

inside front cover

 [image:]

 Key activities of a BDD team

 [image:]

 BDD in Action

 Second Edition

 Behavior-Driven Development for the whole software lifecycle

 John Ferguson Smart

 Jan Molak

 Foreword by Daniel Terhorst-North

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

Praise for the first edition

 Good, deep, and wide reference, with many excellent points. You will find ways to approach, improve, and start immediately using BDD techniques proficiently.

 —Ferdinando Santacroce, C# software developer, CompuGroup Medical Italia

 Learn BDD top to bottom and start using it as soon as you finish reading the book.

 —Dror Helper, Senior consultant, CodeValue

 If you want to see BDD done in a very practical way, this book is for you. The author shows us many useful techniques, tools, and notions that will help us be more productive with BDD.

 —Karl Métivier, Agile coach, Facilité Informatique

 The first and complete step-by-step guide in BDD.

 —Marc Bluemner, head of QA, liquidlabs GmbH

 I highly recommend this book to all of my colleagues, students, and software engineers concerned with software quality.

 —David Cabrero Souto, director of Research Group Madsgroup, University of A Coruña

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editors:

 	
 Helen Stergius and Marina Michaels

 	
 Technical development editor:

 	
 Nick Watts

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Michele Mitchell

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Srihari Sridharan

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617297533

 dedication

Deliberate Discovery—A “Sonnet”

 Uncertainty’s the muse of all that’s new,

 And ignorance the space in which she plays;

 A year’s enough to prove a vision true,

 But we could prove it false in only days.

 We dream, and chase our dream, and never fear

 To fail, and fail. Up, up! And on again,

 But ask us to pursue another’s goals

 And failure makes us mice where we were men.

 Ah, best laid plans! Where were you at the end

 Who chained us and constrained us from the start?

 We knew you made a fickle, fragile friend;

 You tricked us when you claimed you had a heart!

 We thought less travelled roads would see us winning

 In places other fools had feared to stray—

 If only we had known from the beginning

 The ignorance we found along the way.

 And yet, a list of dangers and disasters

 Filled out, and scanned, and added to some more

 Would still have left out some of what we mastered—

 We didn’t know we didn’t know before.

 We planned our way with maps we’d made already

 Assuming the terrain would be the same,

 Expecting well-paved roads to keep us steady

 And any local creatures to be tame.

 We loaded up our caravans and wagons

 With good advice, best practices and tools

 But didn’t spot the legend—“Here be dragons!”

 So we got burnt, again. They say that fools

 Rush in, and yet we count ourselves as wise,

 We praise each other’s skill and raise a glass

 To intellect—ignoring the demise

 Of expeditions just as skilled as ours.

 When they return, worn out, their pride in shreds,

 We laugh and say, “A death march! You expect

 Such things to fail.” And in our clever heads

 It’s obvious—at least in retrospect.

 The dragons of our ignorance will slay us

 If we don’t slay them first. We could be brave

 And work for kings who don’t refuse to pay us

 When we’re delayed because we found their cave.

 They say that matter cannot be created,

 A fundamental principle and law,

 While dragons keep emerging, unabated;

 As many as you slay, there’s still one more.

 Our ignorance is limitless—be grateful,

 Or else we’d find we’ve nothing left to learn;

 To be surprised by dragons may be fateful,

 But truth be told, it’s best laid plans that burn.

 We could seek out the dragons in their dungeons

 And tread there softly, ready to retreat;

 We could seek other roads, postponing large ones,

 And only fight the ones we might defeat.

 The world could be a world of dragon slayers

 And stand as men and women, not as mice;

 The joy that comes from learning more should sway us;

 The fiercest dragons won’t surprise us twice.

 Discover tiny dragons, be they few,

 And all the mightiest, with equal praise—

 Uncertainty’s our muse of all that’s new,

 And ignorance the space in which she plays.

 —Liz Keogh

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1. First steps

 1 Building software that makes a difference

 1.1 BDD from 50,000 feet

 1.2 What problems are you trying to solve?

 Building the software right

 Building the right software

 The knowledge constraint: Dealing with uncertainty

 1.3 Is BDD right for your projects?

 1.4 What you will learn in this book

 2 Introducing Behavior-Driven Development

 2.1 BDD was originally designed to make teaching TDD easier

 2.2 BDD also works well for requirements analysis

 2.3 BDD principles and practices

 Focus on features that deliver business value

 Work together to specify features

 Embrace uncertainty

 Illustrate features with concrete examples

 A Gherkin primer

 Don’t write automated tests; write executable specifications

 These principles also apply to unit tests

 Deliver living documentation

 Use living documentation to support ongoing maintenance work

 2.4 Benefits of BDD

 Reduced waste

 Reduced costs

 Easier and safer changes

 Faster releases

 2.5 Disadvantages and potential challenges of BDD

 BDD requires high business engagement and collaboration

 BDD works best in an Agile or iterative context

 BDD doesn’t work well in a silo

 Poorly written tests can lead to higher test-maintenance costs

 3 BDD: The whirlwind tour

 3.1 The BDD flow

 3.2 Speculate: Identifying business value and features

 Identifying business objectives

 Discovering capabilities and features

 Describing features

 3.3 Illustrate: Exploring a feature with examples

 Discovering the feature

 Slicing the feature into User Stories

 3.4 Formulate: From examples to executable specifications

 3.5 Automate: From executable specifications to automated tests

 Setting up a project with Maven and Cucumber

 Recording the executable specifications in Cucumber

 Automating the executable specifications

 Implementing the glue code

 3.6 Demonstrate: Tests as living documentation

 3.7 BDD reduces maintenance costs

 Part 2. What do I want? Defining requirements using BDD

 4 Speculate: From business goals to prioritized features

 4.1 The Speculate phase

 Strategic Planning in a BDD project

 Strategic Planning is a continuous activity

 Strategic Planning involves both stakeholders and team members

 Identifying hypotheses and assumptions rather than features

 4.2 Describing business vision and goals

 Vision, goals, capabilities, and features

 What do you want to achieve? Start with a vision

 The vision statement

 Using vision statement templates

 How will it benefit the business? Identify the business goals

 Writing good business goals

 Show me the money: Business goals and revenue

 Popping the “why stack”: Digging out the business goals

 4.3 Impact Mapping

 Identify the pain point

 Define the business goal

 Who will benefit? Defining the actors

 How should their behavior change? Defining the impacts

 What should we do about it? Defining the deliverables

 Reverse Impact Mapping

 4.4 Pirate Canvases

 Pirate Metrics

 From Pirate Metrics to Pirate Canvases

 Discovering what sucks

 Building the Epic Landscape

 5 Describing and prioritizing features

 5.1 BDD and Product Backlog Refinement

 5.2 What is a feature?

 Features deliver capabilities

 Features can be broken down into more manageable chunks

 A feature can be described by one or more User Stories

 A feature is not a User Story

 Release features and product features

 Not everything fits into a hierarchy

 5.3 Real Options: Don’t make commitments before you have to

 Options have value

 Options expire

 Never commit early unless you know why

 5.4 Deliberate Discovery

 5.5 Release and sprint planning with BDD

 6 Illustrating features with examples

 6.1 The Three Amigos and other requirements discovery workshops

 6.2 Illustrating features with examples

 6.3 Using tables to describe more complex requirements

 6.4 Example Mapping

 Example Mapping starts with a User Story

 Finding rules and examples

 Discovering new rules

 Surfacing uncertainty

 Facilitating an Example Mapping session

 6.5 Feature Mapping

 Feature Mapping begins with an example

 Examples are broken into steps

 Look for variations and new rules

 Look for alternate flows

 Grouping related flows and recording uncertainty

 6.6 OOPSI

 Outcomes

 Outputs

 Process

 Scenarios

 Inputs

 7 From examples to executable specifications

 7.1 Turning concrete examples into executable scenarios

 7.2 Writing executable scenarios

 A feature file has a title and a description

 Describing the scenarios

 The Given ... When ... Then structure

 Ands and buts

 Comments

 7.3 Using tables in scenarios

 Using tables in individual steps

 Using tables of examples

 Pending scenarios

 7.4 Organizing your scenarios using feature files and tags

 The scenarios go in a feature file

 A feature file can contain one or more scenarios

 Organizing the feature files

 Using a flat directory structure

 Organizing feature files by stories or product increments

 Organizing feature files by functionality and capability

 Annotating your scenarios with tags

 Provide background and context to avoid duplication

 7.5 Rules and examples

 7.6 Expressive scenarios: Patterns and anti-patterns

 The art of good Gherkin

 What bad Gherkin looks like

 Good scenarios are declarative, not imperative

 Good scenarios do one thing, and one thing well

 Good scenarios have meaningful actors

 Good scenarios focus on the essential and hide the incidental

 Gherkin scenarios are not test scripts

 Good scenarios are independent

 7.7 But where are all the details?

 Part 3. How do I build it? Coding the BDD way

 8 From executable specifications to automated acceptance tests

 8.1 Introduction to automating scenarios

 Step definitions interpret the steps

 8.2 Setting up your project

 Setting up a Cucumber project in Java or TypeScript

 Organizing a Cucumber project in Java

 Organizing a Cucumber project in TypeScript

 8.3 Running Cucumber scenarios

 Cucumber test runner classes in Java

 Running Cucumber scenarios in JavaScript and TypeScript

 8.4 Writing glue code

 Injecting data with step definition parameters

 Making your Cucumber Expressions more flexible

 Cucumber Expressions and custom parameter types

 Using regular expressions

 Working with lists and data tables

 8.5 Setting up and tearing down with backgrounds and hooks

 Using background steps

 Using hooks

 8.6 Preparing your test environments using hooks

 Using in-memory databases

 8.7 Using virtual test environments

 Using TestContainers to manage Docker containers for your tests

 9 Writing solid automated acceptance tests

 9.1 Writing industrial-strength acceptance tests

 9.2 Using personas and known entities

 Working with persona in your scenarios

 Storing persona data in HOCON

 9.3 Layers of abstraction

 The Business Rules layer describes the expected outcomes

 The Business Flow layer describes the user’s journey

 Business tasks interact with the application or with other tasks

 The Technical layer interacts with the system

 10 Automating acceptance criteria for the UI layer

 10.1 When and how should you test the UI?

 10.2 Where does UI testing fit in your test automation strategy?

 Which scenarios should be implemented as UI tests?

 Illustrating user journeys

 Illustrating business logic in the user interface

 Documenting and verifying screen-specific business logic

 Showing how information is rendered in the user interface

 Automating web-based acceptance criteria using Selenium WebDriver

 Getting started with WebDriver in Java

 Setting up a WebDriver driver

 Integrating WebDriver with Cucumber

 Sharing WebDriver instances between step definition classes

 Interacting with the web page

 How to locate elements on a page

 Interacting with web elements

 Working with modern UI library components

 Working with asynchronous pages and testing AJAX applications

 10.3 Test-friendly web applications

 10.4 Next steps

 11 Test automation design patterns for the UI layer

 11.1 The limitations of unstructured test scripts

 11.2 Separating location logic from test logic

 11.3 Introducing the Page Objects pattern

 Page Objects are responsible for locating elements on a page

 Page Objects represent objects on a page, not an entire page

 Page Objects tell you about the state of a page

 Page Objects perform business tasks or simulate user behavior

 Page Objects present state in business terms

 Page Objects hide wait conditions and other incidental implementation details

 Page Objects do not contain assertions

 WebDriver Page Factories and the @FindBy annotation

 Finding collections

 Page Objects in Serenity BDD

 11.4 Going beyond Page Objects

 Action classes

 Query classes

 DSL layers and builders

 12 Scalable test automation with the Screenplay Pattern

 12.1 What is the Screenplay Pattern, and why do we need it?

 12.2 Screenplay fundamentals

 12.3 What is an actor?

 12.4 Actors perform tasks

 12.5 Interactions model how actors interact with the system

 Actors can perform multiple interactions

 Interactions are objects, not methods

 Interactions can perform waits as well as actions

 Interactions can also interact with REST APIs

 12.6 Abilities are how actors interact with the system

 12.7 Writing our own interaction classes

 12.8 Questions allow an actor to query the state of the system

 Questions query the state of the system

 Domain-specific Question classes make our code more readable

 Actors can use questions to make assertions

 12.9 Tasks model higher-level business actions

 Simple tasks improve readability

 More complex tasks enhance reusability

 12.10 Screenplay and Cucumber

 Actors and casts

 The Screenplay stage

 Defining a custom parameter type for actors

 Defining persona in enum values

 Screenplay assertions in Cucumber

 13 BDD and executable specifications for microservices and APIs

 13.1 APIs and how to test them

 13.2 Defining a feature using a web UI and a microservice

 Understanding the requirements

 From requirements to executable specifications

 13.3 Automating acceptance tests for microservices

 13.4 The microservice architecture under test

 Preparing the test data

 Performing a POST query: Registering a Frequent Flyer member

 Querying JSON responses with JSONPath

 Performing a GET query: Confirming the frequent flyer address

 Partial JSON Responses: Checking the new Frequent Flyer account details

 Performing a DELETE query: Cleaning up afterward

 13.5 Automating more granular scenarios and interacting with external services

 13.6 Testing the APIs or testing with the APIs

 14 Executable specifications for existing systems with Serenity/JS

 14.1 Navigating an uncharted territory with Journey Mapping

 Determine actors and goals to understand the business context

 Determine what workflows support the goals of interest

 Associate workflows with features

 Establish a steel thread of scenarios that demonstrate the features

 Determine verifiable consequences of each scenario

 Using task analysis to understand the steps of each scenario

 14.2 Designing scalable test automation systems

 Using layered architecture to design scalable test automation systems

 Using actors to link the layers of a test automation system

 Using actors to describe personas

 14.3 Capturing business context in the Specification layer

 15 Portable test automation with Serenity/JS

 15.1 Designing the Domain layer of a test automation system

 Modeling business domain tasks

 Implementing business domain tasks

 Composing interactions into tasks

 Using an outside-in approach to enable task substitution

 Leveraging non-UI interactions with blended testing

 Using tasks as a mechanism for code reuse

 Implementing verification tasks

 15.2 Designing a portable Integration layer

 Writing portable tests for the web interfaces

 Identifying page elements

 Implementing Lean Page Objects

 Implementing Companion Page Objects

 Implementing portable interactions with Page Elements

 Using Page Element Query Language to describe complex UI widgets

 Configuring web integration tools

 Sharing test code across projects and teams

 16 Living documentation and release evidence

 16.1 Living documentation: A high-level view

 16.2 Reporting on feature readiness and feature coverage

 Feature readiness: What features are ready to deliver

 Feature coverage: What requirements have been built

 16.3 Integrating a digital product backlog

 16.4 Leveraging product backlog tools for better collaboration

 16.5 Organizing the living documentation

 Organizing living documentation by high-level requirements

 Organizing living documentation using tags

 Living documentation for release reporting

 Low-level living documentation

 Unit tests as living documentation

 16.6 Living documentation for legacy applications

 index

 front matter

foreword

 Welcome to the second edition of John Ferguson Smart’s comprehensive BDD in Action. When I wrote the foreword to the first edition in 2014, it was with a mixture of relief and delight that someone had taken on the mammoth task of capturing the landscape of BDD methods, tools, and techniques. John’s approach was to carefully, thoughtfully, and thoroughly document what he saw and experienced, as a practitioner, coach, consultant, and trainer, and I was excited to write the foreword that introduced this book to the world.

 Fast-forward to 2023, and we are living in a world in which everything has changed. A global pandemic has seen an unprecedented increase in the use of the word “unprecedented.” Teams and organizations are adopting distributed and hybrid working patterns, making collaboration on knowledge work simultaneously more important and more challenging than ever before.

 Behavior-Driven Development seems to be a perfect fit for this new world. Its focus on communication across the entire product development cycle means we have living documentation as shared artifacts between team members and other stakeholders separated by geography and time zones. The team can agree on a feature, discuss its scope in the form of scenario titles (“The one where ...”), and get into the detail of acceptance criteria, while having automated assurance that what they agreed is indeed how the application behaves. Tie this into your version control and path to live and you are well on the way to full continuous compliance!

 In this updated edition of the book, John and Jan have revisited all the existing content, improving its clarity and flow for both the first-time reader and the returning practitioner. But the world does not stand still; since 2014 there have been several exciting new developments in the world of BDD.

 Example Mapping is a simple yet powerful way of exploring a feature, surfacing uncertainty, and capturing assumptions, business rules, questions, and, of course, examples. I will admit that when it was first described to me, I reacted with a polite but confused “So what?” It seemed too simple to be useful. But then many of the best ideas are, and it has since become a staple of my BDD tool kit.

 The Screenplay Pattern is another obvious-when-you-say-it-out-loud technique. Most UI automation frameworks use the language of the UI—buttons, fields, forms, and so forth—known as a page model. Screenplay flips this on its head and says, “Why not describe UI interactions in the language of the business domain, like we do everywhere else?” You won’t go back.

 John and Jan describe these and other valuable techniques with their customary clarity and detail, providing worked examples that guide the reader through not only theory but tangible practice. I found myself nodding along with much of this new material, as well as having a couple of Aha! moments myself.

 I am delighted that BDD still has this much traction and interest nearly 20 years on (!), and I am grateful to John and Jan for producing this second edition of such a comprehensive resource.

 —Daniel Terhorst-North, practitioner consultant

preface

 Like many projects, when I started working on a new edition to BDD in Action in 2019, I thought it would be easy: a few library updates here and there, and maybe a couple of new sections on the more recent requirement discovery practices.

 But as I reread the material I’d written about BDD in 2013–2014, I realized that a lot of things had evolved. To paraphrase Roy Scheider’s character in Jaws, I was going to need a bigger book. The core tenets remained the same, as the fundamental ideas behind BDD are still as solid, and as useful, as ever.

 But the way we do BDD has evolved quite a bit. We’ve learned how to facilitate requirements discovery sessions more effectively, with techniques such as Example Mapping, Feature Mapping, and Journey Mapping. We have also seen so many teams misinterpret and misunderstand BDD and suffer as a consequence, so some clarification of the core principles seemed useful. In 2015, I was introduced to the Screenplay Pattern for the first time, and for me this was a game-changer in writing cleaner, more maintainable test automation code.

 JavaScript has grown massively since the first edition; I’ve teamed up with Jan Molak, author of Serenity/JS (the TypeScript implementation of the Screenplay pattern), to take a deeper look at how to practice the technical side of BDD in JavaScript and TypeScript projects.

 In this edition, no chapter remained untouched, many chapters were completely rewritten, and there are several entirely new ones. Enjoy!

acknowledgments

 A little like a film, a book has a cast of hundreds, from minor roles to people whose contributions made this book possible. Our thanks go to the dedication, professionalism, and attention to detail of all the folks at Manning: Michael Stephens, Melissa Ice, Rebecca Rinehart, Paul Spratley, Eleonor Gardner, and many others. Helen Stergius and Marina Michaels, our development editors, were unflagging, courteous, and helpful—all the way to the final chapter—in the drive to push this book into production. Thanks to Nick Watts and Srihari Sridharan, who did an exemplary job as technical proofreaders and came up with some great suggestions along the way.

 The reviewers also deserve special mention—this book would not be what it is without their help: Alain Couniot, Alessandro Campeis, Alex Lucas, Andy Wiesendanger, Burk Hufnagel, Christian Kreutzer-Beck, Conor Redmond, Craig Smith, David Paccoud, Goetz Heller, Hilde Van Gysel, Jared Duncan, Jean-François Morin, Jeff Smith, John Booth, John Guthrie, John Kasiewicz, Julien Pohie, Kelum Prabath Senanayake, Kelvin Johnson, Kevin Liao, Lorenzo De Leon, Phillip Sorensen, Richard Vaughan, Ronald Borman, Santosh Shanbhag, and Viorel Moisei.

 We owe much of what we know about BDD to the BDD community: Gojko Adzic, Nigel Charman, Andrew Glover, Liz Keogh, Chris Matts, Dan North, Richard Vowles, and many others—not to mention the broader Agile and open source communities: Dan Allen, John Hurst, Paul King, Aslak Knutsen, Bartosz Majsak, Gáspár Nagy, Seb Rose, Alex Soto, Renee Troughton, Matt Wynne, and more. Thanks for so many fruitful conversations, email exchanges, pair coding sessions, and Skype chats! Special thanks to Daniel Terhorst-North for contributing the foreword to the book.

 A special thanks also goes to Antony Marcano and Andy Palmer, who introduced us to the idea of the Screenplay Pattern and helped to take our automation coding to another level.

 Much of the content of the book is inspired by work done and conversations held over the years with clients, friends, and colleagues in many different organizations: Anthony O’Brien, Parikshit Basrur, Tom Howard, Ray King, Ian Mansell, Peter Merel, Michael Rembach, Simeon Ross, Tim Ryan, Tong Su, Peter Suggitt, Marco Tedone, Peter Thomas, Trevor Vella, Gordon Weir, John Singh, and many others.

 From John: A very special thanks to my dedicated spouse, Chantal, and my boys, James and William, without whose patience, endurance, support, and encouragement this book would simply not have been possible.

 From Jan: I want to thank my amazing wife, Anna, for her love, support, and patience. She was as important to this book getting done as I was. I also want to thank my two wonderful daughters, Alexandra and Victoria, for their encouragement and for believing in their dad.

about this book

 The goal of this book is to help get teams up and running with effective BDD practices. It aims to give you a complete picture of how BDD practices apply at all levels of the software development process, including discovering and defining high-level requirements, implementing the application features, and writing executable specifications in the form of automated acceptance and unit tests.

Who should read this book

 This book has a broad audience. It’s aimed both at teams who are completely new to BDD and at teams who are already trying to roll out BDD or related practices, like acceptance test–driven development or specification by example. It’s for teams who struggle with misaligned and changing requirements, time wasted due to defects and rework, and product quality. It’s for practitioners whose job is to help these teams, and it’s for everyone who shares a passion for discovering better ways to build and deliver software.

 Different people will get different things out of this book:

 	
 Business analysts and testers will learn more effective ways of discovering requirements in collaboration with users, and of communicating these requirements to development teams.

 	
 Developers will learn how to write higher-quality, more maintainable code with fewer bugs, how to focus on writing code that delivers real value, and how to build automated test suites that provide documentation and feedback for the whole team.

 	
 Project managers and business stakeholders will learn how to help teams build better, more valuable software for the business.

How the book is organized: A road map

 The book is divided into four parts, each addressing different aspects of BDD:

 	
 Part 1 presents the motivations, origins, and general philosophy of BDD and concludes with a quick, practical introduction to what BDD looks like in the real world. This part will help team members and project stakeholders alike get a solid understanding of what BDD is really about.

 	
 Part 2 focuses on collaboration. In it, you will learn how BDD practices can help teams analyze requirements more effectively in order to discover and describe what features will deliver real value to the organization. This section lays the conceptual foundation for the rest of the book and presents a number of important requirements-analysis techniques.

 	
 Part 3 provides more technical coverage of BDD practices. We’ll look at techniques for automating acceptance tests in a robust and sustainable way, study a number of BDD tools for different languages and frameworks, and see how BDD helps developers write cleaner, better-designed, higher-quality code. This section is hands-on and practical. The last chapter of part 3 is a little different and takes a look at the broader picture of BDD in the context of project management, product documentation, reporting, and integration into the build process.

 Most of the practical examples in the book will use Java-based languages and tools, but we’ll also look at examples of BDD tools for JavaScript and TypeScript. The approaches we discuss will be generally applicable to any language.

 Because of the broad focus of the book, you may find different sections more or less applicable to your daily work. For example, business analysts might find the material on requirements analysis more relevant than the chapters on coding practices. Table 1 presents a (very) rough guide to the sections various readers might find particularly useful.

 Table 1. A rough indicator of the target audience for each section of this book

 	

 	
 Business analyst

 	
 Tester

 	
 Developer

 	
 Project manager

 	
 Part 1.

 	
 ✅ ✅ ✅

 	
 ✅ ✅ ✅

 	
 ✅ ✅ ✅

 	
 ✅ ✅ ✅

 	
 Part 2.

 	
 ✅ ✅ ✅

 	
 ✅ ✅ ✅

 	
 ✅ ✅

 	
 ✅ ✅ ✅

 	
 Part 3. (Chapters 11–15)

 	
 ✅

 	
 ✅ ✅ ✅

 	
 ✅ ✅ ✅

 	
 ✅

 	
 Part 3. (Chapter 16)

 	
 ✅ ✅ ✅

 	
 ✅ ✅ ✅

 	
 ✅ ✅

 	
 ✅ ✅

Prerequisites

 The prerequisites for BDD in Action will vary depending on the parts of the book being read:

 	
 Parts 1 and 2 (high-level BDD)—These sections require little technical knowledge; they are aimed at all team members and introduce general principles of BDD. A basic understanding of Agile development practices will be helpful.

 	
 Part 3 (BDD and test automation)—This section requires programming knowledge. Most of the examples use either Java or JavaScript. The general approach is to illustrate concepts and practices with working code rather than to document any one technology exhaustively. Different technology sections will benefit from a working knowledge of the following technologies:

 	
Maven—The Java/JVM code samples use Maven, though only a superficial knowledge (the ability to build a Maven project) is required.

 	
HTML/CSS—The sections on UI testing that use Selenium/WebDriver need a basic understanding of how HTML pages are built, what a CSS selector looks like, and, optionally, some familiarity with XPath.

 	
Restful web services—The sections on testing web services need some understanding of how web services are implemented, in particular how web service clients are implemented.

 	
JavaScript—The section on testing JavaScript and JavaScript applications requires a reasonable understanding of JavaScript programming.

 	
 Chapter 16 (living documentation)—This section is general and has no real technical requirements.

About the code

 This book contains many source code examples that illustrate the various tools and techniques discussed. Source code in listings or in the text appears in a fixed-width font like this. Other related concepts that appear in the text, such as class or variable names, also appear in this font.

 Because this book discusses many languages, we’ve made a special effort to keep all of the listings readable and easy to follow, even if you’re not familiar with the language being used. Most of the listings are annotated to make the code easier to follow, and some also have numbered cue balls indicating particular lines of code that are discussed in the text that follows.

Source code and other resources

 This book contains many source code examples in a variety of languages. The source code for these examples is available for download on GitHub at https://github.com/bdd-in-action/second-edition, with a separate subdirectory for each chapter. Some examples are discussed across several chapters—in these cases, each chapter contains the version of the source code discussed in that chapter. This site also contains links to the tools and libraries used in the book and other useful related resources.

 In addition, you can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/bdd-in-action-second-edition. The code projects don’t contain IDE-specific project files, but they’re laid out in such a way as to make it easy to import them into an IDE.

liveBook discussion forum

 Purchase of BDD in Action, Second Edition includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/bdd-in-action-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 John Ferguson Smart is an international speaker, consultant, author, and trainer well known in the Agile community for his many books, articles, and presentations, particularly in areas such as BDD, TDD, test automation, software craftsmanship, and team collaboration.

 John’s main focus is helping organizations and teams deliver more value by combining effective collaboration and technical excellence. John is also the creator and lead developer of the innovative Serenity BDD test automation library and founder of Serenity Dojo (https://www.serenity-dojo.com/), an online training and coaching school that helps testers from all backgrounds become high-performing Agile test automation engineers.

 Jan Molak is a trainer, speaker, and consultant helping clients around the world improve collaboration and optimize software delivery processes through the introduction of BDD, advanced test automation, and modern software engineering practices.

 A contributor to the Screenplay Pattern and a prolific open source developer, Jan is also the author of the Serenity/JS acceptance testing framework, Jenkins Build Monitor, and numerous other tools in the continuous delivery and testing space.

about the cover illustration

 The figure on the cover of BDD in Action, Second Edition is captioned “A Medieval Knight.” The illustration by Paolo Mercuri (1804 –1884) is taken from a book edited by Camille Bonnard and published in Paris in the mid-1800s.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 Part 1. First steps

 Welcome to the world of Behavior-Driven Development (BDD)! Part 1 of this book gives you both a high-level view of the world of BDD and a first taste of what BDD looks like in the field.

 In chapters 1 and 2, you’ll learn about the motivations and origins of BDD and where it sits with regard to Agile and other software development approaches. You’ll discover the broad scope of BDD, learning how it applies at all levels of software development, from high-level requirements discovery and specification to detailed low-level coding. And you’ll learn how important it is not only to build the software right, but also to build the right software.

 As practitioners, we like to keep things grounded in real-world examples, so in chapter 3 you’ll see what BDD looks like in a real project, from discovering the requirements and automating the high-level acceptance criteria to building and verifying the design and implementation, through producing accurate and up-to-date technical and functional documentation.

 By the end of part 1, you should have a good grasp of the motivations and overall broad scope of BDD, as well as an idea of what it looks like in practice at different levels of the software development process.

1 Building software that makes a difference

 This chapter covers

 	
The problems that Behavior-Driven Development addresses

 	
General principles and origins of Behavior-Driven Development

 	
Activities and outcomes seen in a Behavior-Driven Development project

 	
The pros and cons of Behavior-Driven Development

 This book is about building and delivering software that works well and is easy to change and maintain, but more importantly, it’s about building software that provides real value to its users. We want to build software well, but we also need to build software that’s worth building.

 In 2012, the US Air Force decided to ditch a major software project that had already cost over $1 billion. The Expeditionary Combat Support System was designed to modernize and streamline supply chain management in order to save billions of dollars and meet new legislative requirements. But after seven years of development, the system had still “not yielded any significant military capability.”1 The Air Force estimated that an additional $1.1 billion would be required to deliver just a quarter of the original scope and that the solution could not be rolled out until 2020, three years after the legislative deadline of 2017.

 This happens a lot in the software industry. According to a number of studies, around half of all software projects fail to deliver in some significant way. The 2011 edition of the Standish Group’s annual CHAOS Report found that 42% of projects were delivered late, ran over budget, or failed to deliver all of the requested features,2 and 21% of projects were cancelled entirely. Scott Ambler’s annual survey on IT project success rates uses a more flexible definition of success, but still found a 30–50% failure rate, depending on the methodologies used.3 This corresponds to billions of dollars in wasted effort, writing software that ultimately won’t be used or that doesn’t solve the business problem it was intended to solve.

 What if it didn’t have to be this way? What if we could write software in a way that would let us discover and focus our efforts on what really matters? What if we could objectively learn what features will really benefit the organization and learn the most cost-effective way to implement them? What if we could see beyond what the user asks for and build what the user actually needs?

 Organizations are discovering how to do just that. Many teams are successfully collaborating to build and deliver more valuable, more effective, and more reliable software. And they’re learning to do this faster and more efficiently. In this book, you’ll see how. We’ll explore a number of methods and techniques, grouped under the general heading of Behavior-Driven Development (BDD).

 BDD is a collaborative development approach where teams use structured conversations about examples and counterexamples of business rules and expected behavior to build a deep, shared understanding of the features that will really benefit the users and the business as a whole. Very often they express these examples in an executable format that acts as the basis for automated acceptance tests that validate the software’s behavior. BDD helps teams focus their efforts on identifying, understanding, and building valuable features that matter to businesses, and it makes sure that these features are well designed and well implemented.

 BDD practitioners use conversations around concrete examples of system behavior to help understand how features will provide value to the business. It encourages business analysts, software developers, and testers to collaborate more closely by enabling them to express requirements in a more testable way, in a form that both the development team and business stakeholders can easily understand. BDD tools can help turn these requirements into automated tests that help guide the developer, verify the feature, and document what the application does.

 BDD isn’t a software development methodology in its own right. It’s not a replacement for Scrum, XP, Kanban, or whatever methodology you’re currently using. As you’ll see, BDD incorporates, builds on, and enhances ideas from many of these methodologies. And no matter what methodology you’re using, there are ways that BDD can help make your life easier.

1.1 BDD from 50,000 feet

 So what does BDD bring to the table? Here’s a (slightly oversimplified) perspective. Let’s say Chris’s company needs a new module for its accounting software. When Chris wants to add a new feature, the process goes something like this (see figure 1.1):

 	
 Chris tells a business analyst how he would like the feature to work.

 	
 The business analyst translates Chris’s requests into a set of requirements for the developers, describing what the software should do. These requirements are written in English and stored in a Microsoft Word document.

 	
 The developer translates the requirements into code and unit tests—written in Java, C#, or some other programming language—in order to implement the new feature.

 	
 The tester translates the requirements in the Word document into test cases and uses them to verify that the new feature meets the requirements.

 	
 Documentation engineers then translate the working software and code back into plain English technical and functional documentation.

 [image:]

 Figure 1.1 The traditional development process provides many opportunities for misunderstandings and miscommunication.

 Along the way there are many opportunities for information to get lost in translation, be misunderstood, or just be ignored. Chances are that the new module itself may not do exactly what was required and that the documentation won’t reflect the initial requirements that Chris gave the analyst.

 Chris’s friend Sarah runs another company that’s just introduced BDD. In a team practicing BDD, the business analysts, developers, and testers collaborate to understand and define the requirements (see figure 1.2). They express the requirements in a common language that helps unite and focus the team’s efforts. They can even turn these requirements into automated acceptance tests that both specify how the software should behave and also demonstrate that the delivered software behaves as it should. We can see this flow in figure 1.2.

 	
 Like Chris, Sarah talks to Belinda, the business analyst, to get a high-level vision of what she wants. But she doesn’t do so alone: she is joined by a developer and a tester who get to hear firsthand what the users really need. To reduce the risk of misunderstandings and hidden assumptions, they talk through examples of what the feature should do and what it shouldn’t. They try to articulate the business problem they are trying to solve, the business goal they are aiming for, and what features and capabilities might help achieve this goal.

 	
 Before work starts on the feature, Belinda gets together with the developer and tester who will be working on it, and they have a conversation about the feature. In these conversations, they discuss the key business goals and outcomes of the feature and work through concrete examples and counterexamples to get a deeper understanding of the requirement. Oftentimes, for more important features, Sarah will participate in this conversation as well.

 After this conversation, team members write up the key examples and counterexamples in a structured, business-readable format that is quite close to plain English. These examples act both as specifications of the features and as the basis for automated acceptance tests.

 	
 The developers and testers turn these “executable specifications” into automated acceptance tests; these automated tests help guide the development process and determine when a feature is finished.

 	
 When the automated acceptance tests pass, the team has concrete proof that the feature does what was agreed on in phase 2. The tester might use the results of these tests as the starting point for any manual and exploratory testing that needs to be done.

 	
 The automated tests also act as product documentation, providing precise and up-to-date examples of how the system works. Sarah can review the test reports to see what features have been delivered and whether they perform the way she expected.

 [image:]

 Figure 1.2 BDD uses conversations around business rules and examples, expressed in a form that can be easily automated, to reduce lost information and misunderstandings.

 Compared to Chris’s scenario, Sarah’s team makes heavy use of conversations and examples to reduce the amount of information lost in translation. Every stage beyond step 2 starts with the specifications written in a structured but business-readable style, which are based on concrete examples provided by Sarah. In this way, a great deal of the ambiguity in translating the client’s initial requirements into code, reports, and documentation is removed.

 We’ll discuss all of these points in detail throughout the rest of the book. You’ll learn ways to help ensure that your code is of high quality, solid, well tested, and well documented. You’ll learn how to write more effective unit tests and more meaningful automated acceptance criteria. You’ll also learn how to ensure that the features you deliver solve the right problems and provide real benefit to the users and the business.

1.2 What problems are you trying to solve?

 Software projects fail for many reasons, but the most significant causes fall into two broad categories:

 	
 Not building the software right

 	
 Not building the right software

 Figure 1.3 illustrates this in the form of a graph. The vertical axis represents what you’re building, and the horizontal axis represents how you build it. If you perform poorly on the how axis, not writing well-crafted and well-designed software, you’ll end up with a buggy, unreliable product that’s hard to change and maintain. If you don’t do well on the what axis, failing to understand what features the business really needs, you’ll end up with a product that nobody needs.

 [image:]

 Figure 1.3 Successful projects must both build features well and build the right features.

1.2.1 Building the software right

 Many projects suffer or fail because of software quality problems. Although internal software quality is mostly invisible to nontechnical stakeholders, the consequences of poor-quality software can be painfully visible. In our experience, applications that are poorly designed, badly written, or lack well-written, automated tests tend to be buggy, hard to maintain, hard to change, and hard to scale.

 We’ve seen too many applications where simple change requests and new features take too long to deliver. Developers spend more and more time fixing bugs rather than working on new features, which makes it harder to deliver new features quickly. It takes longer for new developers to get up to speed and become productive, simply because the code is hard to understand. It also becomes harder and harder to add new features without breaking existing code. The existing technical documentation (if there is any) is inevitably out of date, and teams find themselves incapable of delivering new features quickly because each release requires a lengthy period of manual testing and bug fixes.

 Organizations that embrace high-quality technical practices have a different story to tell. We’ve seen many teams that adopt practices such as Test-Driven Development, Clean Coding, Living Documentation, and Continuous Integration regularly reporting low to near-zero defect rates, as well as code that’s much easier to adapt and extend as new requirements emerge and new features are requested. These teams can also add features at a more consistent pace, because the automated tests ensure that existing features won’t be broken unknowingly. They implement the features faster and more precisely than other teams because they don’t have to struggle with long bug-fixing sessions and unpredictable side effects when they make changes. And the resulting application is easier and cheaper to maintain.

 Note that there is no magic formula for building high-quality, easily maintainable software. Software development is a complex field, human factors abound, and techniques such as Test-Driven Development, Clean Coding, and Automated Testing don’t automatically guarantee good results. But studies do suggest a strong correlation between lean and Agile practices and project success rates4 when compared to more traditional approaches. Other studies have found a correlation between Test-Driven Development practices, reduced bug counts,5 and improved code quality.6 Although it’s certainly possible to write high-quality code without practicing techniques such as Test-Driven Development and Clean Coding, teams that value good development practices do seem to succeed in delivering high-quality code more often.

 But building high-quality software isn’t in itself enough to guarantee a successful project. The software must also benefit its users and business stakeholders.

1.2.2 Building the right software

 Software is never developed in a vacuum. Software projects are part of a broader business strategy, and they need to be aligned with business goals if they’re to be beneficial to the organization. At the end of the day, the software solution you deliver needs to help users achieve their goals more effectively. Any effort that doesn’t contribute to this end is wasted.

 In practice, there’s often a lot of waste. In many projects, time and money are spent building features that are never used or that provide only marginal value to the business. According to the Standish Group’s CHAOS studies,7 on average some 45% of the features delivered into production are never used. Even apparently predictable projects, such as migrating software from a mainframe system onto a more modern platform, have their share of features that need updating or that are no longer necessary. When you don’t fully understand the goals that your client is trying to achieve, it’s very easy to deliver perfectly functional, well-written features that are of little use to the end user.

 On the other hand, many software projects end up delivering little or no real business value. Not only do they deliver features that are of little use to the business, but they fail to even deliver the minimum capabilities that would make the projects viable.

 The consequences of not building it right and not building the right thing

 The affect of poorly understood requirements and poor code realization isn’t just a theoretical concept or a “nice to have;” on the contrary, it’s often painfully concrete. In December 2007, the Queensland Health Department kicked off work on a new payroll system for its 85,000 employees. The initial budget for the project was around $6 million, with a delivery date of August 2008.

 When the solution was rolled out in 2010, some 18 months late, it was a disaster. Tens of thousands of public servants were underpaid, overpaid, or not paid at all. Since the go-live date, over 1,000 payroll staff have been required to carry out some 200,000 manual processes each fortnight to ensure that staff salaries are paid.

 In 2012, an independent review found that the project had cost the state over $416 million since going into production and would cost an additional $837 million to fix. This colossal sum included $220 million just to fix the immediate software problems that were preventing the system from delivering its core capability of paying Queensland Health staff what they were owed each month.

 Building the right software is made even trickier by one commonly overlooked fact: early on in a project, you usually don’t know what the right features are.8

 As we will see in the rest of this book, BDD is a very effective way to address both of these problems. And one of the main ways it does so is by tackling one of the principle causes of risk and overrun in software projects: the team not having enough clarity on what they are supposed to be building.

1.2.3 The knowledge constraint: Dealing with uncertainty

 One fact of life in software development is that there will be things you don’t know. Changing requirements are a normal part of every software project. Knowledge and understanding about the problem at hand and about how best to solve it increases progressively throughout the project.

 In software development, each project is different. There are always new business requirements to cater to, new technological problems to solve, and new opportunities to seize. As a project progresses, market conditions, business strategies, technological constraints, or simply your understanding of the requirements will evolve, and you’ll need to change your tack and adjust your course. Each project is a journey of discovery, where the real constraint isn’t time, the budget, or even programmer hours, but your lack of knowledge about what you need to build and how you should build it. When reality doesn’t go according to plan, you need to adapt to reality, rather than trying to force reality to fit into your plan. “When the terrain disagrees with the map, trust the terrain” (Swiss Army proverb).

 Users and stakeholders will usually know what high-level goals they want to achieve and can be coaxed into revealing these goals if you take the time to ask. They’ll be able to tell you that they need an online ticketing system or a payroll solution that caters to 85,000 different employees. And you can get a feel for the scope of the application you might need to build early on in the project.

 But the details are another matter entirely. Although users are quick to ask for specific technical solutions to their problems, they’re not usually the best placed to know what solution would serve them best, or even what solutions exist. Your team’s collective understanding of the best way to deliver these capabilities, as well as the optimal feature set for achieving the underlying business goals, will grow as the project progresses.

 As illustrated in figure 1.4, the more prescriptive, plan-based requirements-analysis techniques suppose that you can learn almost all there is to know about a project’s requirements, as well as the optimal solution design, very quickly in the early phases of the project. By the end of the analysis phase, the specifications are signed-off on and locked down, and all that remains to do is code.

 [image:]

 Figure 1.4 At the start of a project, there are many unknowns. You reduce these unknowns as the project progresses, but not in a linear or very predictable way.

 Of course, reality doesn’t always work this way. At the start of the project, a development team will often have only a superficial understanding of the business domain and the goals the users need to achieve. In fact, the job of a software engineering team isn’t to know how to build a solution; it’s to know how to discover the best way to build the solution.

 The team’s collective understanding will naturally increase over the duration of the project. You become less ignorant over time. Toward the end of the project, a good team will have built up a deep, intimate knowledge of the user’s needs and will be able to proactively propose features and implementations that will be better suited to the particular user base. But this learning path is neither linear nor predictable. It’s hard to know what you don’t know, so it’s hard to predict what you’ll learn as the project progresses.

 For the majority of modern software development projects, the main challenge in managing scope isn’t to eliminate uncertainty by defining and locking down requirements as early as possible. The main challenge is to manage this uncertainty in a way that will help you progressively discover and deliver an effective solution that matches up with the underlying business goals behind a project. As you’ll see, one important benefit of BDD is that it provides techniques that can help you manage this uncertainty and reduce the risk that comes with it.

1.3 Is BDD right for your projects?

 BDD works well with other Agile methodologies such as Scrum, but it can also be used with lean approaches such as Kanban. It is not a separate methodology, but more a collection of practices that helps teams discover and understand business needs more quickly and more effectively and get automated feedback on whether these needs have indeed been met by the features they build. For example, a Scrum team using BDD will work in much the same way as an ordinary Scrum team, but they will apply BDD practices during their backlog refinement sessions to get more clarity on the features they need to build. They will also pay more attention to in-sprint automation and try to write automated tests for the acceptance criteria for the features they deliver during the sprint. A Scrum team practicing BDD will also want to add “passing automated acceptance tests” to the definition of their user stories.

 BDD works well for any kind of requirements discovery, both in green fields projects and in ones that are already underway. The examples in this book focus mostly on building new features and new applications (with the exception of chapters 14 and 15, where we look specifically at working with legacy applications). This is by design, to make the domains easier to understand and the examples more engaging. However, BDD is also very effective for existing applications and complex domains. Both authors spend much of their time working in large financial organizations on complex projects. In fact, the techniques you will learn in this book apply to any domain where the requirements are not trivial, where assumptions need to be uncovered, and where complexity and uncertainty lie underneath the surface of each story, which covers almost every project we have ever worked on.

1.4 What you will learn in this book

 This book gives you both an understanding of the theoretical foundations of BDD, and hands-on knowledge about what you need to do to introduce BDD into your own organization. You will learn the following:

 	
 How to get clarity on real user requirements using collaborative techniques and Agile requirements to discover techniques such as Example Mapping and Feature Mapping

 	
 How to record these requirements in an executable format (executable specifications) that can act as automated tests and be integrated into your build process

 	
 How to automate these executable specifications using Java or JavaScript, and using tools such as Cucumber

 	
 How to use these executable specifications to produce living documentation that both verifies and documents the features you deliver

Summary

 	
 The developers of successful projects need to build software that’s reliable and bug free (build the software right) and to build features that deliver real value to the business (build the right software).

 	
 BDD is a collaborative development approach where teams use structured conversations about examples and counterexamples of business rules and expected behavior to build a deep, shared understanding of what features will benefit users. Very often they express these examples in an executable format that acts as the basis for automated acceptance tests that validate the software’s behavior.

 	
 BDD practitioners use conversations about concrete examples to build a common understanding of what features will deliver real value to the organization.

 	
 These examples form the basis of the acceptance criteria that developers use to determine when a feature is done.

 In the next chapter, we’ll look at the origins of BDD and learn about the key steps of BDD process in more detail.

 1 Chris Kanaracus, “Air Force scraps massive ERP project after racking Up $1 billion in costs,” CIO, November 14, 2012, https://www.computerworld.com/article/2493041/air-force-scraps-massive-erp-project-after-racking-up--1b-in-costs.html.

 2 Whether these figures reflect more on our ability to build and deliver software or on our ability to plan and estimate is a subject of some debate in the Agile development community—see Jim Highsmith’s book Agile Project Management: Creating Innovative Products, second edition (Addison-Wesley Professional, 2009).

 3 Scott Ambler, “Surveys Exploring the Current State of Information Technology Practices,” http://www.ambysoft.com/surveys/.

 4 See, for example, Scott Wambler, “2018 IT Project Success Rates Survey Results,” http://www.ambysoft.com/ surveys/success2018.html.

 5 See, for example, Nachiappan Nagappan, E. Michael Maximilien, Thirumalesh Bhat, and Laurie Williams, “Realizing quality improvement through test driven development: results and experiences of four industrial teams,” https://www.microsoft.com/en-us/research/wp-content/uploads/2009/10/Realizing-Quality-Improvement-Through-Test-Driven-Development-Results-and-Experiences-of-Four-Industrial-Teams-nagappan_tdd.pdf.

 6 Rod Hilton, “Quantitatively Evaluating Test-Driven Development by Applying Object-Oriented Quality Metrics to Open Source Projects” (PhD thesis, Regis University, 2009), http://www.rodhilton.com/files/tdd_thesis.pdf.

 7 The Standish Group’s CHAOS Report 2002 reported a value of 45%, and I’ve seen more recent internal studies where the figure is around 50%.

 8 See KPMG, “Review of the Queensland Health Payroll System,” 2012, http://delimiter.com.au/wp-content/uploads/2012/06/KPMG_audit.pdf.

2 Introducing Behavior-Driven Development

 This chapter covers

 	
The origins of BDD

 	
Activities and outcomes seen in a BDD project

 	
The pros and cons of BDD

 In this chapter we will dive into what BDD looks like in a little more detail. BDD is a set of software engineering practices designed to help teams build and deliver more valuable, higher-quality software faster. It draws on Agile and lean practices, including in particular, Test-Driven Development (TDD) and Domain-Driven Design (DDD). But most importantly, BDD provides a common language based on simple, structured sentences expressed in English (or in the native language of the stakeholders) that facilitate communication between project team members and business stakeholders. To better understand the motivations and philosophy that drive BDD practices, it’s useful to understand where BDD comes from.

2.1 BDD was originally designed to make teaching TDD easier

 BDD was originally invented by Daniel Terhorst-North1 in the early to mid-2000s as an easier way to teach and practice TDD, which was invented by Kent Beck in the early days of Agile.2 TDD is a remarkably effective technique that uses unit tests to specify, design, and verify application code.

 Unit tests and acceptance tests

 We will be talking a lot about unit tests and acceptance tests in this chapter, so it is worthwhile clarifying what we mean by these terms.

 Unit tests are small tests that describe and verify the behavior of individual components of a system. Unit tests focus on the internal workings of the system; in modern programming languages, a component might be a method or a function.

 When we talk about acceptance tests, on the other hand, we refer to business-facing tests, tests that end users or business sponsors can use to check that a feature works as intended. We also use the term executable specifications for acceptance tests that can be automated and that are written in a business-readable format.

 Executable specifications are written using terms and concepts from the business domain. They are designed to be easily understood by business folk and end users and are defined collaboratively by the whole team. Unit tests, on the other hand, are written by developers, for developers. Well-written unit tests describe and document low-level component behavior, much like executable specifications document and describe how users interact with the system.

 When TDD practitioners need to implement a feature, they first write a failing test that describes, or specifies, that feature. Next, they write just enough code to make the test pass. Finally, they refactor the code to help ensure that it will be easy to maintain (see figure 2.1). This simple but powerful technique encourages developers to write cleaner, better-designed, easier-to-maintain code3 and results in substantially lower defect counts.4

 [image:]

 Figure 2.1 TDD relies on a simple, three-phase cycle.

 Despite its advantages, many teams still have difficulty adopting and using TDD effectively. Developers often have trouble knowing where to start or what tests they should write next. Sometimes TDD can lead developers to become too detail focused, losing the broader picture of the business goals they’re supposed to implement. Some teams also find that the large numbers of unit tests can become hard to maintain as the project grows in size.

 In fact, many traditional unit tests, written with or without TDD, are tightly coupled to a particular implementation of the code. They focus on the method or function they’re testing, rather than on what the code should do in business terms.

 For example, suppose Paul is a Java developer working on a new financial trading application in a large bank. He has been asked to implement a new feature to transfer money from one account to another. He creates an Account class with a transfer() method, a deposit() method, and so on. The corresponding unit tests are focused on testing these methods:

 public class BankAccountTest {
 @Test
 public void testTransfer() {...}
 @Test
 public void testDeposit() {...}
}

 Tests like this are better than nothing, but they can limit your options. For example, they don’t describe what you expect the transfer() and deposit() functions to do, which makes them harder to understand and to fix if they break. They’re tightly coupled to the method they test, which means that if you refactor the implementation, you need to rename your test as well. And because they don’t say much about what they’re actually testing, it’s hard to know what other tests (if any) you need to write before you’re done.

 North observed that a few simple practices, such as naming unit tests as full sentences and using the word “should,” can help developers write more meaningful tests, which in turn helps them write higher-quality code more efficiently. When you think in terms of what the class should do, instead of what method or function is being tested, it’s easier to keep your efforts focused on the underlying business requirements.

 For example, Paul could write more descriptive tests along the following lines:

 public class WhenTransferringInternationalFunds {
 @Test
 public void should_transfer_funds_to_a_local_account() {...}
 @Test
 public void should_transfer_funds_to_a_different_bank() {...}
 ...
 @Test
 public void should_deduct_fees_as_a_separate_transaction() {...}
 ...
}

 Tests that are written this way read more like specifications than unit tests. They focus on the behavior of the application, using tests simply as a means to express and verify that behavior. Terhorst-North also noted that tests written this way are much easier to maintain because their intent is so clear. The affect of this approach was so significant that he no longer referred to what he was doing as TDD, but as Behavior-Driven Development. Nowadays, BDD and TDD are quite distinct, though related, practices.

2.2 BDD also works well for requirements analysis

 Describing a system’s behavior turns out to be what business analysts do every day. Working with business analyst colleague Chris Matts, Terhorst-North set out to apply what he had learned to the requirements-analysis space. Around this time, Eric Evans introduced the idea of DDD,5 which promotes the use of a ubiquitous language that businesspeople can understand to describe and model a system. Terhorst-North and Matts’s vision was to create a ubiquitous language that business analysts could use to define requirements unambiguously and that could also be easily transformed into automated acceptance tests. To implement this vision, they started expressing the acceptance criteria for user stories in the form of loosely structured examples, known as “scenarios,” like this one:

 Given a customer has a current account
When the customer transfers funds from this account to an overseas account
Then the funds should be deposited in the overseas account
And the transaction fee should be deducted from the current account

 A business owner can easily understand a scenario written like this. It gives clear and objective goals for each story in terms of what needs to be developed and what needs to be tested.

 This notation eventually evolved into a commonly used form often referred to as Gherkin. With appropriate tools, scenarios written in this form can be turned into automated acceptance criteria that can be executed automatically whenever required. Terhorst-North wrote the first dedicated BDD test automation library, JBehave, in the mid-2000s, and since then many others have emerged for different languages, both at the unit-testing and acceptance-testing levels.

 BDD by any other name

 Many of the ideas around BDD are not new and have been practiced for many years under a number of different names. Some of the more common terms used for these practices include Acceptance Test–Driven Development and Specification by Example. To avoid confusion, let’s clarify a few of these terms in relation to BDD.

 All of these practices belong to the same family: an approach that some practitioners nowadays refer to as Example-Guided Development.a Concrete examples can greatly aid understanding what a user really needs, and, where possible, automating these examples in the form of tests, before work starts on a feature.

 Acceptance Test–Driven Development, or ATDD, is a technique where users collaborate with developers to write automated acceptance criteria for features before they are built. The technique has existed in various forms since at least the late 1990s. In the early days, this was often referred to as Story Test-Driven Development. Kent Beck and Martin Fowler mentioned the concept in 2000,b though they observed that it was difficult to implement acceptance criteria in the form of conventional unit tests at the start of a project.

 But acceptance tests don’t have to be written using unit testing tools. Since at least the early 2000s, innovative teams have been asking users to contribute examples of how their software should work, and have been reaping the benefits.c Among the more well-known initiatives in this field, Ward Cunningham invented the framework for integrated tests, or Fit, back in 2002, to allow customers to provide examples of acceptance criteria using Excel. Robert C. Martin built on Fit to develop the popular FitNesse tool, which allows users to use a wiki to capture their acceptance criteria.

 Specification by Example (sometimes referred to as SBE) describes the set of practices that use examples and conversation to discover and describe requirements. In his seminal book of the same name,d Gojko Adzic chose this term as a way to reach out to nontesters: he wanted to emphasize that, despite the use of the word “test” in terms like ATDD, these techniques were actually requirements discovery practices.

 Using conversation and examples to specify how you expect a system to behave is a core part of BDD, and we’ll discuss it at length in the first half of this book. Over the past decade, these techniques have been converging more than diverging. They have also come a long way beyond simply writing tests first, to embrace the power of collaborative deliberate discovery, domain-driven design, living documentation, and a host of other related practices. When done well, they are virtually indistinguishable from each other.

 a Matt Wynne, “Example-guided development: A useful abstraction for the xDD family?” Cucumber, https://cucumber.io/blog/example-guided-development/.

 b Kent Beck and Martin Fowler, Planning Extreme Programming (Addison-Wesley Professional, 2000).

 c Johan Andersson, Geoff Bache, and Peter Sutton, “XP with Acceptance Test Driven Development: A Rewrite Project for a Resource Optimization System,” Lecture Notes in Computer Science, vol. 2675, 2003.

 d Gojko Adzic, Specification by Example (Manning, 2011).

2.3 BDD principles and practices

 Today BDD is successfully practiced in a large number of organizations of all sizes around the world, in a variety of different ways. In Specification by Example, Gojko Adzic provides case studies for over 50 such organizations. In this section, we’ll look at a number of general principles or guidelines that BDD practitioners have found useful over the years. Figure 2.2 gives a high-level overview of the way BDD sees the world. BDD practitioners like to start by identifying business goals and looking for features that will help deliver these goals. Collaborating with the user, they use concrete examples to illustrate these features. Wherever possible, these examples are automated in the form of executable specifications, which both validate the software and provide automatically updated technical and functional documentation. BDD principles are also used at the coding level, where they help developers write code that’s of higher quality and is better tested, better documented, and easier to use and maintain.

 [image:]

 Figure 2.2 The principal activities and outcomes of BDD. Note that these activities occur repeatedly and continuously throughout the process; this isn’t a single linear waterfall-style process, but a sequence of activities that you practice for each feature you implement.

 In the following sections, we’ll look at how these principles work in more detail.

2.3.1 Focus on features that deliver business value

 As you’ve seen, uncertainty about requirements is a major challenge in many software projects, and heavy upfront specifications don’t work particularly well when confronted with a shifting understanding of what features need to be delivered.

 A feature is a tangible, deliverable piece of functionality that helps the business achieve its business goals. For example, suppose you work in a bank that’s implementing an online banking solution. One of the business goals for this project might be “to attract more clients by providing a simple and convenient way for clients to manage their accounts.” Some features that might help achieve this goal could be “Transfer funds between a client’s accounts,” “Transfer funds to another national account,” or “Transfer funds to an overseas account.”

 Rather than attempting to nail down all of the requirements once and for all, teams practicing BDD engage in ongoing conversations with end users and other stakeholders to progressively build a common understanding of what features they should create. Rather than working upfront to design a complete solution for the developers to implement, users explain what they need to get out of the system and how it might help them achieve their objectives. And rather than accepting a list of feature requests from users with no questions asked, teams try to understand the core business goals underlying the project, proposing only features that can be demonstrated to support these business goals. This constant focus on delivering business value means that teams can deliver more useful features earlier and with less wasted effort.

2.3.2 Work together to specify features

 A complex problem, like discovering ways to delight clients, is best solved by a cognitively diverse group of people that is given responsibility for solving the problem, self-organizes, and works together to solve it.

 —Stephen Denning, The Leader’s Guide to Radical Management (Jossey-Bass, 2010)

 BDD is a highly collaborative practice, both between users and the development team and within the team itself. Business analysts, developers, and testers work together with end users to define and specify features, and team members draw ideas from their individual experience and know-how. This approach is highly efficient.

 In a more traditional approach, when business analysts simply relay their understanding of the users’ requirements to the rest of the team, there is a high risk of misinterpretation and lost information.

 If you ask users to write up what they want, they’ll typically give you a set of detailed requirements that matches how they envisage the solution. In other words, users will not tell you what they need; rather, they’ll design a solution for you. I’ve seen many business analysts fall into the same trap, simply because they’ve been trained to write specifications that way. The problem with this approach is twofold: not only will they fail to benefit from the development team’s expertise in software design, but they’re effectively binding the development team to a particular solution, which may not be the optimal one in business or technical terms. In addition, developers can’t use their technical know-how to help deliver a technically superior design, and testers don’t get the opportunity to comment on the testability of the specifications until the end of the project.

 For example, the “Transfer funds to an overseas account” feature involves many user-experience and technical considerations. How can you display the constantly changing exchange rates to the client? When and how are the fees calculated and shown to the client? For how long can you guarantee a proposed exchange rate? How can you verify that the right exchange rate is being used? All these considerations will influence the design, implementation, and cost of the feature and can change the way the business analysts and business stakeholders originally imagined the solution. When teams practice BDD, on the other hand, team members build up a shared appreciation of the users’ needs, as well as a sense of common ownership and engagement in the solution.

2.3.3 Embrace uncertainty

 A BDD team knows that they won’t know everything upfront, no matter how long they spend writing specifications. As we discussed earlier, the biggest thing slowing developers down in a software project is understanding what they need to build.

 Rather than attempting to lock down the specifications at the start of the project, BDD practitioners assume that the requirements, or more precisely, their understanding of the requirements, will evolve and change throughout the life of the project. They try to get early feedback from users and stakeholders to ensure that they’re on track, and change tack accordingly, instead of waiting until the end of the project to see if their assumptions about the business requirements were correct.

 Very often, the most effective way to see if users like a feature is to build it and show it to them as early as possible. With this in mind, experienced BDD teams prioritize the features that will deliver value, will improve their understanding of what features the users really need, and will help them understand how best to build and deliver these features.

2.3.4 Illustrate features with concrete examples

 When a team practicing BDD decides to implement a feature, they work together with users and other stakeholders to define stories and scenarios of what users expect this feature to deliver. In particular, the users help define a set of concrete examples that illustrate key outcomes of the feature (see figure 2.3).

 [image:]

 Figure 2.3 Examples play a primary role in BDD, helping everyone understand the requirements more clearly.

 These examples use a common vocabulary and can be readily understood by both end users and members of the development team. They’re usually expressed using the Given ... When ... Then notation you saw in section 2.2. For instance, a simple example that illustrates the “Transfer funds between a client’s accounts” feature might look like this:

 Scenario: Transferring money to a savings account
 Given Tess has a current account with $1000
 And she has savings account with $2000
 When she transfers $500 from her current account to her savings account
 Then she should have $500 in her current account
 And she should have $2500 in her savings account

 Examples play a primary role in BDD, simply because they’re an extremely effective way of communicating clear, precise, and unambiguous requirements. Specifications written in natural language are, as it turns out, a terribly poor way of communicating requirements, because there’s so much space for ambiguity, assumptions, and misunderstandings. Examples are a great way to overcome these limitations and clarify the requirements. Examples are also a great way to explore and expand your knowledge. When a user proposes an example of how a feature should behave, project team members often ask for extra examples to illustrate corner cases, explore edge cases, or clarify assumptions. Testers are particularly good at this, which is why it’s so valuable for them to be involved at this stage of the project.

2.3.5 A Gherkin primer

 Most BDD tools that we’ll look at in this book use a format generally known as Gherkin, so before we go any further, it is worth clarifying just what this is. This format is designed to be both easily understandable for business stakeholders and easy to automate using dedicated BDD tools such as Cucumber and SpecFlow. This way, it both documents your requirements and runs your automated tests.

 In Gherkin, the requirements related to a particular feature are grouped into a single text file called a feature file, which contains a short description of the feature, followed by a number of scenarios, or formalized examples of how a feature works.

 Feature: Transferring money between accounts
 In order to manage my money more efficiently
 As a bank client
 I want to transfer funds between my accounts whenever I need to
 Scenario: Transferring money to a savings account
 Given Tess has a current account with $1000
 And a savings account with $2000.00
 When she transfers $500 from current to savings
 Then she should have $500 in her current account
 And she should have $2500 in her savings account

 Scenario: Transferring with insufficient funds
 Given Tess has a current account with $1000
 And a savings account with $2000.00
 When she transfers $1500 from current to savings
 Then she should receive an 'insufficient funds' error
 Then she should have $1000 in her current account
 And she should have $2000 in her Savings account

 As can be seen here, Gherkin requirements are expressed in plain English, but with a specific structure. Each scenario is made up of a number of steps, where each step starts with one of a small number of keywords (Given, When, Then, And, But).

 The natural order of a scenario is Given ... When ... Then:

 	
 Given describes the preconditions for the scenario and prepares the test environment.

 	
 When describes the action under test.

 	
 Then describes the expected outcomes.

 The And and But keywords can be used to join several Given, When, or Then steps in a more readable way:

 Given she has a current account with $1000
And she has a savings account with $2000

 Several related scenarios can often be grouped into a single scenario using a table of examples. For example, the following scenario illustrates how interest is calculated on different types of accounts:

 Scenario Outline: Earning interest
 Given Tess has a <account-type> account with $<initial-balance>
 And the interest rate for <account-type> accounts is <interest>
 When the monthly interest is calculated
 Then she should have earned $<earnings>
 And she should have $<new-balance> in her <account-type> account
 Examples:
initial-balance	account-type	interest	earnings	new-balance
10000	Current	1.0	8.33	10008.33
10000	Savings	3.0	25	10025
10000	SuperSaver	5.0	41.67	10041.67

 This scenario would be run three times in all, once for each row in the Examples table. The values in each row are inserted into the placeholder variables, which are indicated by the <...> notation (<account-type>, <initial-balance>, etc.). This not only saves typing, but also makes it easier to understand the whole requirement at a glance.

 You can also use the following tabular notation within the steps themselves in order to display test data more concisely. For example, the previous money-transfer scenario could have been written like this:

 Scenario: Transferring money between accounts within the bank
 Given Tess has the following accounts:
 | account | balance |
 | current | 1000 |
 | savings | 2000 |
 When she transfers 500.00 from current to savings
 Then her accounts should look like this:
 | account | balance |
 | current | 500 |
 | savings | 2500 |

 We’ll look at this notation in much more detail in chapter 5.

2.3.6 Don’t write automated tests; write executable specifications

 These stories and examples form the basis of the specifications that developers use to build the system. They act as both acceptance criteria, determining when a feature is done, and as guidelines for developers, giving them a clear picture of what needs to be built.

 Acceptance criteria give the team a way to objectively judge whether a feature has been implemented correctly. But checking this manually for each code change would be time-consuming and inefficient. It would also slow down feedback, which would in turn slow down the development process. Wherever feasible, teams turn these acceptance criteria into automated acceptance tests or, more precisely, into executable specifications.

 An executable specification is an automated test that illustrates and verifies how the application delivers a specific business requirement. These automated tests run as part of the build process and run whenever a change is made to the application. In this way, they serve both as acceptance tests, determining which new features are complete, and as regression tests, ensuring that new changes haven’t broken any existing features (see figure 2.4).

 [image:]

 Figure 2.4 Executable specifications are expressed using a common business vocabulary that the whole team can understand. They guide development and testing activities and produce readable reports available to all.

 You can automate an executable specification by writing test code corresponding to each step. BDD tools such as Cucumber will match the text in each step of your scenario to the appropriate test code. For example, this is the first step of the scenario in figure 2.4:

 Given Tess has a current account with $1000

 You might automate this step in Java using Cucumber with code like this:

 Client client;

@Given("{client} has a {accountType} account with ${int}") ❶
public void setutAccount(Client client,
 AccountType accountType,
 int balance) {
 this.client = client;
 client.opens(BankAccount.ofType(accountType).withBalance(balance)); ❷
}

 ❶ The step that this code implements

 ❷ Call the application code that corresponds to this step.

 When Cucumber runs the scenario, it’ll execute each step, using basic pattern matching to find the method associated with step 1. Once it knows what method to call, it’ll extract variables like accountType and balance and execute the corresponding application code 2.

 Unlike conventional unit or integration tests, or the automated functional tests many QA teams are used to, executable specifications are expressed in something close to natural language. They use precisely the examples that users and development team members proposed and refined earlier on, and the same terms and vocabulary. Executable specifications are about communication as much as they are about validation, and the test reports they generate are easily understandable by everyone involved with the project.

 These executable specifications also become a single source of truth, providing reference documentation for how features should be implemented. This makes maintaining the requirements much easier. If specifications are stored in the form of a Word document or on a wiki page, as is done for many traditional projects, any changes to the requirements need to be reflected both in the requirements document and in the acceptance tests and test scripts, which introduces a high risk of inconsistency. For teams practicing BDD, the requirements and executable specifications are the same thing; when the requirements change, the executable specifications are updated directly in a single place. We’ll look at this in detail in chapter 9.

2.3.7 These principles also apply to unit tests

 BDD doesn’t stop at the acceptance tests. Many of the core BDD principles and values can also be applied to unit testing, and this helps developers write higher-quality code that’s more reliable, more maintainable, and better documented.

 Unit tests are small tests that describe and verify the behavior of individual components of a system. Unit tests focus on the internal workings of the system; in modern programming languages, a component might be a method or a function.

 The executable specifications we saw in the previous section are written using terms and concepts from the business domain. They are designed to be easily understood by businesspeople and end users. We might call these customer-facing executable specifications. Unit tests, on the other hand, are written by developers, for developers. Well-written unit tests describe and document low-level component behavior, much in the same way as executable specifications documents, and describe how users interact with the system.

 Developers practicing BDD typically use an outside-in approach. When they implement a feature, they start from the acceptance criteria and work down, building whatever is needed to make those acceptance criteria pass. The acceptance criteria define the expected outcomes, and the developer’s job is to write the code that produces those outcomes. This is a very efficient, focused way of working. Just as no feature is implemented unless it contributes to an identified business goal, no code is written unless it contributes to making an acceptance test pass, and therefore to implementing a feature.

