

 [image: cover]

Metaprogramming in .NET

 Kevin Hazzard and Jason Bock

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Copyeditor: Corbin Collins
Technical proofreader: Justin Chase
Proofreader: Elizabeth Martin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Demystifying metaprogramming

 Chapter 1. Metaprogramming concepts

 Chapter 2. Exploring code and metadata with reflection

 2. Techniques for generating code

 Chapter 3. The Text Template Transformation Toolkit (T4)

 Chapter 4. Generating code with the CodeDOM

 Chapter 5. Generating code with Reflection.Emit

 Chapter 6. Generating code with expressions

 Chapter 7. Generating code with IL rewriting

 3. Languages and tools

 Chapter 8. The Dynamic Language Runtime

 Chapter 9. Languages and tools

 Chapter 10. Managing the .NET Compiler

 Appendix A. Metaprogramming in Windows 8

 Appendix B. Usage guide

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Demystifying metaprogramming

 Chapter 1. Metaprogramming concepts

 1.1. Definitions of metaprogramming

 1.2. Examples of metaprogramming

 1.2.1. Metaprogramming via scripting

 1.2.2. Metaprogramming via reflection

 1.2.3. Metaprogramming via code generation

 1.2.4. Metaprogramming via dynamic objects

 1.3. Summary

 Chapter 2. Exploring code and metadata with reflection

 2.1. The need for reflection

 2.1.1. Creating extensible applications

 2.1.2. Manipulating code members at runtime

 2.2. Reading metadata and executing code

 2.2.1. Obtaining the starting point

 2.2.2. Finding member information

 2.2.3. Gathering attribute data

 2.2.4. Executing code

 2.3. Impractical uses of reflection

 2.3.1. Performance concerns with reflection

 2.3.2. Brittleness and reflection

 2.4. Practical uses of reflection

 2.4.1. Automatically registering known types in WCF

 2.4.2. Dynamic implementation of ToString

 2.4.3. Invoking arbitrary methods on objects

 2.4.4. Quick summary of reflection examples

 2.5. Summary

 2. Techniques for generating code

 Chapter 3. The Text Template Transformation Toolkit (T4)

 3.1. Thinking of generics as templates

 3.2. Introducing T4

 3.2.1. T4 syntax basics

 3.2.2. Understanding T4’s block types

 3.2.3. How T4 stitches together template blocks

 3.2.4. T4’s expression control block

 3.2.5. A brief history of T4

 3.3. More useful T4 examples

 3.3.1. Templates should be beautiful

 3.4. T4 fundamentals

 3.4.1. Directives and text blocks

 3.4.2. Control blocks

 3.5. Using T4 inside Visual Studio

 3.5.1. How T4 uses the single file generator extension point

 3.5.2. Creating a T4 template from Visual Studio

 3.5.3. More on the template directive

 3.5.4. Using the output directive

 3.5.5. Using T4 to generate Visual Basic dynamically

 3.6. Summary

 Chapter 4. Generating code with the CodeDOM

 4.1. Understanding the CodeDOM

 4.1.1. CodeDOM organization and types

 4.1.2. How statements and expressions fit together

 4.2. The code provider classes

 4.2.1. Code provider instantiation

 4.2.2. Code generator supportable options

 4.2.3. Code provider services

 4.3. Adding objects to a code graph

 4.3.1. Creating a namespace with imports

 4.3.2. Adding a class to a namespace

 4.3.3. Adding a constructor to a class

 4.3.4. Adding statements to a member

 4.3.5. Adding a property to a class

 4.4. Metaprogramming with the CodeDOM

 4.4.1. Using branching logic

 4.4.2. Referencing a member

 4.4.3. Invoking methods

 4.4.4. Compiling assemblies

 4.4.5. Dynamic invocation

 4.5. Summary

 Chapter 5. Generating code with Reflection.Emit

 5.1. Why Emitter classes?

 5.1.1. Support for DSLs

 5.1.2. Moving reflection code into IL

 5.1.3. Using .NET functionality not supported in your language

 5.2. An overview of assembly internals

 5.2.1. Transforming high-level languages

 5.2.2. Member layouts in assemblies and keywords

 5.3. A lightning tour of opcodes

 5.3.1. The mnemonic patterns for opcodes

 5.3.2. Using local variables

 5.3.3. Accessing fields

 5.3.4. Creating objects

 5.3.5. Calling methods

 5.3.6. Controlling code flow

 5.3.7. Exception handling

 5.4. Creating dynamic assemblies

 5.4.1. Building a dynamic version of ToString()

 5.4.2. Adding debugging support

 5.4.3. Verifying results with peverify

 5.4.4. Using ILDasm to cheat

 5.5. Lightweight code generation with dynamic methods

 5.5.1. When creating an assembly is too much

 5.5.2. Creating shim methods

 5.5.3. Using caching for performance

 5.5.4. Disadvantages of DynamicMethod

 5.6. Summary

 Chapter 6. Generating code with expressions

 6.1. Expression-oriented programming

 6.1.1. Understanding code as data

 6.1.2. Expressions take metaprogramming mainstream

 6.2. Making dynamic methods with LINQ Expressions

 6.2.1. Understanding LINQ Expressions

 6.2.2. Generating expressions at runtime

 6.2.3. Comparison with dynamic methods

 6.3. Using expressions effectively

 6.3.1. Debugging expressions

 6.3.2. Mutating expression trees

 6.4. Evolving expression trees

 6.4.1. The essence of genetic programming

 6.4.2. Applying GAs to expressions

 6.5. Summary

 Chapter 7. Generating code with IL rewriting

 7.1. The case for code injection

 7.1.1. Repeated implementations of coding patterns

 7.1.2. Code restructuring (Code Contracts)

 7.2. Creating an injection framework

 7.2.1. What’s Cecil?

 7.2.2. Weaving code with Cecil

 7.2.3. Creating an MSBuild task

 7.3. Debugging injected code

 7.3.1. Clearing up debugging confusion

 7.3.2. Loading and saving debug information

 7.3.3. Issues with adding debugging information

 7.3.4. Adding debugging information for injected code

 7.4. Summary

 3. Languages and tools

 Chapter 8. The Dynamic Language Runtime

 8.1. The simplest dynamic classes

 8.1.1. The ExpandoObject class

 8.1.2. The DynamicObject class

 8.1.3. Parsing the Open Data Protocol dynamically

 8.2. The DLR hosting model

 8.2.1. Runtimes, engines, and scopes

 8.2.2. Adding a rules engine to your application

 8.3. Summary

 Chapter 9. Languages and tools

 9.1. A survey of languages

 9.1.1. C# and expression limitations

 9.1.2. Boo and metaprogramming

 9.1.3. Nemerle and metaprogrammg

 9.2. A survey of tools

 9.2.1. What is Spring.NET?

 9.2.2. Intercepting property usage with Spring.NET

 9.2.3. What is PostSharp?

 9.2.4. Intercepting object creation with PostSharp

 9.2.5. Implementing Equals() and GetHashCode()

 9.2.6. A quick dive into the internals of PostSharp

 9.3. Summary

 Chapter 10. Managing the .NET Compiler

 10.1. Opening up the compiler

 10.1.1. The current state of affairs: a black box

 10.1.2. Limitations for metaprogramming

 10.1.3. What Roslyn provides: a white box

 10.1.4. What’s in (and not in) the CTP

 10.2. Understanding the basics of Roslyn

 10.2.1. Running code snippets with the script engine

 10.2.2. Creating dynamic assemblies with Roslyn

 10.2.3. What is a mock?

 10.2.4. Generating the mock code

 10.2.5. Compiling the mock code

 10.2.6. Understanding trees

 10.3. Interacting with code in Visual Studio

 10.3.1. Creating a IsOneWay warning

 10.3.2. Defining the Code Issue

 10.3.3. Defining the OneWayOperation code actions

 10.3.4. Viewing the results

 10.3.5. Autoarrange code

 10.3.6. Specifying the algorithm to reformat the code

 10.3.7. Defining the core parts of the refactoring project

 10.3.8. Creating a code action

 10.3.9. Viewing the results

 10.4. Summary

 Appendix A. Metaprogramming in Windows 8

 A.1. The limits of emitting code

 A.2. Expressions are supported

 A.3. Changes with Reflection

 Appendix B. Usage guide

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 When I think about metaprogramming I view it through three sets of experience: as a computer scientist, a business developer,
 and a .NET framework author.

 From a computer science perspective, it is clear that our industry has been largely stagnant from a language perspective for
 an extremely long time. The slow evolution of 3GLs (third-generation languages) from C to C++ to Java to C# has resulted in
 incremental improvements, but no major leaps in terms of developer productivity, maintainability of code, reduction of complexity,
 or other meaningful metrics.

 (I chose the C language progression in my example because it is perhaps the most widely known. Comparable progressions exist
 for BASIC, Pascal, and many other language families.)

 Metaprogramming offers interesting possibilities around the creation of domain-specific languages and other abstraction concepts
 that could eventually break us out of the 3GL world we’ve lived in for the past 20-30 years. Although this book doesn’t focus
 on such a long-term goal, I think you can use Metaprogramming in .NET as a starting point to gain valuable perspective on myriad core ideas that might inspire you to think more about the future
 of our industry.

 As someone who’s been a business developer for over 25 years, I’ve watched as metaprogramming has become one of the most mainstream
 and important tools for software development. Metaprogramming enables development time code generation as well as software
 that can dynamically adapt its behaviors at runtime.

 In the mid-1990s people mocked attempts by Microsoft and others to create “wizards” that generated code for various business
 application scenarios. Today, such code generation tools are considered invaluable in environments as varied as Ruby on Rails,
 Eclipse, and Visual Studio. Most business developers rely daily on massive amounts of code generated by their tools during
 the development and build process.

 Similarly, developers rely on runtime-generated code created by test mocking frameworks, dynamic UI generation tools, rules
 engines, and more. Even more subtle aspects of metaprogramming, such as the use of introspection (reflection) to create data
 binding frameworks, are pervasive.

 This book explores a number of the underlying technologies and techniques used to implement code generation and dynamic applications
 during the development, build, and runtime phases of an application’s lifecycle. Understanding these concepts is important
 for effective use of existing tools, and critical for creating your own or improving those that exist.

 Finally, I am the author of the widely used CSLA .NET business objects framework. Within my framework I make extensive use
 of many of the techniques discussed in this book, including reflection, dynamic type loading, and expression trees.

 A framework such as CSLA .NET couldn’t exist without these technologies, and without the basic concepts of metaprogramming.
 Nor is CSLA .NET unique in this regard. Many frameworks in the data layer, business layer, and presentation layer make heavy
 use of metaprogramming techniques to provide broad and flexible support for object-relational mapping, business rules, validation
 rules, data binding, and dynamic UI generation.

 In my view, metaprogramming is extremely important because its core concepts are used in popular development and testing frameworks
 and tools, as well as to enable code generation tooling and dynamic application behaviors. It is also one of the most promising
 areas of focus for the future of our industry as we look for ways to improve maintainability and reduce the cost of software
 over its lifetime.

 This book is an excellent way to get started down the road of understanding and fully using the power of metaprogramming.

 ROCKFORD LHOTKA
CTO AT MAGENIC
CREATOR OF THE CSLA .NET FRAMEWORK

Preface

 In software development, metaprogramming is one of those words that sounds fancy and sophisticated—and somewhat intimidating
 at the same time. But what does it mean to be doing metaprogramming? The meta prefix can mean changed or higher. It can also mean after or beside, depending on the context. All of those terms describe
 the various forms of metaprogramming that we cover in this book.

 You may choose to do metaprogramming in order to change code to support a higher level of abstraction within your system or
 to inject some new behavior that suits your particular needs. You may choose to do these things at compile time, between compile
 time and deployment, or even at runtime. Because of the flexible nature of the meta prefix, all of these scenarios qualify as metaprogramming.

 No matter your reasons for doing metaprogramming, you must have a firm grip on the larger architectural picture of your project
 to do it effectively. That’s why metaprogramming is sometimes considered a dark art, to be practiced only by senior developers
 and architects. Nothing could be further from the truth. Everyone can do some form of metaprogramming. By manipulating code
 with other code the metaprogramming way, you can suddenly tackle classes of coding problems that you were never able to overcome
 before.

 Your foray into metaprogramming may be to improve code reuse through simple templating or reflection. But soon you might also
 find yourself doing it to reduce the complexity of your systems. For example, weaving the code that does logging, performance
 monitoring, or transaction handling into a class library after it’s been compiled can greatly increase developer comprehension
 by reducing code complexity. Hiding all of that plumbing with metaprogramming can benefit everyone on the team.

 We love metaprogramming. We want to create beautiful pieces of code that can enable conventions in applications that make
 adding a new aspect easy. We want to be able to optimize our code at runtime so it can perform faster. We want to analyze
 our code so we can find issues before compilation. We want to shape whole bodies of templated code to schemas at runtime,
 perhaps even compiling them on the fly to get excellent performance. Metaprogramming helps realize all these goals. We’d also
 like for you to fall in love with metaprogramming so you can reach higher goals. That’s really what we hope to instill in
 you with this book: a passion to view your code in a different, often more abstract way.

 To be fair, it’s not as easy to do metaprogramming in .NET compared to other languages like Ruby. At least it seems that way
 when you first dive in. Dynamic languages let you easily manipulate your code, and such concepts are exposed as first-class
 citizens in languages like Python and Ruby. C# and Visual Basic .NET are usually not touted as being dynamic or malleable. Surprisingly, though, there are a lot of ways to do real metaprogramming in .NET. They may not be obvious or easy to carry
 out at first, but they are there at almost every turn. Some metaprogramming features of .NET are baked into the Common Language
 Runtime (CLR). Some exist as code in the Framework Class Library (FCL). Still more metaprogramming capabilities show up as
 language features in C# and Visual Basic .NET. Once you understand how some of these features work, you’ll be well on your
 way to seeing problems in a whole new light.

 Writing this book has been laborious, time-consuming, and frustrating, but above everything else, a joy. As far as we’re concerned,
 this is the “fun stuff” in software development. It’s also the “stuff” that can truly transform your code into something amazing,
 as long as you’re willing to stretch your boundaries. So take a deep, cleansing breath and dive in with us. You’ll find that
 the metaprogramming waters aren’t as choppy as they may seem at first glance. We believe that in the end, you’ll be glad you
 made the journey.

 We also believe that once you’ve mastered a new concept or two, you’ll be ready to convince your peers that the metaprogramming
 seas are smooth enough for anyone to sail on them.

Acknowledgments

 We’d like to thank Manning for taking a chance on us and letting us create a book that didn’t follow the typical .NET technical
 paths. Specifically, we thank Cynthia Kane, Michael Stephens, and Maureen Spencer for being patient with us during our long
 wanderings through the material. It took far longer for us to finish than we originally thought, and we appreciate them for
 sticking with us—thank you very much! We also thank our production team of Corbin Collins, Dennis Dalinnik, Elizabeth Martin,
 Mary Piergies, and Janet Vail.

 Special thanks to the following reviewers who spent the time perusing the text and the code for mistakes, odd phrasings, and
 other quirks: Andrew Kirsch, Arun Noronha, Bill Wagner, Bryce Darling, Danish Gite, Eddy Vluggen, Harry Cummings, Jon Von
 Gillern, Matt Warren, Mick Wilson, Rama Krishna Vavilala, Rob Grainger, Rupert Wood, Sander Rossel, Scobie Smith, Timo Bredenoort,
 Timothy Cluff, and William Lee.

 Finally, we’re grateful to Rockford Lhotka for contributing the foreword to our book and to Justin Chase for his careful tech
 proofread of the manuscript during production.

 KEVIN HAZZARD

 I would like to thank

	My wife Donna and our five lovely children, for giving up husband and dad for the year that it took to produce this book.
 Donna, you will always be my lobster.

 	Jason, for teaching me a lot about authorship and many things about metaprogramming that I didn’t know when I began this work.
 Jason has patience beyond all reckoning which I bent nearly to the breaking point more often than I should have. You’re a
 real gem, Jason.

JASON BOCK

 I would like to thank

	Magenic, especially Greg Frankenfield and Paul Fridman, for creating and growing a great place to work. I’ve been with Magenic
 for 11 years for many reasons, one being that I find tremendous satisfaction in solving problems for our clients. Some challenges
 are technical, others require “innovative thinking” to come up with ways to move forward. And all of them educate me. With
 that experience, I feel like I’ve grown far more than I ever have anywhere else. I’m thankful that I’ve found a place where
 I feel like I fit in.

 	Kevin, for giving up his time to coauthor this book. Your knowledge and insight have added so much to the material in this
 book, and I feel that your writing style forced me to stop being so technical and focus on the story at hand. Thanks for everything
 you’ve done in this book. Well done!

 	My wife Liz and my two sons Hayden and Ryan. I thought I’d never write another book, but when this opportunity presented itself,
 I had to do it, even though I knew it would cut into family time. I truly appreciate my amazing family and feel so fortunate
 that they’ve been supportive of me when “Dad’s writing his book on his laptop...again!” To each of them: I love you very much.

About this Book

 Metaprogramming in .NET requires you to move beyond the canonical material of interfaces, virtual methods, and events to more advanced and probably
 unknown concepts like reflection, assembly rewriting, expressions, and code analysis. If you’ve never encountered these APIs
 or techniques, it may feel a little daunting to even approach the first chapter!

 We don’t “pontificate on the profound”—that is, although you’ll be exposed to new ideas, you won’t read about every extreme,
 esoteric corner of metaprogramming. Rather, you’ll be guided into these realms with an understanding of why you need to learn about these techniques. At the end of the day, we want you to not only gain an appreciation of how powerful
 metaprogramming is, but how to use this material in your day-to-day coding experiences.

 Throughout this book, you’ll learn about different techniques and frameworks. They all have their strengths and weaknesses.
 Some work well in some areas of an application, and others shine somewhere else. You’ll understand when it’s best to use one
 tool, and what the trade-offs are in using a particular approach.

Roadmap

	
Chapter 1 provides a broad introduction into the world of metaprogramming. We provide high-level examples to explain just what metaprogramming
 is all about.

 	
Chapter 2 moves into the world of reflection, describing how to query code, find out what it contains, and manipulate it.

 	
Chapter 3 discusses code generation with T4. You’ll discover how the template engine works and where it makes sense to use code generation
 in an application.

 	
Chapter 4 covers the CodeDOM and why it’s still an applicable API to use in certain development scenarios.

 	
Chapter 5 dives into the Reflection.Emit API. You’ll learn about the inner workings of an assembly and how to dynamically create code
 at runtime with this API.

 	
Chapter 6 is all about expressions, specifically LINQ expressions. You’ll see how to create small snippets of code and change their
 behavior at runtime.

 	
Chapter 7 takes the Emitter API one more step and shows how to rewrite assemblies, providing a path where you can inject reusable bits
 of code to enhance compiled code.

 	
Chapter 8 covers the Dynamic Language Runtime, or DLR. You’ll learn all about binding, dynamic objects, and other things the DLR provides.

 	
Chapter 9 looks at other tools and frameworks, as well as other languages that make it easier to use metaprogramming within .NET.

 	
Chapter 10 rounds out the book with a look into the future with Project Roslyn, a compiler API from Microsoft that will provide a view
 into your code like you’ve never had from them before.

 	There are two appendixes. Appendix A is an overview of Windows 8 and how metaprogramming in .NET works in Windows Store applications. Appendix B is a usage guide summary of the techniques presented in chapters 2–10.

Who should read this book?

 If you’re a .NET developer who wants not only to learn more than just how to “do” dependency injection and “use” controllers,
 but also to create frameworks that provide useful services to other developers, then this book is for you. Many popular .NET
 frameworks that make hard problems simple usually end up using one or more of the techniques presented in this book, but they
 structure their work in such a way that you probably don’t see it (which is usually a good thing). If you want to create these
 components, you’ll need to know how these techniques work, and this book provides that guidance.

 We assume that you’re familiar with the base competencies that a .NET developer would have. For example, we expect that you
 know what a class is, the difference between a virtual and a non-virtual method, and what sealed means in C#.

Code conventions and downloads

 This book contains numerous code examples. All the code is in a fixed-width font like this to separate it from ordinary text. Code members such as method names, class names, and so on are also in a fixed-width font.

 Source code examples in this book are fairly close to the samples that you’ll find online. But for brevity’s sake, we may
 have removed material such as comments from the code to fit it well within the text.

 Annotations accompany many of the source code listings, highlighting important concepts. In some cases, numbered bullets link
 to explanations that follow the listing.

 The source code for the examples in the book is available for download from the publisher’s website at www.manning.com/Metaprogrammingin.Net. It is also available from http://metadotnetbook.codeplex.com.

 To run the samples, you’ll need to download some of the tools and languages we use in this book. We provide links in the text
 to places where you can get the relevant files.

Author Online

 The purchase of Metaprogramming in .NET includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser at www.manning.com/Metaprogrammingin.NET. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contributions to the forum remain voluntary (and unpaid). We suggest you try asking the authors some challenging questions,
 lest their interest stray!

 The Author Online forum and archives of previous discussions will be accessible from the publisher’s web site as long as the
 book is in print.

About the authors

 KEVIN HAZZARD is a director for CapTech Consulting, a management consulting and software development firm of 375 consultants
 based in Richmond, Va., with offices in Philadelphia, Charlotte, and Washington, D.C. Kevin was a Microsoft C# MVP for years
 until moving into the Windows Azure MVP group. Although his head is in the clouds these days, Kevin still considers himself to be a languages guy, focusing most of his attention on functional and dynamic languages like F# and Python.

 Kevin has served as a leader for the Richmond Code Camp (http://richmondcodecamp.org), the Richmond .NET User Group, the Richmond SQL Server User Group, the Richmond Software Craftsmanship Group, and the Mid-Atlantic
 Developer Expo (http://madexpo.us). He also speaks regularly at conferences around the Midwest and Mid-Atlantic states, directing most of his attention these
 days to teaching programming and robotics to children.

 Kevin taught computer programming language courses in the Virginia Community College system for more than a decade, but gave
 that up in 2011 to run for office and become elected to his county’s K-12 School Board. You can follow Kevin at http://twitter.com/KevinHazzard or befriend him at http://facebook.com/wkhazzard to stay in touch.

 JASON BOCK is a principal lead consultant for Magenic (www.magenic.com) and a Microsoft C# MVP. He’s worked on a number of business applications using a diverse set of substrates and languages,
 such as C#, .NET, and Java. He’s the also the author of Applied .NET Attributes (Apress, 2003), CIL Programming: Under the Hood of .NET (Apress, 2002), and Visual Basic 6 Win32 API Tutorial (Wrox, 1998). He’s written numerous articles on software development, has presented at a number of conferences and user groups,
 and is a leader of the Twin Cities Code Camp (www.twincitiescodecamp.com). Jason holds a master’s degree in electrical engineering from Marquette University. Visit his website at www.jasonbock.net.

About the Cover Illustration

 The figure on the cover of Metaprogramming in .NET is captioned a “Man from Japodes.” The Japodes, also called Lapydes or Giapidi, were an ancient people who dwelt north of
 and inland from Liburnia, a region on the northeastern Adriatic coast in what is now Croatia. This illustration is taken from
 a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist
 who spent many years studying the botany, geology, and ethnography of many parts of the Austrian Empire, as well as the Veneto,
 the Julian Alps, and the western Balkans, inhabited in the past by peoples of many different tribes and nationalities. Hand-drawn
 illustrations accompany the many scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the uniqueness and individuality of Alpine
 and Balkan regions just 200 years ago. This was a time when the dress codes of two villages separated by a few miles identified
 people uniquely as belonging to one or the other, and when members of an ethnic tribe, social class, or trade could be easily
 distinguished by what they were wearing. Dress codes have changed since then and the diversity by region, so rich at the time,
 has faded away. It is now often hard to tell the inhabitants of one continent from another and the residents of the picturesque
 towns and villages on the Adriatic coast are not readily distinguishable from people who live in other parts of the world.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 costumes from two centuries ago brought back to life by illustrations such as this one.

Part 1. Demystifying metaprogramming

 What is metaprogramming? What does it look like? What does it mean to use metaprogramming? Part 1 (chapters 1 and 2) gives you a tour of the foundations of metaprogramming.

 In chapter 1 you’ll see simple, clear examples that explain what metaprogramming is and why it’s beneficial to understand what it’s about.

 Chapter 2 covers the need for reflection and its practical uses. Numerous uses of metaprogramming via the Reflection API will be presented
 throughout the chapter.

Chapter 1. Metaprogramming concepts

 In this chapter

	Defining metaprogramming

 	Exploring examples of metaprogramming

The basic principles of object-oriented programming (OOP) are understood by most software developers these days. For example,
 you probably understand how encapsulation and implementation-hiding can increase the cohesion of classes. Languages like C#
 and Visual Basic are excellent for creating so-called coarsely grained types because they expose simple features for grouping
 and hiding both code and data. You can use cohesive types to raise the abstraction level across a system, which allows for
 loose coupling to occur. Systems that enjoy loose coupling at the top level are much easier to maintain because each subsystem
 isn’t as dependent on the others as they could be in a poor design. Those benefits are realized at the lower levels, too,
 typically through lowered complexity and greater reusability of classes. In figure 1.1, which of the two systems depicted would likely be easier to modify?

 Figure 1.1. Which system is easier to change?

 [image:]

 Without knowing what the gray circles represent, most developers would pick the diagram on the right as the better one. This
 isn’t even a developer skill. Show the diagrams to an accountant and she’ll also choose the one on the right as the less complex. We recognize simplicity when we see it. Our challenge as programmers is in seeing the opportunities for simplicity
 in the systems we develop. Language features like encapsulation, abstraction, inheritance, data-hiding, and polymorphism are
 great, but they only take you part of the way there.

	

 The I in SOLID
 Along the way, we’ll refer to some of the five SOLID (single responsibility, open-closed, Liskov substitution, interface segregation,
 and dependency inversion) principles of object-oriented design (OOD). While we’re thinking about coupling and cohesion, it’s
 a good time to discuss the “I” in SOLID—the interface segregation principle (ISP). The ISP says that many client-specific
 interfaces are better than one general-purpose interface.

 This seems to contradict the notion that high cohesion is always a good thing. If you study the ISP along with the other four
 SOLID principles, though, you’ll discover that it speaks to the correctness of the middle ground in software development.
 The diagram on the left in figure 1.1 may represent absurdly tight coupling and low cohesion. The one on the right may embody the other extreme. The ISP tells
 us that there may be an unseen middle design that’s best of all.

	

The metaprogramming style of software development shares many of the goals of traditional OOP. Metaprogramming is all about
 making software simpler and reusable. But rather than depending strictly on language features to reduce code complexity or
 increase reusability, metaprogramming achieves those goals through a variety of libraries and coding techniques. There are
 language-specific features that make metaprogramming easier in some circumstances. For the most part, however, metaprogramming
 is a set of language-independent skills. We use C# for most of the examples in this book, but don’t be surprised when we toss
 in a bit of JavaScript or F# here and there when it helps to teach an idea at hand.

 If you know a little bit about metaprogramming, you may scoff at the idea that metaprogramming reduces complexity. It’s true
 that some types of metaprogramming require a deeper understanding of tools that may be out-of-sight from your perspective
 today. You may have been told in the past that to do metaprogramming, you must understand how compilers work. Many years ago
 that was largely true, but today you can learn and use highly effective metaprogramming techniques without having to know
 much at all about compilers. After all, complexity is in the eye of the beholder, as the saying goes. As perceived complexity
 from the end user’s standpoint goes down, internal complexity of the design often goes up. Complexity reduction when metaprogramming
 follows the same rules. To achieve simplicity on the outside, the code on the inside of a metaprogramming-enabled component
 typically takes on added responsibilities.

 For example, so-called Domain-Specific Languages (DSLs) are often built with metaprogramming tools and techniques. DSLs are
 important because they can fundamentally change the way that a company produces intellectual property (IP). When a DSL enables
 a company to shift some of its IP development from traditional programmers to analysts, time to market can be dramatically
 reduced. Well-designed DSLs can also increase the comprehension of business rules across the enterprise, allowing people into
 the game from other roles that have been traditionally unable to participate in the process. A flowcharting tool that produces
 executable code is a good example of such a DSL because it enables business stakeholders to describe their intent in their
 own vocabulary.

 The trade-off is that DSLs are notoriously difficult to design, write, test, and support. Some argue that DSLs are much too
 complex and not worth the trouble. But from the consumer’s vantage point, DSLs are precious to the businesses they serve precisely
 because they lower perceived complexity. In the end, isn’t that what we do for a living? We make difficult business problems
 seem simple. As you study metaprogramming throughout this book, keep that thought in mind.

	

Note

 DSLs in Action by Debasish Ghosh (www.manning.com/ghosh) and DSLs in Boo by Oren Eini writing as Ayende Rahien (www.manning.com/rahien) are both excellent choices if your goal is to learn how to create full-featured DSLs.

	

At times, you may struggle as you try to learn so many new things at once. There will be enough promise in each new thing
 you learn to prove that the struggle is worthwhile. In the end, you’ll have many new tools for fighting software complexity
 and for writing reusable code. As you begin to put metaprogramming to work in your projects, others will study what you’ve
 done. They’ll marvel at the kung fu of your metaprogramming skills. Soon they’ll begin to emulate you, and, as they say, imitation
 is the sincerest form of flattery.

 Let’s begin by defining what metaprogramming is. Then we’ll dive into a few interesting examples to show how it’s used.

1.1. Definitions of metaprogramming

 The classic definition for a metaprogram is “a computer program that writes new computer programs.” This sounds a lot like
 the definition of a compiler. A compiler for a programming language like C# could be thought of as the ultimate metaprogram,
 because its only job is to produce other programs from source code. But to call the C# compiler a metaprogram is a stretch.
 Unstated in the definition of a traditional compiler is the idea that the execution step is fixed in time, and the existence
 of the compiled outputs are somewhat unseen by end users. Also, metaprogramming techniques are clearly different because they’re
 almost always used to deal with some sort of ever-changing stimulus.

 There may be semistructured documents that need parsing on the fly. You may need a way to express trading restrictions from
 your partners that change daily. Database schemas change from time to time, and you may need a way to make your programs adapt
 gracefully. All of these problems are perfect for metaprogram-based solutions. They don’t require compilers in the traditional
 sense. They do require the flexibility that a compiler affords to adapt to situations at hand.

 The C# compiler in its current form is almost always invoked by programmers during a build process to produce a new program.
 In the near future, that will be changing with the release of Microsoft’s Roslyn (code name) tools. Roslyn opens the black
 box of the C# and VB compilers to make them available before, during, and after the deployment of your applications. When
 that happens, we expect to see Microsoft’s compilers used in many metaprogramming scenarios.

	

Definition

 Metaprogramming may be among the most misunderstood terms in computer jargon. It’s certainly one of the more difficult to define. To make
 learning about it easier, each time you see the word metaprogramming in this book, try to think of it as after-programming or beside-programming. The Greek prefix meta allows for both of those definitions to be correct. Most of the examples in this book demonstrate programming after traditional
 compilation has occurred, or by using dynamic code that runs alongside other processes. For each example, ask yourself which
 kind of metaprogramming you’re observing. Some of the more in-depth examples demonstrate both kinds simultaneously.

	

Also inherent in the classic definition of metaprogramming is the notion that the code-generation process is embedded within
 an application to perform some type of dynamic processing logic. The word dynamic gets tossed around a lot in discussions about metaprogramming because it’s often used to add adaptive interfaces to a program
 at runtime. For example, a dynamic XML application might read XML Schema Definitions (XSD) at runtime to construct and compile
 high-performance XML parsers that can be used right away or saved for future use. Such an application would perform well and
 be highly adaptable to new types of XML without the need for recompilation.

 Another common definition for metaprogramming is “a computer program that manipulates other programs at runtime.” Scripting
 languages often fit this mold, providing the simple but powerful tools for doing metaprogramming. A program that manipulates
 another program doesn’t have to be a scripting language. The dynamic keyword in C# can be used to emit a kind of manipulating code into a compiled application, like this:

 dynamic document = DocumentFactory.Create();
document.Open();

 Using the dynamic keyword, the call to the Open() method shown here is embedded into a bit of C# code known as a CallSite. We dive into CallSites in great detail later in chapter 8. For now, all you need to understand is that what appears to be a type-safe call to the Open() method in the document object is implemented through C#’s runtime binder using the literal string "Open." When you dig around in the Intermediate Language (IL) emitted by the compiler for the preceding snippet, you may be surprised
 to see the literal string "Open" passed to the binder to invoke the method. The C# code certainly didn’t look like a scripting language, but what was emitted
 certainly has that flavor. Through the various runtime binders for interfacing with plain old CLR objects (POCO), Python scripts,
 Ruby scripts, and COM objects, C# CallSites exhibit the second definition of metaprogramming rather well. In chapter 8, we show you how to interface with all those languages and object types using C# dynamic typing.

 Writing new programs at runtime and manipulating programs at runtime aren’t mutually exclusive concepts. Many of the metaprogramming
 examples you’ll encounter in this book do both. First, they may use some sort of code-generation technique to create and compile
 code on the fly to adapt to some emerging set of circumstances. Next, they may control, monitor, or invoke those same programs
 to achieve the desired outcome.

	

 More metaprogramming jargon
 There are a few more terms that you may encounter when you start reading articles and other books on metaprogramming. You
 may run across the term metalanguage to refer to the language used in the original program (the one that’s writing the others). We prefer the term metaprogram because it’s more generic. Remember that metaprogramming is largely a language-independent craft.

 Other terms you’re likely to hear are target language or object language, referring to the code produced by the metaprogram. Both those terms imply that there’s an intermediate language that the
 metaprogrammer cares about in the process. As you’ll soon discover, the output of a .NET metaprogram could be Common Intermediate
 Language (CIL) which, for all intents and purposes, you can regard as native code. In those cases, there’s no target language
 in the classical sense.

	

1.2. Examples of metaprogramming

 For most people, the best way to learn is by example. Let’s examine a few examples of metaprogramming in action. We begin
 with the simplest of metaprogramming concepts: invoking bits of dynamically supplied JavaScript at runtime. This prototype
 will give you an appreciation for the flexibility that metaprogramming can add to a web application, even though the example
 is contrived for simplicity.

 Next, we look at how to use introspective interfaces to drive application behavior at runtime. Through it you’ll learn how
 to do simple reflection to peer into objects at runtime. But the real purpose of that example is to help you understand the
 performance considerations when deciding to metaprogramming-enable an interface to make it friendlier and more adaptive at
 runtime.

 The third example in this section concerns code generation, arguably the classic definition of metaprogramming. We show you
 two runtime types of code generation: creating source code from a so-called object graph assembled by hand and creating executable
 IL from a lambda expression. For the second type, we let the C# compiler do the heavy lifting first. Then we build the lambda
 expressions by hand before turning them into runnable code.

 The last example in this section demonstrates how you can use the dynamic features of the C# 4 compiler to do some fairly
 interesting metaprogramming with little effort. You’ll learn a little bit about how the CallSite and CSharpRuntimeBinder types work. The real goal of that example, though, is to highlight some of the best practices around using dynamic types
 in C#.

 The examples here are designed to provide basic prototypes that you’ll need to learn faster when reading future chapters.
 Also, by examining several simple approaches to metaprogramming in rapid succession, we hope to give you a more holistic view
 of this important programming paradigm.

 1.2.1. Metaprogramming via scripting

 There are many dynamic programming languages. Some of them are also considered to be scripting languages. Languages like Python
 or Ruby would work well for our first example because they have clean, easy-to-understand syntaxes and they’re loaded with
 great metaprogramming capabilities. But rather than starting with one of those languages, which could steepen the learning
 curve if you don’t know them, let’s begin, in the following listing, with the two most popular languages in the world.

 Listing 1.1. Dynamic Number Conversion (HTML and JavaScript)

 <!DOCTYPE html>
<html>
 <head>
 <script type="text/javascript">
 function convert() {
 var fromValue = eval(fromVal.value);
 toVal.innerHTML = eval(formula.value).toString();
 }
 </script>
 </head>
 <body>
 fromValue:
 <input id="fromVal" type="text"/>

 formula:
 <input id="formula" type="text"/>

 <input type="button" onclick="javascript:convert();"
 value="Convert" />

 toValue:
 </body>
</html>

 The admittedly unattractive web page created by this markup demonstrates a core metaprogramming concept. After locating the
 DynamicConversion.htm file in the book’s sample source code, load it up and enter some values into the fromValue and formula fields, as shown in figure 1.2. Be sure to use the token fromValue somewhere in the formula to refer to the numeric value that you type into the fromValue field.

 Figure 1.2. DynamicConversion.htm—converting inches to millimeters

 [image:]

 Figure 1.2 shows a calculation that multiplies the user-supplied fromValue by 25.4, which is the simple formula for converting inches to millimeters. Typing in a fromValue such as 3.25 and clicking Convert shows that 3.25 inches is equivalent to 82.55 millimeters. There are two bits of JavaScript code in
 this web page that make it work: a function called convert() and the onclick event handler for the Convert button, which invokes the convert() function when the button is clicked. In the convert() function, the HTML Document Object Model (DOM) is used to fetch the value from the first text box on the page, the one named
 fromVal. The string is evaluated by the JavaScript DOM by passing it to the aptly-named eval() function:

 var fromValue = eval(fromVal.value);

 This is a neat trick, but how does it work? When we typed the string "3.25" into the fromVal element, we weren’t thinking of writing JavaScript per se. We were trying to express a numeric value. But the eval() function did interpret our input as JavaScript because that’s all it can do. The eval() function gives you direct access to JavaScript’s compiler at runtime, so the string "3.25" compiled as JavaScript code is treated as the literal value for the floating point number we know as 3.25. That makes sense.
 The parsed literal number is then assigned to a local variable defined in the script named fromValue. The next line of code in the convert() function uses eval() once again:

 toVal.innerHTML = eval(formula.value).toString();

 The string "fromValue*25.4" looks a bit more like a script than the first input because it contains a mathematical expression. The result of executing
 that script is a number that’s converted into a string and written back to the web page for the user to see. Once again, in that single line of code, you can see the HTML DOM and the JavaScript DOM working together to accomplish
 what’s required.

 The bit of metaprogramming lurking in this example is the way that the predefined JavaScript variable called fromValue is referenced within the formula provided by the user. The token fromValue in the user-supplied formula is somehow bound by the second eval() statement to the value of the predefined variable in the DOM’s local execution scope. This kind of late binding is fairly common in metaprogramming. With JavaScript, writing a script that can refer to objects defined in the larger execution
 context, otherwise called the script scope, is simple to do. When you use libraries like jQuery or the Reactive Extensions
 for JavaScript (RxJS) for the first time, how they can do so much in so few lines of code seems utterly magical. The magic
 lies in the metaprogramming foundation upon which JavaScript was conceived, which we examine at the end of this chapter. If
 JavaScript didn’t expose its compiler in this ingeniously simple way, neither jQuery nor RxJS would exist.

 Defining the local variable fromValue is a convention in the design of this particular web page. Rather than using a variable with a specific name, you could inject
 your own variable into the local scope and use it instead, as shown in figure 1.3.

 Figure 1.3. DynamicConversion.htm—injecting variables into JavaScript

 [image:]

 As you can see in figure 1.3, the value in the predefined fromValue variable is no longer being used in the user-supplied formula. This example takes advantage of the fact that when the first
 eval() statement runs in the convert() function, any JavaScript code can be provided to the compiler. A new variable named otherValue is injected into scope which the formula references instead. This side effect functions properly because the inches to millimeters calculation produces the correct output.

 If you can create whole new objects using the JavaScript DOM, who knows what else you might be able to reference from a user-supplied
 script at runtime? You might have access to some of JavaScript’s built-in libraries, for example. Let’s give that a try. The
 example shown in figure 1.4 uses JavaScript’s built-in Math class to calculate the tangent value at 45 degrees. In case you don’t remember your college trigonometry, the tangent line
 on a circle at 45 degrees should have a slope of 1.

 Figure 1.4. DynamicConversion.htm—using JavaScript’s Math class dynamically

 [image:]

 The tan() function needs radians, not degrees. The formula first converts the degrees supplied by the user to radians using the constant
 for pi from JavaScript’s Math class. In JavaScript, getting the constant for pi is as easy as pie, as the saying goes. Then the Math class is used again to compute the tangent value using the trigonometric tan() function. The result shows a slight rounding error, but it’s pretty close and neatly illustrates the idea of using JavaScript’s
 libraries from a dynamic script.

 As you can see, the name chosen for the convert() function is wearing a bit thin as you begin to realize that this number converter can become pretty much whatever the user
 wants. For example, pass a single-quoted string for the fromValue and invoke one or more JavaScript strings in the formula to manipulate it. As you’ll observe, the user-supplied input doesn’t
 have to be a number at all. So it goes with metaprogramming in general. You’ll often find that the metaprogramming-enabled
 interfaces you encounter seem simple from the outside. Beneath the surface, however, a lot of interesting and useful functionality
 is often waiting to be discovered.

 Having studied the important metaprogramming concepts of late binding and runtime compilation, let’s turn our attention to
 another popular technique that’s used throughout the .NET Framework Class Library (FCL) to make code easier to write and comprehend.

 1.2.2. Metaprogramming via reflection

 The surface simplicity that many metaprogramming-enabled interfaces expose is often quite deliberate. As you’ll see throughout
 this book, metaprogramming is commonly used to hide complexity by providing natural interfaces to complicated processes. Let’s
 take a look at one of the simplest uses of this idea. Imagine that a ListBox control exists named listProducts. Your goal is to load the control with a list of (you guessed it) Product objects from a data context. Each Product contains a string property named ProductName and an integer property named ProductID. You want ProductName to be visible to the user, and when they click an item in the ListBox, you want the associated ProductID to be the selected value. Since .NET 1.0, the code to do that has been this simple:

 listProducts.DisplayMember = "ProductName";
listProducts.ValueMember = "ProductID";
listProducts.DataSource = DataContext.Products;

 In English, this code might be read as, “Bind these Product objects to this ListBox, displaying each ProductName to the user and setting the ProductID for each item as the selectable backing value.” Notice how the declarative quality of the code makes it easy to understand
 what’s going on. In fact, the C# code and the English rendering of it are quite similar.

 You may have written code that does data binding as we’ve described dozens of times, but have you ever stopped to think about
 what’s going on behind the scenes? How can strings be used in a statically typed language like C# to locate and bind property
 values by name at runtime? After all, the strings assigned to the DisplayMember and ValueMember properties could have been variables instead of string literals. The treatment of them by Microsoft’s data-binding code must
 be performed completely at runtime.

 The answer is based on something known as the reflection application programming interface (API), which can illustrate the inner workings of a class at runtime, hence the name. Microsoft’s ListBox data-binding code uses reflection to use bits of metadata left behind by the compiler, as shown in the following listing.

	

 Declarative programming
 In 1957, the FORTRAN programming language appeared—the great-grandparent of all the so-called imperative programming languages.
 In English, the word imperative is used to mean command or duty. FORTRAN and its descendants are called imperative languages because they give the computer commands to fulfill in a specific
 order. Imperative languages are good for instructing computers how to do work using specific sequences of instructions. The data binding example at hand hints at the power of a programming
 style called declarative that aims to move you from demanding how the computer should work to declaring what you want done instead. You can express what you want, and Microsoft’s data-binding code figures out how to do it for you.

	

Listing 1.2. DataSource reflection logic (C#)

 public System.Collections.IEnumerable DataSource
{
 set
 {
 foreach (object current in value)
 {
 System.Reflection.PropertyInfo displayMetadata =
 current.GetType().GetProperty(DisplayMember);
 string displayString =
 displayMetadata.GetValue(current, null).ToString();
 // ...
 System.Reflection.PropertyInfo valueMetadata =
 current.GetType().GetProperty(ValueMember);
 object valueObject =
 valueMetadata.GetValue(current, null);
 // ...
 }
 }
}

 Keep in mind that Microsoft’s real data binding code is quite a bit more optimized than this. As each element in the DataSource collection is iterated over, its type is obtained using the GetType() method, which is inherited from System.Object.

	

Note

 If you have any doubts about how fundamental reflection is in the .NET ecosystem, think for a moment about the significance
 that the GetType() method is included in System.Object. The base class for all .NET types is quite sparsely populated yet the GetType() method, which is critically important for metadata discovery and metaprogramming, was deemed important enough to be exposed
 from every single .NET object.

	

The System.Type object returned from GetType() has a method called GetProperty() that returns a PropertyInfo object. In turn, PropertyInfo has a method defined within it called GetValue() that’s used to obtain the runtime value of a property on an object that implements the metadata described by the PropertyInfo.

 In the System.Reflection namespace, you may be interested in several of these Info classes for expressing the various types of metadata, such as FieldInfo, MethodInfo, ConstructorInfo, PropertyInfo, and so on. As seen in listing 1.2, these classes are categorical in nature. Once you have an Info class in hand, you must supply an instance of the type you’re interested in to do anything useful. In listing 1.2, the current Product reference in the loop is passed to the GetValue() method to fetch the instance values for each targeted property. Now that you know the Info classes in reflection are categorical, you may be thinking about reusing them to optimize the data binding code. Now that’s
 thinking like a metaprogrammer! The following listing shows an optimized version of the code.

 Listing 1.3. Optimized DataSource binding logic (C#)

 public IEnumerable DataSource {
 set {
 IEnumerator iterator = value.GetEnumerator();
 object currentItem;
 do {
 if (!iterator.MoveNext())
 return;
 currentItem = iterator.Current;
 } while (currentItem == null);
 PropertyInfo displayMetadata =
 currentItem.GetType().GetProperty(DisplayMember);
 PropertyInfo valueMetadata =
 currentItem.GetType().GetProperty(ValueMember);
 do {
 currentItem = iterator.Current;
 string displayString =
 displayMetadata.GetValue(currentItem, null).ToString();
 // ...
 object valueObject =
 valueMetadata.GetValue(currentItem, null);
 // ...
 } while (iterator.MoveNext());
 }
}

 The first portion of the optimized DataSource data binding code shown in listing 1.3 iterates until it finds a non-null current item. This is necessary because you can’t assume that the collection supplied
 as the DataSource has all non-null elements. The first elements could be empty. Once an element is located, some of its type metadata is cached
 for later use. Then the iteration over the elements uses the cached Property-Info objects to fetch the values from each element. As you can imagine, this is a more efficient approach because you don’t have to perform the costly metadata resolution for every single object in the collection.
 Using caching and other optimizations to improve runtime performance is a common metaprogramming practice.

	

 The magic string problem
 One of the drawbacks of any metaprogramming approach that uses literal strings to drive application behavior at runtime is
 the fact that compile-time verification by compilers can’t be performed. What would happen if you misspelled the DisplayMember value as "ProductNane"? You would discover that error during testing quickly. But what if you allowed the user to specify that string through an
 application setting, or worse, via a query parameter? Malicious users could begin probing for so-called magic strings that could be used to exploit your code by injecting new behaviors. An entire class of related exploits known as SQL injection
 attacks still plagues poorly designed websites, despite the fact that fixing the problem takes only a few minutes.

	

For brevity, Microsoft’s DataSource binding implementation isn’t shown here. It includes many interesting optimizations you can learn from. When you’re ready,
 use the skills you pick up in chapter 2 to introspect into Microsoft’s real data-binding code. You’ll learn a lot from that exercise.

 Next, we turn our attention to the idea of code generation, which is how most developers define metaprogramming.

 1.2.3. Metaprogramming via code generation

 So far we’ve looked at scripting and reflection as tools for metaprogramming. Now let’s focus on generating new code at runtime.
 To ease into the subject, we focus on two of the simpler approaches to code generation using the Microsoft .NET Framework:

	Generating source code with the CodeDOM

 	Generating IL with expression trees

To be as illustrative as possible, the approaches are quite different, but the outcomes only vary by the fact that one approach
 produces source code text, and the other emits new functions that are immediately executable.

Creating source code at runtime with the CodeDOM

 Document-oriented programming models are common in software design because the document is such a powerfully simple metaphor
 for organizing information. You may have used the HTML DOM and the JavaScript DOM to do web development, for example. Microsoft
 has included something known as the CodeDOM in the .NET Framework. As its name implies, the CodeDOM allows you to take a document-oriented
 approach to code generation.

 The CodeDOM comes from the early days of .NET and reflects some of the most primitive thinking about creating a standardized
 code-generation system for Microsoft’s platform. The term primitive isn’t pejorative in this case because the CodeDOM, despite the fact that Microsoft hasn’t focused its attention there in recent years, is still an elegant code-generation system
 that many metaprogrammers still enjoy using. The CodeDOM uses a so-called code graph-based approach to creating code on the fly.

 For all of the CodeDOM snippets shown in this section, the following namespace imports are required:

 using System;
using System.IO;
using System.Text;
using System.CodeDom;
using System.Diagnostics;
using System.CodeDom.Compiler;

 To understand how the CodeDOM functions as a source code generator, let’s begin by exploring which .NET programming languages
 the CodeDOM supports. The CodeDomProvider class is one of the central classes in the System.CodeDom.Compiler namespace and it includes a handy, static method called GetAllCompilerInfo(), which returns an array of CompilerInfo objects. Each CompilerInfo object has a method called GetLanguages() you can use to obtain the list of tokens that can be used to instantiate the language provider, like this:

OEBPS/01fig04.jpg

OEBPS/01fig02.jpg

OEBPS/01fig03.jpg

OEBPS/0vifig02.jpg

OEBPS/01fig01.jpg

OEBPS/logo.jpg

OEBPS/0vifig01.jpg

OEBPS/cover.jpg

