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  Memory hierarchy with sizes and access times for a hypothetical but realistic modern desktop


  
    
      
        	
          Type

        

        	
          Size

        

        	
          Access time

        
      


      
        	
          CPU

        
      


      
        	
          L1 cache

        

        	
          256 KB

        

        	
          2 ns

        
      


      
        	
          L2 cache

        

        	
          1 MB

        

        	
          5 ns

        
      


      
        	
          L3 cache

        

        	
          6 MB

        

        	
          30 ns

        
      


      
        	
          RAM

        
      


      
        	
          DIMM

        

        	
          8 GB

        

        	
          100 ns

        
      


      
        	
          Secondary storage

        
      


      
        	
          SSD

        

        	
          256 GB

        

        	
          50 µs

        
      


      
        	
          HDD

        

        	
          2 TB

        

        	
          5 ms

        
      


      
        	
          Tertiary storage

        
      


      
        	
          NAS - Network Access Server

        

        	
          100 TB

        

        	
          Network dependent

        
      


      
        	
          Cloud proprietary

        

        	
          1 PB

        

        	
          Provider dependent
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preface


  A few years ago, a Python-based pipeline that my team was working on suddenly ground to a halt. A process just kept using CPU and was not finalizing. This function was critical to the company and we needed to solve the problem sooner rather than later. We looked at the algorithm and it seemed OK—in fact, it was quite a simple implementation. After many hours with several engineers looking at the problem, we found that it all boiled down to searching on a list—a very big list. The problem was trivially solved after converting the list into a set. We ended up with a much smaller data structure with search times in milliseconds, not hours.


  I had several epiphanies at that time:


  
    	
      It was a trivial problem, but our development process was not concerned with performance issues. For example, if we had routinely used a profiler, we would have discovered the performance bug in minutes, not hours.

    


    	
      This was a win-win situation: we ended up consuming less time and less memory. Yes, in many cases, there are tradeoffs to be made, but in others, there are some really effective results with no downsides.

    


    	
      From a larger perspective, this situation was also a win-win. First, faster results are great for the company’s bottom line. Second, a good algorithm uses less CPU time, which means less electricity, and the use of less electricity (i.e., resources) is better for the planet.

    


    	
      While our single case doesn’t do much to save energy, it dawned on me that many programmers are designing similar solutions.

    

  


  I decided to write this book so other programmers could benefit from my epiphanies. My objective is to help seasoned Python programmers to design and implement solutions that are more efficient, along with with an understanding of the potential tradeoffs. I wanted to take a holistic approach to the subject by discussing pure Python and important Python libraries, taking an algorithmic perspective and considering modern hardware architectures and their implications, and discussing CPU and storage performance. I hope this book helps you to be more confident in approaching performance problems while developing in the Python ecosystem.
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about this book


  The purpose of this book is to help you write more efficient applications in the Python ecosystem. By more efficient, I mean that your code will use fewer CPU cycles, less storage space, and less network communication.


  The book takes a holistic approach to the problem of performance. We not only discuss code optimization techniques in pure Python, but we also consider the efficient use of widely used data libraries, like NumPy and pandas. Because Python is not sufficiently performant in some cases, we also consider Cython when we need more speed. In line with this holistic approach, we also discuss the impact of hardware on code design: we analyze the impact of modern computer architectures on algorithm performance. We also examine the effect of network architectures on efficiency, and we explore the usage of GPU computing for fast data analysis.


  
Who should read this book?


  This book is intended for an intermediate to advanced audience. If you skim the table of contents, you should recognize most of the technologies, and you probably have used quite a few of them. Except for the sections on IO libraries and GPU computing, little introductory material is provided: you need to already know the basics. If you are currently writing code to be performant and facing real challenges in dealing with so much data efficiently, then this book is for you.


  To gain the most benefit from this book, you should have at least a couple of years of Python experience and know Python control structures and what lists, sets, and dictionaries are. You should have experience with some of the Python standard libraries like os, sys, pickle, and multiprocessing. To take the best advantage of the techniques I present here, you should also have some level of exposure to standard data analysis libraries, like NumPy—with at least minimal exposure to arrays—and pandas—with some experience with data frames.


  It would be helpful if you are aware of, even if you have no direct exposure to, ways to accelerate Python code through either foreign language interfaces to C or Rust or know of alternative approaches, like Cython or Numba. Experience dealing with IO in Python will also help you. Given that IO libraries are less explored in the literature, we will start from the very beginning with formats like Apache Parquet and libraries like Zarr.


  You should know the basic shell commands of Linux terminals (or MacOS terminals). If you are on Windows, please have either a Unix-based shell installed or know your way around the command line or PowerShell. And, of course, you need Python software installed on your computer.


  In some cases, I will provide tips for the cloud, but cloud access or knowledge is not a requirement for reading this book. If you are interested in cloud approaches, then you should know how to do basic operations like creating instances and accessing the storage of your cloud provider.


  While you do not have to be academically trained in the field, a basic notion of complexity costs will be helpful—for example, the intuitive notion that algorithms that scale linearly with data are better than algorithms that scale exponentially. If you plan on using GPU optimizations, you are not expected to know anything at this stage.


  
How this book is organized: A road map


  The chapters in this book are mostly independent, and you can jump to whichever chapter is important to you. That being said, the book is divided into four parts.


  Part 1, Foundational Approaches (chapters 1–4), covers introductory material.


  
    	
      Chapter 1 introduces the problem and explains why we must pay attention to efficiency in computing and storage. It also introduces the book’s approach and offers suggestions for navigating it for your needs.

    


    	
      Chapter 2 covers the optimization of native Python. We also discuss the optimization of Python data structures, code profiling, memory allocation, and lazy programming techniques.

    


    	
      Chapter 3 discusses concurrency and parallelism in Python and how to make the best use of multiprocessing and multithreading (including the limitations of parallel processing when using threads). This chapter also covers asynchronous processing as an efficient way to deal with multiple concurrent requests with low workloads, typical of web services.

    


    	
      Chapter 4 introduces NumPy, a library that allows you to process multidimensional arrays efficiently. NumPy is at the core of all modern data processing techniques, and as such, it is treated as a fundamental library. This chapter shares specific NumPy techniques to develop more efficient code, such as views, broadcasting, and array programming.

    

  


  Part 2, Hardware (chapters 5 and 6), is mostly concerned with extracting the maximum efficiency of common hardware and networks.


  
    	
      Chapter 5 covers Cython, a superset of Python that can generate very efficient code. Python is a high-level interpreted language and, as such, is not expected to be optimized for the hardware. There are several languages, such as C or Rust, that are designed to be as efficient as possible at the hardware level. Cython belongs to that domain of languages: while it is very close to Python, it compiles to C code. Generating the most efficient Cython code requires being mindful of how the code maps to an efficient implementation. In this chapter, we learn how to create efficient Cython code.

    


    	
      Chapter 6 discusses the effect of modern hardware architectures on the design of efficient Python code. Given the way modern computers are designed, some counterintuitive programming approaches may be more efficient than expected. For example, in some cases, dealing with compressed data may be faster than dealing with uncompressed data, even if we need to pay the price of uncompressing the algorithm. This chapter also covers the effect of CPU, memory, storage, and network on Python algorithm design. We discuss NumExpr, a library that can make NumPy code more efficient by using the properties of modern hardware architecture.

    

  


  Part 3, Applications and Libraries for Modern Data Processing (chapters 7 and 8), looks at the typical applications and libraries used in modern data processing.


  
    	
      Chapter 7 concentrates on using pandas, the data frame library used in Python, as efficiently as possible. We’ll look at pandas-related techniques to optimize code. Unlike most chapters in the book, this one builds from an earlier chapter. pandas works on top of NumPy, so we will draw from what we learn in chapter 4 and discover NumPy-related techniques to optimize pandas. We also look at how to optimize pandas with NumExpr and Cython. Finally, I introduce Arrow, a library that, among other functionalities, can be used to increase the performance of processing pandas data frames.

    


    	
      Chapter 8 examines the optimization of data persistence. We discuss Parquet, a library to process columnar data efficiently, and Zarr, which can process very large on-disk arrays. We also start a discussion about how to deal with datasets that are larger than memory.

    

  


  Part 4, Advanced Topics (chapters 9 and 10), deals with two final, and very different, approaches: working with GPUs and using the Dask library.


  
    	
      Chapter 9 looks at the uses of graphical processing units (GPUs) to process large datasets. We will see that the GPU computing model—using many simple processing units—is quite adequate to deal with modern data science problems. We use two different approaches to take advantage of GPUs. First, we will discuss existing libraries that provide similar interfaces to libraries that you know, such as CuPy as a GPU version of NumPy. Second, we will cover how to generate code to run on GPUs from Python.

    


    	
      Chapter 10 discusses Dask, a library that allows you to write parallel code that scales out to many machines—either on-premises or in the cloud—while providing familiar interfaces similar to NumPy and pandas.

    

  


  The book also includes two appendices.


  
    	
      Appendix A walks you through the installation of software necessary to use the examples in this book.

    


    	
      Appendix B discusses Numba, an alternative to Cython to generate efficient low-level code. Cython and Numba are the main avenues to generate low-level code. To solve real-world problems, I recommend Numba. Why, then, did I dedicate an entire chapter to Cython and put Numba at the back of the book? Because the main purpose of this book is to give you a solid foundation for writing efficient code in the Python ecosystem, and Cython, with its extra hurdles, allows us to dig deeper in terms of understanding what is going on.

    

  


  
About the code


  This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/fast-python. The complete code for the examples in the book is available for download from GitHub at https://github.com/tiagoantao/python-performance, and from the Manning website at www.manning.com. I will update the repository when bugs are found or when major developments to Python and existing libraries require some revisions. As such, please expect some changes in the book repository. You will find a directory for each chapter in the repository.


  Whatever code style you prefer, I have adapted the code herein to work well in a printed book. For example, I tend to be partial to long and descriptive variable names, but these do not work well with the limitations of book form. I try to use expressive names and follow standard Python conventions like PEP8, but book legibility takes precedence. The same is valid for type annotations: I would like to use them, but they get in the way of code readability. In some very rare cases, I use an algorithm to increase readability, even though it doesn’t deal with all corner cases or add much to the explanation.


  In most cases, the code in this book will work with the standard Python interpreter. In some limited scenarios, IPython will be required, especially for the expedient performance analysis. You can also use Jupyter Notebook.


  Details about the installation can be found in appendix A. If any chapter or section requires special software, that will be noted in the appropriate place.


  
liveBook discussion forum


  Purchase of Fast Python includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/fast-python/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.


  
Hardware and software


  You can use any operating system to run the code in this book. That being said, Linux is where most production code tends to be deployed, so that is the preferred system. MacOS X should also work without any adaptations. If you use Windows, I recommend that you install Windows Subsystem for Linux (WSL).


  An alternative to all operating systems is Docker. You can use the Docker images provided in the repository. Docker will provide a containerized Linux environment to run the code.


  I recommend you have at least 16 GB of memory and 150 GB of free disk space. Chapter 9, with GPU-related content, requires an NVIDIA GPU, at least based on the Pascal architecture; most GPUs released in the last five years should cover this requirement. More details about preparing your computer and software to get the most from this book can be found in appendix A.
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Part 1. Foundational Approaches


  In part 1 of this book, we will discuss foundational approaches regarding performance with Python. We will cover native Python libraries and fundamental data structures, and how Python can—without external libraries—make use of parallel processing techniques. An entire chapter on NumPy optimization is also included. While NumPy is an external library, it’s so crucial to modern data processing that it’s as foundational as pure Python approaches.


    


  
1 An urgent need for efficiency in data processing


  This chapter covers


  
    	
The challenges of dealing with the exponential growth of data


    	
Comparing traditional and recent computing architectures


    	
The role and shortcomings of Python in modern data analytics


    	
Techniques for delivering efficient Python computing solutions

  


  An enormous amount of data is being collected all the time, at intense speeds, and from a broad scope of sources. It is collected whether or not there is currently a use for it. It is collected whether or not there is a way to process, store, access, or learn from it. Before data scientists can analyze it, before designers and developers and policymakers can use it to create products, services, and programs, software engineers must find ways to store and process it. Now more than ever those engineers need efficient ways to improve performance and optimize storage.


  In this book, I share a collection of strategies for performance and storage optimization that I use in my own work. Simply throwing more machines at the problem is often neither possible nor helpful. So the solutions I introduce here rely more on understanding and exploiting what we all have at hand: coding approaches, hardware and system architectures, available software, and, of course, nuances of the Python language, libraries, and ecosystem.


  Python has emerged as the language of choice to do, or at least glue, all the heavy lifting around this data deluge, as the cliches call it. Indeed, Python’s popularity in data science and data engineering is one of the main drivers of the language’s growth, helping to push it to one of the top three most popular languages, according to a majority of developer surveys. Python has its own unique set of advantages and limitations for dealing with big data, and its lack of speed certainly presents challenges. On the plus side, as you’ll see, there are many different angles, approaches, and workarounds to making Python work more efficiently with large amounts of data.


  Before we get to the solutions, we need to fully comprehend the problem(s), and that is what we’ll do in much of this first chapter. We will spend a few moments looking more closely at the computing challenges presented by the deluge of data to orient ourselves to what exactly we are dealing with. Next, we’ll examine the role of hardware, network, and cloud architectures to see why the old solutions, such as increasing CPU speed, are no longer adequate. Then we’ll turn to the particular challenges that Python faces when dealing with big data, including Python’s threading and CPython’s Global Interpreter Lock (GIL). Once we’ve fully understood the need for new approaches to making Python perform better, I’ll present an overview of the solutions that you’ll learn in this book.


  
1.1 How bad is the data deluge?


  You may be aware of two computing laws, Moore’s and Edholm’s, that together offer a dramatic picture of the exponential growth of data along with the lagging ability of computing systems to deal with that data. Edholm’s Law states that data rates in telecommunications double every 18 months, while Moore’s law predicts that the number of transistors that can fit on a microchip doubles every two years. We can take Edholm’s data transfer rate as a proxy for the amount of data collected and Moore’s transistor density as an indicator of speed and capacity in computing hardware. When we put them together we find a six-month lag between how fast and how much data we collect, and our ability to process and store it. Because exponential growth can be tricky to understand in words, I’ve plotted the two laws against each other in one graph, shown in figure 1.1


  
    [image: ]


    Figure 1.1 The ratio between Moore’s law and Edholm’s law suggests that hardware will always lag behind the amount of data being generated. Moreover, the gap will increase over time.

  


  The situation described by this graph can be seen as a fight between what we need to analyze (Edholm’s law) versus the power that we have to do that analysis (Moore’s law). The graph actually paints a rosier picture than what we have in reality. We will see why in chapter 6 when we discuss Moore’s law in the context of modern CPU architectures. To focus here on data growth, let’s look at one example, internet traffic, which is an indirect measure of data available. As you can see in figure 1.2, the growth of internet traffic over the years tracks Edholm’s law quite well.
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    Figure 1.2 The growth of global internet traffic over the years, measured in petabytes per month. (Source: https://en.wikipedia.org/wiki/Internet_traffic.)

  


  In addition, 90% of the data humankind has produced happened in the last two years (see “Big Data and What It Means,” http://mng.bz/v1ya). Whether the quality of this new data is proportional to its size is another matter altogether. The point is that data produced will need to be processed and that processing will require resources.


  It’s not just the amount of available data that presents software engineers with obstacles. The way all this new data is represented is also changing in nature. Some project that by 2025, around 80% of data could be unstructured, (“Tapping the power of unstructured data,” http://mng.bz/BlP0). We will get into the details later in the book, but simply put, unstructured data makes data processing more demanding from a computational perspective.


  How do we deal with all this growth in data? It turns out that we mostly don’t. More than 99% of data produced is never analyzed, according to The Guardian (http://mng.bz/Q8M4). Part of what holds us back from making use of so much of our data is that we lack efficient procedures to analyze it.


  The growth of data and the concomitant need for more processing has developed into one of the most pernicious mantras about computing: “If you have more data, just throw more servers at it.” For many reasons, that is not often a viable or appropriate solution. Instead, when we need to increase the performance of an existing system, we can look at the system architecture and implementation and find places where we can optimize for performance. I have lost count of how many times I have been able to get ten-fold increases in performance just by being mindful of efficiency problems when reviewing existing code.


  What is crucial to understand is that the relationship between the amount of increased data to analyze, and the complexity of the infrastructure needed to analyze it, is hardly linear. Solving these problems requires more time and ingenuity on the developer’s part than in machines. This is true not only with cloud environments but also with in-house clusters and even with single-machine implementations. A few use cases will help to make this clear. For example:


  
    	
      Your solution requires only a single computer, but suddenly you need more machines. Adding machines means you will have to manage the number of machines, distribute the workload across them, and make sure the data is partitioned correctly. You might also need a file system server to add to your list of machines. The cost of maintaining a server farm, or just a cloud, is qualitatively much more than maintaining a single computer.

    


    	
      Your solution works well in-memory but then the amount of data increases and no longer fits your memory. To handle the new amount of data stored in disk will normally entail a major rewrite of your code. And, of course, the code itself will grow in complexity. For instance, if the main database is now on disk, you may need to create a cache policy. Or you may need to do concurrent reads from multiple processes, or, even worse, concurrent writes.

    


    	
      You use a SQL database and suddenly you reach the maximum throughput capacity of the server. If it’s only a read capacity problem, then you might survive by just creating a few read replicas. But if it is a write problem, what do you do? Maybe you set up sharding.1 Or do you decide to completely change your database technology in favor of some supposedly better performant NoSQL variant?

    


    	
      If you are dependent on a system in the cloud based on vendor proprietary technologies, you might discover that the ability to scale indefinitely is more marketing talk than technological reality. In many cases, if you hit performance limits, the only realistic solution is to change the technology that you are using, a change that requires enormous time, money, and human energy.

    

  


  I hope these examples make the case that growth is not just a question of “adding more machines,” but instead entails substantial work on several fronts to deal with the increased complexity. Even something as “simple” as a parallel solution implemented on a single computer can bring with it all the problems of parallel processing (races, deadlocks, and more). These more efficient solutions can have a dramatic effect on complexity, reliability, and cost.


  Finally, we could make the case that even if we could scale our infrastructure linearly (we can’t, really), there would be ethical and ecological problems to consider: forecasts put energy consumption related to a “tsunami of data” at 20% of global electricity production (“Tsunami of Data,” http://mng.bz/X5GE), and there is also a problem of landfill disposal as we update hardware.


  The good news is that becoming computationally more efficient when handling big data helps us to reduce our computing bill, the complexity of the architecture for our solution, our storage needs, our time to market, and our energy footprint. And sometimes, more efficient solutions might even come with minimal implementation costs. For example, the judicious use of data structures might reduce computing time at no substantial development cost.


  On the other hand, many of the solutions we’ll look at will have a development cost and will add an amount of complexity themselves. When you look at your data and forecasts for its growth, you will have to make a judgment call on where to optimize, as there are no clear-cut recipes or one-size-fits-all solutions. That being said, there might be just one rule that can be applied across the board: if the solution is good for Netflix, Google, Amazon, Apple, or Facebook, then probably it is not good for you, unless, of course, you work for one of these companies.


  The amount of data that most of us will see will be substantially lower than the biggest technological companies use. It will still be enormous, and it will still be hard, but it will probably be a few orders of magnitude lower. The somewhat prevailing wisdom that what works for those companies is also a good fit for the rest of us is, in my opinion, just wrong. Generally, less complex solutions will be more appropriate for most of us.


  As you can see, this new world with extreme growth, both in quantity and complexity, of both data and algorithms requires more sophisticated techniques to perform computation and storage in an efficient and cost-conscious way. Don’t get me wrong: sometimes you will need to scale up your infrastructure. But when you architect and implement your solution, you can still use the same mindset of focusing on efficiency. It’s just that the techniques will be different. 


  
1.2 Modern computing architectures and high-performance computing


  Creating more efficient solutions does not happen in an abstract void. First, we have our domain problem to consider—that is, what real problem you are trying to solve. Equally important is the computing architecture where our solution will be run. Computing architectures play a major role in determining the best optimization techniques, so we have to take them into consideration when we devise our software solutions. In this section, we will take a look at the main architectural problems that affect the design and implementation of our solutions.


  
1.2.1 Changes inside the computer


  Radical changes are happening inside the computer. First, we have CPUs that are increasing processing power mostly in the number of parallel units, not raw speed, as they did in the past. Computers can also be equipped with graphics processing units (GPUs), which were originally developed for graphics processing only but now can be used for general computing as well. Indeed, many efficient implementations of AI algorithms are done for GPUs. Unfortunately, at least from our perspective, GPUs have a completely different architecture than CPUs: they are composed of thousands of computing units that are expected to do the same “simple” computation across all units. The memory model is also completely different. These differences mean that programming GPUs require a radically different approach from programming CPUs.


  To understand how we can use GPUs for data processing, we need to understand their original purpose and architectural implications. GPUs, as the name indicates, were developed to help with graphics processing. Some of the most computationally demanding applications are actually games. Games, and graphic applications in general, are constantly updating millions of pixels on the screen. The hardware architecture devised to solve this problem has many small processing cores. Its quite easy for a GPU to have thousands of cores, while a CPU typically has less than 10. GPU cores are substantially simpler and mostly run the same code on each core. They are thus very good for running a massive number of similar tasks, like updating pixels.


  Given the sheer amount of processing power in GPUs, there was an attempt to try to use that power for other tasks with the appearance of general-purpose computing on graphics processing units (GPGPU). Because of the way GPU architectures are organized, they are mostly applicable to tasks that are massively parallel in nature. It turns out that many modern AI algorithms, like ones based on neural networks, tend to be massively parallel. So there was a natural fit between the two.


  Unfortunately, the difference between CPUs and GPUs is not only in the number of cores and their complexity. GPU memory, especially on the most computationally powerful, is separated from the main memory. Thus, there is also the problem of transferring data between the main memory and GPU memory. So we have two massive problems to consider when targeting GPUs.


  For reasons that will become clear in chapter 9, programming GPUs with Python is substantially more difficult and less practical than targeting CPUs. Nonetheless, there is still more than enough scope to make use of GPUs from Python.


  While less fashionable than the advances in GPUs, monumental changes have also come to how CPUs can be programmed. And, unlike GPUs, we can easily use most of these CPU changes in Python. CPU performance increases are being delivered differently by manufacturers than in the past. Their solution, driven by the laws of physics, is to build in more parallel processing, not more speed. Moore’s law is sometimes stated as the doubling of speed every 24 months, but that is actually not the correct definition: it relates instead to the transistor density doubling every two years. The linear relationship between increased speed and transistor density broke more than a decade ago, and speed has mostly plateaued since then. Given that data has continued to grow along with algorithm complexity, we are in a pernicious situation. The first line of solutions coming from CPU manufacturers is allowing more parallelism: more CPUs per computer, more cores per CPU, and simultaneous multithreading. Processors are not really accelerating sequential computations anymore but allowing for more concurrent execution. This concurrent execution requires a paradigm shift in how we program computers. Before, the speed of a program would “magically” increase when you changed CPUs. Now, increasing speed depends on the programmer being aware of the shift in the underlying architecture to the parallel programming paradigm.


  There are many changes in the way we program modern CPUs, and as you will see in chapter 6, some of them are so counterintuitive they are worth keeping an eye on from the onset. For example, while CPU speeds have leveled in recent years, CPUs are still orders of magnitude faster than RAM. If CPU caches did not exist, then CPUs would be mostly idle, as they would spend most of the time waiting for RAM. This means that sometimes it is faster to work with compressed data, including the cost of decompression, than with raw data. Why? If you can put a compressed block on the CPU cache, then those cycles that otherwise would be idle waiting for RAM access could be used to decompress the data with CPU cycles to spare that could be used for computation! A similar argument could work for compressed file systems: they sometimes can be faster than raw file systems. There are direct applications of this in the Python world; for example, by changing a simple Boolean flag regarding the choice of the internal representation of NumPy arrays, you take advantage of cache locality problems and speed up your NumPy processing considerably. We have some access times and sizes for different kinds of memory in table 1.1, including CPU cache, RAM, local disk, and remote storage. The key point here is not the precise numbers but the orders of magnitude in difference in both size and access time.


  Table 1.1 Memory hierarchy with sizes and access times for a hypothetical, but realistic modern desktop


  
    
      
      
      
    

    
      
        	
          Type

        

        	
          Size

        

        	
          Access time

        
      


      
        	
          CPU

        
      


      
        	
          L1 cache

        

        	
          256 KB

        

        	
          2 ns

        
      


      
        	
          L2 cache

        

        	
          1 MB

        

        	
          5 ns

        
      


      
        	
          L3 cache

        

        	
          6 MB

        

        	
          30 ns

        
      


      
        	
          RAM

        
      


      
        	
          DIMM

        

        	
          8 GB

        

        	
          100 ns

        
      


      
        	
          Secondary storage

        
      


      
        	
          SSD

        

        	
          256 GB

        

        	
          50 µs

        
      


      
        	
          HDD

        

        	
          2 TB

        

        	
          5 ms

        
      


      
        	
          Tertiary storage

        
      


      
        	
          NAS - Network Access Server

        

        	
          100 TB

        

        	
          Network dependent

        
      


      
        	
          Cloud proprietary

        

        	
          1 PB

        

        	
          Provider dependent

        
      

    
  


  Table 1.1 includes tertiary storage, which happens outside the computer. There have also been changes there, which we will address in the next section. 


  
1.2.2 Changes in the network


  In high-performance computing settings, we use the network as both a way to add more storage and, especially, to increase computing power. While we would like to solve our problems using a single computer, sometimes relying on a compute cluster is inevitable. Optimizing for the architectures with multiple computers—be it in the cloud or on-premises—will be a part of our journey to high performance.


  Using many computers and external storage brings a whole new class of problems related to distributed computing: network topologies, sharing data across machines, and managing processes running across the network. There are many examples. For instance, what is the price of using REST APIs on services that require high performance and low latency? How can we deal with the penalties of having remote filesystems; can we mitigate those?


  We will be trying to optimize our usage of the network stack and for that, we will have to be aware of it at all levels shown in figure 1.3. Outside the network, we have our code and Python libraries, which make choices about the layers below. At the top of the network stack, a typical choice for data transport is HTTPS with a payload based on JSON.


  While this is a perfectly reasonable choice for many applications, there are more performant alternatives for cases where network speed and lag matter. For example, a binary payload might be more efficient than JSON. Also, HTTP might be replaced by a direct TCP socket. But there are more radical alternatives like replacing the TCP transport layer: most internet application protocols use TCP, although there are a few exceptions like DNS and DHCP, which are both UDP based. The TCP protocol is highly reliable, but there is a performance penalty to be paid for that reliability. There will be times when the smaller overhead of UDP will be a more efficient alternative and the extra reliability is not needed.
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    Figure 1.3 API calls via the network stack. Understanding the alternatives available for network communication can dramatically increase the speed of internet-based applications.

  


  Below transport protocols, we have the internet protocol (IP) and the physical infrastructure. The physical infrastructure can be important when we design our solutions. For example, if we have a very reliable local network, then UDP, which can lose data, will be more of an alternative than it would be in an unreliable network. 


  
1.2.3 The cloud


  In the past, most data processing implementations were made to function on a single computer or on an on-premises cluster maintained by the same organization that runs the workload. Currently, cloud-based infrastructure where all servers are “virtual” and maintained by an external entity, is becoming increasingly common. Sometimes, as with so-called serverless computing, we do not even deal with servers directly.


  The cloud is not just about adding more computers or network storage. It’s also about a set of proprietary extensions on how to deal with storage and compute resources, and those extensions have consequences in terms of performance. Furthermore, virtual computers can throw a wrench in some CPU optimizations. For example, in a bare metal machine, you can devise a solution that is considerate of cache locality problems, but in a virtual machine, you have no way of knowing whether your cache is being preempted by another virtual machine being executed concurrently. How do we keep our algorithms efficient in such an environment? Also, the cost model of cloud computing is completely different—time is literally money—and, as such, efficient solutions become even more important.


  Many of the compute and storage solutions in the cloud are also proprietary and have very specific APIs and behaviors. Using such proprietary solutions also has consequences on performance that should be considered. As such, and while most problems pertaining to traditional clusters are also applicable to the cloud, sometimes there will be specific problems that will need to be dealt with separately. Now that we have a view of the architectural possibilities and limitations that will shape our applications, let’s turn to the advantages and disadvantages of Python for high-performance computing. 


  
1.3 Working with Python’s limitations


  Python is widely used in modern data process applications. As with any language, it has its advantages and its drawbacks. There are great reasons to use Python, but here we are more concerned with dealing with Python’s limitations for high-performance data processing.


  Let’s not sugarcoat reality: Python is spectacularly ill-equipped to handle high-performance computing. If performance and parallelism were the only consideration, nobody would use Python. Python has an amazing ecology of libraries for doing data analysis, great documentation, and a wonderfully supportive community. That is why we use it, not computational performance.


  There is a saying that goes something like this “There are no slow languages, only slow language implementations.” I hope you allow me to disagree. It is not fair to ask the implementors of a dynamic, high-level language like Python (or, say, JavaScript for that matter) to compete in terms of speed with lower-level languages like C, C++, Rust, or Go.


  Features like dynamic typing and garbage collection will pay a price in terms of performance. And that is fine: there are many cases where programmer time is more valuable than compute time. But let’s not bury our heads in the sand: more declarative and dynamic languages will pay a price in computation and memory. It’s a balance.


  That being said, this is no excuse for poorly performant language implementations. In this regard, how does CPython, the flagship Python implementation that you are probably using, fare? A complete analysis would not be easy, but you can do a simple exercise: write a matrix multiplication function and time it. Then, for example, run it with another Python implementation like PyPy. Then convert your code to JavaScript (a fair comparison as the language is also dynamic; an unfair comparison would be would C) and time it again.


  Spoiler alert: CPython will not fare well. We have a language that is naturally slow and a flagship implementation that does not seem to have speed as its main consideration. Now, the good news is that most of these problems can be overcome. Many people have produced applications and libraries that will mitigate most performance problems. You can still write code in Python that will perform very well with a small memory footprint. You just have to write code while attending to Python’s warts.


  Note In most of the book, when we talk about Python, we are referring to the CPython implementation. All exceptions to this rule will be explicitly called out.


  Given Python’s limitations regarding performance, optimizing our Python code sometimes will not be enough. In those cases, we will end up rewriting that part in a lower-level language or, at the very least, annotating our code so that it gets rewritten in a lower-level language by some code conversion tool. The part of the code that we will need to rewrite is normally very small, so we are decidedly not ditching Python. When we do this last stage of optimization, probably more than 90% of the code will still be Python. This is what many core scientific libraries like NumPy, scikit-learn, and SciPy actually do: their most computationally demanding parts are usually implemented in C or Fortran.


  
1.3.1 The Global Interpreter Lock


  In discussions about Python’s performance, its GIL, or Global Interpreter Lock, inevitably comes up. What exactly is the GIL? While Python has the concept of threads, CPython has a GIL, which only allows a single thread to execute at a point in time. Even on a multicore processor, you only get a single thread executing at a single point in time.


  Other implementations of Python, like Jython and IronPython, do not have a GIL and can use all cores in modern multiprocessors. But CPython is still the reference implementation for which all the main libraries are developed. In addition, Jython and IronPython are, respectively, JVM and .NET dependent. As such, CPython, given its massive library base, ends up being the default Python implementation. We will briefly discuss other implementations in the book, most notably PyPy, but in practice, CPython is queen.


  To understand how to work around the GIL, it is useful to remember the difference between concurrency and parallelism. Concurrency, you may recall, is when a certain number of tasks can overlap in time, though they may not be running at the same time. They can, for example, interleave. Parallelism is when tasks are executed at the same time. So, in Python, concurrency is possible, but parallelism is not . . . or is it?
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