

 [image: cover]

Akka in Action

 Raymond Roestenburg
 Rob Bakker
 Rob Williams

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Jeff Bleiel
Review editor: Olivia Booth
Copyeditors: Benjamin Berg, Andy Carroll
Technical proofreader: Doug Warren
Project editor: Kevin Sullivan
Proofreader: Katie Tennant
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617291012

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Chapter 1. Introducing Akka

 Chapter 2. Up and running

 Chapter 3. Test-driven development with actors

 Chapter 4. Fault tolerance

 Chapter 5. Futures

 Chapter 6. Your first distributed Akka app

 Chapter 7. Configuration, logging, and deployment

 Chapter 8. Structural patterns for actors

 Chapter 9. Routing messages

 Chapter 10. Message channels

 Chapter 11. Finite-state machines and agents

 Chapter 12. System integration

 Chapter 13. Streaming

 Chapter 14. Clustering

 Chapter 15. Actor persistence

 Chapter 16. Performance tips

 Chapter 17. Looking ahead

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Chapter 1. Introducing Akka

 1.1. What is Akka?

 1.2. Actors: a quick overview

 1.3. Two approaches to scaling: setting up our example

 1.4. Traditional scaling

 1.4.1. Traditional scaling and durability: move everything to the database

 1.4.2. Traditional scaling and interactive use: polling

 1.4.3. Traditional scaling and interactive use: polling

 1.5. Scaling with Akka

 1.5.1. Scaling with Akka and durability: sending and receiving messages

 1.5.2. Scaling with Akka and interactive use: push messages

 1.5.3. Scaling with Akka and failure: asynchronous decoupling

 1.5.4. The Akka approach: sending and receiving messages

 1.6. Actors: one programming model to rule up and out

 1.6.1. An asynchronous model

 1.6.2. Actor operations

 1.7. Akka actors

 1.7.1. ActorSystem

 1.7.2. ActorRef, mailbox, and actor

 1.7.3. Dispatchers

 1.7.4. Actors and the network

 1.8. Summary

 Chapter 2. Up and running

 2.1. Clone, build, and test interface

 2.1.1. Build with sbt

 2.1.2. Fast-forward to the GoTicks.com REST server

 2.2. Explore the actors in the app

 2.2.1. Structure of the app

 2.2.2. The actor that handles the sale: TicketSeller

 2.2.3. The BoxOffice actor

 2.2.4. RestApi

 2.3. Into the cloud

 2.3.1. Create the app on Heroku

 2.3.2. Deploy and run on Heroku

 2.4. Summary

 Chapter 3. Test-driven development with actors

 3.1. Testing actors

 3.2. One-way messages

 3.2.1. SilentActor examples

 3.2.2. SendingActor example

 3.2.3. SideEffectingActor example

 3.3. Two-way messages

 3.4. Summary

 Chapter 4. Fault tolerance

 4.1. What fault tolerance is (and what it isn’t)

 4.1.1. Plain old objects and exceptions

 4.1.2. Let it crash

 4.2. Actor lifecycle

 4.2.1. Start event

 4.2.2. Stop event

 4.2.3. Restart event

 4.2.4. Putting the lifecycle pieces together

 4.2.5. Monitoring the lifecycle

 4.3. Supervision

 4.3.1. Supervisor hierarchy

 4.3.2. Predefined strategies

 4.3.3. Custom strategies

 4.4. Summary

 Chapter 5. Futures

 5.1. Use cases for futures

 5.2. In the future nobody blocks

 5.2.1. Promises are promises

 5.3. Futuristic errors

 5.4. Combining futures

 5.5. Combining futures with actors

 5.6. Summary

 Chapter 6. Your first distributed Akka app

 6.1. Scaling out

 6.1.1. Common network terminology

 6.1.2. Reasons for a distributed programming model

 6.2. Scaling out with remoting

 6.2.1. Making the GoTicks.com app distributed

 6.2.2. Remote REPL action

 6.2.3. Remote lookup

 6.2.4. Remote deployment

 6.2.5. Multi-JVM testing

 6.3. Summary

 Chapter 7. Configuration, logging, and deployment

 7.1. Configuration

 7.1.1. Trying out Akka configuration

 7.1.2. Using defaults

 7.1.3. Akka configuration

 7.1.4. Multiple systems

 7.2. Logging

 7.2.1. Logging in an Akka application

 7.2.2. Using logging

 7.2.3. Controlling Akka’s logging

 7.3. Deploying actor-based applications

 7.4. Summary

 Chapter 8. Structural patterns for actors

 8.1. Pipes and filters

 8.1.1. Enterprise integration pattern: pipes and filters

 8.1.2. Pipes and filters in Akka

 8.2. Enterprise integration pattern: scatter-gather

 8.2.1. Applicability

 8.2.2. Parallel tasks with Akka

 8.2.3. Implementing the scatter component using the recipient list pattern

 8.2.4. Implementing the gather component with the aggregator pattern

 8.2.5. Combining the components into the scatter-gather pattern

 8.3. Enterprise integration pattern: routing slip

 8.4. Summary

 Chapter 9. Routing messages

 9.1. The enterprise integration router pattern

 9.2. Balance load using Akka routers

 9.2.1. Akka pool router

 9.2.2. Akka group router

 9.2.3. ConsistentHashing router

 9.3. Implementing the router pattern using actors

 9.3.1. Content-based routing

 9.3.2. State-based routing

 9.3.3. Router implementations

 9.4. Summary

 Chapter 10. Message channels

 10.1. Channel types

 10.1.1. Point-to-point

 10.1.2. Publish-subscribe

 10.2. Specialized channels

 10.2.1. Dead letter

 10.2.2. Guaranteed delivery

 10.3. Summary

 Chapter 11. Finite-state machines and agents

 11.1. Using a finite-state machine

 11.1.1. Quick introduction to finite-state machines

 11.1.2. Creating an FSM model

 11.2. Implementation of an FSM model

 11.2.1. Implementing transitions

 11.2.2. Implementing the entry actions

 11.2.3. Timers within FSM

 11.2.4. Termination of FSM

 11.3. Implement shared state using agents

 11.3.1. Simple shared state with agents

 11.3.2. Waiting for the state update

 11.4. Summary

 Chapter 12. System integration

 12.1. Message endpoints

 12.1.1. Normalizer

 12.1.2. Canonical data model

 12.2. Implementing endpoints using Apache Camel

 12.2.1. Implement a consumer endpoint receiving messages from an external system

 12.2.2. Implement a producer endpoint sending messages to an external system

 12.3. Implementing an HTTP interface

 12.3.1. The HTTP example

 12.3.2. Implementing a REST endpoint with akka-http

 12.4. Summary

 Chapter 13. Streaming

 13.1. Basic stream processing

 13.1.1. Copying files with sources and sinks

 13.1.2. Materializing runnable graphs

 13.1.3. Processing events with flows

 13.1.4. Handling errors in streams

 13.1.5. Creating a protocol with a BidiFlow

 13.2. Streaming HTTP

 13.2.1. Receiving a stream over HTTP

 13.2.2. Responding with a stream over HTTP

 13.2.3. Custom marshallers and unmarshallers for content type and negotiation

 13.3. Fan in and fan out with the graph DSL

 13.3.1. Broadcasting to flows

 13.3.2. Merging flows

 13.4. Mediating between producers and consumers

 13.4.1. Using buffers

 13.5. Rate-detaching parts of a graph

 13.5.1. Slow consumer, rolling up events into summaries

 13.5.2. Fast consumer, expanding metrics

 13.6. Summary

 Chapter 14. Clustering

 14.1. Why use clustering?

 14.2. Cluster membership

 14.2.1. Joining the cluster

 14.2.2. Leaving the cluster

 14.3. Clustered job processing

 14.3.1. Starting the cluster

 14.3.2. Work distribution using routers

 14.3.3. Resilient jobs

 14.3.4. Testing the cluster

 14.4. Summary

 Chapter 15. Actor persistence

 15.1. Recovering state with event sourcing

 15.1.1. Updating records in place

 15.1.2. Persisting state without updates

 15.1.3. Event sourcing for actors

 15.2. Persistent actors

 15.2.1. Persistent actor

 15.2.2. Testing

 15.2.3. Snapshots

 15.2.4. Persistence query

 15.2.5. Serialization

 15.3. Clustered persistence

 15.3.1. Cluster singleton

 15.3.2. Cluster sharding

 15.4. Summary

 Chapter 16. Performance tips

 16.1. Performance analysis

 16.1.1. System performance

 16.1.2. Performance parameters

 16.2. Performance measurement of actors

 16.2.1. Collect mailbox data

 16.2.2. Collecting processing data

 16.3. Improving performance by addressing bottlenecks

 16.4. Configure dispatcher

 16.4.1. Recognizing thread pool problems

 16.4.2. Using multiple instances of dispatchers

 16.4.3. Changing thread pool size statically

 16.4.4. Using a dynamic thread pool size

 16.5. Changing thread releasing

 16.5.1. Limitations on thread release settings

 16.6. Summary

 Chapter 17. Looking ahead

 17.1. akka-typed module

 17.2. Akka Distributed Data

 17.3. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Writing good, concurrent, and distributed applications is hard. Having just finished a project that demanded a lot of low-level
 concurrency programming in Java, I was on the lookout for simpler tools for the next project, which promised to be even more
 challenging.

 In March 2010 I noticed a tweet by Dean Wampler that made me look into Akka:

 W00t! RT @jboner: #akka 0.7 is released: http://bit.ly/9yRGSB

 After some investigation into the source code and building a prototype, we decided to use Akka. It was immediately apparent
 that this new programming model would really simplify the problems we experienced in the previous project.

 I convinced Rob Bakker to join me in a bleeding-edge technology adventure, and together we took the leap to build our first
 project with Scala and Akka. We reached out early to Jonas Bonér (creator of Akka) for help, and later found out that we were
 among the first-known production users of Akka. We completed the project, and many others followed; the benefits of using
 Akka were obvious every time.

 In those days, there wasn’t a lot of information available online, so I decided to start blogging about it as well as contribute
 to the Akka project.

 I was completely surprised when I was asked to write this book. I asked Rob Bakker if he wanted to write the book together.
 Later, we realized we needed more help, and Rob Williams joined us. He had been building projects with Java and Akka.

 We’re happy that we could finally finish this book and write about a version of Akka (2.4.9) that really provides a comprehensive
 set of tools for building distributed and concurrent applications. We’re grateful that so many MEAP readers gave us feedback
 over time. The tremendous support from Manning Publications was invaluable for us as first-time authors.

 One thing that we all agreed on and had experienced before using Akka is that writing distributed and concurrent applications
 on the JVM needed better, simpler tools. We hope that we will convince you that Akka provides just that.

 RAYMOND ROESTENBURG

Acknowledgments

 It took a lot of time to write this book. During that time, many people have helped us out and we thank them for the time
 they contributed. To all the readers who bought the MEAP edition of the book, thank you for all the feedback that greatly
 improved this book and for your ongoing patience over the years. We hope you will enjoy the final result and that you learned
 a lot during the MEAP process.

 Special thanks go out to members of the Akka core team, specifically Jonas Bonér, Viktor Klang, Roland Kuhn, Patrik Nordwall,
 Björn Antonsson, Endre Varga, and Konrad Malawski, who all provided inspiration and invaluable input.

 We also want to thank Edwin Roestenburg and CSC Traffic Management in the Netherlands, who trusted us enough to start using
 Akka for mission-critical projects and provided an incredible opportunity for us to gain our initial experience with Akka.
 We also want to thank Xebia for the work hours Ray could spend on the book and for providing an incredible workplace for furthering
 experience with Akka.

 We thank Manning Publications for placing their trust in us. This is our first book, so we know this was a high-risk venture
 for them. We want to thank the following staff at Manning for their excellent work: Mike Stephens, Jeff Bleiel, Ben Berg,
 Andy Carroll, Kevin Sullivan, Katie Tennant, and Dottie Marsico.

 Our thanks to Doug Warren, who gave all chapters a thorough technical proofread. Many other reviewers provided us with helpful
 feedback during the writing and development process: Andy Hicks, David Griffith, Dušan Kysel, Iain Starks, Jeremy Pierre,
 Kevin Esler, Mark Janssen, Michael Schleichardt, Richard Jepps, Robin Percy, Ron Di Frango, and William E. Wheeler.

 Last but not least, we want to thank the significant people in our lives who supported us as we worked on the book. Ray thanks
 his wife Chanelle, and Rob Williams thanks his mom, Gail, and Laurie.

About this Book

 This book introduces the Akka toolkit and explains its most important modules. We focus on the actor programming model and
 the modules that support actors for building concurrent and distributed applications. Throughout the book, we take time to
 show how code can be tested, which is an important aspect of day-to-day software development. We use the Scala programming
 language in all our examples.

 After the basics of coding and testing actors, we look at all the important aspects that you will encounter when building
 a real-world application with Akka.

Intended audience

 This book is intended for anyone who wants to learn how to build applications with Akka. The examples are in Scala, so it’s
 expected that you already know some Scala or are interested in learning some Scala as you go along. You’re expected to be
 familiar with Java, as Scala runs on top of the JVM.

Roadmap

 The book includes seventeen chapters.

 Chapter 1 introduces Akka actors. You’ll learn how the actor programming model solves a couple of key issues that traditionally make
 scaling applications very hard.

 Chapter 2 dives directly into an example HTTP service built with Akka to show how quickly you can get a service up and running in the
 cloud. It gives a sneak peek into what you’ll learn in chapters to come.

 Chapter 3 is about unit testing actors using ScalaTest and the akka-testkit module.

 Chapter 4 explains how supervision and monitoring make it possible to build reliable, fault-tolerant systems out of actors.

 Chapter 5 introduces futures, extremely useful and simple tools for combining function results asynchronously. You’ll also learn how
 to combine futures and actors.

 Chapter 6 is about the akka-remote module, which makes it possible to distribute actors across a network. You’ll also learn how you
 can unit test distributed actor systems.

 Chapter 7 explains how the Typesafe Config Library is used to configure Akka. It also details how you can use this library to configure
 your own application components.

 Chapter 8 details structural patterns for actor-based applications. You’ll learn how to implement a couple of classic enterprise integration
 patterns.

 Chapter 9 explains how to use routers. Routers can be used for switching, broadcasting, and load balancing messages between actors.

 Chapter 10 introduces the message channels that can be used to send messages from one actor to another. You’ll learn about point-to-point
 and publish-subscribe message channels for actors. You’ll also learn about dead-letter and guaranteed-delivery channels.

 Chapter 11 discusses how to build finite state machine actors with the FSM module and also introduces agents that can be used to share
 state asynchronously.

 Chapter 12 explains how to integrate with other systems. In this chapter, you’ll learn how to integrate with various protocols using
 Apache Camel and how to build an HTTP service with the akka-http module.

 Chapter 13 introduces the akka-stream module. You’ll learn how to build streaming applications with Akka. This chapter details how to
 build a streaming HTTP service that processes log events.

 Chapter 14 explains how to use the akka-cluster module. You’ll learn how to dynamically scale actors in a network cluster.

 Chapter 15 introduces the akka-persistence module. In this chapter, you’ll learn how to record and recover durable state with persistent
 actors and how to use the cluster singleton and cluster sharding extensions to build a clustered shopping cart application.

 Chapter 16 discusses key parameters of performance in actor systems and provides tips on how to analyze performance issues.

 Chapter 17 looks ahead to two upcoming features that we think will become very important: the akka-typed module that makes it possible
 to check actor messages at compile time, and the akka-distributed-data module, which provides distributed in-memory state
 in a cluster.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. The
 code for the examples in this book is available for download from the publisher’s website at www.manning.com/books/akka-in-action and from GitHub at https://github.com/RayRoestenburg/akka-in-action.

Software requirements

 Scala is used in all examples, and all code is tested with Scala 2.11.8. You can find Scala here: http://www.scala-lang.org/download/.

 Be sure to install the latest version of sbt (0.13.12 as of this writing); if you have an older version of sbt installed,
 you might run into issues. You can find sbt here: http://www.scala-sbt.org/download.html.

 Java 8 is required by Akka 2.4.9, so you’ll need to have it installed as well. It can be found here: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html.

Author Online

 Purchase of Akka in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to https://www.manning.com/books/akka-in-action. This page provides information on how to get on the forum after you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray! The AO forum and the archives of previous discussions will be accessible from the publisher’s
 website as long as the book is in print.

About the authors

 Raymond Roestenburg is an experienced software craftsman, polyglot programmer, and software architect. He is an active member of the Scala community
 and an Akka committer, and he contributed to the Akka-Camel module.

 Rob Bakker is an experienced software developer focused on concurrent backend systems and system integration. He has used Scala and
 Akka in production from version 0.7.

 Rob Williams is the founder of ontometrics, a practice focused on Java solutions that include machine learning. He first used actor-based
 programming a decade ago and has used it for several projects since.

About the cover illustration

 The illustration of a Chinese emperor on the cover of Akka in Action is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer
 who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
 a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local
 dress customs of the lands he surveyed and mapped, an interest that is brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late-eighteenth century, and collections
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has
 faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically,
 we have traded a cultural and visual diversity for a more varied personal life, or a more varied and interesting intellectual
 and technical life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Jefferys’ pictures.

Chapter 1. Introducing Akka

 In this chapter

 	Why scaling is hard

 	Write once, scale anywhere

 	Introduction to the actor programming model

 	Akka actors

 	What is Akka?

 Up until the middle of the ’90s, just before the internet revolution, it was completely normal to build applications that
 would only ever run on a single computer, a single CPU. If an application wasn’t fast enough, the standard response would
 be to wait for a while for CPUs to get faster; no need to change any code. Problem solved. Programmers around the world were
 having a free lunch, and life was good.

 In 2005 Herb Sutter wrote in Dr. Dobb’s Journal about the need for a fundamental change (link: http://www.gotw.ca/publications/concurrency-ddj.htm). In short: a limit to increasing CPU clock speeds has been reached, and the free lunch is over.

 If applications need to perform faster, or if they need to support more users, they will have to be concurrent. (We’ll get to a strict definition later; for now let’s simply define this as not single-threaded. That’s not really correct, but it’s good enough for the moment.)

 Scalability is the measure to which a system can adapt to a change in demand for resources, without negatively impacting performance.
 Concurrency is a means to achieve scalability: the premise is that, if needed, more CPUs can be added to servers, which the application
 then automatically starts making use of. It’s the next best thing to a free lunch.

 Around the year 2005 when Herb Sutter wrote his excellent article, you’d find companies running applications on clustered
 multiprocessor servers (often no more than two to three, just in case one of them crashed). Support for concurrency in programming
 languages was available but limited and considered black magic by many mere mortal programmers. Herb Sutter predicted in his
 article that “programming languages ... will increasingly be forced to deal well with concurrency.”

 Let’s see what changed in the decade since! Fast-forward to today, and you find applications running on large numbers of servers
 in the cloud, integrating many systems across many data centers. The ever-increasing demands of end users push the requirements
 of performance and stability of the systems that you build.

 So where are those new concurrency features? Support for concurrency in most programming languages, especially on the JVM,
 has hardly changed. Although the implementation details of concurrency APIs have definitely improved, you still have to work
 with low-level constructs like threads and locks, which are notoriously difficult to work with.

 Next to scaling up (increasing resources; for example, CPUs on existing servers), scaling out refers to dynamically adding more servers to a cluster. Since the ’90s, nothing much has changed in how programming languages
 support networking, either. Many technologies still essentially use RPC (remote procedure calls) to communicate over the network.

 In the meantime, advances in cloud computing services and multicore CPU architecture have made computing resources ever more
 abundant.

 PaaS (Platform as a Service) offerings have simplified provisioning and deployment of very large distributed applications,
 once the domain of only the largest players in the IT industry. Cloud services like AWS EC2 (Amazon Web Services Elastic Compute
 Cloud) and Google Compute Engine give you the ability to literally spin up thousands of servers in minutes, while tools like
 Docker, Puppet, Ansible, and many others make it easier to manage and package applications on virtual servers.

 The number of CPU cores in devices is also ever-increasing: even mobile phones and tablets have multiple CPU cores today.

 But that doesn’t mean that you can afford to throw any number of resources at any problem. In the end, everything is about
 cost and efficiency. So it’s all about effectively scaling applications, or in other words, getting bang for your buck. Just
 as you’d never use a sorting algorithm with exponential time complexity, it makes sense to think about the cost of scaling.

 You should have two expectations when scaling your application:

 	The ability to handle any increase of demand with finite resources is unrealistic, so ideally you’d want the required increase
 of resources to be growing slowly when demand grows, linear or better. Figure 1.1 shows the relationship between demand and number of required resources.

 	If resources have to be increased, ideally you’d like the complexity of the application to stay the same or increase slowly.
 (Remember the good ol’ free lunch when no added complexity was required for a faster application!) Figure 1.2 shows the relationship between number of resources and complexity.

 Figure 1.1. Demand against resources

 [image:]

 Figure 1.2. Complexity against resources

 [image:]

 Both the number and complexity of resources contribute to the total cost of scaling.

 We’re leaving a lot of factors out of this back-of-the-envelope calculation, but it’s easy to see that both of these rates
 have a big impact on the total cost of scaling.

 One doomsday scenario is where you’d need to pay increasingly more for more underutilized resources. Another nightmare scenario
 is where the complexity of the application shoots through the roof when more resources are added.

 This leads to two goals: complexity has to stay as low as possible, and resources must be used efficiently while you scale
 the application.

 Can you use the common tools of today (threads and RPC) to satisfy these two goals? Scaling out with RPC and scaling up with
 low-level threading aren’t good ideas. RPC pretends that a call over the network is no different from a local method call.
 Every RPC call needs to block the current thread and wait for a response from the network for the local method call abstraction
 to work, which can be costly. This impedes the goal of using resources efficiently.

 Another problem with this approach is that you need to know exactly where you scale up or scale out. Multithreaded programming
 and RPC-based network programming are like apples and pears: they run in different contexts, using different semantics and
 running on different levels of abstraction. You end up hardcoding which parts of your application are using threads for scaling
 up and which parts are using RPC for scaling out.

 Complexity increases significantly the moment you hardcode methods that work on different levels of abstraction. Quick—what’s
 simpler, coding with two entangled programming constructs (RPC and threads), or using just one programming construct? This
 multipronged approach to scaling applications is more complicated than necessary to flexibly adapt to changes in demand.

 Spinning up thousands of servers is simple today, but as you’ll see in this first chapter, the same can’t be said for programming
 them.

1.1. What is Akka?

 In this book we’ll show how the Akka toolkit, an open source project built by Lightbend, provides a simpler, single programming
 model—one way of coding for concurrent and distributed applications—the actor programming model. Actors are (fitting for our industry) nothing new at all, in and of themselves. It’s the way that actors are provided in
 Akka to scale applications both up and out on the JVM that’s unique. As you’ll see, Akka uses resources efficiently and makes
 it possible to keep the complexity relatively low while an application scales.

 Akka’s primary goal is to make it simpler to build applications that are deployed in the cloud or run on devices with many
 cores and that efficiently leverage the full capacity of the computing power available. It’s a toolkit that provides an actor
 programming model, runtime, and required supporting tools for building scalable applications.

1.2. Actors: a quick overview

 First off, Akka is centered on actors. Most of the components in Akka provide support in some way for using actors, be it
 for configuring actors, connecting actors to the network, scheduling actors, or building a cluster out of actors. What makes
 Akka unique is how effortlessly it provides support and additional tooling for building actor-based applications, so that you can focus
 on thinking and programming in actors.

 Briefly, actors are a lot like message queues without the configuration and message broker installation overhead. They’re
 like programmable message queues shrunk to microsize—you can easily create thousands, even millions of them. They don’t “do”
 anything unless they’re sent a message.

 Messages are simple data structures that can’t be changed after they’ve been created, or in a single word, they’re immutable.

 Actors can receive messages one at a time and execute some behavior whenever a message is received. Unlike queues, they can
 also send messages (to other actors).

 Everything an actor does is executed asynchronously. Simply put, you can send a message to an actor without waiting for a
 response. Actors aren’t like threads, but messages sent to them are pushed through on a thread at some point in time. How
 actors are connected to threads is configurable, as you’ll see later; for now it’s good to know that this is not a hardwired
 relationship.

 We’ll get a lot deeper into exactly what an actor is. For now the most important aspect of actors is that you build applications
 by sending and receiving messages. A message could be processed locally on some available thread, or remotely on another server.
 Exactly where the message is processed and where the actor lives are things you can decide later, which is very different
 compared to hardcoding threads and RPC-style networking. Actors make it easy to build your application out of small parts
 that resemble networked services, only shrunk to microsize in footprint and administrative overhead.

 	

 The Reactive Manifesto

 The Reactive Manifesto (http://www.reactivemanifesto.org/) is an initiative to push for the design of systems that are more robust, more resilient, more flexible, and better positioned
 to meet modern demands. The Akka team has been involved in writing the Reactive Manifesto from the beginning, and Akka is
 a product of the ideas that are expressed in this manifesto.

 In short, efficient resource usage and an opportunity for applications to automatically scale (also called elasticity) is the driver for a big part of the manifesto:

 	Blocking I/O limits opportunities for parallelism, so nonblocking I/O is preferred.

 	Synchronous interaction limits opportunities for parallelism, so asynchronous interaction is preferred.

 	Polling reduces opportunity to use fewer resources, so an event-driven style is preferred.

 	If one node can bring down all other nodes, that’s a waste of resources. So you need isolation of errors (resilience) to avoid
 losing all your work.

 	
Systems need to be elastic: If there’s less demand, you want to use fewer resources. If there’s more demand, use more resources,
 but never more than required.

 Complexity is a big part of cost, so if you can’t easily test it, change it, or program it, you’ve got a big problem.

 	

1.3. Two approaches to scaling: setting up our example

 In the rest of this chapter, we’ll look at a business chat application and the challenges faced when it has to scale to a
 large number of servers (and handle millions of simultaneous events). We’ll look at what we’ll call the traditional approach, a method that you’re probably familiar with for building such an application (using threads and locks, RPC, and the like)
 and compare it to Akka’s approach.

 The traditional approach starts with a simple in-memory application, which turns into an application that relies completely
 on a database for both concurrency and mutating state. Once the application needs to be more interactive, we’ll have no choice
 but to poll this database. When more network services are added, we’ll show that the combination of working with the database
 and the RPC-based network increases complexity significantly. We’ll also show that isolating failure in this application becomes
 very hard as we go along. We think that you’ll recognize a lot of this.

 We’ll then look at how the actor programming model simplifies the application, and how Akka makes it possible to write the
 application once and scale it to any demand (thereby handling concurrency issues on any scale needed). Table 1.1 highlights the differences between the two approaches. Some of the items will become clear in the next sections, but it’s
 good to keep this overview in mind.

 Table 1.1. Differences between approaches

 	
 Objective

 	
 Traditional method

 	
 Akka method

 	Scaling
 	Use a mix of threads, shared mutable state in a database (Create, Insert, Update, Delete), and web service RPC calls for scaling.
 	Actors send and receive messages. No shared mutable state. Immutable log of events.

 	Providing interactive information
 	Poll for current information.
 	Event-driven: push when the event occurs.

 	Scaling out on the network
 	Synchronous RPC, blocking I/O.
 	Asynchronous messaging, nonblocking I/O.

 	Handling failures
 	Handle all exceptions; only continue if everything works.
 	Let it crash. Isolate failure, and continue without failing parts.

 Imagine that we have plans to conquer the world with a state-of-the art chat application that will revolutionize the online
 collaboration space. It’s focused on business users where teams can easily find each other and work together. We have tons of ideas on how this interactive application
 can connect to project management tools and integrate with existing communication services.

 In good Lean Startup spirit, we start with an MVP (minimal viable product) of the chat application to learn as much as possible
 from our prospective users about what they need. If this ever takes off, we could potentially have millions of users (who
 doesn’t chat, or work together in teams?). And we know that there are two forces that can slow our progress to a grinding
 halt:

 	
Complexity— The application becomes too complex to add any new features. Even the simplest change takes a huge amount of effort, and it
 becomes harder and harder to test properly; what will fail this time?

 	
Inflexibility— The application isn’t adaptive; with every big jump in number of users, it has to be rewritten from scratch. This rewrite
 takes a long time and is complex. While we have more users than we can handle, we’re split between keeping the existing application
 running and rewriting it to support more users.

 We’ve been building applications for a while and choose to build it the way we have in the past, taking the traditional approach,
 using low-level threads and locks, RPC, blocking I/O, and, first on the menu in the next section, mutating state in a database.

1.4. Traditional scaling

 We start on one server. We set out to build the first version of the chat application, and come up with a data model design,
 shown in figure 1.3. For now we’ll just keep these objects in memory.

 Figure 1.3. Data model design

 [image:]

 A Team is a group of Users, and many Users can be part of some Conversation. Conversations are collections of messages. So far, so good.

 We flesh out the behavior of the application and build a web-based user interface. We’re at the point where we can show the
 application to prospective users and give demos. The code is simple and easy to manage. But so far this application only runs
 in memory, so whenever it’s restarted, all Conversations are lost. It can also only run on one server at this point. Our web app UI built with [insert shiny new JavaScript library]
 is so impressive that stakeholders want to immediately go live with it, even though we repeatedly warn that it’s just for
 demo purposes! Time to move to more servers and set up a production environment.

 1.4.1. Traditional scaling and durability: move everything to the database

 We decide to add a database to the equation. We have plans to run the web application on two front-end web servers for availability,
 with a load balancer in front of it. Figure 1.4 shows the new setup.

 Figure 1.4. Load balancer/failover

 [image:]

 The code is becoming more complex because now we can’t just work with in-memory objects anymore; how would we keep the objects
 consistent on the two servers? Someone on our team shouts “We need to go stateless!” and we remove all feature-rich objects and replace them with database code.

 The state of the objects doesn’t simply reside in memory on the web servers anymore, which means the methods on the objects
 can’t work on the state directly; essentially, all important logic moves to database statements. The change is shown in figure 1.5.

 Figure 1.5. Data access objects

 [image:]

 This move to statelessness leads to the decision to replace the objects with some database access abstraction. For the purpose
 of this example, it’s irrelevant which one; in this case, we’re feeling a bit retro and use DAOs (data access objects, which
 execute database statements).

 A lot of things change:

 	We don’t have the same guarantees anymore that we had before when we, for instance, called a method on the Conversation to add a Message. Before, we were guaranteed that addMessage would never fail, since it was a simple operation on an in-memory list (barring the exceptional case that the JVM runs out
 of memory). Now, the database might return an error at any addMessage call. The insert might fail, or the database might not be available at that exact moment because the database server crashes
 or because there’s a problem with the network.

 	The in-memory version had a sprinkling of locks to make sure that the data wouldn’t get corrupted by concurrent users. Now
 that we’re using “Database X,” we’ll have to find out how to handle that problem, and make sure that we don’t end up with
 duplicate records or other inconsistent data. We have to find out how to do exactly that with the Database X library. Every
 simple method call to an object effectively becomes a database operation, of which some have to work in concert. Starting
 a Conversation, for instance, at least needs both an insert of a row in the Conversation and the message table.

 	The in-memory version was easy to test, and unit tests ran fast. Now, we run Database X locally for the tests, and we add
 some database test utilities to isolate tests. Unit tests run a lot slower now. But we tell ourselves, “At least we’re testing
 those Database X operations too,” which were not as intuitive as we expected—very different from the previous databases we
 worked with.

 We probably run into performance problems when we’re porting the in-memory code directly to database calls, since every call
 now has network overhead. So we design specific database structures to optimize query performance, which are specific to our
 choice of database (SQL or NoSQL, it doesn’t matter). The objects are now a sad anemic shadow of their former selves, merely
 holding data; all the interesting code has moved to the DAOs and the components of our web application. The saddest part of
 this is that we can hardly reuse any of the code that we had before; the structure of the code has completely changed.

 The “controllers” in our web application combine DAO methods to achieve the changes in the data (findConversation, insertMessage, and so on). This combination of methods results in an interaction with the database that we can’t easily predict; the controllers
 are free to combine the database operations in any way, as in figure 1.6.

 Figure 1.6. DAO interaction

 [image:]

 The figure shows one of the possible flows through the code, for adding a Message to a Conversation. You can imagine that there are numerous variations of database access flows through the use of the DAOs. Allowing any party
 to mutate or query records at any point in time can lead to performance problems that we can’t predict, like deadlocks and
 other issues. It’s exactly the kind of complexity we want to avoid.

 The database calls are essentially RPC, and almost all standard database drivers (say, JDBC) use blocking I/O. So we’re already
 in the state that we described before, using threads and RPC together. The memory locks that are used to synchronize threads
 and the database locks to protect mutation of table records are really not the same thing, and we’ll have to take great care
 to combine them. We went from one to two interwoven programming models.

 We just did our first rewrite of the application, and it took a lot longer than expected.

 	

 This is a dramatization

 The traditional approach to build the team chat app goes sour in a catastrophic way. Although exaggerated, you’ve probably
 seen projects run into at least some of these problems (we definitely have seen similar cases first-hand). To quote Dean Wampler
 from his presentation “Reactive Design, Languages, and Paradigms” (https://deanwampler.github.io/polyglotprogramming/papers/):

 In reality, good people can make almost any approach work, even if the approach is suboptimal.

 So is this example project impossible to complete with the traditional approach? No, but it’s definitely suboptimal. It will
 be very hard to keep complexity low and flexibility high while the application scales.

 	

 1.4.2. Traditional scaling and interactive use: polling

 We run in this configuration for a while and the users are increasing. The web application servers aren’t using a lot of resources;
 most are spent in (de-)serialization of requests and responses. Most of the processing time is spent in the database. The
 code on the web server is mostly waiting for a response from the database driver.

 We want to build more interactive features now that we have the basics covered. Users are used to Facebook and Twitter and
 want to be notified whenever their name is mentioned in a team conversation, so they can chime in.

 We want to build a Mentions component that parses every message that’s written and adds the mentioned contacts to a notification table, which is polled
 from the web application to notify mentioned users.

 The web application now also polls other information more often to more quickly reflect changes to users, because we want
 to give them a true interactive experience.

 We don’t want to slow down the conversations by adding database code directly to the application, so we add a message queue.
 Every message written is sent to it asynchronously, and a separate process receives messages from the queue, looks up the
 users, and writes a record in a notifications table.

 The database is really getting hammered at this point. We find out that the automated polling of the database together with
 the Mentions component are causing performance problems with the database. We separate out the Mentions component as a service and give it its own database, which contains the notifications table and a copy of the users table,
 kept up to date with a database synchronization job, as shown in figure 1.7.

 Figure 1.7. Service component

 [image:]

 Not only has the complexity increased again, it’s becoming more difficult to add new interactive features. Polling the database
 wasn’t such a great idea for this kind of application, but there are no other real options, because all the logic is right
 there in the DAOs, and Database X can’t “push” anything into the web server.

 We’ve also added more complexity to the application by adding a message queue, which will have to be installed and configured,
 and code will have to get deployed. The message queue has its own semantics and context to work in; it’s not the same as the
 database RPC calls, or as the in-memory threading code. Fusing all this code together responsibly will be, once again, more
 complex.

 1.4.3. Traditional scaling and interactive use: polling

 Users start to give feedback that they would love a way to find contacts with typeahead (the application gives suggestions while the user types part of a contact’s name) and automatically receive suggestions for
 teams and current conversations based on their recent email conversations. We build a TeamFinder object that calls out to several web services like Google Contacts API and Microsoft Outlook.com API. We build web service
 clients for these, and incorporate the finding of contacts, as in figure 1.8.

 Figure 1.8. Team finder

 [image:]

 We find out that one of the services fails often and in the worst possible way—we get long timeouts, or traffic has slowed
 down to only a few bytes per minute. And because the web services are accessed one after the other, waiting for a response,
 the lookup fails after a long time even though many valid suggestions could have been made to the user from the service that
 worked just fine.

 Even worse, though we collected our database methods in DAOs and the contacts lookup in a TeamFinder object, the controllers are calling these methods like any other. This means that sometimes a user lookup ends up right between
 two database methods, keeping connections open longer than we want, eating up database resources. If the TeamFinder fails, everything else that’s part of the same flow in the application fails as well. The controller will throw an exception
 and won’t be able to continue. How do we safely separate the TeamFinder from the rest of the code?

 It’s time for another rewrite, and it doesn’t look like the complexity is improving. In fact, we’re now using four programming
 models: one for the in-memory threads, one for the database operations, one for the Mentions message queue, and one for the contacts web services.

 How do we move from 3 servers to, say, 10, and then to 100 servers, if this should be required? It’s obvious that this approach
 doesn’t scale well: we need to change direction with every new challenge.

 In the next section, you’ll find out if there’s a design strategy that doesn’t require us to change direction with every new
 challenge.

1.5. Scaling with Akka

 Let’s see if it’s possible to deliver on the promise to use only actors to meet the scaling requirements of the application.
 Since it’s probably still unclear to you what actors are, exactly, we’ll use objects and actors interchangeably and focus
 on the conceptual difference between this approach and the traditional approach.

 Table 1.2 shows this difference in approaches.

 Table 1.2. Actors compared to the traditional approach

 	
 Goal

 	
 Traditional approach

 	
 Akka approach (actors)

 	Make conversation data durable, even if the application restarts or crashes.
 	Rewrite code into DAOs. Use the database as one big shared mutable state, where all parties create, update, insert, and query
 the data.

 	Continue to use in-memory state. Changes to the state are sent as messages to a log. This log is only reread if the application
 restarts.

 	Provide interactive features (Mentions).
 	Poll the database. Polling uses a lot of resources even if there’s no change in the data.
 	Push events to interested parties. The objects notify interested parties only when there’s a significant event, reducing overhead.

 	Decoupling of services; the Mentions and chat features shouldn’t be interfering with each other.
 	Add a message queue for asynchronous processing.
 	No need to add a message queue; actors are asynchronous by definition. No extra complexity; you’re familiar with sending and
 receiving messages.

 	Prevent failure of the total system when critical services fail or behave outside of specified performance parameters for
 any given time.

 	Try to prevent any error from happening by predicting all failure scenarios and catching exceptions for these scenarios.
 	Messages are sent asynchronously; if a message isn’t handled by a crashed component, it has no impact on the stability of
 the other components.

 It would be great if we could write the application code once, and then scale it any way we like. We want to avoid radically
 changing the application’s main objects; for example, how we had to replace all logic in the in-memory objects with DAOs in
 section 1.4.1.

 The first challenge we wanted to solve was to safekeep conversation data. Coding directly to the database moved us away from
 one simple in-memory model. Methods that were once simple turned into database RPC commands, leaving us with a mixed programming
 model. We have to find another way to make sure that the conversations aren’t lost, while keeping things simple.

 1.5.1. Scaling with Akka and durability: sending and receiving messages

 Let’s first solve the initial problem of just making Conversations durable. The application objects must save Conversations in some way. The Conversations must at least be recovered when the application restarts.

 Figure 1.9 shows how a Conversation sends a MessageAdded to the database log for every message that’s added in-memory.

 Figure 1.9. Persist conversations

 [image:]

 The Conversation can be rebuilt from these objects stored in the database whenever the web server (re)-starts, as shown in figure 1.10.

 Figure 1.10. Recover conversations

 [image:]

 Exactly how this all works is something we’ll discuss later. But as you can see, we only use the database to recover the messages
 in the conversation. We don’t use it to express our code in database operations. The Conversation actor sends messages to the log, and receives them again on startup. We don’t have to learn anything new; it’s just sending and receiving messages.

Changes kept as a sequence of events

 All changes are kept as a sequence of events, in this case MessageAdded events. The current state of the Conversation can be rebuilt by replaying the events that occurred to the in-memory Conversation, so it can continue where it left off. This type of database is often called a journal, and the technique is known as event sourcing. There’s more to event sourcing, but for now this definition will do.

 What’s important to note here is that the journal has become a uniform service. All it needs to do is store all events in
 sequence, and make it possible to retrieve the events in the same sequence as they were written to the journal. There are
 some details that we’ll ignore for now, like serialization—if you can’t wait, go look at chapter 15 on actor persistence.

Spreading out the data: sharding conversations

 The next problem is that we’re still putting all our eggs in one server. The server restarts, reads all conversations in memory,
 and continues to operate. The main reason for going stateless in the traditional approach is that it’s hard to imagine how
 we would keep the conversations consistent across many servers. And what would happen if there were too many conversations
 to fit on one server?

 A solution for this is to divide the conversations over the servers in a predictable way or to keep track of where every conversation
 lives. This is called sharding or partitioning. Figure 1.11 shows some conversations in shards across two servers.

 Figure 1.11. Sharding

 [image:]

 We can keep using the simple in-memory model of Conversations if we have a generic event-sourced journal and a way to indicate how Conversations should be partitioned. Many details about these two capabilities will be covered in chapter 15. For now, we’ll assume that we can simply use these services.

 1.5.2. Scaling with Akka and interactive use: push messages

 Instead of polling the database for every user of the web application, we could find out if there’s a way to notify the user
 of an important change (an event) by directly sending messages to the user’s web browser.

 The application can also send event messages internally as a signal to execute particular tasks. Every object in the application
 will send an event when something interesting occurs. Other objects in the application can decide if an event is interesting
 and take action on it, as in figure 1.12.

 Figure 1.12. Events

 [image:]

 The events (depicted as ellipses) decouple the system where there used to be undesired coupling between the components. The
 Conversation only publishes that it added a Message and continues its work. Events are sent through a publish-subscribe mechanism, instead of the components communicating with
 each other directly. An event will eventually get to the subscribers, in this case to the Mentions component. It’s important to note that, once again, we can model the solution to this problem by simply sending and receiving
 messages.

 1.5.3. Scaling with Akka and failure: asynchronous decoupling

 It’s preferable that users be able to continue to have Conversations even if the Mentions component has crashed. The same goes for the TeamFinder component: existing conversations should be able to continue. Conversations can continue to publish events while subscribers, like the Mentions component and the TeamFinder object, crash and restart.

 The NotifyUser component could keep track of connected web browsers and send UserMentioned messages directly to the browser when they occur, relieving the application from polling.

 This event-driven approach has a couple of advantages:

 	It minimizes direct dependencies between components. The conversation doesn’t know about the Mentions object and could not care less what happens with the event. The conversation can continue to operate when the Mentions object crashes.

 	The components of the application are loosely coupled in time. It doesn’t matter if the Mentions object gets the events a little later, as long as it gets the events eventually.

 	The components are decoupled in terms of location. The Conversation and Mentions object can reside on different servers; the events are just messages that can be transmitted over the network.

 The event-driven approach solves the polling problem with the Mentions object, as well as the direct coupling with the TeamFinder object. In chapter 5 on futures, we’ll look at some better ways to communicate with web services than sequentially waiting for every response.
 It’s important to note that, once again, we can model the solution to this problem by simply sending and receiving messages.

 1.5.4. The Akka approach: sending and receiving messages

 Let’s recap what we’ve changed so far: Conversations are now stateful in-memory objects (actors), storing their internal state, recovering from events, partitioned across servers,
 sending and receiving messages.

 You’ve seen how communicating between objects with messages instead of calling methods directly is a winning design strategy.

 A core requirement is that messages are sent and received in order, one at a time to every actor, when one event is dependent
 on the next, because otherwise we’d get unexpected results. This requires that the Conversation keeps its own messages secret from any other component. The order can never be kept if any other component can interact with
 the messages.

 It shouldn’t matter if we send a message locally on one server or remotely to another. So we need some service that takes
 care of sending the messages to actors on other servers if necessary. It will also need to keep track of where actors live
 and be able to provide references so other servers can communicate with the actors. This is one of the things that Akka does
 for you, as you’ll soon see. Chapter 6 discusses the basics of distributed Akka applications, and chapter 13 discusses clustered Akka applications (in short, groups of distributed actors).

 The Conversation doesn’t care what happens with the Mentions component, but on the application level we need to know when the Mentions component doesn’t work anymore to show users that it’s temporarily offline, among other things. So we need some kind of monitoring
 of actors, and we need to make it possible to reboot these if necessary. This monitoring should work across servers as well as locally on one server, so it will also have to use sending
 and receiving messages. A possible high-level structure for the application is shown in figure 1.13.

 Figure 1.13. High-level structure

 [image:]

 The supervisor watches over the components and takes action when they crash. It can, for example, decide to continue running
 when the Mentions component or the TeamFinder doesn’t work. If both Conversations and NotifyUser stop working completely, the supervisor could decide to restart completely or stop the application, since there’s no reason
 to continue. A component can send a message to the supervisor when it fails, and the supervisor can send a message to a component
 to stop, or try to restart. As you’ll see, this is conceptually how Akka provides error recovery, which is discussed in chapter 4 on fault tolerance.

 In the next section, we’ll first talk about actors in general, and then talk about Akka actors.

1.6. Actors: one programming model to rule up and out

 Most general-purpose programming languages are written in sequence (Scala and Java being no exception to the rule). A concurrent
 programming model is required to bridge the gap between sequential definition and parallel execution.

 Whereas parallelization is all about executing processes simultaneously, concurrency concerns itself with defining processes
 that can function simultaneously, or can overlap in time, but don’t necessarily need to run simultaneously. A concurrent system is not by definition a parallel system. Concurrent processes can, for example,
 be executed on one CPU through the use of time slicing, where every process gets a certain amount of time to run on the CPU,
 one after another.

 The JVM has a standard concurrent programming model (see figure 1.14), where, roughly speaking, processes are expressed in objects and methods, which are executed on threads. Threads might be
 executed on many CPUs in parallel, or using some sharing mechanism like time slicing on one CPU. As we discussed earlier, threads can’t be applied directly to scaling
 out, only to scaling up.

 Figure 1.14. Concurrent programming model

 [image:]

 The concurrent programming model that we’re after should function for one CPU or many, one server or many servers. The actor
 model chooses the abstraction of sending and receiving messages to decouple from the number of threads or the number of servers
 that are being used.

 1.6.1. An asynchronous model

 If we want the application to scale to many servers, there’s an important requirement for the programming model: it will have
 to be asynchronous, allowing components to continue working while others haven’t responded yet, as in the chat application (see figure 1.15).

 Figure 1.15. Scaled out

 [image:]

 The figure shows a possible configuration of the chat application, scaled to five servers. The supervisor has the responsibility
 to create and monitor the rest of the application. The supervisor now has to communicate over the network, which might fail,
 and every server could possibly crash as well. If the supervisor used synchronous communication, waiting for every response of every component, we could get in the problematic situation where one of the components
 doesn’t respond, blocking all other calls from happening. What would happen, for instance, if the conversations server is
 restarting and not responding to the network interface yet, while the supervisor wants to send out messages to all components?

 1.6.2. Actor operations

 Actors are the primary building blocks in the actor model. All the components in the example application are actors, shown
 in figure 1.16. An actor is a lightweight process that has only four core operations: create, send, become, and supervise. All of these
 operations are asynchronous.

 Figure 1.16. Components

 [image:]

 	

 The actor model—not new

 The actor model is not new and has actually been around for quite a while; the idea was introduced in 1973 by Carl Hewitt,
 Peter Bishop, and Richard Steiger. The Erlang language and its OTP middleware libraries, developed by Ericsson around 1986,
 support the actor model and have been used to build massively scalable systems with requirements for high availability. An
 example of the success of Erlang is the AXD 301 switch product, which achieves a reliability of 99.9999999%, also known as
 nine nines reliability. The actor model implementation in Akka differs in a couple of details from the Erlang implementation, but has
 definitely been heavily influenced by Erlang, and shares a lot of its concepts.

 	

Send

 An actor can only communicate with another actor by sending it messages. This takes encapsulation to the next level. In objects we can specify which methods can be publicly called and which state is accessible from the
 outside. Actors don’t allow any access to internal state, for example, the list of messages in a conversation. Actors can’t
 share mutable state; they can’t, for instance, point to a shared list of conversation messages and change the conversation
 in parallel at any point in time.

 The Conversation actor can’t simply call a method on any other actor, since that could lead to sharing mutable state. It has to send it a
 message. Sending messages is always asynchronous, in what is called a fire and forget style. If it’s important to know that another actor received the message, then the receiving actor should just send back
 an acknowledgement message of some kind.

 The Conversation actor doesn’t have to wait and see what happens with a message to the Mentions actor; it can send off a message and continue its work. Asynchronous messaging helps in the chat application to decouple
 the components; this was one of the reasons why we wanted to use a message queue for the Mentions object, which is now unnecessary.

 The messages need to be immutable, meaning that they can’t be changed once they’re created. This makes it impossible for two
 actors to change the same message by mistake, which could result in unexpected behavior.

 	

 What, no type safety?

 Actors can receive any message, and you can send any message you want to an actor (it just might not process the message).
 This basically means that type checking of the messages that are sent and received is limited. That might come as a surprise,
 since Scala is a statically typed language and a high level of type safety has many benefits. This flexibility is both a cost
 (less is known about actors’ type correctness at runtime) and a benefit (how would static types be enforced over a network
 of remote systems?). The last word hasn’t been said on this, and the Akka team is researching how to define a more type-safe
 version of actors, which we might see details of in a next version of Akka. Stay tuned.

 	

 So what do we do when a user wants to edit a message in a Conversation? We could send an EditMessage message to the conversation. The EditMessage contains a modified copy of the message, instead of updating the message in place in a shared messages list. The Conversation actor receives the EditMessage and replaces the existing message with the new copy.

 Immutability is an absolute necessity when it comes to concurrency and is another restriction that makes life simpler, because
 there are fewer moving parts to manage.

 The order of sent messages is kept between a sending and receiving actor. An actor receives messages one at a time. Imagine
 that a user edits a message many times; it would make sense that the user eventually sees the result of the final edit of
 the message. The order of messages is only guaranteed per sending actor, so if many users edit the same message in a conversation,
 the final result can vary depending on how the messages are interleaved over time.

Create

 An actor can create other actors. Figure 1.17 shows how the Supervisor actor creates a Conversations actor. As you can see, this automatically creates a hierarchy of actors. The chat application first creates the Supervisor actor, which in turn creates all other actors in the application. The Conversations actor recovers all Conversations from the journal. It then creates a Conversation actor for every Conversation, which in turn recovers itself from the journal.

 Figure 1.17. Create

 [image:]

Become

 State machines are a great tool for making sure that a system only executes particular actions when it’s in a specific state.

 Actors receive messages one at a time, which is a convenient property for implementing state machines. An actor can change
 how it handles incoming messages by swapping out its behavior.

 Imagine that users want to be able to close a Conversation. The Conversation starts out in a started state and becomes closed when a CloseConversation is received. Any message that’s sent to the closed Conversation

