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For Denise

The smartest person I know,
who unaccountably took a chance on me.
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Foreword

by Larry Gonick

We are an intuitively statistical species, or so I used to think. People who drive to work have a good sense of how random fluctuations in traffic will affect their commute time. We have a pretty good sense of whether to bring an umbrella if there’s a chance of rain. We’re comfortable with random variations in the size of apples and cucumbers.

On the other hand, I am a terrible poker player.

As recent psychological research has revealed, my experience with poker is typical. People are lousy statisticians. Confronted with risk and uncertainty, we make terrible decisions. We might take some solace in the thought that statistics is a mathematical discipline practiced by adepts better equipped to evaluate uncertainty than the rest of us mentally unwashed, but this “fact” also turns out to be wrong. Geeks with sophisticated statistical models have blown up world markets. Social scientists and medical researchers, all trained in statistics, have published—in peer-reviewed journals!—decades’ worth of studies with breakthrough, headline-making results that later turn out to be false. Education experts have decided that small schools are better, a conclusion at odds with statistics, which would have told them, had they thought about it, that small schools are simply more variable. If a disproportionate number of the best fifty schools (by some measure) are small, well then, a disproportionate number of the worst fifty schools will also be small. The “distribution is flatter,” but this hasn’t stopped governments and foundations from pouring billions into making small schools, not so different from my uncle Harry, who blew most of his family’s assets trying to beat the stock market. Science has spoken.

Are we then no better than an army of impulsive chimpanzees with hyperdeveloped prefontal cortexes? Is there no hope? This is the question explored by Robert Matthews, an incurable optimist who, by revealing the reasons for the crisis of replication, the case of the vanishing breakthrough, and other statistical malpractice, guides us to more sensible tools for interpreting the uncertainty we all inevitably face in life.

The scientific conclusion that people are lousy statisticians may turn out to be false, after all.
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Introduction

One Sunday afternoon in April 2004, a 32-year-old Englishman walked into the Plaza Hotel & Casino in Las Vegas with his entire worldly possessions. They amounted to a change of underwear and a cheque. Ashley Revell had sold everything he owned to raise the $135,300 sum printed on the cheque; even the tuxedo he wore was hired. After exchanging the cheque for a depressingly small heap of chips, Revell headed for a roulette table, and did something extraordinary. He bet the lot on a single event: that when the little white ball came to rest, it would end up on red.

Revell’s decision to choose that colour may have been impulsive, but the event itself wasn’t. He’d planned it for months. He’d talked about it with friends, who thought it was a brilliant idea, and with his family, who didn’t. Nor did some of the casinos; they may well have been fearful of going down in Vegas folklore as The Casino Where One Man Bet Everything And Lost. The manager of the Plaza certainly looked solemn as Revell placed the chips on the table, and asked him whether he was certain he wanted to go ahead. But nothing seemed likely to deter Revell. Surrounded by a large gathering of onlookers he waited anxiously as the croupier put the ball into the wheel. Then in one swift motion he stepped forward and put all his chips down on red. He watched as the ball slowed, spiralled in and bounced in and out of various pockets, and then came to rest – in pocket number 7. Red.

In that moment Revell doubled his net worth to $270,600. The crowd cheered, and his friends hugged him – and his father ruefully declared him ‘a naughty boy’. Most people would probably take a harsher view of Revell’s actions that day: at best ill-advised, certainly rash and possibly insane. For surely even billionaires for whom such sums are loose change would not have punted the lot on one bet. Would not any rational person have divided up such a sum into smaller wagers, to at least check whether Lady Luck was in town?

But here’s the thing: having decided to do it, Revell had done precisely the right thing. The laws of probability show that there is no surer way of doubling your net worth at a casino than to do what he did, and bet everything on one spin of the wheel. Yes, the game is unfair: the odds in roulette are deliberately – and legally – tilted against you. Yes, there was a better than 50 per cent chance of losing the lot. Yet bizarre as it may seem, in such situations the best strategy is to bet boldly and big. Anything more timid cuts the chances of success. Revell had proved this himself in the run-up to the big bet. Over the previous few days he’d punted several thousand dollars on bets in the casino, and succeeded only in losing $1,000. His best hope of doubling his money lay in swapping ‘common sense’ for the dictates of the laws of probability.

So should we all follow Revell’s example, sell everything we own and head for the nearest casino? Of course not; there are much better, if more boring, ways of trying to double your money. Yet one thing’s for certain: they’ll all involve probability in one of its many guises: as chance, uncertainty, risk or degree of belief.

We all know there are few certainties in life except death and taxes. But few of us are comfortable in the presence of chance. It threatens whatever sense we have of being in control of events, suggesting we could all become what Shakespeare called ‘Fortune’s fool’. It has prompted many to believe in fickle gods, and others to deny its primacy: Einstein famously refused to believe that God plays dice with the universe. Yet the very idea of making sense of chance seems oxymoronic: surely randomness is, by definition, beyond understanding? Such logic may underpin one of the great mysteries of intellectual history: why, despite its obvious usefulness, did a reliable theory of probability take so long to emerge? While games of chance were being played in Ancient Egypt over 5,500 years ago, it wasn’t until the seventeenth century that a few daring thinkers seriously challenged the view summed up by Aristotle that ‘There can be no demonstrative knowledge of chance’.

It hardly helps that chance so often defies our intuitions. Take coincidences: roughly speaking, what are the chances of a football match having two players with birthdays within a day of each other? As there are 365 days in a year and 22 players, one might put the chances at less than 1 in 10. In fact, the laws of probability reveal the true answer to be around 90 per cent. Don’t believe it? Then check the birthdays of those playing in some football games, and see for yourself. Even then, it is hard to avoid thinking something odd is going on. After all, if you find yourself in a similar-sized crowd and ask whether anyone shares your birthday, you’re very unlikely to find a match. Even simple problems about coin-tosses and dice seem to defy common sense. Given that a coin is fair, surely tossing heads several times on the trot makes tails more likely? If you’re struggling to see why that’s not true, don’t worry: one of the great mathematicians of the Enlightenment never got it.

One aim of this book is to show how to understand such everyday manifestations of chance by revealing their underlying laws and how to apply them. We will see how to use these laws to predict coincidences, make better decisions in business and in life, and make sense of everything from medical diagnoses to investment advice.

But this is not just a book of top tips and handy hints. My principal goal is to show how the laws of probability are capable of so much more than just understanding chance events. They are also the weapon of choice for anyone faced with turning evidence into insight. From the identification of health risks and new drugs for dealing with them to advances in our knowledge of the cosmos, the laws of probability have proved crucial in separating random dross from evidential gold.

Now another revolution is under way, one which centres on the laws of probability themselves. It has become clear that in the quest for knowledge these laws are even more powerful than previously thought. But accessing this power demands a radical reinterpretation of probability – one which until recently provoked bitter argument. That decades-long controversy is now fading in the face of evidence that so-called Bayesian methods can transform science, technology and medicine. So far, little of all this has reached the public. In this book I tell the often astonishing story of how these techniques emerged, the controversy they provoked and how we can all use them to make sense of everything from weather forecasts to the credibility of new scientific claims.

Anyone wanting to wield the power-tools of probability must, however, always be aware that they can be pushed too far. Bad things happen when they’re abused. For decades, statisticians have warned about fundamental flaws in the methods used by researchers to test whether a new finding is just a fluke, or worth taking seriously. Long dismissed as pedantry, those warnings are now central to understanding a scandal that threatens the very future of scientific progress: the replication crisis. In disciplines ranging from medicine and genetics to psychology and economics, researchers are finding that many ‘statistically significant’ discoveries simply vanish when re-examined. This is now casting doubt on findings that have become embedded in the research literature, textbooks, and even government policy. This book is the first to explain both the nature of the scandal and show how to tell when research claims are being pushed too far, and what the truth is more likely to be. In doing so, it draws on my own academic research into the subject, which I began in the late 1990s after encountering the ‘vanishing breakthrough’ phenomenon as a science journalist.

The need to understand chance, risk and uncertainty has never been more urgent. In the face of political upheaval, turmoil in financial markets and an endless litany of risks, threats and calamities, we all crave certainty. In truth, it never existed. But that is no reason for fatalism – or for refusing to accept reality.

The central message of this book is that while we can never be free of chance, risk and uncertainty, they all follow rules which can be turned to our advantage.
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The coin-tossing prisoner of the Nazis

In the spring of 1940, John Kerrich set out from his home to visit his in-laws – no small undertaking, given that he lived in South Africa and they were in Denmark 12,000 kilometres away. And the moment he arrived in Copenhagen he must have wished he’d stayed at home. Just days earlier, Denmark had been invaded by Nazi Germany. Thousands of troops swarmed over the border in a devastating demonstration of blitzkrieg. Within hours the Nazis had overwhelmed the opposition and taken control. Over the weeks that followed, they set about arresting enemy aliens and herding them into internment camps. Kerrich was soon among them.

It could have been worse. He found himself in a camp in Jutland run by the Danish government, which was, he later reported, run in a ‘truly admirable way’.1 Even so, he knew he faced many months and possibly years devoid of intellectual stimulation – not a happy prospect for this lecturer in mathematics from the University of Witwatersrand. Casting around for something to occupy his time, he came up with an idea for a mathematical project that required minimal equipment but which might prove instructive to others. He decided to embark on a comprehensive study of the workings of chance via that most basic of its manifestations: the outcome of tossing a coin.

Kerrich was already familiar with the theory developed by mathematicians to understand the workings of chance. Now, he realised, he had a rare opportunity to put that theory to the test on a lot of simple, real-life data. Then once the war was over – presuming, of course, he outlived it – he’d be able to go back to university equipped not only with the theoretical underpinning for the laws of chance, but also hard evidence for its reliability. And that would be invaluable when explaining the notoriously counter-intuitive predictions of the laws of chance to his students.

Kerrich wanted his study to be as comprehensive and reliable as possible, and that meant tossing a coin and recording the result for as long as he could bear. Fortunately, he found someone willing to share the tedium, a fellow internee named Eric Christensen. And so together they set up a table, spread a cloth on it and, with a flick of a thumb, tossed a coin about 30 centimetres into the air.

For the record, it came down tails.

Many people probably think they could guess how things went from there. As the number of tosses increases, the well-known Law of Averages would ensure that the numbers of heads and tails would start to even out. And indeed, Kerrich found that by the 100th toss, the numbers of heads and tails were pretty similar: 44 heads versus 56 tails.

But then something odd started to happen. As the hours and coin-tosses rolled by, heads started to pull ahead of tails. By the 2,000th toss, heads had built up a lead of 26 over tails. By the 4,000th toss, the difference had more than doubled, to 58. The discrepancy seemed to be getting bigger.

By the time Kerrich called a halt – at 10,000 tosses – the coin had landed heads-up 5,067 times, exceeding the number of tails by the hefty margin of 134. Far from disappearing, the discrepancy between heads and tails had continued to grow. Was there something wrong with the experiment? Or had Kerrich discovered a flaw in the Law of Averages? Kerrich and Christensen had done their best to rule out biased tosses, and when they crunched the numbers, they found the Law of Averages had not been violated at all. The real problem was not with the coin, nor with the law, but with the commonly held view of what it says. Kerrich’s simple experiment had in fact done just what he wanted. It had demonstrated one of the big misconceptions about the workings of chance.

Asked what the Law of Averages states, many people say something along the lines of ‘In the long run, it all evens out’. As such, the law is a source of consolation when we have a run of bad luck, or our enemies seem on the ascendant. Sports fans often invoke it when on the receiving end of anything from a lost coin-toss to a bad refereeing decision. Win some, lose some – in the end, it all evens out.

Well, yes and no. Yes, there is indeed a Law of Averages at work in our universe. Its existence hasn’t merely been demonstrated experimentally; it’s been proved mathematically. It applies not only in our universe, but in every universe with the same rules of mathematics; not even the laws of physics can claim that. But no, the law doesn’t imply ‘it all evens out in the end’. As we’ll see in later chapters, precisely what it does mean took some of the greatest mathematicians of the last millennium a huge amount of effort to pin down. They still argue about the law, even now. Admittedly, mathematicians often demand a level of precision the rest of us would regard as ludicrously pedantic. But in this case, they are right to be picky. For knowing precisely what the Law of Averages says turns out to be one of the keys to understanding how chance operates in our world – and how to turn that understanding to our advantage. And the key to that understanding lies in establishing just what we mean by ‘It all evens out in the end’. In particular, what, exactly, is ‘it’?

This sounds perilously like an exercise in philosophical navel-gazing, but Kerrich’s experiment points us towards the right answer. Many people think the ‘it’ which evens out in the long run is the raw numbers of heads and tails.

So why did the coin produce far more of one outcome than another? The short answer is: because blind, random chance was acting on each coin-toss, making an exact match in the raw numbers of heads and tails ever more unlikely. So what happened to the Law of Averages? It’s alive and well; the thing is, it just doesn’t apply to the raw numbers of heads and tails. Pretty obviously, we cannot say how individual chance events will turn out with absolute certainty. But we can say something about them if we drop down to a slightly lower level of knowledge – and ask what chance events will do on average.

In the case of the coin-toss, we cannot say with certainty when we’ll get ‘heads’ or ‘tails’, or how many we’ll get of each. But given that there are just two outcomes and they’re equally likely, we can say they should pop up with equal frequency – namely, 50 per cent of the time.

And this, in turn, shows exactly what ‘it’ is that ‘evens out in the long run’. It’s not the raw numbers of heads and tails, about which we can say nothing with certainty. It is their relative frequencies: the number of times each pops up, as a proportion of the total number of opportunities we give them to do so.

This is the real Law of Averages, and it’s what Kerrich and Christensen saw at work in their experiment. As the tosses mounted up, the relative frequencies of heads and tails – that is, their numbers divided by the total number of tosses – got ever closer. By the time the experiment finished, these frequencies were within 1 per cent of being identical (50.67 per cent heads versus 49.33 per cent tails. In stark contrast, the raw numbers of heads and tails grew ever farther apart (see table).
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The real Law of Averages, and what really ‘all evens out in the end’

The Law of Averages tells us that if we want to understand the action of chance on events, we should focus not on each individual event, but on their relative frequencies. Their importance is reflected in the fact they’re often regarded as a measure of that most basic feature of all chance events: their probability.
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Is a coin-toss really fair?

A coin-toss is generally regarded as random, but how the coin lands can be predicted – in theory, at least. In 2008, a team from the Technical University of Łód[image: image] Poland,2 analysed the mechanics of a realistic coin tumbling under the influence of air resistance. The theory is very complex, but revealed that the coin’s behaviour is predictable until it strikes the floor. Then ‘chaotic’ behaviour sets in, with just small differences producing radically different outcomes. This in turn suggested that coin-tosses caught in mid-air may have a slight bias. This possibility has also been investigated by a team led by mathematician Persi Diaconis of Stanford University.3 They found that coins that are caught do have a slight tendency to end up in the same state as they start. The bias is, however, incredibly slight. So the outcome of tossing a coin can indeed be regarded as random, whether caught in mid-air or allowed to bounce.



So, for example, if we roll a die a thousand times, random chance is very unlikely to lead to the numbers 1 to 6 appearing precisely the same number of times; that’s a statement about individual outcomes, about which we can say nothing with certainty. But, thanks to the Law of Averages, we can expect the relative frequencies of the six different outcomes to appear in around 1/6th of all the rolls – and get ever closer to that exact proportion the more rolls we perform. That exact proportion is what we call the probability of each number appearing (though, as we’ll see later, it’s not the only way of thinking of probability). For some things – like a coin, a die or a pack of cards – we can get a handle on the probability from the fundamental properties that govern the various outcomes (the number of sides, court cards, etc.). Then we can say that, in the long run, the relative frequencies of the outcomes should get ever closer to that probability. And if they don’t, we can start to wonder about why our beliefs have proved ill-founded.

[image: image] UPSHOT

The Law of Averages tells us that when we know – or suspect – we’re dealing with events that involve an element of chance, we should focus not on the events themselves, but on their relative frequency – that is, the number of times each event comes up as a proportion of the total number of opportunities to do so.
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What the Law of Averages really means

The Law of Averages warns us that when dealing with chance events, it’s their relative frequencies, not their raw numbers, we should focus on. But if you’re struggling to give up the idea that it’s the raw numbers that ‘even out in the long run’, don’t beat yourself up; you’re in good company. Jean-Baptiste le Rond d’Alembert, one of the great mathematicians of the Enlightenment, was sure that a run of heads while tossing a coin made tails ever more likely.

Even today, many otherwise savvy people throw good money after bad in casinos and bookmakers in the belief that a run of bad luck makes good luck more likely. If you’re still struggling to abandon the belief, then turn the question around, and ask yourself this: why should the raw numbers of times that, say, the ball lands in red or black in roulette get ever closer as the number of spins of the wheel increases?

Think about what would be needed to bring that about. It would require the ball to keep tabs on how many times it’s landed on red and black, detect any discrepancy, and then somehow compel itself to land on either red or black to drive the numbers closer together. That’s asking a lot of a small white ball bouncing around at random.

In fairness, overcoming what mathematicians call ‘The Gambler’s Fallacy’ means overcoming the wealth of everyday experiences which seem to support it. The fact is that most of our encounters with chance are more complex than mere coin-tosses, and can easily seem to violate the Law of Averages.

For example, imagine we’re rummaging through the chaos of our sock drawer before racing off to work, looking for one of the few pairs of sensible black socks. Chances are the first few socks are hopelessly colourful. So we do the obvious thing and remove them from the drawer while we persist with our search. Now who says the Law of Averages applies, and that a run of coloured socks does not affect the chances of finding the black ones? Well, it may look vaguely similar, yet what we’re doing is wholly different from a coin-toss or a throw of the roulette ball. With the socks, we’re able to remove the outcomes we don’t like, thus boosting the proportion of black socks left in the drawer. That’s not possible with events like coin-tosses. The Law of Averages no longer applies, because it assumes each event leaves the next one unaffected.

Another hurdle we face in accepting the law is that we rarely give it enough opportunity to reveal itself. Suppose we decide to put the Law of Averages to the test, and carry out a proper scientific experiment involving tossing a coin ten times. That might seem a reasonable number of trials; after all, how many times does one usually try something out before being convinced it’s true: three times, perhaps, maybe half a dozen? In fact, ten throws is nothing like enough to demonstrate the Law of Averages with any reliability. Indeed, with so small a sample we could easily end up convincing ourselves of the fallacy about raw numbers evening out. The mathematics of coin-tosses shows that with ten tosses it’s odds-on that the number of heads and tails will be within 1 of each other; there’s even a 1 in 4 chance of a dead heat.

Small wonder so many of us think that ‘everday experience proves’ it’s the raw numbers of heads and tails that even out over time, rather than their relative frequencies.
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When trying to make sense of chance events, be wary of relying on ‘common sense’ and everyday experience. As we’ll see repeatedly in this book, the laws ruling chance events lay a host of traps for those not savvy in their tricksy ways.
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The dark secret of the Golden Theorem

Mathematicians sometimes claim they’re just like everyone else; they’re not. Forget the clichés about gaucheness and a penchant for weird attire; many mathematicians look perfectly normal. But they all share a characteristic that sets them apart from ordinary folk: an obsession with proof. This is not ‘proof’ in the sense of a court of law, or the outcome of an experiment. To mathematicians, these are risibly unconvincing. They mean absolute, guaranteed, mathematical proof.

On the face of it, a refusal to take anyone’s word for anything seems laudable enough. But mathematicians insist on applying it to questions the rest of us would regard as blindingly, obviously true. They adore rigorous proofs of the likes of the Jordan Curve Theorem, which says that if you draw a squiggly loop on a piece of paper, it creates two regions: one inside the loop, the other outside. To be fair, sometimes their extreme scepticism turns out to be well founded. Who would have guessed, for example, that the outcome of 1 + 2 + 3 + 4 + etc., all the way to infinity could provoke controversy?1 More often, a proof confirms what they suspected anyway. But occasionally a proof of something ‘obvious’ turns out both to be amazingly hard, and to have shocking implications. Given its reputation for delivering surprises, it’s perhaps no surprise that just such a proof emerged during the first attempts to bring some rigour to the theory of chance events – and specifically, the definition of the ‘probability’ of an event.
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What does ’60 per cent chance of rain’ mean?

You’re thinking of taking a lunchtime walk, but you remember hearing the weather forecast warn of a 60 per cent chance of rain. So what do you do? That depends on what you think the 60 per cent chance means – and chances are it’s not what you think. Weather forecasts are based on computer models of the atmosphere, and in the early 1960s scientists discovered such models are ‘chaotic’, implying that even small errors in the data fed in can produce radically different forecasts. Worse still, this sensitivity of the models changes unpredictably – making some forecasts inherently less reliable than others. So since the 1990s, meteorologists have increasingly used so-called ensemble methods, making dozens of forecasts, each based on slightly different data, and seeing how they diverge over time. The more chaotic the conditions, the bigger the divergence, and the less precise the final forecasts. Does that mean that a ’60 per cent chance of rain at lunchtime’ means 60 per cent of the ensemble showed rain then? Sadly not: as the ensemble is just a model of reality, its reliability is itself uncertain. So what forecasters often end up giving us is the so-called ‘Probability of Precipitation’ (PoP), which takes all this into account, plus the chances of our locality actually being rained on. They claim this hybrid probability helps people make better decisions. Perhaps it does, but in April 2009 the UK Meteorological Office certainly made a bad decision in declaring it was ‘odds on for a barbecue summer’. To those versed in the argot of probability, this just meant the computer model had indicated that the chances were greater than 50 per cent. But to most everyone else, ‘odds on’ means ‘very likely’. Sure enough, the summer was awful and the Met Office was ridiculed – which was always a racing certainty.



One of the most intriguing things about probability is its slippery, protean nature. Its very definition seems to change according to what we’re asking of it. Sometimes it seems simple enough. If we want to know the chances of throwing a six, it seems fine to think of probabilities in terms of frequencies – that is, the number of times we’ll get the outcome we want, divided by the total number of opportunities it has to occur. For a die, as each number takes up one of six faces, it seems reasonable to talk about the probability as being the long-term frequency of getting the number we want, which is 1 in 6. But what does it mean to talk about the chances of a horse winning a race? We can’t run the race a million times and see how many times the horse wins. And what do weather forecasters mean when they say there’s a 60 per cent chance of rain tomorrow? Surely it’ll either rain or it won’t? Or are the forecasters trying to convey their confidence in their forecast? (As it happens, it’s neither – see box on previous page.)

Mathematicians aren’t comfortable with such vagueness – as they showed when they started taking a serious interest in the workings of chance around 350 years ago. Pinning down the concept of probability was on their to-do list. Yet the first person to make serious progress with the problem found himself rewarded with the first glimpse of the dirty secret about probability that dogs its application to this day.

Born in Basle, Switzerland, in 1655, Jacob Bernoulli was the eldest of the most celebrated mathematical family in history. Over the course of three generations, the family produced eight brilliant mathematicians who together helped lay the foundations of applied mathematics and physics. Jacob began reading up on the newly emerging theory of chance in his twenties, and was entranced by its potential applications to everything from gambling to predicting life expectancy. But he recognised that there were some big gaps in the theory that needed plugging – not least surrounding the precise meaning of probability.2

Around a century earlier, an Italian mathematician named Girolamo Cardano had shown the convenience of describing chance events in terms of their relative frequency. Bernoulli decided to do what mathematicians do, and see whether he could make this definition rigorous. He quickly realised, however, that this seemingly arcane task created a huge practical challenge. Clearly, if we’re trying to establish the probability of some event, the more data we have, the more reliable our estimate will be. But just how much data do we need before we can say that we ‘know’ what the probability is? Indeed, is that even a meaningful question to ask? Could it be that probability is something we can never know exactly?

Despite being one of the most able mathematicians of his age, it took Bernoulli 20 years to answer these questions. He confirmed Cardano’s instinct that relative frequencies are what matter when making sense of chance events like coin-tosses. That is, he’d succeeded in pinning down the true identity of the ‘it’ in statements like ‘It all evens out in the long run’. As such, Bernoulli had identified and proved the correct version of the Law of Averages, which focuses on relative frequencies rather than individual events.

But that wasn’t all. Bernoulli also confirmed the ‘obvious’ fact that when it comes to pinning down probabilities, more data are better. Specifically, he showed that as data accumulate, the risk of the measured frequencies being wildly different from the true probability gets ever smaller (if you find this less than compelling, congratulations: you’ve spotted why mathematicians call Bernoulli’s theorem the Weak Law of Large Numbers; the more impressive ‘strong’ version was only proved around a century ago).

In a sense, Bernoulli’s theorem is a rare confirmation of a common-sense intuition concerning chance events. As he himself rather bluntly put it, ‘even the most foolish person’ knows that the more data, the better. But dig a little deeper, and the theorem reveals a typically subtle twist about chance: we can’t ever ‘know’ the true probability with utter certainty. The best we can do is collect so much data that we cut the risk of being wildly wrong to some acceptable level.

Proving all this was a monumental achievement – as Bernoulli himself realised, calling his proof the theorema aureum: ‘Golden Theorem’. He was laying the foundations of both probability and statistics, allowing raw data subject to random effects to be turned into reliable insights.

With his mathematician’s predilection for proof satisfied, Bernoulli began collecting his thoughts for his magnum opus, the Ars Conjectandi – the Art of Conjecturing. Keen to show the practical power of his theorem, he set about applying his theorem to real-life problems. It was then that his theorema started to lose some of its lustre.

Bernoulli’s theorem showed that probabilities can be pinned down to any level of reliability – given enough data. So the obvious question was: how much data was ‘enough’? For example, if we want to know the probability that someone over a certain age will die within a year, how big a database do we need to get an answer that we can be sure is, say, 99 per cent reliable? To keep things clear, Bernoulli used his theorem to tackle a very simple question. Imagine a huge jar containing a random mix of black and white stones. Suppose we’re told that the jar contains 2,000 black stones and 3,000 white ones. The probability that we’ll pick out a white stone is thus 3,000 out of a total of 5,000, or 60 per cent. But what if we don’t know the proportions – and thus the probability of picking out a white stone? How many stones would we need to extract in order to be confident of being pretty close to the true probability?

In typical mathematician’s style, Bernoulli pointed out that before we can use the Golden Theorem, we need to pin down those two vague concepts ‘pretty close to’ and ‘confident’. The first means demanding that the data get us within, say, plus or minus 5 per cent of the true probability, or plus or minus 1 per cent, or closer still. Confidence, on the other hand, centres on how often we achieve this level of precision. We might decide we want to be confident of hitting that standard nine times out of ten (‘90 per cent confidence’) or 99 times out of 100 (‘99 per cent confidence’), or even more reliably.3 Ideally, of course, we’d like to be 100 per cent confident, but as the Golden Theorem makes clear, in phenomena affected by chance such God-like certainty isn’t achievable.

The Golden Theorem seemed to capture the relationship between precision and confidence for the problem of randomly plucking coloured stones from not just one jar, but any jar. So Bernoulli asked it to reveal the number of stones that would have to be extracted from a jar in order to be 99.9 per cent confident of having pinned down the relative proportions of black and white stones it contains to within plus or minus 2 per cent. Plugging these figures into his theorem, he turned the mathematical handle … and a shocking answer popped out. If the problem was to be solved by taken out stones at random, over 25,500 stones would have to be examined before the relative proportions of the two colours could be pinned down to Bernoulli’s specifications.

This wasn’t merely a depressingly large number, it was ridiculously large. It suggested that random sampling was a hopelessly inefficient way of gauging relative proportions, as even with a jar of just a few thousand stones, one would have to repeat the process of examining stones over 25,000 times to get the true proportion nailed down to Bernoulli’s standard. Clearly, it would be far quicker simply to tip the stones out and count them. Historians still argue over what Bernoulli thought of his estimate;4 disappointment seems to be the consensus. What is certain is that, after noting the answer, he added a few more lines to his great work – and then stopped. The Ars Conjectandi languished unpublished until 1713, eight years after his death. It’s hard to avoid the suspicion that Bernoulli had lost confidence in the practical value of his Golden Theorem. It’s known that he was keen to apply it to much more interesting problems, including settling legal disputes where evidence was needed to put a case ‘beyond reasonable doubt’. Bernoulli seems to have expressed his disappointment in the implications of his theorem in a letter to the distinguished German mathematician Gottfried Leibniz, where he admitted he could not find ‘suitable examples’ of such applications of his theorem.

Whatever the truth, we now know that although Bernoulli’s theorem gave him the conceptual insights he sought, it needed some mathematical turbocharging before it was fit for use in real-life problems. This was supplied after his death by the brilliant French mathematician (and friend of Isaac Newton) Abraham de Moivre – allowing the theorem to work with far less data.5 Yet the real source of the problem lay not so much in the theorem as in Bernoulli’s expectations of it. The levels of confidence and precision he’d demanded from it may have seemed reasonable to him, but they turn out to be incredibly exacting. Even using the modern version of his theorem, pinning down the probability to the standards he set demands that around 7,000 stones be randomly chosen from a jar and their colour noted – which is still a huge amount.

It’s odd that Bernoulli didn’t do the obvious thing and rework his calculations with less demanding levels of precision and confidence. For even in its original form, the Golden Theorem shows this has a significant impact on the amount of data required; using the modern version, the impact is pretty dramatic. Taking Bernoulli’s 99.9 per cent confidence level, but easing the precision level from plus or minus 2 per cent to 3 per cent, slashes the number of observations by more than half, to around 3,000. Alternatively, sticking with an error level of 2 per cent but reducing our confidence level to 95 per cent cuts the number of observations by even more, to around 2,500 – just 10 per cent of the amount estimated by Bernoulli. Do both – a bit less precision, a bit less confidence – and the figure plunges again, to around 1,000.

That’s far less demanding than the figure reached by Bernoulli, though admittedly we’ve paid a price in terms of the reliability of our knowledge. Perhaps Bernoulli would have baulked at lowering his standards so far; sadly, we’ll never know.

Today, 95 per cent has become the de facto standard for confidence levels in a host of data-driven disciplines, from economics to medicine. Polling organisations have combined it with the precision of plus or minus 3 per cent to arrive at their standard polling group size of 1,000 or so. Yet while they may be widely used, we should never forget that these standards are based on pragmatism, rather than some grand consensus of what constitutes ‘scientific proof’.
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The dirty secret lurking in Bernoulli’s Golden Theorem is that when trying to gauge the effects of chance, God-like certainty is unattainable. Instead, we usually face a compromise between gathering a lot more evidence, or lowering our standard of knowledge.
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The First Law of Lawlessness

The true meaning of the Law of Averages has been mangled and misunderstood so badly and so often that experts in probability tend to avoid the term. They prefer arguably even less helpful terms like the Weak Law of Large Numbers – which sounds like an unreliable rule about crowds. So instead, let us break apart the Law of Averages into its constituent insights, and call them the ‘Laws of Lawlessness’. The first centres on how best to think about events that involve an element of chance.


The First Law of Lawlessness

When trying to make sense of chance events, ignore the raw numbers. Focus instead on their relative frequency – that is, how often they occurred, divided by how often they had the opportunity to do so.



The First Law of Lawlessness warns us to be wary of claims based purely on raw numbers of events. That makes it especially useful when confronted by media coverage of, say, people with side effects to some new treatment, or lottery wins in a specific town. Such stories are typically accompanied by pictures of the tragic victims or lucky winners. There’s no doubting the power of such stories. Even a single, shocking, real-life case can trigger historic changes in policy – as anyone who’s been through airport security after 9/11 knows. And sometimes that’s the appropriate response. But basing a decision on a handful of cases is usually a very bad idea.

The danger is that the cases appear to be typical, when in fact they’re anything but. Indeed, the very fact they’re so shocking is often because they’re ‘outliers’ – the product of extremely rare confluences of chance.

The First Law of Lawlessness shows that we can avoid such traps by focusing instead on relative frequencies: the raw numbers of events, divided by the relevant number of opportunities for the event to occur.

Let’s apply the law to a real-life example: the 2008 decision by the UK government to vaccinate pre-teen girls against HPV, the virus responsible for cervical cancer. This national programme was hailed as having the potential to save the lives of hundreds of women each year. Yet shortly after its launch, the media seemed to have compelling evidence that this was a dangerously optimistic view. They reported the tragic case of Natalie Morton, a fourteen-year-old girl who died within hours of being given the vaccine. The health authorities responded by checking stocks and withdrawing the suspect batch. This was not enough for some, however: they wanted the mass vaccination programme abandoned. Was this reasonable? Some would insist on invoking the so-called Precautionary Principle, which in its most unsophisticated form amounts to ‘better safe than sorry’. The danger here lies in resolving one problem while creating another. Stopping the programme would eliminate any risk of death among its participants, but that still leaves the problem of how best to tackle cervical cancer.

Then there’s the risk of falling for a trap that deserves to be much better known (and which we’ll encounter again in this book). Logicians call it the ‘Post hoc, ergo propter hoc’ fallacy – from the Latin for ‘After this, therefore because of this’. In the case of Natalie’s death, the trap lies in assuming that because she died after being vaccinated, the vaccination must have been the cause. Certainly, true causes always precede their effects, but reversing the logic has its dangers: people in car crashes typically put on seat belts before setting off, but that doesn’t mean putting on seat belts causes crashes.

But let’s assume the worst: that Natalie’s death really was caused by a bad reaction to the vaccine. The First Law of Lawlessness tells us that the best way to make sense of such events is to focus not on individual cases, but instead on the relevant proportions. What are these? By the time of Natalie’s death, 1.3 million girls had been given the same vaccine. That means the relative frequency of this kind of event was around 1 in a million. It was this that persuaded the UK government, in the face of protests from anti-vaccination campaigners, to resume the programme once the suspect batch had been withdrawn. This was the rational response if Natalie had indeed fallen victim to a rare reaction to the vaccine.

As it happens, this wasn’t the case: the media had fallen into the trap of post hoc, ergo propter hoc. At the inquest into her death, it emerged that Natalie had a malignant tumour in her chest, and her death was unconnected to the vaccination. Even so, the First Law showed that the authorities had adopted the right approach by taking out just the suspect batch, rather than abandoning the whole programme.

Of course, the First Law isn’t guaranteed to lead straight to the truth. Natalie could have been Case Zero of a reaction to the vaccine never seen during tests. And it was clearly right to look into the causes of the case for evidence that there could be more. The role of the First Law lies in preventing us being overly impressed by individual cases, and focusing our attention instead on relative frequencies, thus putting such cases in their correct context.

There are more general lessons here for managers, administrators and politicians determined to bring about ‘improvements’ following a handful of one-off events. If they ignore the First Law of Lawlessness, they risk taking action to deal with events that are exceedingly rare. Worse, having based the ‘improvement’ on a handful of cases, they may then decide to test it on a similarly small set of data, focus again on raw numbers rather than relative frequencies, and come to utterly erroneous conclusions. It could be anything from a spate of customer complaints to a staff suggestion about, say, a new way of doing things. They all tend to start with a few anecdotes which may or may not be significant. But the first step to finding out is to put them into their proper context – by turning them into the appropriate relative frequencies.

Sometimes making sense of events requires a comparison of relative frequencies. In the late 1980s, UK-based defence contractor GEC-Marconi became the focus of media coverage following a spate of over twenty suicides, deaths and disappearances among technical staff. Conspiracy theories started to emerge, fuelled by the fact that some of the victims were working on classified projects. While these made for intriguing stories, the First Law tells us to ignore the anecdotes and focus instead on relative frequencies – in this case, a comparison of the relative frequency of strange events at Marconi and those we’d expect within the general population. And that immediately focuses attention of the fact that GEC-Marconi was a huge company employing over 30,000 staff, and that the deaths had been spread over eight years. This suggests that the ‘mysterious’ deaths and disappearances may not have been so surprising, given the size of the company. That at least is what the subsequent police investigation concluded, though the conspiracy theories persist to this day.

In fairness, the importance of comparing relative frequencies is starting to catch on within the media. In 2010, France Telecom made headlines with a GEC-Marconi-like number of suicides: 30 between 2008 and 2009. The story flared again in 2014, when the company – now called Orange Telecom – saw a resurgence in suicides, with ten in just a few months. This time, the explanation du jour was work-related stress. But in contrast to the reporting of the GEC-Marconi cases, some journalists raised the key question prompted by the First Law: is the rate of suicides, rather than just the raw numbers, really all that abnormal – given that it’s a huge company with around 100,000 employees?

That raises a tricky question that often emerges when trying to apply the First Law, however: what is the appropriate relative frequency to use in the comparison? In the case of Orange Telecom, is it the national suicide rate (which is notoriously high in France, at 40 per cent above the EU average), or something more specific, like the rate among specific age ranges (suicide is the principal cause of death among 25–34-year-olds in France) or perhaps socio-economic grouping? The jury is still out on the Orange Telecom case; while it may be a statistical blip, others insist workplace stress is the real explanation. It’s entirely possible that the truth will never be known.
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The strange case of the Bermuda Triangle

The First Law is especially useful when trying to make sense of spooky claims and conspiracy theories. Take the notorious case of the disappearance of ships and aircraft over a patch of the western Atlantic known as the Bermuda Triangle. From the 1950s onwards, there have been countless reports that bad things happen to those who enter the triangular-shaped area between Miami, Puerto Rico and the eponymous island. Many theories have been put forward to explain the events, from UFO attacks to rogue waves. But the First Law of Lawlessness tells us to focus not on the raw numbers of ‘spooky’ disappearances (which may or may not have happened), but instead compare their relative frequency to what we’d expect from any comparable part of the ocean. Do that, and something amazing emerges: it’s entirely possible that all the unexplained disappearances really did take place. That’s because tens of thousands of ships and aircraft pass through this vast, 1 million square kilometres of sea and airspace each year. Even if you include all those weird tales of the unexplained, it turns out the Bermuda Triangle is not even in the top ten of oceanic danger zones. Certainly the hard-nosed actuaries at world-renowned insurers Lloyd’s of London aren’t fazed by the raw numbers of supposedly ‘spooky’ events in the region. They don’t charge higher premiums for daring to venture into it.



Whatever the reality, the First Law tells us where to start in making sense of such questions. It also makes a prediction: that anything that encompasses enough people – from a government health campaign to employment with a multinational – has the ability to generate headline-grabbing stories, backed up with compelling real-life anecdotes, that mean less than they seem.

Try it yourself. Next time you hear of some national campaign that is generally a good thing but can have nasty side effects for some people – such as a mass medication campaign – make a note of it, wait for the horror stories, and then put the First Law to work.
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Chance events can shock us by their apparent improbability. The First Law of Lawlessness tells us to look beyond the raw numbers of such events, and focus instead on their relative frequencies – which gives us a handle on the probability of the event. And if low-probability events can happen, they will – given enough opportunity.
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What are the chances of that?

Sue Hamilton was doing some paperwork in her office in Dover in July 1992 when she ran into a problem. She thought her colleague Jason might know how to solve it, but as he’d gone home, she decided to call him. She found his phone number on the office noticeboard. After apologising for disturbing him at home, she began explaining her problem, but barely had she begun than Jason interrupted to point out that he wasn’t at home. He was in a public phone box whose phone had begun to ring as he walked past, and he’d just decided to pick it up. Amazingly, it turned out that that number on the noticeboard wasn’t Jason’s home number at all. It was his employee number – which just happened to be identical to the number of the phone box he was walking past at the moment she called.
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