

 [image: cover]

Google Cloud Platform in Action

 JJ Geewax

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 The photographs in this book are reproduced under a Creative Commons license.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Christina Taylor
Review editor: Aleks Dragosavljevic
Technical development editor: Francesco Bianchi
Project manager: Kevin Sullivan
Copy editors: Pamela Hunt and Carl Quesnel
Proofreaders: Melody Dolab and Alyson Brener
Technical proofreader: Romin Irani
Typesetter: Dennis Dalinnik
Illustrator: Jason Alexander
Cover designer: Marija Tudor

 ISBN: 9781617293528

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the cover illustration

 1. Getting started

 Chapter 1. What is “cloud”?

 Chapter 2. Trying it out: deploying WordPress on Google Cloud

 Chapter 3. The cloud data center

 2. Storage

 Chapter 4. Cloud SQL: managed relational storage

 Chapter 5. Cloud Datastore: document storage

 Chapter 6. Cloud Spanner: large-scale SQL

 Chapter 7. Cloud Bigtable: large-scale structured data

 Chapter 8. Cloud Storage: object storage

 3. Computing

 Chapter 9. Compute Engine: virtual machines

 Chapter 10. Kubernetes Engine: managed Kubernetes clusters

 Chapter 11. App Engine: fully managed applications

 Chapter 12. Cloud Functions: serverless applications

 Chapter 13. Cloud DNS: managed DNS hosting

 4. Machine learning

 Chapter 14. Cloud Vision: image recognition

 Chapter 15. Cloud Natural Language: text analysis

 Chapter 16. Cloud Speech: audio-to-text conversion

 Chapter 17. Cloud Translation: multilanguage machine translation

 Chapter 18. Cloud Machine Learning Engine: managed machine learning

 5. Data processing and analytics

 Chapter 19. BigQuery: highly scalable data warehouse

 Chapter 20. Cloud Dataflow: large-scale data processing

 Chapter 21. Cloud Pub/Sub: managed event publishing

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the cover illustration

 1. Getting started

 Chapter 1. What is “cloud”?

 1.1. What is Google Cloud Platform?

 1.2. Why cloud?

 1.2.1. Why not cloud?

 1.3. What to expect from cloud services

 1.3.1. Computing

 1.3.2. Storage

 1.3.3. Analytics (aka, Big Data)

 1.3.4. Networking

 1.3.5. Pricing

 1.4. Building an application for the cloud

 1.4.1. What is a cloud application?

 1.4.2. Example: serving photos

 1.4.3. Example projects

 1.5. Getting started with Google Cloud Platform

 1.5.1. Signing up for GCP

 1.5.2. Exploring the console

 1.5.3. Understanding projects

 1.5.4. Installing the SDK

 1.6. Interacting with GCP

 1.6.1. In the browser: the Cloud Console

 1.6.2. On the command line: gcloud

 1.6.3. In your own code: google-cloud-*

 Summary

 Chapter 2. Trying it out: deploying WordPress on Google Cloud

 2.1. System layout overview

 2.2. Digging into the database

 2.2.1. Turning on a Cloud SQL instance

 2.2.2. Securing your Cloud SQL instance

 2.2.3. Connecting to your Cloud SQL instance

 2.2.4. Configuring your Cloud SQL instance for WordPress

 2.3. Deploying the WordPress VM

 2.4. Configuring WordPress

 2.5. Reviewing the system

 2.6. Turning it off

 Summary

 Chapter 3. The cloud data center

 3.1. Data center locations

 3.2. Isolation levels and fault tolerance

 3.2.1. Zones

 3.2.2. Regions

 3.2.3. Designing for fault tolerance

 3.2.4. Automatic high availability

 3.3. Safety concerns

 3.3.1. Security

 3.3.2. Privacy

 3.3.3. Special cases

 3.4. Resource isolation and performance

 Summary

 2. Storage

 Chapter 4. Cloud SQL: managed relational storage

 4.1. What’s Cloud SQL?

 4.2. Interacting with Cloud SQL

 4.3. Configuring Cloud SQL for production

 4.3.1. Access control

 4.3.2. Connecting over SSL

 4.3.3. Maintenance windows

 4.3.4. Extra MySQL options

 4.4. Scaling up (and down)

 4.4.1. Computing power

 4.4.2. Storage

 4.5. Replication

 4.5.1. Replica-specific operations

 4.6. Backup and restore

 4.6.1. Automated daily backups

 4.6.2. Manual data export to Cloud Storage

 4.7. Understanding pricing

 4.8. When should I use Cloud SQL?

 4.8.1. Structure

 4.8.2. Query complexity

 4.8.3. Durability

 4.8.4. Speed (latency)

 4.8.5. Throughput

 4.9. Cost

 4.9.1. Overall

 4.10. Weighing Cloud SQL against a VM running MySQL

 Summary

 Chapter 5. Cloud Datastore: document storage

 5.1. What’s Cloud Datastore?

 5.1.1. Design goals for Cloud Datastore

 5.1.2. Concepts

 5.1.3. Consistency and replication

 5.1.4. Consistency with data locality

 5.2. Interacting with Cloud Datastore

 5.3. Backup and restore

 5.4. Understanding pricing

 5.4.1. Storage costs

 5.4.2. Per-operation costs

 5.5. When should I use Cloud Datastore?

 5.5.1. Structure

 5.5.2. Query complexity

 5.5.3. Durability

 5.5.4. Speed (latency)

 5.5.5. Throughput

 5.5.6. Cost

 5.5.7. Overall

 5.5.8. Other document storage systems

 Summary

 Chapter 6. Cloud Spanner: large-scale SQL

 6.1. What is NewSQL?

 6.2. What is Spanner?

 6.3. Concepts

 6.3.1. Instances

 6.3.2. Nodes

 6.3.3. Databases

 6.3.4. Tables

 6.4. Interacting with Cloud Spanner

 6.4.1. Creating an instance and database

 6.4.2. Creating a table

 6.4.3. Adding data

 6.4.4. Querying data

 6.4.5. Altering database schema

 6.5. Advanced concepts

 6.5.1. Interleaved tables

 6.5.2. Primary keys

 6.5.3. Split points

 6.5.4. Choosing primary keys

 6.5.5. Secondary indexes

 6.5.6. Transactions

 6.6. Understanding pricing

 6.7. When should I use Cloud Spanner?

 6.7.1. Structure

 6.7.2. Query complexity

 6.7.3. Durability

 6.7.4. Speed (latency)

 6.7.5. Throughput

 6.7.6. Cost

 6.7.7. Overall

 Summary

 Chapter 7. Cloud Bigtable: large-scale structured data

 7.1. What is Bigtable?

 7.1.1. Design goals

 7.1.2. Design nongoals

 7.1.3. Design overview

 7.2. Concepts

 7.2.1. Data model concepts

 7.2.2. Infrastructure concepts

 7.3. Interacting with Cloud Bigtable

 7.3.1. Creating a Bigtable Instance

 7.3.2. Creating your schema

 7.3.3. Managing your data

 7.3.4. Importing and exporting data

 7.4. Understanding pricing

 7.5. When should I use Cloud Bigtable?

 7.5.1. Structure

 7.5.2. Query complexity

 7.5.3. Durability

 7.5.4. Speed (latency)

 7.5.5. Throughput

 7.5.6. Cost

 7.5.7. Overall

 7.6. What’s the difference between Bigtable and HBase?

 7.7. Case study: InstaSnap recommendations

 7.7.1. Querying needs

 7.7.2. Tables

 7.7.3. Users table

 7.7.4. Recommendations table

 7.7.5. Processing data

 Summary

 Chapter 8. Cloud Storage: object storage

 8.1. Concepts

 8.1.1. Buckets and objects

 8.2. Storing data in Cloud Storage

 8.3. Choosing the right storage class

 8.3.1. Multiregional storage

 8.3.2. Regional storage

 8.3.3. Nearline storage

 8.3.4. Coldline storage

 8.4. Access control

 8.4.1. Limiting access with ACLs

 8.4.2. Signed URLs

 8.4.3. Logging access to your data

 8.5. Object versions

 8.6. Object lifecycles

 8.7. Change notifications

 8.7.1. URL restrictions

 8.8. Common use cases

 8.8.1. Hosting user content

 8.8.2. Data archival

 8.9. Understanding pricing

 8.9.1. Amount of data stored

 8.9.2. Amount of data transferred

 8.9.3. Number of operations executed

 8.9.4. Nearline and Coldline pricing

 8.10. When should I use Cloud Storage?

 8.10.1. Structure

 8.10.2. Query complexity

 8.10.3. Durability

 8.10.4. Speed (latency)

 8.10.5. Throughput

 8.10.6. Overall

 8.10.7. To-do list

 8.10.8. E*Exchange

 8.10.9. InstaSnap

 Summary

 3. Computing

 Chapter 9. Compute Engine: virtual machines

 9.1. Launching your first (or second) VM

 9.2. Block storage with Persistent Disks

 9.2.1. Disks as resources

 9.2.2. Attaching and detaching disks

 9.2.3. Using your disks

 9.2.4. Resizing disks

 9.2.5. Snapshots

 9.2.6. Images

 9.2.7. Performance

 9.2.8. Encryption

 9.3. Instance groups and dynamic resources

 9.3.1. Changing the size of an instance group

 9.3.2. Rolling updates

 9.3.3. Autoscaling

 9.4. Ephemeral computing with preemptible VMs

 9.4.1. Why use preemptible machines?

 9.4.2. Turning on preemptible VMs

 9.4.3. Handling terminations

 9.4.4. Preemption selection

 9.5. Load balancing

 9.5.1. Backend configuration

 9.5.2. Host and path rules

 9.5.3. Frontend configuration

 9.5.4. Reviewing the configuration

 9.6. Cloud CDN

 9.6.1. Enabling Cloud CDN

 9.6.2. Cache control

 9.7. Understanding pricing

 9.7.1. Computing capacity

 9.7.2. Sustained use discounts

 9.7.3. Preemptible prices

 9.7.4. Storage

 9.7.5. Network traffic

 9.8. When should I use GCE?

 9.8.1. Flexibility

 9.8.2. Complexity

 9.8.3. Performance

 9.8.4. Cost

 9.8.5. Overall

 9.8.6. To-Do List

 9.8.7. E*Exchange

 9.8.8. InstaSnap

 Summary

 Chapter 10. Kubernetes Engine: managed Kubernetes clusters

 10.1. What are containers?

 10.1.1. Configuration

 10.1.2. Standardization

 10.1.3. Isolation

 10.2. What is Docker?

 10.3. What is Kubernetes?

 10.3.1. Clusters

 10.3.2. Nodes

 10.3.3. Pods

 10.3.4. Services

 10.4. What is Kubernetes Engine?

 10.5. Interacting with Kubernetes Engine

 10.5.1. Defining your application

 10.5.2. Running your container locally

 10.5.3. Deploying to your container registry

 10.5.4. Setting up your Kubernetes Engine cluster

 10.5.5. Deploying your application

 10.5.6. Replicating your application

 10.5.7. Using the Kubernetes UI

 10.6. Maintaining your cluster

 10.6.1. Upgrading the Kubernetes master node

 10.6.2. Upgrading cluster nodes

 10.6.3. Resizing your cluster

 10.7. Understanding pricing

 10.8. When should I use Kubernetes Engine?

 10.8.1. Flexibility

 10.8.2. Complexity

 10.8.3. Performance

 10.8.4. Cost

 10.8.5. Overall

 10.8.6. To-Do List

 10.8.7. E*Exchange

 10.8.8. InstaSnap

 Summary

 Chapter 11. App Engine: fully managed applications

 11.1. Concepts

 11.1.1. Applications

 11.1.2. Services

 11.1.3. Versions

 11.1.4. Instances

 11.2. Interacting with App Engine

 11.2.1. Building an application in App Engine Standard

 11.2.2. On App Engine Flex

 11.3. Scaling your application

 11.3.1. Scaling on App Engine Standard

 11.3.2. Scaling on App Engine Flex

 11.3.3. Choosing instance configurations

 11.4. Using App Engine Standard’s managed services

 11.4.1. Storing data with Cloud Datastore

 11.4.2. Caching ephemeral data

 11.4.3. Deferring tasks

 11.4.4. Splitting traffic

 11.5. Understanding pricing

 11.6. When should I use App Engine?

 11.6.1. Flexibility

 11.6.2. Complexity

 11.6.3. Performance

 11.6.4. Cost

 11.6.5. Overall

 11.6.6. To-Do List

 11.6.7. E*Exchange

 11.6.8. InstaSnap

 Summary

 Chapter 12. Cloud Functions: serverless applications

 12.1. What are microservices?

 12.2. What is Google Cloud Functions?

 12.2.1. Concepts

 12.3. Interacting with Cloud Functions

 12.3.1. Creating a function

 12.3.2. Deploying a function

 12.3.3. Triggering a function

 12.4. Advanced concepts

 12.4.1. Updating functions

 12.4.2. Deleting functions

 12.4.3. Using dependencies

 12.4.4. Calling other Cloud APIs

 12.4.5. Using a Google Source Repository

 12.5. Understanding pricing

 Summary

 Chapter 13. Cloud DNS: managed DNS hosting

 13.1. What is Cloud DNS?

 13.1.1. Example DNS entries

 13.2. Interacting with Cloud DNS

 13.2.1. Using the Cloud Console

 13.2.2. Using the Node.js client

 13.3. Understanding pricing

 13.3.1. Personal DNS hosting

 13.3.2. Startup business DNS hosting

 13.4. Case study: giving machines DNS names at boot

 Summary

 4. Machine learning

 Chapter 14. Cloud Vision: image recognition

 14.1. Annotating images

 14.1.1. Label annotations

 14.1.2. Faces

 14.1.3. Text recognition

 14.1.4. Logo recognition

 14.1.5. Safe-for-work detection

 14.1.6. Combining multiple detection types

 14.2. Understanding pricing

 14.3. Case study: enforcing valid profile photos

 Summary

 Chapter 15. Cloud Natural Language: text analysis

 15.1. How does the Natural Language API work?

 15.2. Sentiment analysis

 15.3. Entity recognition

 15.4. Syntax analysis

 15.5. Understanding pricing

 15.6. Case study: suggesting InstaSnap hash-tags

 Summary

 Chapter 16. Cloud Speech: audio-to-text conversion

 16.1. Simple speech recognition

 16.2. Continuous speech recognition

 16.3. Hinting with custom words and phrases

 16.4. Understanding pricing

 16.5. Case study: InstaSnap video captions

 Summary

 Chapter 17. Cloud Translation: multilanguage machine translation

 17.1. How does the Translation API work?

 17.2. Language detection

 17.3. Text translation

 17.4. Understanding pricing

 17.5. Case study: translating InstaSnap captions

 Summary

 Chapter 18. Cloud Machine Learning Engine: managed machine learning

 18.1. What is machine learning?

 18.1.1. What are neural networks?

 18.1.2. What is TensorFlow?

 18.2. What is Cloud Machine Learning Engine?

 18.2.1. Concepts

 18.2.2. Putting it all together

 18.3. Interacting with Cloud ML Engine

 18.3.1. Overview of US Census data

 18.3.2. Creating a model

 18.3.3. Setting up Cloud Storage

 18.3.4. Training your model

 18.3.5. Making predictions

 18.3.6. Configuring your underlying resources

 18.4. Understanding pricing

 18.4.1. Training costs

 18.4.2. Prediction costs

 Summary

 5. Data processing and analytics

 Chapter 19. BigQuery: highly scalable data warehouse

 19.1. What is BigQuery?

 19.1.1. Why BigQuery?

 19.1.2. How does BigQuery work?

 19.1.3. Concepts

 19.2. Interacting with BigQuery

 19.2.1. Querying data

 19.2.2. Loading data

 19.2.3. Exporting datasets

 19.3. Understanding pricing

 19.3.1. Storage pricing

 19.3.2. Data manipulation pricing

 19.3.3. Query pricing

 Summary

 Chapter 20. Cloud Dataflow: large-scale data processing

 20.1. What is Apache Beam?

 20.1.1. Concepts

 20.1.2. Putting it all together

 20.2. What is Cloud Dataflow?

 20.3. Interacting with Cloud Dataflow

 20.3.1. Setting up

 20.3.2. Creating a pipeline

 20.3.3. Executing a pipeline locally

 20.3.4. Executing a pipeline using Cloud Dataflow

 20.4. Understanding pricing

 Summary

 Chapter 21. Cloud Pub/Sub: managed event publishing

 21.1. The headache of messaging

 21.2. What is Cloud Pub/Sub?

 21.3. Life of a message

 21.4. Concepts

 21.4.1. Topics

 21.4.2. Messages

 21.4.3. Subscriptions

 21.4.4. Sample configuration

 21.5. Trying it out

 21.5.1. Sending your first message

 21.5.2. Receiving your first message

 21.6. Push subscriptions

 21.7. Understanding pricing

 21.8. Messaging patterns

 21.8.1. Fan-out broadcast messaging

 21.8.2. Work-queue messaging

 Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 In the early days of Google, we were a victim of our own success. People loved our search results, but handling more search
 traffic meant we needed more servers, which at that time meant physical servers, not virtual ones. Traffic was growing by
 something like 10% every week, so every few days we would hit a new record, and we had to ensure we had enough capacity to
 handle it all. We also had to do it all from scratch.

 When it comes to our infrastructural challenges, we’ve largely succeeded. We’ve built a system of data centers and networks
 that rival most of the world, but until recently, that infrastructure has been exclusively for us. Google Cloud Platform represents
 the natural extension of our infrastructural achievements over the past 15 years or so by allowing everyone to benefit from
 the efficiency of Google’s data centers and the years of experience we have running them.

 All of this manifests as a collection of products and services that solve hard technical problems (think data consistency)
 so that you don’t have to, but it also means that instead of solving the hard technical problem, you have to learn how to
 use the service. And while tinkering with new services is part of daily life at Google, most of the world expects things to
 “just work” so they can get on with their business. For many, a misconfigured server or inconsistent database is not a fun
 puzzle to solve—it’s a distraction.

 Google Cloud Platform in Action acts as a guide to minimize those distractions, demonstrating how to use GCP in practice while also explaining how things
 work under the hood. In this book, JJ focuses on the most important aspects of GCP (like Compute Engine) but also highlights
 some of the more recent additions to GCP (like Kubernetes Engine and the various machine-learning APIs), offering a well-rounded
 collection of all that GCP has to offer.

 Looking back, Google Cloud Platform has grown immensely. From App Engine in 2008, to Compute Engine in 2012, to several machine-learning
 APIs in 2017, keeping up can be difficult. But with this book in hand, you’re well equipped to build what’s next.

 URS HÖLZLE
SVP, Technical Infrastructure
Google

Preface

 I was lucky enough to fall in love with building software all the way back in 1997. This started with toy projects in Visual
 Basic (yikes) or HTML (yes, the <blink> and marquee tags appeared from time to time), and eventually moved on to “real work” using “more mature languages” like C#, Java, and
 Python. Throughout that time the infrastructure hosting these projects followed a similar evolution, starting with free static
 hosting and moving on to the “grown-up” hosting options like virtual private servers or dedicated hosts in a colocation facility.
 This certainly got the job done, but scaling up and down was frustrating (you had to place an order and wait a little bit),
 and the minimum purchase was usually a full calendar year.

 But then things started to change. Somewhere around 2008, cloud computing became available using Amazon’s new Elastic Compute
 Cloud (EC2). Suddenly you had way more control over your infrastructure than ever before thanks to the ability to turn computers
 on and off using web-based APIs. To make things even better, you paid only for the time when the computer was actually running
 rather than for the entire year. It really was amazing.

 As we now know, the rest is history. Cloud computing expanded into generalized cloud infrastructure, moving higher and higher
 up the stack, to provide more and more value as time went on. More companies got involved, launching entire divisions devoted
 to cloud services, bringing with them even more new and exciting products to add to our toolbox. These products went far beyond
 leasing virtual servers by the hour, but the principle involved was always the same: take a software or infrastructure problem,
 remove the manual work, and then charge only for what’s used. It just so happens that Google was one of those companies, applying
 this principle to its in-house technology to build Google Cloud Platform.

 Fast-forward to today, and it seems we have a different problem: our toolboxes are overflowing. Cloud infrastructure is amazing,
 but only if you know how to use it effectively. You need to understand what’s in your toolbox, and, unfortunately, there aren’t
 a lot of guidebooks out there. If Google Cloud Platform is your toolbox, Google Cloud Platform in Action is here to help you understand all of your tools, from high-level concepts (like choosing the right storage system) to the
 low-level details (like understanding how much that storage will cost).

Acknowledgments

 As with any large project, this book is the result of contributions from many different people. First and foremost, I must
 thank Dave Nagle who convinced me to join the Google Cloud Platform team in the first place and encouraged me to go where
 needed—even if it was uncomfortable.

 Additionally, many people provided similar support, encouragement, and technical feedback, including Kristen Ranieri, Marc
 Jacobs, Stu Feldman, Ari Balogh, Max Ross, Urs Hölzle, Andrew Fikes, Larry Greenfield, Alfred Fuller, Hong Zhang, Ray Colline,
 JM Leon, Joerg Heilig, Walt Drummond, Peter Weinberger, Amnon Horowitz, Rich Sanzi, James Tamplin, Andrew Lee, Mike McDonald,
 Jony Dimond, Tom Larkworthy, Doron Meyer, Mike Dahlin, Sean Quinlan, Sanjay Ghemawatt, Eric Brewer, Dominic Preuss, Dan McGrath,
 Tommy Kershaw, Sheryn Chan, Luciano Cheng, Jeremy Sugerman, Steve Schirripa, Mike Schwartz, Jason Woodard, Grace Benz, Chen
 Goldberg, and Eyal Manor.

 Further, it should come as no surprise that a project of this size involved technical contributions from a diverse set of
 people at Google, including Tony Tseng, Brett Hesterberg, Patrick Costello, Chris Taylor, Tom Ayles, Vikas Kedia, Deepti Srivastava,
 Damian Reeves, Misha Brukman, Carter Page, Phaneendhar Vemuru, Greg Morris, Doug McErlean, Carlos O’Ryan, Andrew Hurst, Nathan
 Herring, Brandon Yarbrough, Travis Hobrla, Bob Day, Kir Titievsky, Oren Teich, Steren Gianni, Jim Caputo, Dan McClary, Bin
 Yu, Milo Martin, Gopal Ashok, Sam McVeety, Nikhil Kothari, Apoorv Saxena, Ram Ramanathan, Dan Aharon, Phil Bogle, Kirill Tropin,
 Sandeep Singhal, Dipti Sangani, Mona Attariyan, Jen Lin, Navneet Joneja, TJ Goltermann, Sam Greenfield, Dan O’Meara, Jason
 Polites, Rajeev Dayal, Mark Pellegrini, Rae Wang, Christian Kemper, Omar Ayoub, Jonathan Amsterdam, Jon Skeet, Stephen Sawchuk,
 Dave Gramlich, Mike Moore, Chris Smith, Marco Ziccardi, Dave Supplee, John Pedrie, Jonathan Amsterdam, Danny Hermes, Tres
 Seaver, Anthony Moore, Garrett Jones, Brian Watson, Rob Clevenger, Michael Rubin, and Brian Grant, along with many others.
 Many thanks go out to everyone who corrected errors and provided feedback, whether in person, on the MEAP forum, or via email.

 This project simply wouldn’t have been possible with the various teams at Manning who guided me through the process and helped
 shape this book into what it is now. I’m particularly grateful to Mike Stephens for convincing me to do this in the first
 place, Christina Taylor for her tireless efforts to shape the content into great teaching material, and Marjan Bace for pushing
 to tighten the content so that we didn’t end with a 1,000-page book.

 Finally, I’d like to thank Al Scherer and Romin Irini, for giving the manuscript a thorough technical review and proofread,
 and all the reviewers who provided feedback along the way, including Ajay Godbole, Alfred Thompson, Arun Kumar, Aurélien Marocco,
 Conor Redmond, Emanuele Origgi, Enric Cecilla, Grzegorz Bernas, Ian Stirk, Javier Collado Cabeza, John Hyaduck, John R. Donoghue,
 Joyce Echessa, Maksym Shcheglov, Mario-Leander Reimer, Max Hemingway, Michael Jensen, Michał Ambroziewicz, Peter J. Krey,
 Rambabu Posa, Renato Alves Felix, Richard J. Tobias, Sopan Shewale, Steve Atchue, Todd Ricker, Vincent Joseph, Wendell Beckwith,
 and Xinyu Wang.

About this book

 Google Cloud Platform in Action was written to provide a practical guide for using all of the various cloud products and APIs available from Google. It begins
 by explaining some of the fundamental concepts needed to understand how cloud works and proceeds from there to build on these
 concepts one product at a time, digging into the details of how different products work and providing realistic examples of
 how they can be used.

Who should read this book

 Google Cloud Platform in Action is for anyone who builds software products or deals with hosting them. Familiarity with the cloud is not necessary, but familiarity
 with the basics in the software development toolbox (such as SQL databases, APIs, and command-line tools) is important. If
 you’ve heard of the cloud and want to know how best to use it, this book is probably for you.

How this book is organized: a roadmap

 This book is broken into five sections, each covering a different aspect of Google Cloud Platform. Part 1 explains what Google Cloud Platform is and some of the fundamental pieces of the platform itself, with the goal of building
 a good foundation before digging into specific cloud products.

 	
Chapter 1 gives an overview of the cloud and what Google Cloud Platform is. It also discusses the different things you might expect
 to get out of GCP and walks you through signing up, getting started, and interacting with Google Cloud Platform.

 	
Chapter 2 dives right into the details of getting a real GCP project running. This covers setting up a computing environment and database
 storage to turn on a WordPress instance using Google Cloud Platform’s free tier.

 	
Chapter 3 explores some details about data centers and explains the core differences when moving into the cloud.

 Part 2 covers all of the storage-focused products available on Google Cloud Platform. Because so many different options for storing
 data exist, one goal of this section is to provide a framework for evaluating all of the options. To do this, each chapter
 looks at several different attributes for each of the storage options, summarized in Table 1.

 Table 1. Summary of storage system attributes

 	
 Aspect

 	
 Example question

 	Structure
 	How normalized and formatted is the data being stored?

 	Query complexity
 	How complicated are the questions you ask about the data?

 	Speed
 	How quickly do you need a response to any given request?

 	Throughput
 	How many queries need to be handled concurrently?

 	Price
 	How much will all of this cost?

 	
Chapter 4 looks at how you can minimize the management overhead when running MySQL to store relational data.

 	
Chapter 5 explores document-oriented storage, similar to systems like MongoDB, using Cloud Datastore.

 	
Chapter 6 dives into the world of NewSQL for managing large-scale relational data using Cloud Spanner to provide strong consistency
 with global replication.

 	
Chapter 7 discusses storing and querying large-scale key-value data using Cloud Bigtable, which was originally designed to handle Google’s
 search index.

 	
Chapter 8 finishes up the section on storage by introducing Cloud Storage for keeping track of arbitrary chunks of bytes with high
 availability, high durability, and low latency content distribution.

 Part 3 looks at all the various ways to run your own code in the cloud using cloud computing resources. Similar to the storage section,
 many options exist, which can often lead to confusion. As a result, this section has a similar goal of setting up a framework
 for evaluating the various computing services. Each chapter looks at a few different aspects of each service, explained in
 table 2. As an extra, this section also contains a chapter on Cloud DNS, which is commonly used to give human-friendly names
 to all the computing resources that you’ll create in your projects.

 Table 2. Summary of computing system attributes

 	
 Aspect

 	
 Example question

 	Flexibility
 	How restricted am I when building using this computing platform?

 	Complexity
 	How complicated is it to fully understand the system?

 	Performance
 	How well does the system perform compared to dedicated hardware?

 	Price
 	How much will all of this cost?

 	
Chapter 9 looks in depth at the fundamental way of running computing resources in the cloud using Compute Engine.

 	
Chapter 10 moves one level up the stack of abstraction, exploring containers and how to run them in the cloud using Kubernetes and Kubernetes
 Engine.

 	
Chapter 11 moves one level further still, exploring the hosted application environment of Google App Engine.

 	
Chapter 12 dives into the world of service-oriented applications with Cloud Functions.

 	
Chapter 13 looks at Cloud DNS, which can be used to write code to interact with the internet’s distributed naming system, giving friendly
 names to your VMs or other computing resources.

 Part 4 switches gears away from raw infrastructure and focuses exclusively on the rapidly evolving world of machine learning and
 artificial intelligence.

 	
Chapter 14 focuses on how to bring artificial intelligence to the visual world using the Cloud Vision API.

 	
Chapter 15 explains how the Cloud Natural Language API can be used to enrich written documents with annotations along with detecting
 the overall sentiment.

 	
Chapter 16 explores turning audio streams into text using machine speech recognition.

 	
Chapter 17 looks at translating text between multiple languages using neural machine translation for much greater accuracy than other
 methods.

 	
Chapter 18, intended to be read along with other works on TensorFlow, generalizes the heavy lifting of machine learning using Google
 Cloud Platform infrastructure under the hood.

 Part 5 wraps up by looking at large-scale data processing and analytics, and how Google Cloud Platform’s infrastructure can be used
 to get more performance at a lower total cost.

 	
Chapter 19 explores large-scale data analytics using Google’s BigQuery, showing how you can scan over terabytes of data in a matter
 of seconds.

 	
Chapter 20 dives into more advanced large-scale data processing using Apache Beam and Google Cloud Dataflow.

 	
Chapter 21 explains how to handle large-scale distributed messaging with Google Cloud Pub/Sub.

About the code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes boldface is used to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing
 line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

Book forum

 Purchase of Google Cloud Platform in Action includes free access to a private web forum run by Manning Publications where
 you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access
 the forum, go to https://forums.manning.com/forums/google-cloud-platform-in-action. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author challenging questions
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the author

 JJ Geewax received his Bachelor of Science in Engineering in Computer Science from the University of Pennsylvania in 2008.
 While an undergrad at UPenn he joined Invite Media, a platform that enables customers to buy online ads in real time. In 2010
 Invite Media was acquired by Google and, as their largest internal cloud customer, became the first large user of Google Cloud
 Platform. Since then, JJ has worked as a Senior Staff Software Engineer at Google, currently specializing in API design, specifically
 for Google Cloud Platform.

About the cover illustration

 The figure on the cover of Google Cloud Platform in Action is captioned, “Barbaresque Enveloppe Iana son Manteaul.” The illustration
 is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled
 Costumes de différents pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s
 collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from
 each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
 they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard
 to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
 cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Grasset de Saint-Sauveur’s pictures.

Part 1. Getting started

 This part of the book will help set the stage for the rest of our exploration of Google Cloud Platform.

 In chapter 1 we’ll look at what “cloud” actually means and some of the principles that you should expect to bump into when using cloud
 services. Next, in chapter 2, you’ll take Google Cloud Platform for a test drive by setting up your own Word Press instance using Google Compute Engine.
 Finally, in chapter 3, we’ll explore how cloud data centers work and how you should think about location in the amorphous world of the cloud.

 When you’re finished with this part of the book, you’ll be ready to dig much deeper into individual products and see how they
 all fit together to build bigger things.

Chapter 1. What is “cloud”?

 This chapter covers

 	Overview of “the cloud”

 	When and when not to use cloud hosting and what to expect

 	Explanation of cloud pricing principles

 	What it means to build an application for the cloud

 	A walk-through of Google Cloud Platform

 The term “cloud” has been used in many different contexts and it has many different definitions, so it makes sense to define
 the term—at least for this book.

 Cloud is a collection of services that helps developers focus on their project rather than on the infrastructure that powers it.

 In more concrete terms, cloud services are things like Amazon Elastic Compute Cloud (EC2) or Google Compute Engine (GCE),
 which provide APIs to provision virtual servers, where customers pay per hour for the use of these servers.

 In many ways, cloud is the next layer of abstraction in computer infrastructure, where computing, storage, analytics, networking,
 and more are all pushed higher up the computing stack. This structure takes the focus of the developer away from CPUs and RAM and toward APIs for higher-level
 operations such as storing or querying for data. Cloud services aim to solve your problem, not give you low-level tools for
 you to do so on your own. Further, cloud services are extremely flexible, with most requiring no provisioning or long-term
 contracts. Due to this, relying on these services allows you to scale up and down with no advanced notice or provisioning,
 while paying only for the resources you use in a given month.

1.1. What is Google Cloud Platform?

 There are many cloud providers out there, including Google, Amazon, Microsoft, Rackspace, DigitalOcean, and more. With so
 many competitors in the space, each of these companies must have its own take on how to best serve customers. It turns out
 that although each provides many similar products, the implementation and details of how these products work tends to vary
 quite a bit.

 Google Cloud Platform (often abbreviated as GCP) is a collection of products that allows the world to use some of Google’s
 internal infrastructure. This collection includes many things that are common across all cloud providers, such as on-demand
 virtual machines via Google Compute Engine or object storage for storing files via Google Cloud Storage. It also includes
 APIs to some of the more advanced Google-built technology, like Bigtable, Cloud Datastore, or Kubernetes.

 Although Google Cloud Platform is similar to other cloud providers, it has some differences that are worth mentioning. First,
 Google is “home” to some amazing people, who have created some incredible new technologies there and then shared them with
 the world through research papers. These include MapReduce (the research paper that spawned Hadoop and changed how we handle
 “Big Data”), Bigtable (the paper that spawned Apache HBase), and Spanner. With Google Cloud Platform, many of these technologies
 are no longer “only for Googlers.”

 Second, Google operates at such a scale that it has many economic advantages, which are passed on in the form of lower prices.
 Google owns immense physical infrastructure, which means it buys and builds custom hardware to support it, which means cheaper
 overall prices, often combined with improved performance. It’s sort of like Costco letting you open up that 144-pack of potato
 chips and pay 1/144th the price for one bag.

1.2. Why cloud?

 So why use cloud in the first place? First, cloud hosting offers a lot of flexibility, which is a great fit for situations
 where you don’t know (or can’t know) how much computing power you need. You won’t have to overprovision to handle situations
 where you might need a lot of computing power in the morning and almost none overnight.

 Second, cloud hosting comes with the maintenance built in for several products. This means that cloud hosting results in minimal
 extra work to host your systems compared to other options where you might need to manage your own databases, operating systems,
 and even your own hardware (in the case of a colocated hosting provider). If you don’t want to (or can’t) manage these types
 of things, cloud hosting is a great choice.

 1.2.1. Why not cloud?

 Obviously this book is focused on using Google Cloud Platform, so there’s an assumption that cloud hosting is a good option
 for your company. It seems worthwhile, however, to devote a few words to why you might not want to use cloud hosting. And yes, there are times when cloud is not the best choice, even if it’s often the cheapest of
 all the options.

 Let’s start with an extreme example: Google itself. Google’s infrastructural footprint is exabytes of data, hundreds of thousands
 of CPUs, a relatively stable and growing overall workload. In addition, Google is a big target for attacks (for example, denial-of-service
 attacks) and government espionage and has the budget and expertise to build gigantic infrastructural footprints. All of these
 things together make Google a bad candidate for cloud hosting.

 Figure 1.1 shows a visual representation of a usage and cost pattern that would be a bad fit for cloud hosting. Notice how the growth
 of computing needs (the bottom line) steadily increases, and the company is provisioning extra capacity regularly to stay
 ahead of its needs (the top, wavy line).

 Figure 1.1. Steady growth in resource consumption

 [image:]

 Compare this with figure 1.2, which shows a more typical company of the internet age, where growth is spiky and unpredictable and tends to drop without
 much notice. In this case, the company bought enough computing capacity (the top line) to handle a spike, which was needed
 up front, but then when traffic fell (the bottom line), it was stuck with quite a bit of excess capacity.

 Figure 1.2. Unexpected pattern of resource consumption

 [image:]

 In short, if you have the expertise to run your own data centers (including the plans for disasters and other failures, and
 the recovery from those potential disasters), along with steady growing computing needs (measured in cores, storage, networking
 consumption, and so on), cloud hosting might not be right for you. If you’re anything like the typical company of today, where
 you don’t know what you need today (and certainly don’t know what you’ll need several years from today), and don’t have the
 expertise in your company to build out huge data centers to achieve the same economies of scale that large cloud providers
 can offer, cloud hosting is likely to be a good fit for you.

1.3. What to expect from cloud services

 All of the discussion so far has been about cloud in the broader sense. Let’s take a moment to look at some of the more specific
 things that you should expect from cloud services, particularly how cloud specifically differs from other hosting options.

 1.3.1. Computing

 You’ve already learned a little bit about how cloud computing is fundamentally different from virtual private, colocated,
 or on-premises hosting. Let’s take a look at what you can expect if you decide to take the plunge into the world of cloud
 computing.

 The first thing you’ll notice is that provisioning your machine will be fast. Compared to colocated or on-premises hosting,
 it should be significantly faster. In real terms, the typical expected time from clicking the button to connecting via secure
 shell to the machine will be about a minute. If you’re used to virtual private hosting, the provisioning time might be around
 the same, maybe slightly faster.

 What’s more interesting is what is missing in the process of turning on a cloud-hosted virtual machine (VM). If you turn on
 a VM right now, you might notice that there’s no mention of payment. Compare that to your typical virtual private server (VPS),
 where you agree on a set price and purchase the VPS for a full year, making monthly payments (with your first payment immediately,
 and maybe a discount for up-front payment). Google doesn’t mention payment at this time for a simple reason: they don’t know how long you’ll keep that machine running, so there’s no way to know how much to charge you. It can determine
 how much you owe only either at the end of the month or when you turn off the VM. See table 1.1 for a comparison.

 Table 1.1. Hosting choice comparison

 	
 Hosting choice

 	
 Best if...

 	
 Kind of like...

 	Building your own data center
 	You have steady long-term needs at a large scale.
 	Purchasing a car

 	Using your own hardware in a colocation facility
 	You have steady long-term needs at a smaller scale.
 	Leasing a car

 	Using virtual private hosting
 	You have slowly changing needs.
 	Renting a car

 	Using cloud hosting
 	You have rapidly changing (or unknown) needs.
 	Taking an Uber

 1.3.2. Storage

 Storage, although not the most glamorous part of computing, is incredibly necessary. Imagine if you weren’t able to save your
 data when you were done working on it? Cloud’s take on storage follows the same pattern you’ve seen so far with computing,
 abstracting away the management of your physical resources. This might seem unimpressive, but the truth is that storing data
 is a complicated thing to do. For example, do you want your data to be edge-cached to speed up downloads for users on the
 internet? Are you optimizing for throughput or latency? Is it OK if the “time to first byte” is a few seconds? How available
 do you need the data to be? How many concurrent readers do you need to support?

 The answers to these questions change what you build in significant ways, so much so that you might end up building entirely
 different products if you were the one building a storage service. Ultimately, the abstraction provided by a storage service
 gives you the ability to configure your storage mechanisms for various levels of performance, durability, availability, and
 cost.

 But these systems come with a few trade-offs. First, the failure aspects of storing data typically disappear. You shouldn’t
 ever get a notification or a phone call from someone saying that a hard drive failed and your data was lost. Next, with reduced-availability
 options, you might occasionally try to download your data and get an error telling you to try again later, but you’ll be paying
 much less for storage of that class than any other. Finally, for virtual disks in the cloud, you’ll notice that you have lots
 of choices about how you can store your data, both in capacity (measured in GB) and in performance (typically measured in
 input/output operations per second [IOPS]). Once again, like computing in the cloud, storing data on virtual disks in the
 cloud feels familiar.

 On the other hand, some of the custom database services, like Cloud Datastore, might feel a bit foreign. These systems are
 in many ways completely unique to cloud hosting, relying on huge, shared, highly scalable systems built by and for Google.
 For example, Cloud Datastore is an adapted externalization of an internal storage system called Megastore, which was, until recently,
 the underlying storage system for many Google products, including Gmail. These hosted storage systems sometimes required you
 to integrate your own code with a proprietary API. This means that it’ll become all the more important to keep a proper layer
 of abstraction between your code base and the storage layer. It still may make sense to rely on these hosted systems, particularly
 because all of the scaling is handled automatically.

 1.3.3. Analytics (aka, Big Data)

 Analytics, although not something typically considered “infrastructure,” is a quickly growing area of hosting—though you might
 often see this area called “Big Data.” Most companies are logging and storing almost everything, meaning the amount of data
 they have to analyze and use to draw new and interesting conclusions is growing faster and faster every day. This also means
 that to help make these enormous amounts of data more manageable, new and interesting open source projects are popping up,
 such as Apache Spark, HBase, and Hadoop.

 As you might guess, many of the large companies that offer cloud hosting also use these systems, but what should you expect
 to see from cloud in the analytics and big data areas?

 1.3.4. Networking

 Having lots of different pieces of infrastructure running is great, but without a way for those pieces to talk to each other,
 your system isn’t a single system—it’s more of a pile of isolated systems. That’s not a big help to anyone. Traditionally,
 we tend to take networking for granted as something that should work. For example, when you sign up for virtual private hosting
 and get access to your server, you tend to expect that it has a connection to the internet and that it will be fast enough.

 In the world of cloud computing some of these assumptions remain unchanged. The interesting parts come up when you start developing
 the need for more advanced features, such as faster-than-normal network connections, advanced firewalling abilities (where
 you only allow certain IPs to talk to certain ports), load balancing (where requests come in and can be handled by any one
 of many machines), and SSL certificate management (where you want requests to be encrypted but don’t want to manage the certificates
 for each individual virtual machine).

 In short, networking on traditional hosting is typically hidden, so most people won’t notice any differences, because there’s
 usually nothing to notice. For those of you who do have a deep background in networking, most of the things you can do with
 your typical computing stack (such as configure VPNs, set up firewalls with iptables, and balance requests across servers using HAProxy) are all still possible. Google Cloud’s networking features only act to
 simplify the common cases, where instead of running a separate VM with HAProxy, you can rely on Google’s Cloud Load Balancer
 to route requests.

 1.3.5. Pricing

 In the technology industry, it’s been commonplace to find a single set of metrics and latch on to those as the only factors
 in a decision-making process. Although many times that is a good heuristic in making the decision, it can take you further
 away from the market when estimating the total cost of infrastructure and comparing against the market price of the physical
 goods. Comparing only the dollar cost of buying the hardware from a vendor versus a cloud hosting provider is going to favor
 the vendor, but it’s not an apples-to-apples comparison. So how do we make everything into apples?

 When trying to compare costs of hosting infrastructure, one great metric to use is TCO, or total cost of ownership. This metric
 factors in not only the cost of purchasing the physical hardware but also ancillary costs such as human labor (like hardware
 administrators or security guards), utility costs (electricity or cooling), and one of the most important pieces—support and
 on-call staff who make sure that any software services running stay that way, at all hours of the night. Finally, TCO also
 includes the cost of building redundancy for your systems so that, for example, data is never lost due to a failure of a single
 hard drive. This cost is more than the cost of the extra drive—you need to not only configure your system, but also have the
 necessary knowledge to design the system for this configuration. In short, TCO is everything you pay for when buying hosting.

 If you think more deeply about the situation, TCO for hosting will be close to the cost of goods sold for a virtual private
 hosting company. With cloud hosting providers, TCO is going to be much closer to what you pay. Due to the sheer scale of these
 cloud providers, and the need to build these tools and hire the ancillary labor anyway, they’re able to reduce the TCO below
 traditional rates, and every reduction in TCO for a hosting company introduces more room for a larger profit margin.

1.4. Building an application for the cloud

 So far this chapter has been mainly a discussion on what cloud is and what it means for developers looking to rely on it rather
 than traditional hosting options. Let’s switch gears now and demonstrate how to deploy something meaningful using Google Cloud
 Platform.

 1.4.1. What is a cloud application?

 In many ways, an application built for the cloud is like any other. The primary difference is in the assumptions made about
 the application’s architecture. For example, in a traditional application, we tend to deploy things such as binaries running
 on particular servers (for example, running a MySQL database on one server and Apache with mod_php on another). Rather than thinking in terms of which servers handle which things, a typical cloud application relies on hosted
 or managed services whenever possible. In many cases it relies on containers the way a traditional application would rely
 on servers. By operating this way, a cloud application is often much more flexible and able to grow and shrink, depending
 on the customer demand throughout the day.

 Let’s take a moment to look at an example of a cloud application and how it might differ from the more traditional applications
 that you might already be familiar with.

 1.4.2. Example: serving photos

 If you’ve ever built a toy project that allows users to upload their photos (for example, a Facebook clone that stores a profile
 photo), you’re probably familiar with dealing with uploaded data and storing it. When you first started, you probably made
 the age-old mistake of adding a BINARY or VARBINARY column to your database, calling it profile_photo, and shoving any uploaded data into that column.

 If that’s a bit too technical, try thinking about it from an architectural standpoint. The old way of doing this was to store
 the image data in your relational database, and then whenever someone wanted to see the profile photo, you’d retrieve it from
 the database and return it through your web server, as shown in figure 1.3.

 Figure 1.3. Serving photos dynamically through your web server

 [image:]

 In case it wasn’t clear, this is bad for a variety of reasons. First, storing binary data in your database is inefficient.
 It does work for transactional support, which profile photos probably don’t need. Second, and most important, by storing the
 binary data of a photo in your database, you’re putting extra load on the database itself, but not using it for the things
 it’s good at, like joining relational data together.

 In short, if you don’t need transactional semantics on your photo (which here, we don’t), it makes more sense to put the photo
 somewhere on a disk and then use the static serving capabilities of your web server to deliver those bytes, as shown in figure 1.4. This leaves the database out completely, so it’s free to do more important work.

 Figure 1.4. Serving photos statically through your web server

 [image:]

 This structure is a huge improvement and probably performs quite well for most use cases, but it doesn’t illustrate anything
 special about the cloud. Let’s take it a step further and consider geography for a moment. In your current deployment, you
 have a single web server living somewhere inside a data center, serving a photo it has stored locally on its disk. For simplicity,
 let’s assume this server lives somewhere in the central United States. This means that if someone nearby (for example, in
 New York) requests that photo, they’ll get a relatively zippy response. But what if someone far away, like in Japan, requests
 the photo? The only way to get it is to send a request from Japan to the United States, and then the server needs to ship
 all the bytes from the United States back to Japan.

 This transaction could take on the order of hundreds of milliseconds, which might not seem like a lot, but imagine you start
 requesting lots of photos on a single page. Those hundreds of milliseconds start adding up. What can you do about this? Most
 of you might already know the answer is edge caching, or relying on a content distribution network. The idea of these services
 is that you give them copies of your data (in this case, the photos), and they store those copies in lots of different geographical
 locations. Then, instead of sending a URL to the image on your single server, you send a URL pointing to this content distribution
 provider, and it returns the photo using the closest available server. So where does cloud come in?

 Instead of optimizing your existing storage setup, the goal of cloud hosting is to provide managed services that solve the
 problem from start to finish. Instead of storing the photo locally and then optimizing that configuration by using a content
 delivery network (CDN), you’d use a managed storage service, which handles content distribution automatically—exactly what
 Google Cloud Storage does.

 In this case, when someone uploads a photo to your server, you’d resize it and edit it however you want, and then forward
 the final image along to Google Cloud Storage, using its API client to ship the bytes securely. See figure 1.5. After that, all you’d do is refer to the photo using the Cloud Storage URL, and all of the problems from before are taken
 care of.

 Figure 1.5. Serving photos statically through Google Cloud Storage

 [image:]

 This is only one example, but the theme you should take away from this is that cloud is more than a different way of managing
 computing resources. It’s also about using managed or hosted services via simple APIs to do complex things, meaning you think less about the physical computers.

 More complex examples are, naturally, more difficult to explain quickly, so next let’s introduce a few specific examples of
 companies or projects you might build or work on. We’ll use these later to explore some of the interesting ways that cloud
 infrastructure attempts to solve the common problems found with these projects.

 1.4.3. Example projects

 Let’s explore a few concrete examples of projects you might work on.

To-Do List

 If you’ve ever researched a new web development framework, you’ve probably seen this example paraded around, showcasing the
 speed at which you can do something real. (“Look how easy it is to make a to-do list app with our framework!”) To-Do List
 is nothing more than an application that allows users to create lists, add items to the lists, and mark them as complete.

 Throughout this book, we rely on this example to illustrate how you might use Google Cloud for your personal projects, which
 quite often involve storing and retrieving data and serving either API or web requests to users. You’ll notice that the focus
 of this example is building something “real,” but it won’t cover all of the edge cases (and there may be many) or any of the
 more advanced or enterprise-grade features. In short, the To-Do List is a useful demonstration of doing something real, but
 incredibly simple, with cloud infrastructure.

InstaSnap

 InstaSnap is going to be our typical example of “the next big thing” in the start-up world. This application allows users
 to take photos or videos, share them on a “timeline” (akin to the Instagram or Facebook timeline), and have them self-destruct
 (akin to the SnapChat expiration).

 The wrench thrown in with InstaSnap is that although in the early days most of the focus was on building the application,
 the current focus is on scaling the application to handle hundreds of thousands of requests every single second. Additionally,
 all of these photos and videos, though small on their own, add up to enormous amounts of data. In addition, celebrities have
 started using the system, meaning it’s becoming more and more common for thousands of people to request the same photos at
 the same time. We’ll rely on this example to demonstrate how cloud infrastructure can be used to achieve stability even in
 the face of an incredible number of requests. We also may use this example when pointing out some of the more advanced features
 provided by cloud infrastructure.

E*Exchange

 E*Exchange is our example of more grown-up application development that tends to come with growing from a small or mid-sized
 company into a larger, more mature, more heavily capitalized company, which means audits, Sarbanes-Oxley, and all the other
 (potentially scary) requirements. To make things more complicated, E*Exchange is an application for trading stocks in the
 United States, and, therefore, will act as an example of applications operating in more highly regulated industries, such
 as finance.

 E*Exchange comes up whenever we explore several of the many enterprise-grade features of cloud infrastructure, as well as
 some of the concerns about using shared services, particularly with regard to security and access control. Hopefully these
 examples will help you bridge the gap between cool features that seem fun—or boring features that seem useless—and real-life
 use cases of these features, including how you can rely on cloud infrastructure to do some (or most) of the heavy lifting.

1.5. Getting started with Google Cloud Platform

 Now that you’ve learned a bit about cloud in general, and what Google Cloud Platform can do more specifically, let’s begin
 exploring GCP.

 1.5.1. Signing up for GCP

 Before you can start using any of Google’s Cloud services, you first need to sign up for an account. If you already have a
 Google account (such as a Gmail account), you can use that to log in, but you’ll still need to sign up specifically for a
 cloud account. If you’ve already signed up for Google Cloud Platform (see figure 1.6), feel free to skip ahead. First, navigate to https://cloud.google.com, and click the button that reads “Try it free!” This will take you through a typical Google sign-in process. If you don’t
 have a Google account yet, follow the sign-up process to create one.

 Figure 1.6. Google Cloud Platform

 [image:]

 If you’re eligible for the free trial, you’ll see a page prompting you to enter your billing information. The free trial,
 shown in figure 1.7, gives you $300 to spend on Google Cloud over a period of 12 months, which should be more than enough time to explore all
 the things in this book. Additionally, some of the products on Google Cloud Platform have a free tier of usage. Either way,
 all the exercises in this book will remind you to turn off any resources after the exercise is finished.

 Figure 1.7. Google Cloud Platform free trial

 [image:]

 1.5.2. Exploring the console

 After you’ve signed up, you are automatically taken to the Cloud Console, shown in figure 1.8, and a new project is automatically created for you. You can think of a project like a container for your work, where the
 resources in a single project are isolated from those in all the other projects out there.

 Figure 1.8. Google Cloud Console

 [image:]

 On the left side of the page are categories that correspond to all the different services that Google Cloud Platform offers
 (for example, Compute, Networking, Big Data, and Storage), as well as other project-specific configuration sections (such
 as authentication, project permissions, and billing). Feel free to poke around in the console to familiarize yourself with
 where things live. We’ll come back to all of these things later as we explore each of these areas. Before we go any further, let’s take a moment to look a bit closer at a concept
 that we threw out there: projects.

 1.5.3. Understanding projects

 When we first signed up for Google Cloud Platform, we learned that a new project is created automatically, and that projects
 have something to do with isolation, but what does this mean? And what are projects anyway? Projects are primarily a container
 for all the resources we create. For example, if we create a new VM, it will be “owned” by the parent project. Further, this
 ownership spills over into billing—any charges incurred for resources are charged to the project. This means that the bill
 for the new VM we mentioned is sent to the person responsible for billing on the parent project. (In our examples, this will
 be you!)

 In addition to acting as the owner of resources, projects also act as a way of isolating things from one another, sort of
 like having a workspace for a specific purpose. This isolation applies primarily to security, to ensure that someone with
 access to one project doesn’t have access to resources in another project unless specifically granted access. For example,
 if you create new service account credentials (which we’ll do later) inside one project, say project-a, those credentials have access to resources only inside project-a unless you explicitly grant more access.

 On the flip side, if you act as yourself (for example, you@gmail.com) when running commands (which you’ll try in the next section), those commands can access anything that you have access to
 inside the Cloud Console, which includes all of the projects you’ve created, as well as ones that others have shared with you. This is one of the reasons why you’ll see
 much of the code we write often explicitly specifies project IDs: you might have access to lots of different projects, so
 we have to clarify which one we want to own the thing we’re creating or which project should get the bill for usage charges.
 In general, imagine you’re a freelancer building websites and want to keep the work you do for different clients separate
 from one another. You’d probably have one project for each of the websites you build, both for billing purposes (one bill
 per website) and to keep each website securely isolated from the others. This setup also makes it easy to grant access to
 each client if they want to take ownership over their website or edit something themselves.

 Now that we’ve gotten that out of the way, let’s get back into the swing of things and look at how to get started with the
 Google Cloud software development kit (SDK).

 1.5.4. Installing the SDK

 After you get comfortable with the Google Cloud Console, you’ll want to install the Google Cloud SDK. The SDK is a suite of
 tools for building software that uses Google Cloud, as well as tools for managing your production resources. In general, anything
 you can do using the Cloud Console can be done with the Cloud SDK, gcloud. To install the SDK, go to https://cloud.google.com/sdk/, and follow the instructions for your platform. For example, on a typical Linux distribution, you’d run this code:

 $ export CLOUD_SDK_REPO="cloud-sdk-$(lsb_release -c -s)"
$ echo "deb http://packages.cloud.google.com/apt $CLOUD_SDK_REPO main" | \
 sudo tee -a /etc/apt/sources.list.d/google-cloud-sdk.list
$ curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo \
 apt-key add -
$ sudo apt-get update && sudo apt-get install google-cloud-sdk

 Feel free to install anything that looks interesting to you—you can always add or remove components later on. For each exercise
 that we go through, we always start by reminding you that you may need to install extra components of the Cloud SDK. You also
 may be occasionally prompted to upgrade components as they become available. For example, here’s what you’ll see when it’s
 time to upgrade:

 Updates are available for some Cloud SDK components. To install
them, please run:
 $ gcloud components update

 As you can see, upgrading components is pretty simple: run gcloud components update, and the SDK handles everything. After you have everything installed, you have to tell the SDK who you are by logging in.
 Google made this easy by connecting your terminal and your browser:

 $ gcloud auth login
Your browser has been opened to visit:

 [A long link is here]

 Created new window in existing browser session.

 You should see a normal Google login and authorization screen asking you to grant the Google Cloud SDK access to your cloud
 resources. Now when you run future gcloud commands, you can talk to Google Cloud Platform APIs as yourself. After you click Allow, the window should automatically
 close, and the prompt should update to look like this:

 $ gcloud auth login
Your browser has been opened to visit:

 [A long link is here]

Created new window in existing browser session.
WARNING: `gcloud auth login` no longer writes application default credentials.
If you need to use ADC, see:
 gcloud auth application-default --help

You are now logged in as [your-email-here@gmail.com].
Your current project is [your-project-id-here]. You can change this setting
 by running:
 $ gcloud config set project PROJECT_ID

 You’re now authenticated and ready to use the Cloud SDK as yourself. But what about that warning message? It says that even
 though you’re logged in and all the gcloud commands you run will be authenticated as you, any code that you write may not be. You can make any code you write in the
 future automatically handle authentication by using application default credentials. You can get these using the gcloud auth subcommand once again:

 $ gcloud auth application-default login
Your browser has been opened to visit:

 [Another long link is here]

Created new window in existing browser session.

Credentials saved to file:
 [/home/jjg/.config/gcloud/application_default_credentials.json]

These credentials will be used by any library that requests
Application Default Credentials.

 Now that we have dealt with all of the authentication pieces, let’s look at how to interact with Google Cloud Platform APIs.

1.6. Interacting with GCP

 Now that you’ve signed up and played with the console, and your local environment is all set up, it might be a good idea to
 try a quick practice task in each of the different ways you can interact with GCP. Let’s start by launching a virtual machine
 in the cloud and then writing a script to terminate the virtual machine in JavaScript.

 1.6.1. In the browser: the Cloud Console

 Let’s start by navigating to the Google Compute Engine area of the console: click the Compute section to expand it, and then
 click the Compute Engine link that appears. The first time you click this link, Google initializes Compute Engine for you,
 which should take a few seconds. Once that’s complete, you should see a Create button, which brings you to a page, shown in
 figure 1.9, where you can configure your virtual machine.

 Figure 1.9. Google Cloud Console, where you can create a new virtual machine

 [image:]

 On the next page, a form (figure 1.10) lets you configure all the details of your instance, so let’s take a moment to look at what all of the options are.

 Figure 1.10. Form where you define your virtual machine

 [image:]

 First there is the instance Name. The name of your virtual machine will be unique inside your project. For example, if you
 try to create “instance-1” while you already have an instance with that same name, you’ll get an error saying that name is
 already taken. You can name your machines anything you want, so let’s name our instance “learning-cloud-demo.” Below that
 is the Zone field, which represents where the machine should live geographically. Google has data centers all over the place,
 so you can choose from several options of where you want your instance to live. For now, let’s put our instance in us-central1-b (which is in Iowa).

 Next is the Machine Type field, where you can choose how powerful you want your cloud instances to be. Google has lots of
 different sizing options, ranging from f1-micro (which is a small, not powerful machine) all the way up to n1-highcpu-32 (which is a 32-core machine), or a n1-highmem-32 (which is a 32-core machine with 208 GB of RAM). As you can see, you have quite a few options, but because we’re testing
 things out, let’s leave the machine type as n1-standard-1, which is a single-core machine with about 4 GB of RAM.

 Many, many more knobs let you configure your machine further, but for now, let’s launch this n1-standard-1 machine to test things out. To start the virtual machine, click Create and wait a few seconds.

Testing out your instance

 After your machine is created, you should see a green checkmark in the list of instances in the console. But what can you
 do with this now? You might notice in the Connect column a button that says “SSH” in the cell. See figure 1.11.

 Figure 1.11. The listing of your VM instances

 [image:]

 If you click this button, a new window will pop up, and after waiting a few seconds, you should see a terminal. This terminal
 is running on your new virtual machine, so feel free to play around—typing top or cat /etc/issue or anything else that you’re curious about.

 1.6.2. On the command line: gcloud

 Now that you’ve created an instance in the console, you might be curious how the Cloud SDK comes into play. As mentioned earlier,
 anything that you can do in the Cloud Console can also be done using the gcloud command, so let’s put that to the test by looking at the list of your instances, and then connecting to the instance like
 you did with the SSH button. Let’s start by listing the instances. To do this, type gcloud compute instances list. You should see output that looks something like the following snippet:

 $ gcloud compute instances list
NAME ZONE MACHINE_TYPE PREEMPTIBLE INTERNAL_IP
 EXTERNAL_IP STATUS
learning-cloud-demo us-central1-b n1-standard-1 10.240.0.2
 104.154.94.41 RUNNING

 Cool, right? There’s your instance that you created, as it appears in the console.

Connecting to your instance

 Now that you can see your instance, you probably are curious about how to connect to it like we did with the SSH button. Type
 gcloud compute ssh learning-cloud-demo and choose the zone where you created the machine (us-central1-b). You should be connected to your machine via SSH:

 $ gcloud compute ssh learning-cloud-demo
For the following instances:
 - [learning-cloud-demo]
choose a zone:
 [1] asia-east1-c
 [2] asia-east1-a
 [3] asia-east1-b
 [4] europe-west1-c
 [5] europe-west1-d
 [6] europe-west1-b
 [7] us-central1-f
 [8] us-central1-c
 [9] us-central1-b
 [10] us-central1-a
 [11] us-east1-c
 [12] us-east1-b
 [13] us-east1-d
Please enter your numeric choice: 9

Updated [https://www.googleapis.com/compute/v1/projects/glass-arcade-111313].
Warning: Permanently added '104.154.94.41' (ECDSA) to the list of known hosts.
Linux learning-cloud-demo 3.16.0-0.bpo.4-amd64 #1 SMP Debian 3.16.7-ckt11-
 1+deb8u3~bpo70+1 (2015-08-08) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
jjg@learning-cloud-demo:~$

 Under the hood, Google is using the credentials it obtained when you ran gcloud auth login, generating a new public/private key pair, securely putting the new public key onto the virtual machine, and then using the
 private key generated to connect to the machine. This means that you don’t have to worry about key pairs when connecting.
 As long as you have access to your Google account, you can always access your virtual machines!

 1.6.3. In your own code: google-cloud-*

 Now that we’ve created an instance inside the Cloud Console, then connected to that instance from the command line using the
 Cloud SDK, let’s explore the last way you can interact with your resources: in your own code. What we’ll do in this section
 is write a small Node.js script that connects and terminates your instance. This has the fun side effect of turning off your
 machine so you don’t waste any money during your free trial! To start, if you don’t have Node.js installed, you can do that
 by going to https://nodejs.org and downloading the latest version. You can test that all of this worked by running the node command with the --version flag:

 $ node --version
v7.7.1

 After this, install the Google Cloud client library for Node.js. You can do this with the npm command:

 $ sudo npm install --save @google-cloud/compute@0.7.1

 Now it’s time to start writing some code that connects to your cloud resources. To start, let’s try to list the instances
 currently running. Put the following code into a script called script.js, and then run it using node script.js.

 Listing 1.1. Showing all VMs (script.js)

 const gce = require('@google-cloud/compute')({
 projectId: 'your-project-id' 1
});
const zone = gce.zone('us-central1-b');

console.log('Getting your VMs...');

zone.getVMs().then((data) => {
 data[0].forEach((vm) => {
 console.log('Found a VM called', vm.name);
 });
 console.log('Done.');
});

 	1 Make sure to change this to your project ID!

 If you run this script, the output should look something like the following:

 $ node script.js
Getting your VMs...
Found a VM called learning-cloud-demo
Done.

 Now that we know how to list the VMs in a given zone, let’s try turning off the VM using our script. To do this, update your
 code to look like this.

 Listing 1.2. Showing and stopping all VMs

 const gce = require('@google-cloud/compute')({
 projectId: 'your-project-id'
});
const zone = gce.zone('us-central1-b');

console.log('Getting your VMs...');

zone.getVMs().then((data) => {
 data[0].forEach((vm) => {
 console.log('Found a VM called', vm.name);
 console.log('Stopping', vm.name, '...');
 vm.stop((err, operation) => {
 operation.on('complete', (err) => {
 console.log('Stopped', vm.name);
 });
 });
 });
});

 This script might take a bit longer to run, but when it’s complete, the output should look something like the following:

 $ node script.js
Getting your VMs...
Found a VM called learning-cloud-demo
Stopping learning-cloud-demo ...
Stopped learning-cloud-demo

 The virtual machine we started in the UI is in a “stopped” state and can be restarted later. Now that we’ve played with virtual
 machines and managed them with all of the tools available (the Cloud Console, the Cloud SDK, and your own code), let’s keep
 the ball rolling by learning how to deploy a real application using Google Compute Engine.

Summary

 	
Cloud has become a buzzword, but for this book it’s a collection of services that abstract away computer infrastructure.

 	Cloud is a good fit if you don’t want to manage your own servers or data centers and your needs change often or you don’t
 know them.

 	Cloud is a bad fit if your usage is steady over long periods of time.

 	When in doubt, if you need tools for GCP, start at http://cloud.google.com.

Chapter 2. Trying it out: deploying WordPress on Google Cloud

 This chapter covers

 	What is WordPress?

 	Laying out the pieces of a WordPress deployment

 	Turning on a SQL database to store your data

 	Turning on a VM to run WordPress

 	Turning everything off

 If you’ve ever explored hosting your own website or blog, chances are you’ve come across (or maybe even installed) WordPress.
 There’s not a lot of debate about WordPress’s popularity, with millions of people relying on it for their websites and blogs,
 but many public blogs are hosted by other companies, such as HostGator, BlueHost, or WordPress’s own hosted service, WordPress.com
 (not to be confused with the open source project WordPress.org).

 To demonstrate the simplicity of Google Cloud, this chapter is going to walk you through deploying WordPress yourself using
 Google Compute Engine and Google Cloud SQL to host your infrastructure.

 	

 Note

 The pieces we’ll turn on here will be part of the free trial from Google. If you run them past your free trial, however, your
 system will cost around a few dollars per month.

 	

 First, let’s put together an architectural plan for how we’ll deploy WordPress using all the cool new tools you learned about
 in the previous chapter.

2.1. System layout overview

 Before we get down to the technical pieces of turning on machines, let’s start by looking at what we need to turn on. We’ll
 do this by looking at the flow of an ideal request through our future system. We’re going to imagine a person visiting our
 future blog and look at where their request needs to go to give them a great experience. We’ll start with a single machine,
 shown in figure 2.1, because that’s the simplest possible configuration.

 Figure 2.1. Flow of a future request to a VM running WordPress

 [image:]

 As you can see here, the flow is

 1. Someone asks the WordPress server for a page.

 2. The WordPress server queries the database.

 3. The database sends back a result (for example, the content of the page).

 4. The WordPress server sends back a web page.

 Simple enough, right? What happens as things get a bit more complex? Although we won’t demonstrate this configuration here,
 you might recall in chapter 1 where we discussed the idea of relying on cloud services for more complicated hosting problems like content distribution.
 (For example, if your servers are in the United States, what’s the experience going to be like for your readers in Asia?)
 To give an idea of how this might look, figure 2.2 shows a flow diagram for a WordPress server using Google Cloud Storage to handle static content (like images).

 Figure 2.2. Flow of a request involving Google Cloud Storage

 [image:]

 In this case, the flow is the same to start. Unlike before, however, when static content is requested, it doesn’t reuse the
 same flow. In this configuration, your WordPress server modifies references to static content so that rather than requesting
 it from the WordPress server, the browser requests it from Google Cloud Storage (steps 5 and 6 in figure 2.2).

 This means that requests for images and other static content will be handled directly by Google Cloud Storage, which can do
 fancy things like distributing your content around the world and caching the data close to your readers. This means that your
 static content will be delivered quickly no matter how far users are from your WordPress server. Now that you have an idea
 of how the pieces will talk to each other, it’s time to start exploring each piece individually and find out what exactly
 is happening under the hood.

2.2. Digging into the database

 We’ve drawn this picture involving a database, but we haven’t said much about what type of database. Tons of databases are
 available, but one of the most popular open source databases is MySQL, which you’ve probably heard of. MySQL is great at storing
 relational data and has plenty of knobs to turn for when you need to start squeezing more performance out of it. For now,
 we’re not all that concerned about performance, but it’s nice to know that we’ll have some wiggle room if things get bigger.

 In the early days of cloud computing, the standard way to turn on a database like MySQL was to create a virtual machine, install
 the MySQL binary package, and then manage that virtual machine like any regular server. But as time went on, cloud providers
 started noticing that databases all seemed to follow this same pattern, so they started offering managed database services,
 where you don’t have to configure the virtual machine yourself but instead turn on a managed virtual machine running a specific
 binary.

 All of the major cloud-hosting providers offer this sort of service—for example, Amazon has Relational Database Service (RDS),
 Azure has SQL Database service, and Google has Cloud SQL service. Managing a database via Cloud SQL is quicker and easier than configuring and managing the underlying virtual machine and its software, so we’re going to use Cloud SQL
 for our database. This service isn’t always going to be the best choice (see chapter 4 for much more detail about Cloud SQL), but for our WordPress deployment, which is typical, Cloud SQL is a great fit. It looks
 almost identical to a MySQL server that you’d configure yourself, but is easier and faster to set up.

 2.2.1. Turning on a Cloud SQL instance

 The first step to turning on our database is to jump into the Cloud Console by going to the Cloud Console (cloud.google.com/console)
 and then clicking SQL in the left-side navigation, underneath the Storage section. You’ll see the blue Create instance button,
 shown in figure 2.3.

 Figure 2.3. Prompt to create a new Cloud SQL instance

 [image:]

 When you select a Second Generation instance (see chapter 4 for more detail on these), you’ll be taken to a page where you can enter some information about your database. See figure 2.4. The first thing you should notice is that this page looks a little bit like the one you saw when creating a virtual machine.
 This is intentional—you’re creating a virtual machine that Google will manage for you, as well as install and configure MySQL
 for you. Like with a virtual machine, you need to name your database. For this exercise, let’s name the database wordpress-db (also like VMs, the name has to be unique inside your project, so you can have only one database with this name at a time).

 Figure 2.4. Form to create a new Cloud SQL instance

 [image:]

 Next let’s choose a password to access MySQL. Cloud Console can automatically generate a new secure password, or you can choose
 your own. We’ll choose my-very-long-password! as our password. Finally, again like a VM, you have to choose where (geographically) you want your database to live. For
 this example, we’ll use us-central1-c as our zone.

 To do any further configuration, click Show configuration options near the bottom of the page. For example, we might want
 to change the size of the VM instance for our database (by default, this uses a db-n1-standard-1 type instance) or increase the size of the underlying disk (by default, Cloud SQL starts with a 10 GB SSD disk). You can change all the options on this
 page later—in fact, the size of your disk automatically increases as needed—so let’s leave them as they are and create our
 instance. After you’ve created your instance, you can use the gcloud command-line tool to show that it’s all set with the gcloud sql command:

 $ gcloud sql instances list
NAME REGION TIER ADDRESS STATUS
wordpress-db - db-n1-standard-1 104.197.207.227 RUNNABLE

 	

 Tip

 Can you think of a time that you might have a large persistent disk that will be mostly empty? Take a look at chapter 9 if you’re not sure.

 	

 2.2.2. Securing your Cloud SQL instance

 Before you go any further, you should probably change a few settings on your SQL instance so that you (and, hopefully, only
 you) can connect to it. For your testing phase you will change the password on the instance and then open it up to the world.
 Then, after you test it, you’ll change the network settings to allow access only from your Compute Engine VMs. First let’s
 change the password. You can do this from the command line with the gcloud sql users set-password command:

 $ gcloud sql users set-password root "%" --password "my-changed-long-
 password-2!" --instance wordpress-db
Updating Cloud SQL user...done.

 In this example, you reset the password for the root user across all hosts. (The MySQL wildcard character is a percent sign.) Now let’s (temporarily) open the SQL instance to
 the outside world. In the Cloud Console, navigate to your Cloud SQL instance. Open the Authorization tab, click the Add network
 button, add “the world” in CIDR notation (0.0.0.0/0, which means “all IPs possible”), and click Save. See figure 2.5.

 Figure 2.5. Configuring access to the Cloud SQL instance

 [image:]

 	

 Warning

 You’ll notice a warning about opening your database to any IP address. This is OK for now because we’re doing some testing,
 but you should never leave this setting for your production environments. You’ll learn more about securing your SQL instance for your cluster later.

 	

 Now it’s time to test whether all of this worked.

 2.2.3. Connecting to your Cloud SQL instance

 If you don’t have a MySQL client, the first thing to do is install one. On a Linux environment like Ubuntu you can install
 it by typing the following code:

 $ sudo apt-get install -y mysql-client

 On Windows or Mac, you can download the package from the MySQL website: http://dev.mysql.com/downloads/mysql/. After installation, connect to the database by entering the IP address of your instance (you saw this before with gcloud sql instances list). Use the username “root”, and the password you set earlier. Here’s this process on Linux:

 $ mysql -h 104.197.207.227 -u root -p
Enter password: # <I typed my password here>
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 59
Server version: 5.7.14-google-log (Google)

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
 statement.

mysql>

 Next let’s run a few SQL commands to prepare your database for WordPress.

 2.2.4. Configuring your Cloud SQL instance for WordPress

 Let’s get the MySQL database prepared for WordPress to start talking to it. Here’s a basic outline of what we’re going to
 do:

 1. Create a database called wordpress.

 2. Create a user called wordpress.

 3. Give the wordpress user the appropriate permissions.

 The first thing is to go back to that MySQL command-line prompt. As you learned, you can do this by running the mysql command. Next up is to create the database by running this code:

 mysql> CREATE DATABASE wordpress;
Query OK, 1 row affected (0.10 sec)

 Then you need to create a user account for WordPress to use for access to the database:

 mysql> CREATE USER wordpress IDENTIFIED BY 'very-long-wordpress-password';
Query OK, 0 rows affected (0.21 sec)

 Next you need to give this new user the right level of access to do things to the database (like create tables, add rows,
 run queries, and so on):

 mysql> GRANT ALL PRIVILEGES ON wordpress.* TO wordpress;
Query OK, 0 rows affected (0.20 sec)

 Finally let’s tell MySQL to reload the list of users and privileges. If you forget this command, MySQL would know about the
 changes when it restarts, but you don’t want to restart your Cloud SQL instance for this:

 mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.12 sec)

 That’s all you have to do on the database! Next let’s make it do something real.

 	

 Quiz

 How does your database get backed up? Take a look at chapter 4 on Cloud SQL if you’re not sure.

 	

2.3. Deploying the WordPress VM

 Let’s start by turning on the VM that will host our WordPress installation. As you learned, you can do this easily in the
 Cloud Console, so let’s do that once more. See figure 2.6.

 Figure 2.6. Creating a new VM instance

 [image:]

 Take note that the check boxes for allowing HTTP and HTTPS traffic are selected because we want our WordPress server to be
 accessible to anyone through their browsers. Also make sure that the Access Scopes section is set to allow default access.
 After that, you’re ready to turn on your VM, so go ahead and click Create.

 	

 Quiz

 	
Where does your virtual machine physically exist?

 	What will happen if the hardware running your virtual machine has a problem?

 Take a look at chapter 3 if you’re not sure.

 	

2.4. Configuring WordPress

 The first thing to do now that your VM is up and running is to connect to it via SSH. You can do this in the Cloud Console
 by clicking the SSH button, or use the Cloud SDK with the gcloud compute ssh command. For this walkthrough, you’ll use the Cloud SDK to connect to your VM:

 $ gcloud compute ssh --zone us-central1-c wordpress
Warning: Permanently added 'compute.6766322253788016173' (ECDSA) to the list
 of known hosts.
Welcome to Ubuntu 16.04.3 LTS (GNU/Linux 4.13.0-1008-gcp x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 Get cloud support with Ubuntu Advantage Cloud Guest:
 http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

jjg@wordpress:~$

 After you’re connected, you need to install a few packages, namely Apache, MySQL Client, and PHP. You can do this using apt-get:

 jj@wordpress:~$ sudo apt-get update
jj@wordpress:~$ sudo apt-get install apache2 mysql-client php7.0-mysql php7.0
 libapache2-mod-php7.0 php7.0-mcrypt php7.0-gd

 When prompted, confirm by typing Y and pressing Enter. Now that you have all the prerequisites installed, it’s time to install WordPress. Start by downloading
 the latest version from wordpress.org and unzipping it into your home directory:

 jj@wordpress:~$ wget http://wordpress.org/latest.tar.gz
jj@wordpress:~$ tar xzvf latest.tar.gz

 You’ll need to set some configuration parameters, primarily where WordPress should store data and how to authenticate. Copy
 the sample configuration file to wp-config.php, and then edit the file to point to your Cloud SQL instance. In this example, I’m using Vim, but you can use whichever text
 editor you’re most comfortable with:

 jj@wordpress:~$ cd wordpress
jj@wordpress:~/wordpress$ cp wp-config-sample.php wp-config.php
jj@wordpress:~/wordpress$ vim wp-config.php

 After editing wp-config.php, it should look something like the following listing.

 Listing 2.1. WordPress configuration after making changes for your environment

 <?php
/**
 * The base configuration for WordPress
 *
 * The wp-config.php creation script uses this file during the
 * installation. You don't have to use the website, you can
 * copy this file to "wp-config.php" and fill in the values.
 *
 * This file contains the following configurations:
 *
 * * MySQL settings
 * * Secret keys
 * * Database table prefix
 * * ABSPATH
 *
 * @link https://codex.wordpress.org/Editing_wp-config.php
 *
 * @package WordPress
 */

/** MySQL settings - You can get this info from your web host **/
/** The name of the database for WordPress */
define('DB_NAME', 'wordpress');

/** MySQL database username */
define('DB_USER', 'wordpress');

/** MySQL database password */
define('DB_PASSWORD', 'very-long-wordpress-password');

/** MySQL hostname */
define('DB_HOST', '104.197.207.227');

/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8');

/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');

 After you have your configuration set (you should need to change only the database settings), move all those files out of
 your home directory and into somewhere that Apache can serve them. You also need to remove the Apache default page, index.html. The easiest way to do this is using rm and then rsync:

 jj@wordpress:~/wordpress$ sudo rm /var/www/html/index.html
jj@wordpress:~/wordpress$ sudo rsync -avP ~/wordpress/ /var/www/html/

 Now navigate to the web server in your browser (for example, http://104.197.86.115 in this specific example), which should
 end up looking like figure 2.7.

 Figure 2.7. WordPress is up and running.

 [image:]

 From there, following the prompts should take about 5 minutes, and you’ll have a working WordPress installation!

2.5. Reviewing the system

 So what did you do here? You set up quite a few different pieces:

 	You turned on a Cloud SQL instance to store all of your data.

 	You added a few users and changed the security rules.

 	You turned on a Compute Engine virtual machine.

 	You installed WordPress on that VM.

 Did you forget anything? Do you remember when you set the security rules on the Cloud SQL instance to accept connections from
 anywhere (0.0.0.0/0)? Now that you know from where to accept requests (your VM), you should fix that. If you don’t, the database is vulnerable
 to attacks from the whole world. But if we lock down the database at the network level, even if someone discovers the password,
 it’s useful only if they are connecting from one of our known machines.

 To do this, go to the Cloud Console, and navigate to your Cloud SQL instance. On the Access Control tab, edit the Authorized
 Network, changing 0.0.0.0/0 to the IP address followed by /32 (for example, 104.197.86.115/32), and rename the rule to read us-central1-c/wordpress so you don’t forget what this rule is for. When you’re done, the access control rules should look like figure 2.8.

 Figure 2.8. Updating the access configuration for Cloud SQL

 [image:]

 Remember that the IP of your VM instance could change. To avoid that, you’ll need to reserve a static IP address, but we’ll
 dig into that later on when we explore Compute Engine in more depth.

2.6. Turning it off

 If you want to keep your WordPress instance running, you can skip past this section. (Maybe you have always wanted to host
 your own blog, and the demo we picked happened to be perfect for you?) If not, let’s go through the process of turning off
 all those resources you created.

 The first thing to turn off is the GCE virtual machine. You can do this using the Cloud Console in the Compute Engine section.
 When you select your instance, you see two options, Stop and Delete. The difference between them is subtle but important.
 When you delete an instance, it’s gone forever, like it never existed. When you stop an instance, it’s still there, but in a paused state from which you can pick up exactly where you left off.

 So why wouldn’t we always stop instances rather than delete them? The catch with stopping is that you have to keep your persistent
 disks around, and those cost money. You won’t be paying for CPU cycles on a stopped instance, but the disk that stores the
 operating system and all your configuration settings needs to stay around. You are billed for your disks whether or not they’re
 attached to a running virtual machine. In this case, if you’re done with your WordPress installation, the right choice is
 probably deleting rather than stopping it. When you click delete, you should notice that the confirmation prompt reminds you
 that your disk (the boot disk) will also be deleted. See figure 2.9.

 Figure 2.9. Deleting the VM when we’re finished

 [image:]

 After that, you can do the same thing to your Cloud SQL instance.

Summary

 	Google Compute Engine allows you to turn on machines quickly: a few clicks and a few seconds of your time.

 	When you choose the size of your persistent disk, don’t forget that the size also determines the performance. It’s OK (and
 expected) to have lots of empty space on a disk.

 	Cloud SQL is “MySQL in a box,” using GCE under the hood. It’s a great fit if you don’t need any special customization.

 	You can connect to Cloud SQL databases using the normal MySQL client, so there’s no need for any special software.

 	It’s a bad idea to open your production database to the world (0.0.0.0/0).

Chapter 3. The cloud data center

 This chapter covers

 	What data centers are and where they are

 	Data center security and privacy

 	Regions, zones, and disaster isolation

 If you’ve ever paid for web hosting before, it’s likely that the computer running as your web host was physically located
 in a data center. As you learned in chapter 1, deploying in the cloud is similar to traditional hosting, so, as you’d expect, if you turn on a virtual machine in, or upload
 a file to, the cloud, your resources live inside a data center. But where are these data centers? Are they safe? Should you
 trust the employees who take care of them? Couldn’t someone steal your data or the source code to your killer app?

 All of these questions are valid, and their answers are pretty important—after all, if the data center was in somebody’s basement,
 you might not want to put your banking details on that server. The goal of this chapter is to explain how data centers have
 evolved over time and highlight some of the details of Google Cloud Platform’s data centers. Google’s data centers are pretty
 impressive (as shown in figure 3.1), but this isn’t a fashion show. Before you decide to run mission-critical stuff in a data center, you probably want to understand
 a little about how it works.

 Figure 3.1. A Google data center

 [image:]

 Keep in mind that many of the things you’ll read in this chapter about data centers are industrywide standards, so if something
 seems like a great feature (such as strict security to enter the premises), it probably exists with other cloud providers
 as well (like Amazon Web Services or Microsoft Azure). I’ll make sure to call out things that are Google-specific so it’s
 clear when you should take note. I’ll start by laying out a map to understand Google Cloud’s data centers.

3.1. Data center locations

 You might be thinking that location in the world of the cloud seems a bit oxymoronic, right? Unfortunately, this is one of the side effects of marketers pushing
 the cloud as some amorphic mystery, where all of your resources are multihomed rather than living in a single place. As you’ll
 read later, some services do abstract away the idea of location so that your resources live in multiple places simultaneously,
 but for many services (such as Compute Engine), resources live in a single place. This means you’ll likely want to choose
 one near your customers.

 To choose the right place, you first need to know what your choices are. As of this writing, Google Cloud operates data centers
 in 15 different regions around the world, including in parts of the United States, Brazil, Western Europe, India, East Asia,
 and Australia. See figure 3.2.

 Figure 3.2. Cities where Google Cloud has data centers and how many in each city (white balloons indicate “on the way” at the time of
 this writing.)

