouteBuilder are the things that you can debug with your IDE. We cover more about debugging Camel applications in chapter 8.

The addRoutes method of CamelContext accepts RoutesBuilder, not just RouteBuilder. The RoutesBuilder interface has a single method defined:

void addRoutesToCamelContext(CamelContext context) throws Exception;

You could in theory use your own custom class to build Camel routes. Not that you’ll ever want to do this, though; Camel provides the RouteBuilder class for you, which implements RoutesBuilder. The RouteBuilder class also gives you access to Camel’s Java DSL for route creation.

In the next sections, you’ll learn how to use RouteBuilder and the Java DSL to create simple routes. Then you’ll be well prepared to take on the XML DSL in section 2.4 and routing using EIPs in section 2.6.

2.3.1	Using RouteBuilder

The abstract org.apache.camel.builder.RouteBuilder class in Camel is one that you’ll see frequently. You need to use it anytime you create a route in Java.

To use the RouteBuilder class, you extend a class from it and implement the configure method, like this:

public class MyRouteBuilder extends RouteBuilder {
 public void configure() throws Exception {
 ...
 }
}

You then need to add the class to CamelContext with the addRoutes method:

CamelContext context = new DefaultCamelContext();
context.addRoutes(new MyRouteBuilder());

Alternatively, you can combine the RouteBuilder and CamelContext configuration by adding an anonymous RouteBuilder class directly into CamelContext, like this:

CamelContext context = new DefaultCamelContext();
context.addRoutes(new RouteBuilder() {
 public void configure() throws Exception {
 ...
 }
});

Within the configure method, you define your routes by using the Java DSL. We cover the Java DSL in detail in the next section, but you can start a route now to get an idea of how it works.

In chapter 1, you should’ve downloaded the source code from the book’s source code at GitHub and set up Apache Maven. If you didn’t do this, please do so now. We'll also be using Eclipse to demonstrate Java DSL concepts.

Note  Eclipse is a popular open source IDE that you can find at http://eclipse.org. During the book’s development, Jon used Eclipse and Claus used IDEA.
You can certainly use other Java IDEs as well, or even no IDE, but using an IDE does make Camel development a lot easier. Feel free to skip to the next section if you don’t want to see the IDE-related setup. In chapter 19, you will see some additional Camel tooling you can install in Eclipse or IDEA that makes Camel development even better.

After Eclipse is set up, you should import the Maven project in the chapter2/ftp-jms directory of the book’s source.

When the ftp-jms project is loaded in Eclipse, open the src/main/java/camelinaction/RouteBuilderExample.java file. As shown in figure 2.6, when you try autocomplete (Ctrl-spacebar in Eclipse) in the configure method, you’ll be presented with several methods. To start a route, you should use the from method.

[image: c02_06.png]
Figure 2.6 Use autocomplete to start your route. All routes start with a from method.

The from method accepts an endpoint URI as an argument. You can add an FTP endpoint URI to connect to the Rider Auto Parts order server as follows:

from("ftp://rider.com/orders?username=rider&password=secret")

The from method returns a RouteDefinition object, on which you can invoke various methods that implement EIPs and other messaging concepts.

Congratulations—you’re now using Camel’s Java DSL! Let’s take a closer look at what’s going on here.

2.3.2	Using the Java DSL

Domain-specific languages (DSLs) are computer languages that target a specific problem domain, rather than a general-purpose domain as most programming languages do. For example, you’ve probably used the regular expression DSL to match strings of text and found it to be a concise way of matching strings. Doing the same string matching in Java wouldn’t be so easy. The regular expression DSL is an external DSL; it has a custom syntax and so requires a separate compiler or interpreter to execute. Internal DSLs, in contrast, use an existing general-purpose language, such as Java, in such a way that the DSL feels like a language from a particular domain. The most obvious way of doing this is by naming methods and arguments to match concepts from the domain in question.

Another popular way of implementing internal DSLs is by using fluent interfaces (a.k.a. fluent builders). When using a fluent interface, you build up objects by chaining together method invocations. Methods of this type perform an operation and then return the current object instance.

Note  For more information on internal DSLs, see Martin Fowler’s “Domain Specific Language” entry on his bliki (blog plus wiki) at www.martinfowler.com/bliki/DomainSpecificLanguage.html. He also has an entry on “Fluent Interfaces” at www.martinfowler.com/bliki/FluentInterface.html. For more information on DSLs in general, we recommend DSLs in Action by Debasish Ghosh (Manning, 2010).

Camel’s domain is enterprise integration, so the Java DSL is a set of fluent builders that contain methods named after terms from the EIP book. In the Eclipse editor, take a look at what’s available using autocomplete after a from method in the RouteBuilder. You should see something like what’s shown in figure 2.7. The screenshot shows a couple of EIPs—the Enricher and Recipient List—and there are many others that we’ll discuss later.

[image: c02_07.png]
Figure 2.7 After the from method, use your IDE’s autocomplete feature to get a list of EIPs (such as Enricher and Recipient List) and other useful integration functions.

For now, select the to method, pass in the string "jms:incomingOrders", and finish the route with a semicolon. Each Java statement that starts with a from method in the RouteBuilder creates a new route. This new route now completes your first task at Rider Auto Parts: consuming orders from an FTP server and sending them to the incomingOrders JMS queue. If you want, you can load up the completed example from the book’s source code, in chapter2/ftp-jms, and open src/main/java/camelinaction/FtpToJMSExample.java. The code is shown in the following listing.

Listing 2.1 Polling for FTP messages and sending them to the incomingOrders queue

import javax.jms.ConnectionFactory;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.camel.CamelContext;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.jms.JmsComponent;
import org.apache.camel.impl.DefaultCamelContext;

public class FtpToJMSExample {
 public static void main(String args[]) throws Exception {
 CamelContext context = new DefaultCamelContext();
 ConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory("vm://localhost");
 context.addComponent("jms",
 JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));

 context.addRoutes(new RouteBuilder() {
 public void configure() {
 from("ftp://rider.com/orders" ❶

❶Java statement that forms a route

 + "?username=rider&password=secret") ❶
 .to("jms:incomingOrders"); ❶
 }
 });

 context.start();
 Thread.sleep(10000);
 context.stop();
 }
}

Note  Because you’re consuming from ftp://rider.com, which doesn’t exist, you can’t run this example. It’s useful only for demonstrating the Java DSL constructs. For runnable FTP examples, see chapter 6.

As you can see, this listing includes a bit of boilerplate setup and configuration, but the solution to the problem is concisely defined within the configure method as a single Java statement ❶. The from method tells Camel to consume messages from an FTP endpoint, and the to method instructs Camel to send messages to a JMS endpoint.

The flow of messages in this simple route can be viewed as a basic pipeline: the output of the consumer is fed into the producer as input. This is depicted in figure 2.8.

[image: c02_08.png]
Figure 2.8 The payload conversion from file to JMS message is done automatically.

One thing you may have noticed is that we didn’t do any conversion from the FTP file type to the JMS message type—this was done automatically by Camel’s type-converter facility. You can force type conversions to occur at any time during a route, but often you don’t have to worry about them at all. Data transformation and type conversion is covered in detail in chapter 3.

You may be thinking now that although this route is nice and simple, it’d be nice to see what’s going on in the middle of the route. Fortunately, Camel always lets the developer stay in control by providing ways to hook into flows or inject behavior into features. There’s a simple way of getting access to the message by using a processor, and we’ll discuss that next.

Adding a processor

The Processor interface in Camel is an important building block of complex routes. It’s a simple interface, having a single method:

public void process(Exchange exchange) throws Exception;

This gives you full access to the message exchange, letting you do pretty much whatever you want with the payload or headers.

All EIPs in Camel are implemented as processors. You can even add a simple processor to your route inline, like so:

from("ftp://rider.com/orders?username=rider&password=secret")
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 System.out.println("We just downloaded: "
 + exchange.getIn().getHeader("CamelFileName"));
 }
 })
 .to("jms:incomingOrders");

This route will now print the filename of the order that was downloaded before sending it to the JMS queue.

By adding this processor into the middle of the route, you’ve added it to the conceptual pipeline we mentioned earlier, as illustrated in figure 2.9. The output of the FTP consumer is fed into the processor as input; the processor doesn’t modify the message payload or headers, so the exchange moves on to the JMS producer as input.

Note  Many components, such as FileComponent and FtpComponent, set useful headers describing the payload on the incoming message. In the previous example, you used the CamelFileName header to retrieve the filename of the file that was downloaded via FTP. The component pages of the online documentation contain information about the headers set for each individual component. You’ll find information about the FTP component at http://camel.apache.org/ftp.html.

[image: c02_09.png]
Figure 2.9 With a processor in the mix, the output of the FTP consumer is now fed into the processor, and then the output of the processor is fed into the JMS producer.

Camel’s main method for creating routes is through the Java DSL. It is, after all, built into the camel-core module. There are other ways of creating routes, though, some of which may better suit your situation. For instance, Camel provides extensions for writing routes in XML, as we’ll discuss next.

2.4	Defining routes in XML

The Java DSL is certainly a more powerful option for the experienced Java developer and can lead to more-concise route definitions. But having the ability to define the same thing in XML opens a lot of possibilities. Maybe some users writing Camel routes aren’t the most comfortable with Java; for example, we know many system administrators who handily write up Camel routes to solve integration problems but have never used Java in their lives. The XML configuration also makes nice graphical tooling1 that has round-trip capabilities possible; you can edit both the XML and graphical representation of a route, and both are kept in sync. Round-trip tooling with Java is possible, but it’s a seriously hard thing to do, so none is yet available.

1. You can find out more about tooling options for Camel in Chapter 19.

At the time of this writing, you can write XML routes in two Inversion of Control (IoC) Java containers: Spring and OSGi Blueprint. An IoC framework allows you to “wire” beans together to form applications. This wiring is typically done through an XML configuration file. This section gives you a quick introduction to creating applications with Spring so the IoC concept becomes clear. We’ll then show you how Camel uses Spring to form a replacement or complementary solution to the Java DSL.

Note  For a more comprehensive view of Spring, we recommend Spring in Action by Craig Walls (Manning, 2014). OSGi Blueprint is covered nicely in OSGi in Action by Richard S. Hall et al. (Manning, 2011).

The setup is certainly different between Spring and OSGi Blueprint, yet both have identical route definitions, so we cover only Spring-based examples in this chapter. Throughout the rest of the book, we refer to routes in Spring or Blueprint as just the XML DSL.

2.4.1	Bean injection and Spring

Creating an application from beans by using Spring is simple. All you need are a few Java beans (classes), a Spring XML configuration file, and ApplicationContext. ApplicationContext is similar to CamelContext, in that it’s the runtime container for Spring. Let’s look at a simple example.

Consider an application that prints a greeting followed by your username. In this application, you don’t want the greeting to be hardcoded, so you can use an interface to break this dependency. Consider the following interface:

public interface Greeter {
 public String sayHello();
}

This interface is implemented by the following classes:

public class EnglishGreeter implements Greeter {
 public String sayHello() {
 return "Hello " + System.getProperty("user.name");
 }
}
public class DanishGreeter implements Greeter {
 public String sayHello() {
 return "Davs " + System.getProperty("user.name");
 }
}

You can now create a greeter application as follows:

public class GreetMeBean {
 private Greeter greeter;

 public void setGreeter(Greeter greeter) {
 this.greeter = greeter;
 }
 public void execute() {
 System.out.println(greeter.sayHello());
 }
}

This application will output a different greeting depending on how you configure it. To configure this application using Spring XML, you could do something like this:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="myGreeter" class="camelinaction.EnglishGreeter"/>
 <bean id="greetMeBean" class="camelinaction.GreetMeBean">
 <property name="greeter" ref="myGreeter"/>
 </bean>
</beans>

This XML file instructs Spring to do the following:

	Create an instance of EnglishGreeter and name the bean myGreeter

	Create an instance of GreetMeBean and name the bean greetMeBean

	Set the reference of the greeter property of the GreetMeBean to the bean named myGreeter

This configuring of beans is called wiring.

To load this XML file into Spring, you can use the ClassPathXmlApplicationContext, which is a concrete implementation of ApplicationContext that’s provided with the Spring framework. This class loads Spring XML files from a location specified on the classpath.

Here’s the final version of GreetMeBean:

public class GreetMeBean {
 public static void main(String[] args) {
 ApplicationContext context =
 new ClassPathXmlApplicationContext("beans.xml");
 GreetMeBean bean = (GreetMeBean) context.getBean("greetMeBean");
 bean.execute();
 }
}

The ClassPathXmlApplicationContext you instantiate here loads up the bean definitions you saw previously in the beans.xml file. You then call getBean on the context to look up the bean with the greetMeBean ID in the Spring registry. All beans defined in this file are accessible in this way.

To run this example, go to the chapter2/spring directory in the book’s source code and run this Maven command:

mvn compile exec:java -Dexec.mainClass=camelinaction.GreetMeBean

This will output something like the following on the command line:

Hello janstey

If you had wired in DanishGreeter instead (that is, used the camelinaction.DanishGreeter class for the myGreeter bean), you’d have seen something like this on the console:

Davs janstey

This example may seem simple, but it should give you an understanding of what Spring and, more generally, an IoC container, really is. How does Camel fit into this? Camel can be configured as if it were another bean. Recall how you configured the JMS component to connect to an ActiveMQ broker in section 2.2.2 by using Java code:

ConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory("vm://localhost");
CamelContext context = new DefaultCamelContext();
context.addComponent("jms",
 JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));

You could have done this in Spring by using the bean terminology, as follows:

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://localhost"/>
 </bean>
 </property>
</bean>

In this case, if you send to an endpoint such as "jms:incomingOrders", Camel will look up the jms bean, and if it’s of type org.apache.camel.Component, it will use that. So you don’t have to manually add components to CamelContext—a task that you did manually in section 2.2.2 for the Java DSL.

But where’s CamelContext defined in Spring? Well, to make things easier on the eyes, Camel uses Spring extension mechanisms to provide custom XML syntax for Camel concepts within the Spring XML file. To load up CamelContext in Spring, you can do the following:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">
 ...
 <camelContext xmlns="http://camel.apache.org/schema/spring"/>
</beans>

This automatically starts SpringCamelContext, which is a subclass of DefaultCamelContext, which you used for the Java DSL. Also notice that you have to include the http://camel.apache.org/schema/spring/camel-spring.xsd XML schema definition in the XML file; this is needed to import the custom XML elements.

This snippet alone isn’t going to do much for you. You need to tell Camel what routes to use, as you did when using the Java DSL. The following code uses Spring XML to produce the same results as the code in listing 2.1.

Listing 2.2 A Spring configuration that produces the same results as listing 2.1

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://localhost" />
 </bean>
 </property>
 </bean>
 <bean id="ftpToJmsRoute" class="camelinaction.FtpToJMSRoute"/>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <routeBuilder ref="ftpToJmsRoute"/>
 </camelContext>
</beans>

You may have noticed that we’re referring to the camelinaction.FtpToJMSRoute class as a RouteBuilder. To reproduce the Java DSL example in listing 2.1, you have to factor out the anonymous RouteBuilder into its own named class. The FtpToJMSRoute class looks like this:

public class FtpToJMSRoute extends RouteBuilder {
 public void configure() {
 from("ftp://rider.com/orders?username=rider&password=secret")
 .to("jms:incomingOrders");
 }
}

Now that you know the basics of Spring and how to load Camel inside it, we can go further by looking at how to write Camel routing rules purely in XML—no Java DSL required.

2.4.2	The XML DSL

What we’ve seen of Camel’s integration with Spring is adequate, but it isn’t taking full advantage of Spring’s methodology of configuring applications using no code. To completely invert the control of creating applications using Spring XML, Camel provides custom XML extensions that we call the XML DSL. The XML DSL allows you to do almost everything you can do in the Java DSL.

