

 Learn Windows PowerShell in a Month of Lunches, Third Edition

 Don Jones and Jeffery Hicks

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Helen Stergius
Project editor: Janet Vail
Copyeditor: Sharon Wilkey
Proofreader: Alyson Brener
Technical proofreader: James Berkenbile
Typesetter: Dottie Marsico
Cover designer: Leslie Haimes

 ISBN 9781617294167

 Printed in the United States of America

 7 8 9 10 – SP – 21 20 19 18

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 Chapter 1. Before you begin

 Chapter 2. Meet PowerShell

 Chapter 3. Using the help system

 Chapter 4. Running commands

 Chapter 5. Working with providers

 Chapter 6. The pipeline: connecting commands

 Chapter 7. Adding commands

 Chapter 8. Objects: data by another name

 Chapter 9. The pipeline, deeper

 Chapter 10. Formatting—and why it’s done on the right

 Chapter 11. Filtering and comparisons

 Chapter 12. A practical interlude

 Chapter Remote control: one-to-one, and one-to-many

 Chapter 14. Using Windows Management Instrumentation and CIM

 Chapter 15. Multitasking with background jobs

 Chapter 16. Working with many objects, one at a time

 Chapter 17. Security alert!

 Chapter Variables: a place to store your stuff

 Chapter 19. Input and output

 Chapter Sessions: remote control with less work

 Chapter 21. You call this scripting?

 Chapter 22. Improving your parameterized script

 Chapter 23. Advanced remoting configuration

 Chapter Using regular expressions to parse text files

 Chapter Additional random tips, tricks, and techniques

 Chapter 26. Using someone else’s script

 Chapter 27. Never the end

 Chapter 28. PowerShell cheat sheet

 appendix: Review labs

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 Chapter 1. Before you begin

 1.1. Why you can’t afford to ignore PowerShell

 1.1.1. Life without PowerShell

 1.1.2. Life with PowerShell

 1.2. And now, it’s just “PowerShell”

 1.3. Is this book for you?

 1.4. How to use this book

 1.4.1. The main chapters

 1.4.2. Hands-on labs

 1.4.3. Code samples

 1.4.4. Supplementary materials

 1.4.5. Further exploration

 1.4.6. Above and beyond

 1.5. Setting up your lab environment

 1.6. Installing Windows PowerShell

 1.7. Contacting us

 1.8. Being immediately effective with PowerShell

 Chapter 2. Meet PowerShell

 2.1. Choose your weapon

 2.1.1. The console window

 2.1.2. The Integrated Scripting Environment

 2.2. It’s typing class all over again

 2.3. Common points of confusion

 2.4. What version is this?

 2.5. Lab

 Chapter 3. Using the help system

 3.1. The help system: how you discover commands

 3.2. Updatable help

 3.3. Asking for help

 3.4. Using help to find commands

 3.5. Interpreting the help

 3.5.1. Parameter sets and common parameters

 3.5.2. Optional and mandatory parameters

 3.5.3. Positional parameters

 3.5.4. Parameter values

 3.5.5. Finding command examples

 3.6. Accessing “about” topics

 3.7. Accessing online help

 3.8. Lab

 3.9. Lab answers

 Chapter 4. Running commands

 4.1. Not scripting, but running commands

 4.2. The anatomy of a command

 4.3. The cmdlet naming convention

 4.4. Aliases: nicknames for commands

 4.5. Taking shortcuts

 4.5.1. Truncating parameter names

 4.5.2. Using parameter name aliases

 4.5.3. Using positional parameters

 4.6. Cheating a bit: Show-Command

 4.7. Support for external commands

 4.8. Dealing with errors

 4.9. Common points of confusion

 4.9.1. Typing cmdlet names

 4.9.2. Typing parameters

 4.10. Lab

 Chapter 5. Working with providers

 5.1. What are providers?

 5.2. Understanding how the filesystem is organized

 5.3. Understanding how the filesystem is like other data stores

 5.4. Navigating the filesystem

 5.5. Using wildcards and literal paths

 5.6. Working with other providers

 5.7. Lab

 5.8. Further exploration

 5.9. Lab answers

 Chapter 6. The pipeline: connecting commands

 6.1. Connecting one command to another: less work for you

 6.2. Exporting to a CSV or an XML file

 6.2.1. Exporting to CSV

 6.2.2. Exporting to XML

 6.2.3. Comparing files

 6.3. Piping to a file or a printer

 6.4. Converting to HTML

 6.5. Using cmdlets that modify the system: killing processes and stopping services

 6.6. Common points of confusion

 6.7. Lab

 6.8. Lab answers

 Chapter 7. Adding commands

 7.1. How one shell can do everything

 7.2. About product-specific “management shells”

 7.3. Extensions: finding and adding snap-ins

 7.4. Extensions: finding and adding modules

 7.5. Command conflicts and removing extensions

 7.6. On non-Windows operating systems

 7.7. Playing with a new module

 7.8. Profile scripts: preloading extensions when the shell starts

 7.9. Getting modules from the internet

 7.10. Common points of confusion

 7.11. Lab

 7.12. Lab answers

 Chapter 8. Objects: data by another name

 8.1. What are objects?

 8.2. Understanding why PowerShell uses objects

 8.3. Discovering objects: Get-Member

 8.4. Using object attributes, or properties

 8.5. Using object actions, or methods

 8.6. Sorting objects

 8.7. Selecting the properties you want

 8.8. Objects until the end

 8.9. Common points of confusion

 8.10. Lab

 8.11. Lab answers

 Chapter 9. The pipeline, deeper

 9.1. The pipeline: enabling power with less typing

 9.2. How PowerShell passes data down the pipeline

 9.3. Plan A: pipeline input ByValue

 9.4. Plan B: pipeline input ByPropertyName

 9.5. When things don’t line up: custom properties

 9.6. Parenthetical commands

 9.7. Extracting the value from a single property

 9.8. Lab

 9.9. Further exploration

 9.10. Lab answers

 Chapter 10. Formatting—and why it’s done on the right

 10.1. Formatting: making what you see prettier

 10.2. Working with the default formatting

 10.3. Formatting tables

 10.4. Formatting lists

 10.5. Formatting wide lists

 10.6. Creating custom columns and list entries

 10.7. Going out: to a file, a printer, or the host

 10.8. Another out: GridViews

 10.9. Common points of confusion

 10.9.1. Always format right

 10.9.2. One type of object at a time, please

 10.10. Lab

 10.11. Further exploration

 10.12. Lab answers

 Chapter 11. Filtering and comparisons

 11.1. Making the shell give you just what you need

 11.2. Filtering left

 11.3. Using comparison operators

 11.4. Filtering objects out of the pipeline

 11.5. Using the iterative command-line model

 11.6. Common points of confusion

 11.6.1. Filter left, please

 11.6.2. When $_ is allowed

 11.7. Lab

 11.8. Further exploration

 11.9. Lab answers

 Chapter 12. A practical interlude

 12.1. Defining the task

 12.2. Finding the commands

 12.3. Learning to use the commands

 12.4. Tips for teaching yourself

 12.5. Lab

 12.6. Lab answer

 Chapter Remote control: one-to-one, and one-to-many

 13.1. The idea behind remote PowerShell

 13.2. WinRM overview

 13.3. Using Enter-PSSession and Exit-PSSession for one-to-one remoting

 13.4. Using Invoke-Command for one-to-many remoting

 13.5. Differences between remote and local commands

 13.5.1. Invoke-Command vs. -computerName

 13.5.2. Local vs. remote processing

 13.5.3. Deserialized objects

 13.6. But wait, there’s more

 13.7. Remote options

 13.8. Common points of confusion

 13.9. Lab

 13.10. Further exploration

 13.11. Lab answers

 Chapter 14. Using Windows Management Instrumentation and CIM

 14.1. WMI essentials

 14.2. The bad news about WMI

 14.3. Exploring WMI

 14.4. Choose your weapon: WMI or CIM

 14.5. Using Get-WmiObject

 14.6. Using Get-CimInstance

 14.7. WMI documentation

 14.8. Common points of confusion

 14.9. Lab

 14.10. Further exploration

 14.11. Lab answers

 Chapter 15. Multitasking with background jobs

 15.1. Making PowerShell do multiple things at the same time

 15.2. Synchronous vs. asynchronous

 15.3. Creating a local job

 15.4. WMI, as a job

 15.5. Remoting, as a job

 15.6. Getting job results

 15.7. Working with child jobs

 15.8. Commands for managing jobs

 15.9. Scheduled jobs

 15.10. Common points of confusion

 15.11. Lab

 15.12. Lab answers

 Chapter 16. Working with many objects, one at a time

 16.1. Automation for mass management

 16.2. The preferred way: “batch” cmdlets

 16.3. The CIM/WMI way: invoking methods

 16.4. The backup plan: enumerating objects

 16.5. Common points of confusion

 16.5.1. Which way is the right way?

 16.5.2. WMI methods vs. cmdlets

 16.5.3. Method documentation

 16.5.4. ForEach-Object confusion

 16.6. Lab

 16.7. Lab answers

 Chapter 17. Security alert!

 17.1. Keeping the shell secure

 17.2. Windows PowerShell security goals

 17.3. Execution policy and code signing

 17.3.1. Execution policy settings

 17.3.2. Digital code signing

 17.4. Other security measures

 17.5. Other security holes?

 17.6. Security recommendations

 17.7. Lab

 Chapter Variables: a place to store your stuff

 18.1. Introduction to variables

 18.2. Storing values in variables

 18.3. Using variables: fun tricks with quotes

 18.4. Storing many objects in a variable

 18.4.1. Working with single objects in a variable

 18.4.2. Working with multiple objects in a variable

 18.4.3. Other ways to work with multiple objects

 18.4.4. Unrolling properties and methods in PowerShell v3

 18.5. More tricks with double quotes

 18.6. Declaring a variable’s type

 18.7. Commands for working with variables

 18.8. Variable best practices

 18.9. Common points of confusion

 18.10. Lab

 18.11. Further exploration

 18.12. Lab answers

 Chapter 19. Input and output

 19.1. Prompting for, and displaying, information

 19.2. Read-Host

 19.3. Write-Host

 19.4. Write-Output

 19.5. Other ways to write

 19.6. Lab

 19.7. Further exploration

 19.8. Lab answers

 Chapter Sessions: remote control with less work

 20.1. Making PowerShell remoting a bit easier

 20.2. Creating and using reusable sessions

 20.3. Using sessions with Enter-PSSession

 20.4. Using sessions with Invoke-Command

 20.5. Implicit remoting: importing a session

 20.6. Using disconnected sessions

 20.7. Lab

 20.8. Further exploration

 20.9. Lab answers

 Chapter 21. You call this scripting?

 21.1. Not programming, more like batch files

 21.2. Making commands repeatable

 21.3. Parameterizing commands

 21.4. Creating a parameterized script

 21.5. Documenting your script

 21.6. One script, one pipeline

 21.7. A quick look at scope

 21.8. Lab

 21.9. Lab answer

 Chapter 22. Improving your parameterized script

 22.1. Starting point

 22.2. Getting PowerShell to do the hard work

 22.3. Making parameters mandatory

 22.4. Adding parameter aliases

 22.5. Validating parameter input

 22.6. Adding the warm and fuzzies with verbose output

 22.7. Lab

 22.8. Lab answer

 Chapter 23. Advanced remoting configuration

 23.1. Using other endpoints

 23.2. Creating custom endpoints

 23.2.1. Creating the session configuration

 23.2.2. Registering the session

 23.3. Enabling multihop remoting

 23.4. Digging deeper into remoting authentication

 23.4.1. Defaults for mutual authentication

 23.4.2. Mutual authentication via SSL

 23.4.3. Mutual authentication via TrustedHosts

 23.5. Lab

 23.6. Lab answer

 Chapter Using regular expressions to parse text files

 24.1. The purpose of regular expressions

 24.2. A regex syntax primer

 24.3. Using regex with -Match

 24.4. Using regex with Select-String

 24.5. Lab

 24.6. Further exploration

 24.7. Lab answers

 Chapter Additional random tips, tricks, and techniques

 25.1. Profiles, prompts, and colors: customizing the shell

 25.1.1. PowerShell profiles

 25.1.2. Customizing the prompt

 25.1.3. Tweaking colors

 25.2. Operators: -as, -is, -replace, -join, -split, -in, -contains

 25.2.1. -as and -is

 25.2.2. -replace

 25.2.3. -join and -split

 25.2.4. -contains and -in

 25.3. String manipulation

 25.4. Date manipulation

 25.5. Dealing with WMI dates

 25.6. Setting default parameter values

 25.7. Playing with script blocks

 25.8. More tips, tricks, and techniques

 Chapter 26. Using someone else’s script

 26.1. The script

 26.2. It’s a line-by-line examination

 26.3. Lab

 26.4. Lab answer

 Chapter 27. Never the end

 27.1. Ideas for further exploration

 27.2. “Now that I’ve read the book, where do I start?”

 27.3. Other resources you’ll grow to love

 Chapter 28. PowerShell cheat sheet

 28.1. Punctuation

 28.2. Help file

 28.3. Operators

 28.4. Custom property and column syntax

 28.5. Pipeline parameter input

 28.6. When to use $_

 appendix: Review labs

 Review lab 1: chapters 1–6

 Hints:

 Task 1

 Task 2

 Task 3

 Task 4

 Task 5

 Task 6

 Task 7

 Task 8

 Task 9

 Task 10

 Task 11

 Task 12

 Task 13

 Task 14

 Task 15

 Task 16

 Task 17

 Task 18

 Review lab 2: chapters 1–14

 Hints:

 Task 1

 Task 2

 Task 3

 Task 4

 Task 5

 Task 6

 Task 7

 Task 8

 Task 9

 Task 10

 Task 11

 Task 12

 Task 13

 Task 14

 Task 15

 Task 16

 Task 17

 Review lab 3: chapters 1–19

 Task 1

 Task 2

 Task 3

 Task 4

 Task 5

 Answers

 Review Lab 1

 Review Lab 2

 Review Lab 3

 List of Figures

 List of Tables

 List of Listings

Preface

 We’ve been teaching and writing about Windows PowerShell for a long time. When Don began contemplating the first edition of this book, he realized that most PowerShell writers and teachers—including himself—were forcing our students to approach the shell as a kind of programming language. Most PowerShell books are into “scripting” by the third or fourth chapter, yet more and more PowerShell students were backing away from that programming-oriented approach. Those students wanted to use the shell as a shell, at least at first, and we weren’t delivering a learning experience that matched that desire.

 So he decided to take a swing at it. A blog post on the Windows IT Pro website proposed a table of contents for this book, and ample feedback from the blog’s readers fine-tuned it into the book you’re about to read. He wanted to keep each chapter short, focused, and easy to cover in a short period of time—because we know administrators don’t have a lot of free time and often have to learn on the fly. When PowerShell v3 came out, it was obviously a good time to update the book, and Don turned to Jeffery Hicks, a long-time collaborator and fellow MVP, to help out.

 We both wanted a book that would focus on PowerShell itself, and not on the myriad technologies that PowerShell touches, like Exchange Server, SQL Server, System Center, and so on. We feel that by learning to use the shell properly, you can teach yourself to administer all of those “PowerShell-ed” server products. So this book focuses on the core of using PowerShell. Even if you’re also using a “cookbook” style of book that provides ready-to-use answers for specific administrative tasks, this book will help you understand what those examples are doing. That understanding will make it easier to modify those examples for other purposes, and eventually to construct your own commands and scripts from scratch.

 We hope this book won’t be the only PowerShell education that you pursue. We’ve also co-authored Learn PowerShell Toolmaking in a Month of Lunches, which offers the same day-at-a-time approach to learning PowerShell’s scripting and tool-creation capabilities. You can also find videos we’ve produced on YouTube and read articles we’ve authored for sites such as the Petri IT Knowledgebase and Windows IT Pro, not to mention take courses from Pluralsight.

 If you need any further help, we encourage you to log on to www.PowerShell.org. We both answer questions in several of the discussion forums there, and we’d be happy to try to get you out of whatever you’re stuck on. The site is also a great portal into the robust and active PowerShell community; you can learn about free e-books, the in-person PowerShell and DevOps Summit, and all of the regional and local user groups and PowerShell-related events that happen throughout the year. Get involved—it’s a great way to make PowerShell a more powerful part of your career.

 Enjoy—and good luck with the shell.

Acknowledgments

 Books don’t write, edit, and publish themselves. Don would like to thank everyone at Manning Publications who decided to take a chance on a different kind of book for Windows PowerShell, and who worked so hard to make the first edition of this book happen. Jeff would like to thank Don for inviting him along for the ride, and the Power-Shell community for their enthusiasm and support. Don and Jeff are both grateful to Manning for allowing them to continue the “Month of Lunches” series with this third edition.

 Thanks also to the following peer reviewers who read the manuscript during its development and provided feedback: Bennett Scharf, Dave Pawson, David Moravec, Keith Hill, and Rajesh Attaluri. In addition, Erika Bricker, Gerald Mack, Henry Phillips, Hugo Durana, Joseph Tingsanchali, Noreen Dertinger, Olivier Deveault, Stefan Hellweger, Steven Presley, and Tiklu Ganguly provided valuable comments.

 Finally, thanks also to James Berkenbile and Trent Whiteley for their technical review of the manuscript and code during production.

About this Book

 Most of what you need to know about this book is covered in chapter 1, but there are a few things that we should mention up front.

 First of all, if you plan to follow along with our examples and complete the hands-on exercises, you’ll need a virtual machine or computer running Windows 8.1 or Windows Server 2012, or later. We cover that in more detail in chapter 1. You can get by with Windows 7, but you’ll miss out on a few of the hands-on labs.

 Second, be prepared to read this book from start to finish, covering each chapter in order. Again, this is something we explain in more detail in chapter 1, but the idea is that each chapter introduces a few new things that you’ll need in subsequent chapters. You shouldn’t try to push through the whole book—stick with the one chapter per day approach. The human brain can absorb only so much information at once, and by taking on PowerShell in small chunks, you’ll learn it a lot faster and more thoroughly.

 Third, this book contains a lot of code snippets. Most of them are short, so you should be able to type them easily. In fact, we recommend that you do type them, because doing so will help reinforce an essential PowerShell skill: accurate typing! Longer code snippets are given in listings and are available for download from the book’s page on the publisher’s website at https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition.

 That said, you should be aware of a few conventions. Code always appears in a special font, just as in this example:

 Get-WmiObject –class Win32_OperatingSystem
➥ –computerName SERVER-R2

 That example also illustrates the line-continuation character used in this book. It indicates that those two lines should be typed as a single line in PowerShell. In other words, don’t hit Enter or Return after Win32_OperatingSystem—keep right on typing. PowerShell allows for long lines, but the pages of this book can hold only so much.

 Sometimes you’ll also see that code font within the text itself, such as when we write Get-Command. That just lets you know that you’re looking at a command, parameter, or other element that you would type within the shell.

 Fourth is a tricky topic that we’ll bring up again in several chapters: the backtick character (`). Here’s an example:

 Invoke-Command –scriptblock { Dir } `
-computerName SERVER-R2,localhost

 The character at the end of the first line isn’t a stray bit of ink—it’s a real character that you would type. On a U.S. keyboard, the backtick (or grave accent) is usually near the upper left, under the Esc key, on the same key as the tilde character (~). When you see the backtick in a code listing, type it exactly as is. Furthermore, when it appears at the end of a line—as in the preceding example—make sure that it’s the last character on that line. If you allow any spaces or tabs to appear after it, the backtick won’t work correctly, and neither will the code example.

 Finally, we’ll occasionally direct you to internet resources. Where those URLs are particularly long and difficult to type, we’ve replaced them with Manning-based shortened URLs that look like http://mng.bz/S085 (you’ll see that one in chapter 1).

Author Online

 The purchase of Learn Windows PowerShell in a Month of Lunches, Third Edition includes access to a private forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and other users. To access and subscribe to the forum, point your browser to https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-third-edition and click the Author Online link. This page provides information on how to get on the forum after you’re registered, the kind of help that’s available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the Authors

 DON JONES is a multiple-year recipient of Microsoft’s prestigious Most Valuable Professional (MVP) Award for his work with Windows PowerShell. For five years he wrote the Windows PowerShell column for Microsoft TechNet Magazine. He currently blogs at http://Power-Shell.org and authors the “Decision Maker” column and blog for Redmond Magazine. Don is a prolific technology author and has published more than a dozen print books since 2001. He’s now a curriculum director for IT Ops content at Pluralsight, an online video training platform. Don’s first Windows scripting language was KiXtart, going back all the way to the mid-1990s. He quickly graduated to VBScript in 1995 and was one of the first IT pros to start using early releases of a new Microsoft product code-named Monad—which later became Windows PowerShell. Don lives in Las Vegas and, when it gets too hot there, near Duck Creek Village in Utah.

 JEFFERY HICKS is an IT veteran with more than 25 years of experience, much of it spent as an IT infrastructure consultant specializing in Microsoft server technologies with an emphasis in automation and efficiency. He is a multiyear recipient of the Microsoft MVP Award in Windows PowerShell. He works today as an independent author, trainer, and consultant. He has taught and presented on PowerShell and the benefits of automation to IT pros all over the world. Jeff has written for numerous online sites and print publications, is a contributing editor at Petri IT Knowledgebase, a Pluralsight author, and a frequent speaker at technology conferences and user groups. You can keep up with Jeff at his blog, http://jdhitsolutions.com/blog, and on Twitter (@JeffHicks).

 Chapter 1. Before you begin

 We’ve been teaching Windows PowerShell since version 1 was released in 2006. Back then, most of the folks using the shell were experienced VBScript users, and they were eager to apply their VBScript skills to learning PowerShell. As a result, we and the other folks who taught the shell, wrote books and articles, and so forth, all adopted a teaching style that takes advantage of prior programming or scripting skills.

 But since late 2009, a shift has occurred. More and more administrators who don’t have prior VBScript experience have started trying to learn the shell. All of a sudden, our old teaching patterns didn’t work as well, because we had focused on scripting and programming. That’s when we realized that PowerShell isn’t a scripting language. It’s a command-line shell where you run command-line utilities. Like all good shells, it has scripting capabilities, but you don’t have to use them, and you certainly don’t have to start with them. We started changing our teaching patterns, beginning with the many conferences we speak at each year. Don also implemented these changes into his instructor-led training courseware.

 This book is the result of that process, and it’s the best that we’ve yet devised to teach PowerShell to someone who might not have a scripting background (although it certainly doesn’t hurt if you do). But before we jump into the instruction, let’s set the stage for you.

1.1. Why you can’t afford to ignore PowerShell

 Batch. KiXtart. VBScript. Let’s face it, Windows PowerShell isn’t exactly Microsoft’s (or anyone else’s) first effort at providing automation capabilities to Windows administrators. We think it’s valuable to understand why you should care about Power-Shell, because when you do, you’ll feel comfortable that the time you commit to learning PowerShell will pay off. Let’s start by considering what life was like before PowerShell came along, and look at some of the advantages of using this shell.

 1.1.1. Life without PowerShell

 Windows administrators have always been happy to click around in the graphical user interface (GUI) to accomplish their chores. After all, the GUI is largely the whole point of Windows—the operating system isn’t called Text, after all. GUIs are great because they enable you to discover what you can do. Don remembers the first time he opened Active Directory Users and Computers. He hovered over icons and read tooltips, pulled down menus, and right-clicked things, all to see what was available. GUIs make learning a tool easier. Unfortunately, GUIs have zero return on that investment. If it takes you five minutes to create a new user in Active Directory (and assuming you’re filling in a lot of the fields, that’s a reasonable estimate), you’ll never get any faster than that. One hundred users will take five hundred minutes—there’s no way, short of learning to type and click faster, to make the process go any quicker.

 Microsoft has tried to deal with that problem a bit haphazardly, and VBScript was probably its most successful attempt. It might have taken you an hour to write a VBScript that could import new users from a CSV file, but after you’d invested that hour, creating users in the future would take only a few seconds. The problem with VBScript is that Microsoft didn’t make a wholehearted effort in supporting it. Microsoft had to remember to make things VBScript accessible, and when developers forgot (or didn’t have time), you were stuck. Want to change the IP address of a network adapter by using VBScript? OK, you can. Want to check its link speed? You can’t, because nobody remembered to hook that up in a way that VBScript could get to. Sorry. Jeffrey Snover, the architect of Windows PowerShell, calls this the last mile. You can do a lot with VBScript (and other, similar technologies), but it tends to let you down at some point, never getting you through that last mile to the finish line.

 Windows PowerShell is an express attempt on Microsoft’s part to do a better job and to get you through the last mile. And it’s been a successful attempt so far. Dozens of product groups within Microsoft have adopted PowerShell, an extensive ecosystem of third parties depend on it, and a global community of experts and enthusiasts are pushing the PowerShell envelope every day.

 1.1.2. Life with PowerShell

 Microsoft’s goal for Windows PowerShell is to build 100% of a product’s administrative functionality in the shell. Microsoft continues to build GUI consoles, but those consoles are executing PowerShell commands behind the scenes. That approach forces the company to make sure that every possible thing you can do with the product is accessible through the shell. If you need to automate a repetitive task or create a process that the GUI doesn’t enable well, you can drop into the shell and take full control for yourself.

 Several Microsoft products have already adopted this approach, including Exchange Server 2007 and beyond, SharePoint Server 2010 and later, many of the System Center products, Office 365, and many components of Windows itself. Going forward, more and more products and Windows components will follow this pattern. Windows Server 2012, which was where PowerShell v3 was introduced, is almost completely managed from PowerShell—or by a GUI sitting atop PowerShell. That’s why you can’t afford to ignore PowerShell: Over the next few years, it’ll become the basis for more and more administration. It’s already become the foundation for numerous higher-level technologies, including Desired State Configuration (DSC), PowerShell Workflow, and much more. PowerShell is everywhere!

 Ask yourself this question: If you were in charge of a team of IT administrators (and perhaps you are), who would you want in your senior, higher-paying positions? Administrators who need several minutes to click their way through a GUI each time they need to perform a task, or ones who can perform tasks in a few seconds after automating them? We already know the answer from almost every other part of the IT world. Ask a Cisco administrator, or an AS/400 operator, or a UNIX administrator. The answer is, “I’d rather have the person who can run things more efficiently from the command line.” Going forward, the Windows world will start to split into two groups: administrators who can use PowerShell, and those who can’t. As Don famously said at Microsoft’s TechEd 2010 conference, “Your choice is learn PowerShell, or would you like fries with that?”

 We’re glad you’ve decided to learn PowerShell.

1.2. And now, it’s just “PowerShell”

 In mid-2016, Microsoft took the previously unthinkable step of open sourcing all of Windows PowerShell. At the same time, it released versions of PowerShell—without the Windows attached—for macOS and numerous Linux builds. Amazing! Now, the same object-centric shell is available on many operating systems, and can be evolved and improved by a worldwide community. So for this edition of the book, we decided to make sure we addressed PowerShell on something other than Windows. We still feel that PowerShell’s biggest audience will be Windows users, but we also want to make sure you understand how it works on other operating systems.

1.3. Is this book for you?

 This book doesn’t try to be all things to all people. Microsoft’s PowerShell team loosely defines three audiences who use PowerShell:

 	Administrators who primarily run commands and consume tools written by others

 	Administrators who combine commands and tools into more-complex processes, and perhaps package those as tools that less-experienced administrators can use

 	Administrators and developers who create reusable tools and applications

 This book is designed primarily for the first audience. We think it’s valuable for anyone, even a developer, to understand how the shell is used to run commands. After all, if you’re going to create your own tools and commands, you should know the patterns that the shell uses, as they allow you to make tools and commands that work as well as they can within the shell.

 If you’re interested in creating scripts to automate complex processes, such as new user provisioning, then you’ll see how to do that by the end of this book. You’ll even see how to get started on creating your own commands that other administrators can use. But this book won’t probe the depths of everything that PowerShell can possibly do. Our goal is to get you using the shell and being effective with it in a production environment.

 We’ll also show you a couple of ways to use PowerShell to connect to external management technologies; Windows Management Instrumentation (WMI) and regular expressions are the two examples that come quickly to mind. For the most part, we’re going to introduce only those technologies and focus on how PowerShell connects to them. Those topics deserve their own books (and have them—we’ll provide recommendations when we get there), so we concentrate solely on the PowerShell side of things. We’ll provide suggestions for further exploration if you’d like to pursue those technologies on your own. In short, this book isn’t meant to be the last thing you use to learn about PowerShell, but instead is designed to be a great first step.

1.4. How to use this book

 The idea behind this book is that you’ll read one chapter each day. You don’t have to read it during lunch, but each chapter should take you only about 40 minutes to read, giving you an extra 20 minutes to gobble down the rest of your sandwich and practice what the chapter showed you.

 1.4.1. The main chapters

 Of the chapters in this book, chapters 2 through 25 contain the main content, giving you 24 days’ worth of lunches to look forward to. You can expect to complete the main content of the book in about a month. Try to stick with that schedule as much as possible, and don’t feel the need to read extra chapters in a given day. It’s more important that you spend some time practicing what each chapter shows you, because using the shell will help cement what you’ve learned. Not every chapter requires a full hour, so sometimes you’ll be able to spend additional time practicing (and eating lunch) before you have to get back to work. We find that a lot of people learn more quickly when they stick with just one chapter a day, because it gives your brain time to mull over the new ideas, and gives you time to practice them on your own. Don’t rush it, and you may find yourself moving more quickly than you thought possible.

 1.4.2. Hands-on labs

 Most of the main content chapters include a short lab for you to complete. You’ll be given instructions, and perhaps a hint or two. The answers for these labs appear at the end of each chapter. But try your best to complete each lab without looking at the answers.

 1.4.3. Code samples

 Throughout the book, you’ll encounter code listings. These are longer PowerShell examples. But don’t feel you need to copy them. If you head to www.manning.com and find the page for this book, you’ll see a link to download all of the code listings.

 1.4.4. Supplementary materials

 Don’s YouTube channel, YouTube.com/PowerShellDon, contains a bunch of free videos that he made for the original edition of this book—and they’re all still 100% applicable. They’re a great way to get some short, quick demos. He also hosts videos from recorded conference workshops and more, and they’re all worth a look. We also suggest the PowerShell.org channel, YouTube.com/powershellorg, which contains a ton of video content. You’ll find recorded sessions from the PowerShell + DevOps Global Summit events, online community webinars, and a lot more. All free!

 Jeff does a lot of writing for the Petri IT Knowledgebase (www.petri.com), where you’ll find a huge collection of content covering all sorts of PowerShell topics. You might also see whether Jeff has anything new on his YouTube channel, http://YouTube.com/jdhitsolutions.

 1.4.5. Further exploration

 A few chapters in this book only skim the surface of some cool technologies, and we end those chapters with suggestions for exploring those technologies on your own. We point out additional resources, including free stuff that you can use to expand your skill set as the need arises.

 1.4.6. Above and beyond

 As we learned PowerShell, we often wanted to go off on a tangent and explore why something worked the way it did. We didn’t learn a lot of extra practical skills that way, but we did gain a deeper understanding of what the shell is and how it works. We’ve included some of that tangential information throughout the book in sections labeled “Above and beyond.” None of those will take you more than a couple of minutes or so to read, but if you’re the type of person who likes to know why something works the way it does, they can provide some fun additional facts. If you feel those sections might distract you from the practical stuff, ignore them on your first read-through. You can always come back and explore them later, after you’ve mastered the chapter’s main material.

1.5. Setting up your lab environment

 You’re going to be doing a lot of practicing in Windows PowerShell throughout this book, and you’ll want to have a lab environment to work in; please don’t practice in your company’s production environment.

 All you’ll need to run most of the examples in this book—and to complete all of the labs—is a copy of Windows that has PowerShell v3 or later installed. We suggest Windows 8.1 or later, or Windows Server 2012 R2 or later, which both come with Power-Shell v4. Note that PowerShell might not exist on certain editions of Windows, such as Starter editions. If you’re going to play with PowerShell, you’ll have to invest in a version of Windows that has it. Also note that some of the labs rely on functionality that was new in Windows 8 and Windows Server 2012, so if you’re using something older, things might work differently. At the start of each lab, we tell you what operating system you need in order to complete the lab.

 Keep in mind that, throughout this book, we’re assuming you’ll be working on a 64-bit operating system, also referred to as an x64 operating system. As such, it comes with two copies of Windows PowerShell and the graphically-oriented Windows PowerShell Integrated Scripting Environment (ISE). In the Start menu (or, in Windows 8, the Start screen), the 64-bit versions of these are listed as Windows PowerShell and Windows PowerShell ISE. The 32-bit versions are identified by an (x86) in the shortcut name, and you’ll also see (x86) in the window’s title bar when running those versions. If you’re on a 32-bit operating system, you’ll have only the 32-bit version of PowerShell, and it won’t specifically say (x86).

 The examples in this book are based on the 64-bit versions of PowerShell and the ISE. If you’re not using those, you may sometimes get slightly different results than ours when running examples, and a few of the labs might not work properly. The 32-bit versions are primarily provided for backward compatibility. For example, some shell extensions are available only in 32-bit flavors and can be loaded into only the 32-bit (or x86) shell. Unless you need to use such an extension, we recommend using the 64-bit shell when you’re on a 64-bit operating system. Microsoft’s investments going forward are primarily in 64-bit; if you’re stuck with a 32-bit operating system, unfortunately that’s going to hold you back.

 Tip

 You should be able to accomplish everything in this book with a single computer running PowerShell, although some stuff gets more interesting if you have two or three computers, all in the same domain, to play with. We’ve used CloudShare (www.cloudshare.com) as an inexpensive way to spin up several virtual machines in the cloud. If such a scenario interests you, look into that service or something like it. Note that CloudShare isn’t available in all countries. Another possibility if you’re running Windows 8 or later is to use the Hyper-V feature and run a few virtual machines there.

 If you’re using a non-Windows build of PowerShell, you’ll have fewer options to worry about. Just get the right build for your version of macOS or Linux (or whatever) from http://github.com/PowerShell/PowerShell, and you should be good to go. Keep in mind, however, that a lot of the functionality we’ll be using in our examples is unique to Windows. For example, you can’t get a list of services on Linux, because Linux doesn’t have services (it has daemons, which are similar, but different).

1.6. Installing Windows PowerShell

 Windows PowerShell v3 has been available for most versions of Windows since the release of Windows Server 2008, Windows Server 2008 R2, Windows 7, and later versions. Windows Vista isn’t supported, but it can still run v2. The shell is preinstalled only on the most recent versions of Windows; it must be manually installed on older versions. PowerShell v4 is available for Windows 7 and later and Windows Server 2008 R2 or later, although those versions of Windows don’t have as many components that are “hooked up” to PowerShell, which is why we recommend Windows 8 or Windows Server 2012 as minimum versions. And although PowerShell v4 isn’t the latest version of the shell, that or anything later will suffice for this book’s content.

 Tip

 You should check your version of PowerShell: Open the PowerShell console, type $PSVersionTable, and hit Enter. If you get an error, or if the output doesn’t indicate PSVersion 4.0, then you don’t have PowerShell v4.

 If you want to check the latest available version of PowerShell or download it, go to http://msdn.microsoft.com/powershell. This official PowerShell home page has links to the latest Windows Management Framework (WMF) installer, which is what installs PowerShell and its related technologies. Again, because this book is covering entry-level stuff, you’ll find that not much has changed from v3, but it’s always fun to have the latest version to play with.

 PowerShell has two application components: the standard, text-based console host (PowerShell.exe) and the more visual ISE (PowerShell_ISE.exe). We use the text-based console most of the time, but you’re welcome to use the ISE if you prefer.

 Note

 The PowerShell ISE isn’t preinstalled on server operating systems. If you want to use it, you’ll need to go into Windows Features (using Server Manager) and manually add the ISE feature (you can also open the PowerShell console and run Add-WindowsFeature powershell-ise). The ISE isn’t available at all on server installations that don’t have the full GUI (for example, Server Core or Nano Server).

 Before you go any further, take a few minutes to customize the shell. If you’re using the text-based console host, we strongly recommend that you change the default console font to the Lucida fixed-width font. The default font makes it difficult to distinguish some of the special punctuation characters that PowerShell uses. Follow these steps to customize the font:

 1. Click the control box (that’s the PowerShell icon in the upper left of the console window) and select Properties from the menu.

 2. In the dialog box that appears, browse through the various tabs to change the font, window colors, window size and position, and so forth.

 Tip

 We strongly recommend you make sure that both the Window Size and Screen Buffer have the same Width values.

 Your changes will apply to the default console, meaning they’ll stick around when you open new windows. Of course, all of this applies only to Windows: On non-Windows operating systems, you’ll usually install PowerShell, open your operating system’s -command-line (for example, a Bash shell), and run powershell. Your console window will determine your colors, screen layout, and so on, so adjust to suit your preferences.

1.7. Contacting us

 We’re passionate about helping folks like you learn Windows PowerShell, and we try to provide as many resources as we can. We also appreciate your feedback, because that helps us come up with ideas for new resources that we can add to the site, and ways to improve future editions of this book. You can reach Don on Twitter @concentratedDon, or Jeff @JeffHicks. We also both hang out in the forums of http://PowerShell.org if you have PowerShell questions. http://PowerShell.org is also a wonderful place for more resources, including free e-books, an in-person annual conference, free webinars, and tons more. We help run the organization, and we can’t recommend it highly enough as a place to continue your PowerShell education after you’ve finished this book.

1.8. Being immediately effective with PowerShell

 Immediately effective is a phrase we’ve made our primary goal for this entire book. As much as possible, each chapter focuses on something that you could use in a real production environment, right away. That means we sometimes gloss over some details in the beginning, but when necessary we promise to circle back and cover those details at the right time. In many cases, we had to choose between hitting you with 20 pages of theory first, or diving right in and accomplishing something without explaining all the nuances, caveats, and details. When those choices came along, we almost always chose to dive right in, with the goal of making you immediately effective. But all of those important details and nuances are still explained later in the book.

 OK, that’s enough background. It’s time to start being immediately effective. Your first lunch lesson awaits.

 Chapter 2. Meet PowerShell

 This chapter is all about getting you situated and helping you to decide which Power-Shell interface you’ll use (yes, you have a choice). If you’ve used PowerShell before, this material might seem redundant, so feel free to skim this chapter—you might still find some tidbits here and there that’ll help you down the line.

 Also, this chapter applies exclusively to PowerShell on Windows. Non-Windows versions don’t come in as many options or flavors, so if that’s your situation, you can skip this chapter.

2.1. Choose your weapon

 On Windows, Microsoft provides two ways (four, if you’re being picky) for you to work with PowerShell. Figure 2.1 shows the Start screen’s Apps page, with four Power-Shell icons. We’ve highlighted them to help you spot them more easily.

 Figure 2.1. You can run PowerShell in one of four possible ways.

 [image:]

 Tip

 On older versions of Windows, these icons are on your Start menu. You point to All Programs > Accessories > Windows PowerShell to find the icons. You can also select Run from the Start menu, type PowerShell.exe, and hit Enter to open the PowerShell console application. On Windows 8 and Windows Server 2012 or later, hold the Windows key on your keyboard and press R to get the Run dialog box. Or press and release the Windows key, and start typing powershell to quickly get to the PowerShell icons.

 On a 32-bit operating system, you have only two (at most) PowerShell icons; on a 64-bit system, you have up to four. These include

 	
Windows PowerShell— 64-bit console on a 64-bit system; 32-bit console on a 32-bit system

 	
Windows PowerShell (x86)— 32-bit console on a 64-bit system

 	
Windows PowerShell ISE— 64-bit graphical console on a 64-bit system; 32-bit graphical console on a 32-bit system

 	
Windows PowerShell ISE (x86)— 32-bit graphical console on a 64-bit system

 In other words, 32-bit operating systems have only 32-bit PowerShell applications, whereas 64-bit operating systems have both 64-bit and 32-bit versions, and the 32-bit versions include x86 in their icon names. You’d use the 32-bit versions only when you have a 32-bit shell extension for which a 64-bit version isn’t available. Microsoft is fully invested in 64-bit these days, and it maintains the 32-bit versions mainly for backward compatibility.

 Tip

 It’s incredibly easy to accidentally launch the wrong application when you’re on a 64-bit operating system. Get in the habit of looking at the application window’s title bar: If it shows x86, you’re running a 32-bit application. The 64-bit extensions (and most new ones are 64-bit) won’t be available in a 32-bit application. Our recommendation is to pin a shortcut to your shell of choice to the Start menu.

 2.1.1. The console window

 Figure 2.2 shows the console window, which is where most folks first meet PowerShell. We’ll start this section by making some arguments against using the PowerShell console application:

 	It doesn’t support double-byte character sets, which means many non-English languages won’t display properly.

 	Clipboard operations (copy and paste) use nonstandard keystrokes that are hard to get used to.

 	It provides little assistance when it comes to typing (compared to the ISE, which we cover next), although in PowerShell v5 it’s gotten a lot better. In Windows 10, Microsoft revised the command shell, fixing some of the long-standing issues we mentioned, so your experience could be slightly different.

 Figure 2.2. The standard PowerShell console window: PowerShell.exe

 [image:]

 That said, the PowerShell console application is your only option when you’re running PowerShell on a server that doesn’t have a GUI shell installed (that’s any Server Core installation, Nano Server, or any Windows Server installation on which the Server GUI Shell feature has been removed or not installed). On the plus side

 	The console application is tiny. It loads fast and doesn’t use much memory.

 	It doesn’t require any more .NET Framework stuff than PowerShell itself needs.

 	You can set the colors to be green text on a black background and pretend you’re working on a 1970s-era mainframe.

 If you decide to use the console application, we have a few suggestions for configuring it. You can make all of these configurations by clicking the window’s upper-left-corner control box and selecting Properties; you’ll see the dialog box in figure 2.3. This looks slightly different in Windows 10, as it’s gained some new options, but the gist is the same.

 Figure 2.3. Configuring the console application’s properties

 [image:]

 On the Options tab, you can increase the size of the Command History Buffer Size. This buffer enables the console to remember which commands you’ve typed, and lets you recall them by using the up and down arrows on your keyboard. You can also hit F7 for a pop-up list of commands.

 On the Font tab, pick something a bit larger than the default 12 pt font. Please. We don’t care if you have 20/10 vision; jack up the font size a bit. PowerShell needs you to be able to quickly distinguish between a lot of similar-looking characters—such as ' (an apostrophe or a single quote) and ` (a backtick or a grave accent)—and a tiny font doesn’t help.

 On the Layout tab, set both Width sizes to the same number, and make sure the resulting window fits on your screen. Failing to do this can result in a horizontal scrollbar at the bottom of the window, which can lead to some PowerShell output appearing wrapped off the right side of the window, where you’ll never see it. We’ve had students spend half an hour running commands, thinking they were producing no output at all, when in fact the output was scrolled off to the right. Annoying.

 Finally, on the Colors tab, don’t go nuts. Keep things high contrast and easy to read. Black on medium-gray is quite nice if you don’t like the default white on blue.

 One point to keep in mind: This console application isn’t PowerShell; it’s merely the means by which you interact with PowerShell. The console app itself dates to circa 1985. It’s primitive, and you shouldn’t expect to have a slick experience with it.

 2.1.2. The Integrated Scripting Environment

 Figure 2.4 shows the PowerShell Integrated Scripting Environment, or ISE.

 Figure 2.4. The PowerShell ISE (PowerShell_ISE.exe)

 [image:]

 Tip

 If you accidentally open the standard console app, you can type ise and hit Enter to open the ISE.

 We have a lot of ground to cover with the ISE, and we’ll start with table 2.1, which lists its pros and cons.

 Table 2.1. ISE pros and cons

 	
 Pros

 	
 Cons

 	ISE is nicer looking and supports double-byte character sets.

 	It requires Windows Presentation Foundation (WPF), which means it can’t run on a server that’s had the GUI uninstalled (although it can run in Minimal Server GUI mode, which supports WPF applications).

 	It does more to help you create PowerShell commands and scripts, as you’ll see later in this chapter.

 	It takes longer to get up and running, but usually only a couple of seconds longer.

 	It uses standard copy-and-paste keystrokes.

 	It doesn’t support transcription in versions prior to 5.0.

 Let’s start with basic orientation. Figure 2.5 labels the ISE’s three main areas, and we’ve highlighted the area of the ISE toolbar that controls these main areas.

 Figure 2.5. The three main areas of the ISE, and the toolbar that controls them

 [image:]

 In figure 2.5, the top area is the Script Editor pane, which we won’t be using until the end of this book. In the upper-right corner of that pane, you’ll notice a little blue arrow; click it to hide the Script Editor and maximize the Console pane, which is the area we’ll be using. On the right side is the Commands Explorer, which you can leave open or close by using the little X in its upper-right corner. You can also float the Commands Explorer by clicking the next-to-last button in the toolbar. If you close the Commands Explorer and want it back, the last button in the toolbar will bring it back. The first three buttons we’ve highlighted in the toolbar control the layout of the Script Editor and Console panes. You can set these panes one above the other, side by side, or as a full-screen Script Editor pane.

 In the lower-right corner of the ISE window, you’ll find a slider that changes the font size. On the Tools menu, an Options item lets you configure custom color schemes and other appearance settings; feel free to play with those.

 Try it Now

 We’ll assume you’re using the ISE for the remainder of this book and not some other scripting editor when you need to write or examine a script. For now, hide the Script Editor pane and (if you want to) the Commands Explorer. Set the font size to something you like. If the default color scheme isn’t to your liking, change it to something you prefer. If you decide to use the console window instead, you’ll be fine—most everything in the book will still work. For the few ISE-specific things we’ll show you, we’ll be sure to tell you that it works only in the ISE, to give you a chance to switch.

2.2. It’s typing class all over again

 PowerShell is a command-line interface, and that means you’ll do a lot of typing. Typing leaves room for errors—typos. Fortunately, both PowerShell applications provide ways to help minimize typos.

 Try it Now

 The following examples are impossible to illustrate in a book, but they’re cool to see in action. Consider following along in your own copy of the shell.

 The console application supports Tab completion in four areas:

 	Type Get-S and press Tab a few times, and then try pressing Shift-Tab. PowerShell cycles back and forth through all of the potential matches. Continue to press those keys until you’ve hit the command you want.

 	Type Dir, then a space, then C:\, and then hit Tab. PowerShell starts cycling through available file and folder names from the current folder.

 	Type Set-Execu and hit Tab. Then type a space and a hyphen (-). Start pressing Tab to see PowerShell cycle through the parameters for the command. You could also type part of a parameter name (for example, -E), and press Tab to start cycling through matching parameters. Hit Esc to clear the command line.

 	Type Set-Execu again and press Tab. Type a space, then -E, and hit Tab again. Type another space and hit Tab again. PowerShell cycles through the legal values for that parameter. This works only for parameters that have a predefined set of allowable values (the set is called an enumeration). Again, hit Esc to clear the command line; you don’t want to run that command yet.

 The PowerShell ISE offers something similar to, and better than, Tab completion: IntelliSense. This feature operates in all four of the same situations that we showed you for Tab completion, except that you get a cool little pop-up menu, like the one shown in figure 2.6. You can use your arrow keys to scroll up or down, find the item you want, hit Tab or Enter to select it, and then keep typing.

 Figure 2.6. IntelliSense works like Tab completion in the ISE.

 [image:]

 IntelliSense works in the ISE’s Console pane and in the Script Editor pane.

 Caution

 It’s very, very, very, very, very important to be very, very, very, very accurate when you’re typing in PowerShell. In some cases, a single misplaced space, quotation mark, or even carriage return can make everything fail. If you’re getting errors, double- and triple-check what you’ve typed.

2.3. Common points of confusion

 Let’s quickly review some of the things that can muck up the works, to make sure they don’t trip you up:

 	
Horizontal scrollbars in the console app— We’ve learned from years of teaching classes that this trips up people every single time. Configure the console to not have a horizontal scrollbar across the bottom of the window. We explained how to do this earlier in this chapter.

 	
The 32-bit versus 64-bit issue— You should be running a 64-bit version of Windows and using the 64-bit versions of PowerShell’s applications—the ones that don’t indicate (x86). We know for some folks it can be a big deal to go buy a 64-bit computer and a 64-bit version of Windows. But that’s the investment you’ll have to make if you want to use PowerShell effectively. Most of what we cover in this book will work fine on 32-bit, but when you’re working in a production environment, 64-bit makes all the difference.

 	
Make sure the PowerShell application window’s title bar reads “Administrator”— If it doesn’t, close the window, right-click the PowerShell icon again, and select Run As Administrator. In a production environment, you might not always do this, and later in the book we’ll show you how to specify credentials when you run commands. But for the moment, you need to be sure the shell window reads Administrator, or you’ll run into problems later.

2.4. What version is this?

 It can be incredibly difficult to figure out which version of PowerShell you’re using, in no small part because every released version installs to a directory named 1.0. (This refers to the language engine of the shell, meaning every version has been made backward compatible to v1.) With PowerShell v3 and later, there’s an easy way to check your version. Type $PSVersionTable and hit Enter:

 PS C:\> $PSVersionTable
Name Value
---- -----
PSVersion 3.0
WSManStackVersion 3.0
SerializationVersion 1.1.0.1
CLRVersion 4.0.30319.17379
BuildVersion 6.2.8250.0
PSCompatibleVersions {1.0, 2.0, 3.0}
PSRemotingProtocolVersion 2.2

 You’ll immediately see the version number for every PowerShell-related piece of technology, including PowerShell itself. If this doesn’t work, or if it doesn’t indicate 3.0 or later for PSVersion, you’re not using the right version of PowerShell for this book. Refer to chapter 1 for instructions on getting the most current version of PowerShell.

 Try it Now

 Don’t wait any longer to start using PowerShell. Start by checking your version number to ensure it’s at least 3.0. If it isn’t, don’t go any further until you’ve installed at least v3.

 PowerShell v3 (and later) can install side-by-side with v2. In fact, you can run PowerShell.exe-version 2.0 to explicitly run v2. You can set PowerShell to run v2 if you have something that isn’t v3 compatible (which is rare). PowerShell v3’s installer doesn’t install v2; you’ll be able to run v2 only if it was installed first. The installers for v2 and v3 will both overwrite v1 if it’s already installed; they can’t exist side by side. Also, newer versions such as v4 can run in v2 mode, but they don’t have any other modes. So, v4 can’t run as v3.

 Tip

 New versions of Windows install the latest version of PowerShell by default, but may include the PowerShell v2 engine. From PowerShell, you can usually run Add-WindowsFeature powershell-v2 to install the v2 engine if you need it. If the powershell-v2 feature isn’t available on your version of Windows, then you’re out of luck for installing it, but at this point you may not need it.

2.5. Lab

 Because this is the book’s first lab, we’ll take a moment to describe how these are supposed to work. For each lab, we give you a few tasks that you can try to complete on your own. Sometimes we provide a hint or two to get you going in the right direction. From there, you’re on your own.

 We absolutely guarantee that everything you need to know to complete every lab is either in that same chapter or covered in a previous chapter (and the previously covered information is the stuff for which we’re most likely to give you a hint). We’re not saying the answer is in plain sight: Most often, a chapter teaches you how to discover something on your own, and you have to go through that discovery process to find the answer. It might seem frustrating, but forcing yourself to do it will absolutely make you more successful with PowerShell in the long run. We promise.

 Keep in mind that you can find sample answers at the end of each chapter. Our answers might not exactly match yours, and that will become increasingly true as we move on to more complex material. You’ll often find that PowerShell offers a half dozen or more ways to accomplish almost anything. We’ll show you the way we use the most, but if you come up with something different, you’re not wrong. Any way that gets the job done is correct.

 Note

 For this lab, you need any computer running PowerShell v3 or later.

 We’ll start easy: We just want you to get both the console and the ISE set up to meet your needs. Follow these five steps:

 1. Select fonts and colors that work for you.

 2. Make sure the console application has no horizontal scrollbar at the bottom. We’ve now mentioned this three times in this chapter, so maybe it’s important.

 3. In the ISE, maximize the Console pane; remove or leave the Commands Explorer at your discretion.

 4. In both applications, type a single quote, ', and a backtick, `, and make sure you can easily tell the difference. On a U.S. keyboard (at least), a backtick is on one of the upper-left keys, under the Esc key, on the same key as the tilde (~) character.

 5. Also type (parentheses), [square brackets], <angle brackets>, and {curly brackets} to make sure the font and size you’ve selected display well, so that all of these symbols are immediately distinguishable. If there’s some visual confusion about which is which, change fonts or select a bigger font size.

 We’ve already walked you through how to accomplish these steps, so you don’t have any answers to check for this lab, other than to be sure you’ve completed all five of the steps.

 Chapter 3. Using the help system

 In the first chapter of this book, we mentioned that discoverability is a key feature that makes graphical user interfaces (GUIs) easier to learn and use, and that -command-line interfaces (CLIs) like PowerShell are often more difficult because they lack those discoverability features. In fact, PowerShell has fantastic discoverability features—but they’re not that obvious. One of the main discoverability features is its help system.

