

 [image: cover]

Xamarin in Action: Creating native cross-platform mobile apps

 Jim Bennett

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 © 2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Elesha Hyde
Review editor: Aleksandar Dragosavljević
Technical development editor: Gary Park
Project editor: Kevin Sullivan
Copyeditor: Andy Carroll
Proofreader: Corbin Collins
Technical proofreader: Tomasz Cielecki
Typesetter: Dottie Marsico
Illustrator: April Milne
Cover designer: Marija Tudor

 ISBN 9781617294389

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

Dedication

 To the amazing Nat and Evie, for your unwavering love and support whilst I was glued to my laptop.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the cover illustration

 1. Getting started with Xamarin

 Chapter 1. Introducing native cross-platform applications with Xamarin

 Chapter 2. Hello MVVM—creating a simple cross-platform app using MVVM

 Chapter 3. MVVM—the model-view–view model design pattern

 Chapter 4. Hello again, MVVM—understanding and enhancing our simple MVVM app

 Chapter 5. What are we (a)waiting for? An introduction to multithreading for Xamarin apps

 2. Building apps

 Chapter 6. Designing MVVM cross-platform apps

 Chapter 7. Building cross-platform models

 Chapter 8. Building cross-platform view models

 Chapter 9. Building simple Android views

 Chapter 10. Building more advanced Android views

 Chapter 11. Building simple iOS views

 Chapter 12. Building more advanced iOS views

 3. From working code to the store

 Chapter 13. Running mobile apps on physical devices

 Chapter 14. Testing mobile apps using Xamarin UITest

 Chapter 15. Using App Center to build, test, and monitor apps

 Chapter 16. Deploying apps to beta testers and the stores

 Appendix A. UI flows and threads for SquareRt and Countr

 Appendix B. Using MVVM Light instead of MvvmCross

 Appendix C.

 Appendix D.

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the cover illustration

 1. Getting started with Xamarin

 Chapter 1. Introducing native cross-platform applications with Xamarin

 1.1. Introducing Xamarin mobile apps

 1.1.1. Vendor-specific native apps

 1.1.2. Cordova

 1.1.3. Xamarin native apps

 1.1.4. Xamarin.Forms

 1.1.5. Xamarin developer tools

 1.1.6. Mobile-optimized development lifecycle

 1.2. Creating production-quality mobile apps

 1.2.1. Design

 1.2.2. Develop

 1.2.3. Test

 1.2.4. Build

 1.2.5. Distribute

 1.2.6. Monitor

 1.3. Rinse and repeat...

 Summary

 Chapter 2. Hello MVVM—creating a simple cross-platform app using MVVM

 2.1. What are UI design patterns?

 2.2. MVVM—the design pattern for Xamarin apps

 2.3. What is cross-platform code?

 2.3.1. .NET Standard class libraries

 2.4. Getting started—creating your first solution

 2.4.1. Requirements—what hardware or software do you need for each mobile platform?

 2.4.2. Creating the solution

 2.4.3. What have we just created?

 2.4.4. Building and running the apps

 2.5. Is this really a cross-platform app?

 Summary

 Chapter 3. MVVM—the model-view–view model design pattern

 3.1. The model layer

 3.2. The view-model layer

 3.2.1. State and behavior

 3.2.2. Value conversion

 3.2.3. Testability

 3.3. The view layer

 3.4. Binding

 3.4.1. Source and target

 3.4.2. Binding mode

 3.4.3. Binding is not cross-platform

 3.4.4. Value converters

 3.5. The application layer

 3.6. Navigation

 3.6.1. View-first

 3.6.2. View-model–first

 3.6.3. Which one to use?

 3.7. Revisiting the square-root calculator app

 Summary

 Chapter 4. Hello again, MVVM—understanding and enhancing our simple MVVM app

 4.1. A deeper dive into our Hello Cross-Platform World app

 4.1.1. The model

 4.1.2. The view model

 4.1.3. The application layer

 4.1.4. The view

 4.2. Expanding on our Hello World app

 4.2.1. Using .NET Standard plugins to access device-specific code

 4.2.2. Installing the Xamarin text-to-speech plugin

 4.2.3. Adding the cross-platform code

 4.2.4. Inversion of control

 4.2.5. Wiring up the Android UI

 4.2.6. Wiring up the iOS UI

 Summary

 Chapter 5. What are we (a)waiting for? An introduction to multithreading for Xamarin apps

 5.1. Why do we need multithreaded code?

 5.2. What are threads?

 5.2.1. Buying coffee

 5.2.2. So what is a thread?

 5.2.3. A quick roundup

 5.3. UI thread and background threads

 5.3.1. The UI thread

 5.3.2. Background threads

 5.4. Using tasks to run code in the background

 5.4.1. Task and Task<T>

 5.4.2. Chaining tasks

 5.5. Task results

 5.5.1. Polling to see if the task has finished

 5.5.2. Waiting on the task

 5.5.3. Getting the result from a continuation

 5.5.4. Task exceptions

 5.6. Updating the UI

 5.6.1. The UI task scheduler

 5.6.2. Using the power of MVVM

 5.7. Async and await

 5.7.1. The async and await keywords

 5.7.2. Writing your own async methods

 5.7.3. Async commands

 5.8. Make your app feel responsive

 5.9. It’s time to start building things

 Summary

 2. Building apps

 Chapter 6. Designing MVVM cross-platform apps

 6.1. Introduction to designing a cross-platform app

 6.2. Designing the UI and user flows

 6.2.1. SquareRt—a simple app for calculating square roots

 6.2.2. Countr—an app for counting multiple things

 6.2.3. Defining user flows and UIs

 6.3. Architecting the app

 6.3.1. Which layer?

 6.3.2. Which thread?

 6.3.3. Mapping code to layers and threads

 6.4. Creating the solutions

 6.5. Application properties

 6.5.1. Android manifest

 6.5.2. iOS info.plist

 6.6. SDK versions

 6.6.1. Android SDK versions and the SDK manager

 6.6.2. iOS SDK versions

 6.7. Linking

 6.7.1. Linking the apps

 6.7.2. Linker options

 6.7.3. Stopping the linker from doing too much

 Summary

 Chapter 7. Building cross-platform models

 7.1. Building simple model layers

 7.2. Unit testing

 7.2.1. Creating a unit-test project

 7.2.2. Creating your first test

 7.2.3. What do these tests tell you?

 7.3. Building more complex model layers

 7.3.1. Services, data models, and repositories

 7.3.2. Accessing databases

 7.3.3. Adding a service layer

 7.3.4. Accessing web services

 7.4. A quick recap

 Summary

 Chapter 8. Building cross-platform view models

 8.1. The view-model layer

 8.1.1. The view-model layer inside SquareRt

 8.1.2. The view-model layer inside Countr

 8.2. Adding state and behavior to SquareRt

 8.2.1. State inside SquareRt

 8.2.2. Exposing behavior via property changes

 8.3. Adding state and behavior to Countr

 8.3.1. Single-value properties

 8.3.2. Collections

 8.3.3. Exposing behavior using commands

 8.3.4. Messaging

 8.3.5. Navigation

 8.4. A quick roundup

 Summary

 Chapter 9. Building simple Android views

 9.1. Building Android UIs

 9.1.1. Material design

 9.1.2. Layout files

 9.1.3. Resources

 9.1.4. Resource locations

 9.1.5. Editing layout files

 9.1.6. Layout inflation

 9.2. Creating the layout file for the SquareRt UI

 9.2.1. Adding a toolbar

 9.2.2. Adding an image

 9.2.3. Adding an EditText control

 9.2.4. Adding a result TextView control

 9.3. Building the SquareRt view

 9.3.1. What is an activity?

 9.3.2. The activity lifecycle

 9.3.3. Creating an activity for the view

 9.3.4. Running the app

 Summary

 Chapter 10. Building more advanced Android views

 10.1. Building the UI for Countr

 10.1.1. Creating the UI for the master view

 10.1.2. Recycler views

 10.1.3. Creating the UI for the recycler view items

 10.1.4. Floating action buttons

 10.1.5. Creating the UI for the detail view

 10.1.6. Menu items

 10.2. Building the Countr activities

 10.2.1. Setting up master recycler views

 10.2.2. The detail view

 10.2.3. Running the app

 10.3. App icons and launch screens

 10.3.1. App icons

 10.3.2. Launch screens

 Summary

 Chapter 11. Building simple iOS views

 11.1. Building iOS UIs

 11.1.1. iOS human interface guidelines

 11.1.2. Storyboards

 11.1.3. Controls

 11.1.4. Different screen resolutions

 11.1.5. Auto layout with constraints

 11.1.6. Image resources and asset catalogs

 11.1.7. A quick recap

 11.2. Creating the SquareRt storyboard

 11.2.1. Adding our first view controller

 11.2.2. Adding an image

 11.2.3. Adding a text field

 11.2.4. Adding the result label

 11.2.5. Seeing the layout on different devices

 11.2.6. Size classes

 11.2.7. A quick recap

 11.3. Building the SquareRt view

 11.3.1. What is a view controller?

 11.3.2. View lifecycle

 11.3.3. Creating the view controller

 11.3.4. Wiring up controls to the view controller

 11.3.5. Binding the view controller

 11.3.6. Another quick recap

 11.3.7. Running the app

 Summary

 Chapter 12. Building more advanced iOS views

 12.1. Building the UI and view controllers for Countr

 12.1.1. Creating the UI for the master view

 12.1.2. Navigation bars and buttons

 12.1.3. Creating the UI for the detail view

 12.1.4. A quick recap

 12.1.5. Running the app

 12.2. App icons and launch screens

 12.2.1. App icons

 12.2.2. Launch screens

 12.3. Making the apps production-ready

 Summary

 3. From working code to the store

 Chapter 13. Running mobile apps on physical devices

 13.1. Running Android apps on a real device

 13.2. Signing Android apps for publishing

 13.2.1. Setting the package name

 13.2.2. Keystores

 13.2.3. Creating keystores and signing builds

 13.3. Running iOS apps on a real device

 13.3.1. What is a provisioning profile?

 13.3.2. Bundle identifiers

 13.3.3. Creating a dummy app in Xcode

 13.3.4. Running your app on a physical device

 13.4. Creating iOS provisioning profiles

 13.4.1. Certificates

 13.4.2. App IDs

 13.4.3. Devices

 13.4.4. Provisioning profiles

 13.4.5. Running your app using the new provisioning profile

 13.4.6. Troubleshooting

 Summary

 Chapter 14. Testing mobile apps using Xamarin UITest

 14.1. Introduction to UI testing

 14.1.1. Writing UI tests using Xamarin UITest

 14.1.2. Setting up your app for UI testing

 14.1.3. Running the auto-generated tests

 14.2. Writing tests

 14.2.1. The visual tree

 14.2.2. The REPL

 14.2.3. Identifying controls

 14.2.4. Tapping the Add button

 14.2.5. Entering text

 14.2.6. Finding controls based on their text

 14.2.7. Assertions

 14.2.8. Proving your test by breaking things

 14.3. Testing incrementing a counter

 14.4. The app interface and app queries

 14.4.1. The IApp interface

 14.4.2. Queries

 Summary

 Chapter 15. Using App Center to build, test, and monitor apps

 15.1. Introducing Visual Studio App Center

 15.1.1. Apps

 15.1.2. Users and organizations

 15.1.3. API

 15.1.4. CLI

 15.1.5. Getting help

 15.2. Setting up builds

 15.2.1. Creating your first App Center app

 15.2.2. Configuring the Android build

 15.2.3. Configuring the iOS build

 15.3. Testing your apps using Test Cloud

 15.3.1. What is Test Cloud?

 15.3.2. Preparing your apps to be tested

 15.3.3. Creating a test run configuration

 15.3.4. Running tests from the command line

 15.3.5. Viewing the test results on App Center

 15.4. Analytics and crash reporting

 15.4.1. Adding the App Center SDKs

 15.4.2. Understanding your audience

 15.4.3. Adding event tracking

 15.4.4. Crash reporting

 Summary

 Chapter 16. Deploying apps to beta testers and the stores

 16.1. Distributing Android apps to beta testers

 16.1.1. Enabling app distribution

 16.1.2. Auto updates

 16.2. Publishing Android apps on the Google Play store

 16.2.1. Setting up your account

 16.2.2. Creating your app

 16.2.3. Alternative stores

 16.3. Distributing iOS apps to beta testers

 16.3.1. Enabling app distribution

 16.3.2. Auto updates

 16.4. Publishing iOS apps on the Apple App store

 16.4.1. Provisioning your app for publishing

 16.4.2. Setting up your app

 Summary

 Where to next?

 Appendix A. UI flows and threads for SquareRt and Countr

 A.1. SquareRt

 A.2. Countr

 A.2.1. Loading counters

 A.2.2. Adding a counter

 A.2.3. Deleting a counter

 A.2.4. Incrementing a counter

 Appendix B. Using MVVM Light instead of MvvmCross

 B.1. MVVM Light

 B.2. Installing MVVM Light

 B.3. The model layer

 B.4. The view model layer

 B.5. The view layer

 B.5.1. The Android view and application layer

 B.5.2. The iOS view and application layer

 Summary

 Appendix C.

 A sneak peak...

 Picking the right thread...

 Appendix D.

 From idea to store

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 When Jim told me he was writing a book on Xamarin that was focusing on architecture, design, testing, and best practices,
 I could not have been more excited. I knew he was the perfect author for this style of book. The very first time I interacted
 with Jim, we were both creating C# bindings around Bluetooth beacon libraries for iOS and Android. I knew right away we would
 become great friends, and I’m glad he’s joined Microsoft as one of our Developer Advocates to continue all of the great work
 he was doing in the community.

 Xamarin in Action is a resource that I wish I’d had by my side when I was starting native cross-platform mobile development with Xamarin. This
 book walks you through the key fundamentals of what Xamarin is and how the technology works in Visual Studio, but it also
 guides you through best practices on building production-quality mobile applications. From design to architecture to deployment,
 by the end of this book you’ll have a full grasp of mobile development with Xamarin and you’ll surely have fallen in love
 with it just as much as I have.

 When Jim asked me if I would write a foreword for his book, and I started to read the chapters, it brought me back to when
 I discovered Xamarin for the first time. This may be where you are right now, getting ready to start your mobile development
 career. I could think of no better way to introduce Xamarin in Action than by sharing my Xamarin journey with you.

 I can vividly remember the moment that made me want to become a mobile developer, changing my life forever. It was the fall
 of 2010, and I was attending my first developer conference, the Professional Developers Conference in Redmond, Washington,
 at Microsoft headquarters. While there, I was introduced to Azure, the future of cloud computing, and was handed my first
 smartphone. This tiny supercomputer not only fit into my pocket, but also enabled me to craft full-blown applications in C#
 from Visual Studio that I could ship to people around the globe. It blew my mind. In that instant, I knew I was done writing
 printer software and needed to move to Seattle to be closer to the action.

 Before I knew it, I’d accepted a job at a small startup, moved my life across the country, and started my role as the sole
 mobile developer. On my first day, I was tasked with creating native iOS, Android, and Windows applications in only two months.
 I remember immediately freezing up, as I tried to figure out what I’d gotten myself into, and how I was going to accomplish
 this as a C# developer who didn’t know Objective-C or Java. I knew I would have to find a cross-platform framework if I was
 going to be successful, and that it would need to integrate into my existing development workflow and tools and, of course,
 be powered by C#. This was when I discovered the Xamarin platform. I didn’t waste any time in downloading the tools and started
 crafting my first native iOS and Android apps in C# and Visual Studio!

 From my very first File > New experience, I was in love with Xamarin. It gave me everything I could ask for in a platform,
 including native performance, access to every single native API in C#, and a full native user interface that I could craft
 right from Visual Studio. Xamarin truly made building cross-platform native apps fast, easy, and fun, and I never looked back.
 After successfully shipping those initial apps in just a few months (and several more over the next few years), I was so in
 love with Xamarin that I accepted a job with the company as a developer advocate, so I could focus all my energy on helping
 developers around the world transform their careers with the power of Xamarin.

 It’s not hyperbole when I say that I absolutely love this technology and know that it can transform your business to be more
 productive and agile when crafting mobile applications. It even has the power to change your entire career. I’m living proof.

 JAMES MONTEMAGNO
Principal Program Manager, Mobile Developer Tools, Microsoft

Preface

 I’ve been involved in technology most of my life, and every year is more exciting for a technologist than the last. Innovations
 keep coming faster and faster, making it sometimes hard (and always expensive) to keep up. One of the most exciting innovations
 of the last decade has been the rise of the smartphone. The technology world changed the day Steve Jobs announced the iPhone,
 and it has been going from strength to strength ever since. I’ve been an avid iPhone user from the start, and I even wrote
 a couple of apps using Objective-C during the iPhone’s early years. The biggest thing I learned from that experience was that
 writing mobile apps is cool, but using Objective-C is painful.

 Fast-forward a few years, and I was a bored C# developer. I’d been building trading systems for years, desktop apps designed
 to help other people make a lot of money with unexciting technology, and I needed a change. At the start of my career I was
 passionate about coding, writing code in my spare time and devouring books and training courses. After a number of years in
 finance, that passion was dying. I looked around for something to fire it back up, and I found the answer—Xamarin.

 I’d spent years learning C#, and with Xamarin I could use those skills to build mobile apps for both iOS and Android. No longer
 would I have to write Objective-C code for iOS and Java code for Android. The world of mobile development had been opened
 up to developers like me using C#, a language I not only was very comfortable with, but also actively enjoyed using. I decided
 that Xamarin was the technology for me, bought myself a license, signed up for Xamarin University, quit my job, and spent
 four months in a co-working space learning Xamarin. I was hooked, and since then I haven’t looked back. I’ve been so passionate
 about the technology that I wanted to tell the world how easy it is to build cross-platform mobile apps.

 One question that kept coming up in the community was, “How do I build a production-quality app?” There are many great guides
 on how to use the iOS and Android SDKs, but no end-to-end documentation on how to go from an idea to a working, tested, shipped
 app—documentation that takes advantage of design patterns like MVVM not only to build testable code, but also to take advantage
 of Xamarin’s most powerful capability: the ability to share large portions of your code between platforms. That was the inspiration
 for this book. Xamarin is a better way to write, test, monitor, and deploy mobile apps, and this book aims to show you how.

Acknowledgments

 This book has involved a huge amount of work over the past year and a bit. But in spite of the countless hours I put in, it
 would never have happened without a lot of hard work from some amazing people. This book isn’t the creation of a great writer;
 instead, it’s the result of an enthusiastic developer standing on the shoulders of giants, and it is these giants to whom
 I owe a huge amount of thanks.

 First, I’d like to thank the team at Xamarin for creating a product that has excited me beyond any technology that I’ve worked
 with before—especially Miguel de Icaza, Nat Friedman, and Joseph Hill for founding such an awesome company to create an awesome
 product; James Montemagno for kick-starting my involvement with the Xamarin community by inspiring me to write and speak;
 Jayme Singleton for her great work building the Xamarin community and supporting all its members; and Mikayla Hutchinson for
 always being happy to help no matter what dumb questions I ask her.

 On the community side, I’d like to thank the Xamarin MVP community, past and present, for welcoming me to the fold, being
 on hand to answer questions, and supporting my writing, with special thanks to Dave Evans for giving me my first chance to
 speak at a meetup—a defining moment in my community involvement. Part of what has made this book so easy to write is the amazing
 framework that is MvvmCross, so I’d like to also thank the MvvmCross team for their hard work and support, especially Martijn
 van Dijk.

 This book wouldn’t have been one-tenth as good as it is without the constant support, feedback, and teaching of my development
 editor at Manning Publications, Elesha Hyde. The techniques you’ve taught me have made me a better communicator, writer, and
 mentor, and I’ve been incredibly appreciative of your guidance every time there was a bump in the road. I hope I’ve done you
 proud.

 I’d also like to thank the reviewers who took time to read the manuscript at various stages in its development: Andreas Berggren,
 Davide Fiorentino lo Regio, Dennis Sellinger, Eric Sweigart, Gareth van der Berg, Jason Smith, Jesse Liberty, Karthikeyarajan
 Rajendran, Krishna Chaitanya Anipindi, Lokeshwar Reddy Vangala, Mario Solomou, Michael Lund, Narasimha Baliga, Patrick Regan,
 Philip Taffet, Prabhuti Prakash, Riccardo Moschetti, Richard Lebel, Stefan Hellweger, Steve Atchue, Thomas Overby Hansen,
 and Zorodzayi Mukuya. This book is much better because of your feedback. I’d especially like to thank Gary Park and Tomasz
 Cielecki (another member of the great MvvmCross team) for their thorough technical review and their constant feedback.

 Part of this book was written while fueled up on coffee and pancakes, so I’d like to thank Sarah and the team at Soulshine
 in Browns Bay, New Zealand, for fueling my writing every Saturday morning. The majority of this book was written while working
 for a small but incredible company in New Zealand called EROAD, and I would love to thank them for supporting my efforts,
 especially Jared Langguth for giving me a chance to write Xamarin apps all day, every day, and Sam Williams for continuously
 showing me the world of development from a different perspective.

 Finally, there’s no way this book could have happened without the love and support of my family. My parents first got me into
 programming at an early age (even helping copy out ZX Spectrum source code listings from books and magazines), and they’ve
 always inspired me to do my best at everything I do and to always do what I love. Thank you both for being there for me my
 entire life. My biggest thanks have to go to my wife, Nat, and my daughter, Evie. Nat—thank you for being by my side as I
 followed my passions wherever in the world they took us, and for supporting such a huge personal project. Evie—thank you for
 being excited that Daddy was teaching people to write apps for iPads. I hope one day you find something that excites and drives
 you the way Xamarin mobile development has me. I love you both.

 All the good parts of this book are thanks to these amazing people. All the mistakes are mine and mine alone.

About this book

 Xamarin in Action has been written to help you build production-quality mobile apps—five-star apps that are well architected, well tested,
 and deployed to the store with analytics and crash monitoring. This book covers the journey from idea to delivery, ensuring
 that you build your apps the right way. It doesn’t try to replicate information that’s easily available online in API docs;
 instead, it focuses on the concepts of a well-built cross-platform Xamarin app, bringing together all the information you
 need without bogging you down.

Who should read this book

 Xamarin in Action is for developers who want to build cross-platform mobile apps using C#, either because it’s a language they know, or because
 they want to take advantage of the cross-platform capabilities of Xamarin. This book assumes a small amount of C# knowledge,
 but all C# developers from beginner to advanced will be able to use it to learn how to build mobile apps. Even if you’re an
 experienced native iOS or Android app developer using Objective-C or Java, this book will help you easily transition to building
 Xamarin apps. The underlying architecture of a Xamarin app is very different from a native app, and so are the technologies
 and tools available. This book will help teach you how to build apps using a cross-platform architecture and the tooling inside
 Visual Studio.

How this book is organized

 This book is split into three parts covering 16 chapters. Part 1 covers the architectural concepts behind a well-written cross-platform Xamarin app, with a Hello World example app to get
 you started:

 	
Chapter 1 discusses Xamarin and the benefits of building Xamarin mobile apps. It also looks at the development lifecycle, covering
 all the steps in building production-quality mobile apps.

 	
Chapter 2 starts by looking at MVVM (model-view–view model), the design pattern for building good-quality, testable, cross-platform
 apps, and then looks at the structure of a Xamarin app. It then covers creating a basic Hello World cross-platform mobile
 app.

 	
Chapter 3 dives into MVVM in more detail, looking at the different layers from model, through view model, to view. It then covers the
 application layer and navigation patterns.

 	
Chapter 4 revisits the example Hello World app from chapter 2, diving deeper into how the MVVM design pattern was used to build the app. It then looks at expanding the app using cross-platform
 Xamarin plugins.

 	
Chapter 5 is all about multithreading, covering the threading considerations involved when building mobile apps and introducing async
 and await, a feature of C# that makes it easy to build clean and easy-to-read multithreaded code.

 Part 2 builds on this architecture and shows you how to build cross-platform apps starting with the cross-platform code and moving
 on to platform-specific UI code. You’ll take a couple of examples from the design stage through to fully working iOS and Android
 apps:

 	
Chapter 6 introduces the two example apps that will be built throughout the rest of part 2. It looks at how to design an app, considering what code goes in what layer in the MVVM design pattern. Finally, it covers
 creating solutions for the example apps and looks at the project and application properties for a Xamarin mobile app.

 	
Chapter 7 focuses on the model layer, including building simple models, building more complex model layers with services and repositories,
 and accessing SQLite databases and web services. It also introduces unit testing, showing how easy it is to unit-test well-structured
 code.

 	
Chapter 8 moves up a layer and covers view models. It considers how state and behavior are represented, covering properties, commands,
 and value conversion. It also shows how to test UI logic using unit testing.

 	
Chapter 9 covers the view and application layers and starts the process of building the Android version of one of the example apps.
 It covers Android resource files, layouts, UI controls, and activities.

 	
Chapter 10 focuses on the second of the example Android apps, covering recycler views for showing lists of data and multiscreen navigation.
 It then shows how to add polish to an app by creating app icons and splash screens.

 	
Chapter 11 moves from Android to iOS, working on the application and view layers of the first example app, covering view controllers,
 UI controls, storyboards, and auto layout and constraints.

 	
Chapter 12 covers how to build the second example iOS app, looking at table views and multiscreen navigation. It then covers app icons
 and launch screens.

 Part 3 covers making a working app production-ready and shipping it to users:

 	
Chapter 13 looks at how to run apps on real devices, including setting up Android devices for developers, configuring iOS devices, and
 generating iOS provisioning profiles.

 	
Chapter 14 covers UI testing, the ability to write and run automated tests that interact with your app the way a real person would.

 	
Chapter 15 introduces Visual Studio App Center, showing how it can be used to build your apps, run UI tests against devices in the cloud,
 and set up your apps to track usage information and crashes.

 	
Chapter 16 covers the final stage in an app’s journey: delivery to users. It looks at using App Center to provide beta test builds to
 selected users and then shows how to finally publish apps to the Google Play store and Apple App Store.

 This book is sequential, with later chapters building on concepts explained in the previous chapters. It takes you on a journey
 from idea, through architectural concepts, to building up each layer, and finally to testing and publishing your app. You’ll
 find it easier to read the first two parts from start to finish, rather than dipping in and out of different chapters. Part 3 can be read out of order, depending on your needs.

About the code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. In some cases, the original source code has been reformatted; I’ve added line breaks and
 reworked indentation to accommodate the available page space in the book. In rare cases, even this wasn’t enough, and listings
 include line-continuation markers [image:]. Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 Source code is available for all chapters in this book, with the exception of chapters 1 and 3. Each chapter has one or more solutions, showing the example app or apps discussed in that chapter, with all the source for
 the chapter fully implemented and working. For example, chapter 7 has two apps with model layers that can be tested using unit tests, but not a runnable app. By chapter 9, the first example app will run and be fully working on Android.

 All the source code has been tested using Visual Studio 2017 both on Windows (with the Xamarin workload installed) and Mac
 based on the 15.4 release published in October 2017. You’ll need to ensure that you have the Android SDK v7.1 or later installed.
 (The latest one is installed by default, but if you installed a long time ago, you may need to update your SDK.) You’ll also
 need Xcode 9 or later installed on your Mac for iOS builds.

 The source code for this book is available for download from the publisher’s website at https://www.manning.com/books/xamarin-in-action.

Software and hardware requirements

 The most basic requirement for building Xamarin apps is a computer running Visual Studio. Windows users will need Visual Studio
 2017 with the Xamarin workload installed. When you install VS2017 with the Xamarin workload, everything you need should be
 installed for you, although it’s always worth ensuring you have updated to the latest version of Visual Studio and updated
 your Android SDK to the latest stable version.

 Mac users will need the latest version of Visual Studio for Mac installed. The installer should install and configure everything
 you need, with one exception—Xcode. You’ll need to install Xcode from the Mac App Store. It’s also worth ensuring everything
 is up to date, with the latest stable versions of VS for Mac, the Android SDK, and Xcode installed.

 If you want to build iOS apps from a PC, you’ll need access to a Mac with Visual Studio for Mac installed, either on your
 network or via a cloud service such as MacinCloud.

 To publish to the stores, you’ll need developer accounts with both Google Play and Apple. These aren’t free. Currently, the
 Google Play developer account is a one-time fee of $25, and the Apple developer program is $99 per year. You’ll be able to
 run your code on Android emulators and iOS simulators as you develop, but it’s always worth having real hardware to test on,
 especially when you prepare to release to the stores.

Online resources

 If you need additional help:

 	The forums at https://forums.xamarin.com are a great place to ask questions.

 	There is a vibrant Xamarin community Slack team that you can join at https://xamarinchat.herokuapp.com/, full of Xamarin developers and support engineers.

 	As always, Stack Overflow (https://stackoverflow.com/) has the answers to most things you’ll want to know, and lots of top-notch Xamarin developers are on hand to answer any additional
 questions you may have.

Book forum

 Purchase of Xamarin in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/xamarin-in-action. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the author

 JIM BENNETT is a Senior Cloud Developer Advocate at Microsoft, specializing in cloud-connected Xamarin apps. He has decades of experience
 building desktop and mobile apps, mainly using C# and other Microsoft technologies. For the past four years, he has been heavily
 involved in developing cross-platform mobile apps using Xamarin, both at work and as personal projects. He’s a regular speaker
 on mobile development at meetups and conferences, contributes to open source, and blogs about and evangelizes Xamarin whenever
 he can. He’s a former Xamarin and Microsoft MVP, he’s passionate about sharing knowledge and helping others to learn, and
 when he’s not playing with his young daughter, he’s happy to spend hours discussing mobile development over Thai food and
 good beer or whisky.

About the cover illustration

 The illustration on the cover of Xamarin in Action bears the caption “Bostandji bachi.” The literal translation is “chief gardener,” but the Bostandjis of the Turkish sultan
 had powers and responsibilities ranging far beyond the sultan’s gardens to his palaces and supervising the police of the capital.
 The illustration is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller
 of Old Bond Street, London. The title page is missing from the collection, and we’ve so far been unable to track it down.
 The book’s table of contents identifies the figures in both English and French, and each illustration also bears the names
 of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer
 programming book 200 years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation
 seemed hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller proposed that the money be transferred to him by wire, and the editor walked out with the bank information
 on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next day, and
 we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have happened
 a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on Manning’s covers, bring to life the
 richness and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and
 of every other historic period except our own hyperkinetic present. Dress codes have changed since then certainly, and the
 diversity by region, so rich at the time, has faded away. It’s now often hard to tell the inhabitant of one continent from
 that of another. Perhaps, viewed optimistically, we’ve traded a cultural and visual diversity for a more varied personal life.
 Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based on the rich diversity of regional life as it was two centuries ago, brought
 back to life by the pictures from this collection.

Part 1. Getting started with Xamarin

 The traditional way to build a mobile app is to write it twice: once in Objective-C or Swift for iOS, and then again in Java
 for Android. This is a huge waste of time, duplicating code across two languages. Luckily some of the most innovative engineers
 in the world (according to Time magazine) have a solution—Xamarin.

 Xamarin is a platform from Microsoft that allows you to build and ship iOS and Android apps using .NET. It’s also part of
 a thriving mobile ecosystem containing everything from mobile-specific cloud resources from Microsoft, DevOps tools, and a
 huge community of open source software. At its most basic, it’s a way to use the same language and technology across iOS and
 Android, allowing you to reuse large amounts of code and third-party libraries across two very different mobile platforms.
 The best practices around Xamarin are focused on keeping this amount of code-sharing as large as possible.

 This first part of the book covers the architectural concepts behind a well-written cross-platform Xamarin app, focusing on
 the incredibly popular MVVM design pattern. A good architecture will help you reuse the most code possible, so it’s worth
 investing the time to learn these concepts, avoiding wasting time writing swathes of code twice. Patterns such as MVVM allow
 you to test your code faster and easier using unit tests, catching bugs earlier in the development cycle and reducing the
 time manually testing (and bug fixing) further down the development cycle. These are the foundations you’ll need to build
 production-quality mobile apps.

 Chapter 1 starts by discussing Xamarin and the benefits of building Xamarin mobile apps. It also looks at the development lifecycle,
 covering all the steps in building production-quality mobile apps.

 Chapter 2 looks at the MVVM design pattern as a way to increase your code reuse, and to build a well-architected, testable app. Then
 it covers the creation of a Hello World app that uses a popular MVVM framework.

 Chapter 3 dives into MVVM in more detail, looking at the different layers from model, through view model, to view. It then covers the
 application layer and navigation patterns.

 Chapter 4 revisits the example Hello World app from chapter 2, diving deeper into how the MVVM design pattern was used to build the app. It then looks at expanding the app, using cross-platform
 Xamarin plugins.

 Chapter 5 is all about multithreading, covering the threading considerations involved in building mobile apps. It also introduces async
 and await, a feature of C# that makes it very easy to build clean and easy-to-read multithreaded code.

Chapter 1. Introducing native cross-platform applications with Xamarin

 This chapter covers

 	What a Xamarin app is

 	The mobile-optimized development lifecycle

 	Building production-ready cross-platform apps

 Back in 2000 Microsoft announced a new software framework called .NET, along with a new programming language called C#. Not
 long after this, a company called Ximian (founded by Miguel de Icaza and Nat Friedman) started working on Mono, a free implementation
 of the .NET framework and the C# compiler that could run on Linux.

 Fast forward 16 years, and Nat Friedman is standing on stage at the Xamarin Evolve conference giving the keynote talk—physically
 in front of sixteen hundred mobile developers and virtually in front of tens of thousands more. He’s speaking about how Xamarin
 enables a mobile-optimized development lifecycle. Xamarin (the company that grew out of the ashes of Ximian and that provides
 tools and technology to build cross-platform mobile apps) had just been bought by Microsoft for a rumored half a billion U.S. dollars, and had become a key part of Microsoft’s “mobile first, cloud first” strategy.

 Xamarin is now a well-known term among the mobile developer community, and it’s starting to be well known in other Microsoft-based
 developer circles. But what do we mean when we talk about Xamarin mobile apps, and what does Xamarin give us above and beyond
 other tools?

1.1. Introducing Xamarin mobile apps

 To really see the benefits of Xamarin mobile apps, we first need to look at how apps are built using vendor-provided development
 environments, or other cross-platform tools like Cordova, and compare them to what Xamarin offers. We can do this by looking
 at two main types of developers—an indie developer working on an app in their spare time, and a corporate development team
 building an app for their customers. We’ll start by considering what their differing needs are in terms of platform support,
 and then we’ll compare the possible options.

 Our example indie developer has come up with the idea of the millennium for a killer app, FlappyFoo, that they want to sell
 to consumers on an app store. Our example large corporation, FooCorp, wants to build a DailyFoo app to help their customers.

 Figure 1.1 outlines the four different mobile development platforms you could choose from:

 	Vendor-specific apps using the development environments from Apple and Google

 	Cordova

 	Xamarin native using Xamarin.iOS and Xamarin.Android

 	Xamarin.Forms

 Figure 1.1. A comparison of the different mobile-development platforms

 [image:]

 This diagram shows the programming languages used and where code can be shared for each layer of the app—from the application
 layer (the thin wrapper around the rest of the app that makes it into something that can be run on each platform), down through
 the UI layer to the business logic layer. The boxes are not to scale—they’re just a representation of the layers. Your app
 could be heavy on UI but light on logic, so the UI layer would be bigger, or vice versa. Let’s look at each of these in more
 detail.

 1.1.1. Vendor-specific native apps

 Each OS comes with a different set of APIs, a different paradigm for building the user interface, a different way of handling
 user interactions, and, most frustratingly, a different programming language (or choice of languages) for you to use. If you
 want to build an app for Apple’s iOS-based devices such as iPhones and iPads, you need to program in either Objective-C or
 Swift. For Android phones and tablets, you need to program in Java (with Kotlin support coming soon).

 For each platform you’ll end up building the entire app from the user interface layer right down to any in-app business logic
 all in the vendor’s preferred language, as shown in figure 1.2.

 Figure 1.2. Vendor-specific apps use the same language for all layers but different languages on each platform

 [image:]

 For our indie developer, this is a big problem. For FlappyFoo to be a success, it will need maximum reach, and this means
 both iOS and Android versions. To achieve this, the indie developer will have to learn two programming languages, and there’s
 more to learn than just the language syntax—they’ll have to learn different tools, different ways of getting access to third-party
 code, the different words developers use to express each concept, and the different design patterns that make up standard
 apps. This is a big task.

 Even if the indie developer is a polyglot and is happy in multiple environments, there’s still the issue of time. They’ll
 have to code the same app twice, implementing the same logic in different languages. Time to market is key, and if the developer
 hits only one platform to start with, there’s nothing to stop copycats from flooding the other platform quickly. FlappyFoo
 may dominate the iOS app store but could lose serious revenue to FlappyBar from another developer on Android.

 For our corporate team, the biggest issue is cost. To reach multiple platforms usually means one team per platform with the
 associated developer and organizational costs. This can be especially problematic if you consider the difficulties in finding,
 hiring, and retaining good developers. Ideally you want to be able to release simultaneously on all platforms, and to replicate
 each new feature to both platforms and release them simultaneously. This is hard if you’ve managed to employ five Android
 developers but only two iOS developers (a common scenario as it’s much easier to find Java developers in the corporate environment
 to help with Android versions than it is to find Objective-C or Swift developers).

 Thinking of the corporation’s customers who use DailyFoo every day to track their Foo, the last thing we want is for them
 to change platform, find out that the new platform’s version is missing a killer feature from DailyFoo, and jump ship to MyBar
 from BarCorp.

 It’s not all bad, though. The one thing you can always be sure of when writing an app using the vendor-provided tools is that
 you’re always building a truly native application that will be as high performance as possible and that supports everything
 the OS and devices have to offer. Whenever an OS update is released, the tooling is always updated to match, giving you access
 to all the newest features that your users will want to have. This is an important consideration, as app users are fickle.
 They’ll quickly drop an app for a competitor if it’s not up to scratch, it’s slow, clunky, or just not well integrated into
 their device.

 1.1.2. Cordova

 As already mentioned, using multiple languages and development tools is a headache. One popular way around this is using Cordova.
 This is a set of tools that allows you to create web applications using HTML, JavaScript, and CSS to build a mobile website,
 which is then wrapped in an app and packaged up for each platform, as shown in figure 1.3.

 Figure 1.3. Cordova apps: HTML/CSS/JavaScript for the UI and business logic wrapped into an app by the Cordova framework.

 [image:]

 This has the big upside of a common language and development environment—one toolset for the indie developer to learn, or
 one team in a corporate environment. The downsides, though, can seriously outweigh this upside. First, you aren’t creating
 a native app—you’re creating a web app. This means that the widgets you see in the user interface are HTML widgets styled
 to look like native components. This might fool your users now, but if an OS update changes the style, your apps won’t keep
 up without a rebuild and will look out of date. Second, the OS and device-specific features that are available to the native
 developer won’t be available to a Cordova developer. The tooling does its best to provide some lowest-common-denominator plugins to allow hardware and OS access, but these are
 written with the aim of being cross-platform, so they only support the features common to both platforms. They’re also later
 to market. If the vendor releases a new feature you want to take advantage of, you’ll have to wait for the Cordova plugin
 to be created to support it, and this may never happen.

 Thinking of our indie developer, if they use Cordova to build FlappyFoo, it could easily run slowly, especially on older devices.
 This can lead to a swath of one-star reviews, a lack of sales, and the developer going hungry. Cordova apps also run in a
 browser, so they’re limited by the speed and feature set of that browser—newer versions of the OS might have a fully featured,
 fast browser but older versions might be lacking. This can lead to different capabilities or different levels of performance
 on the same device but with different OS versions—something that’s very hard to test on the hugely fragmented ecosystem of
 Android.

 For our corporate development team building DailyFoo, an app that’s slow or that looks out of date once an OS update comes
 out can create a negative image of the FooCorp brand. If the MyBar app from the rival BarCorp supports 3D touch on iOS, and
 DailyFoo doesn’t due to a lack of support from Cordova plugins, our fickle customers might easily be tempted to switch.

 1.1.3. Xamarin native apps

 In my mind, Xamarin is the clear winner because it combines the best of both the previous methods. Fundamentally, Xamarin
 provides a set of .NET wrappers around the native OS APIs based on Mono—the cross-platform implementation of .NET that grew
 out of Ximian. This provides a .NET framework for Android and iOS, with libraries and a C# compiler for each platform. It
 means you can write apps in C# that target each mobile platform natively, and because you’re using a single programming language,
 you can easily abstract out all your business logic (anything that doesn’t interact with the device directly) into a set of
 libraries that can be shared between platforms. You can even abstract out a lot of the UI logic by using design patterns like
 MVVM (model-view–view model, which you’ll learn about in more detail in chapter 2). Figure 1.13 shows the code split and sharing between each layer.

 Figure 1.4. Xamarin apps are written in C#, so you can share common business logic and also have platform-specific UIs.

 [image:]

 Let’s take a closer look at those last points, as this is important and is the key reason in my mind for using Xamarin:

 	Xamarin provides wrappers around native APIs.

 	Xamarin provides a compiler for each platform to produce native code.

 This is key. The native APIs are wrapped in C# code so you can call them from your C# code. You write your apps using the
 same idioms and classes as pure native code, but using C#. On iOS you have a UIViewController class for each screen, but this is a C# class, not the Objective-C one from the iOS SDK that you code against. On Android,
 each screen is derived from a class called Activity, but it’s a C# class that wraps the Java Activity class from the Android SDK.

 The code you write is compiled code as well—this isn’t sitting inside some emulator on the device; it’s compiled to native
 code that interacts with the same libraries as an app written in the vendor’s language of choice and compiled with their tools.
 This means your app is truly native. It uses native widgets on the UI, has access to every device and OS feature the native
 API has access to, and is as fast as a native app.

 	

 Xamarin apps == native apps

 This is the killer feature of Xamarin apps. They’re written in C# and they have access to all the features of that language,
 to a large part of the .NET framework that desktop developers are used to, and to a whole host of third-party code. But the
 end result is native code—the same as that created in Objective-C or Swift on iOS, or Java on Android.

 	

 On iOS the C# compiler takes your code and produces a native iOS binary using an Ahead-Of-Time (AOT) compiler (figure 1.5).

 Figure 1.5. Xamarin.iOS uses an ahead-of-time compiler.

 [image:]

 On Android it creates IL code (the same as for C# apps running on Windows), which is compiled at runtime using just-in-time
 (JIT) compilation (figure 1.6). This is provided by a Mono runtime that’s built into your app and installed with it (but don’t worry, you only get the
 bits of the Mono runtime you need, thanks to a very good linker). Xamarin also has an AOT compiler for Android, but at the
 time of writing, it’s still very much experimental.

 Figure 1.6. Xamarin Android uses a Just-in-time compiler and a Mono runtime.

 [image:]

 	

 What about other languages?

 You can also write your apps using F# if you prefer a more functional style of programming. F# is fully supported for iOS
 and Android apps. If VB.NET is your thing, you can build .NET Standard class libraries using it and call these from your iOS
 and Android apps built using C# or F#. Those options are outside the scope of this book, though—here we’ll just focus on C#.

 	

 Because the language of choice is C#, the code libraries written to share code between iOS and Android can also be shared
 with a UWP (Universal Windows Platform) app, so you can easily target Windows 10 devices from desktops to tablets to phones
 to the XBox One if you so desire.

 For our indie developer, this is good news. They only have one language to learn, and they only have to write the bulk of
 their app once, and then write the device-specific layer once per platform they want to support. This gives a faster time
 to market, which is vital for consumer apps. It also means the core logic code is tested the same way on all platforms, bugs
 are fixed once, and improvements and new features are created with fewer changes.

 For our corporate development team, this is also a good thing as it means fewer developers and less cost. Ideally there would
 be some developers who specialize in the platform-specific idioms of each supported OS who can work on the UI or device-specific
 logic, but the core of the development team can build the business logic once in a single language. It’s also easier to build
 the development teams because C# developers are easy to find—much easier than Objective-C developers. The advantages for the
 indie developer also apply here—less code to test and faster to market with bug fixes and new features.

 This is not a total utopia. Xamarin developers still have to write the UI layer and anything that interacts with the device
 using platform-specific C# code and they still need to understand the idioms of each platform, but they only have one language
 to support. One syntax, one toolset, one way of using third-party code.

 It’s easy to look at this and think of it as a partial failure—something that misses the mark by not being totally cross-platform—but
 that’s really one of its strengths. By having C# platform-specific APIs, you get the best of what the device has to offer.
 You aren’t limited to a common subset; instead you can write each platform’s app in a way that makes the most of the features
 of those devices. It also means you have access to everything—when iOS adds a new feature, Xamarin wraps its API and it’s
 available to you pretty much the same day. Your apps can be targeted to each platform, so they look and feel like a pure,
 native app and take advantage of the unique features that make Android and iOS so different, but behind the scenes you’re sharing around 75% of your code base. Table 1.1 shows some examples of this code sharing.

 Table 1.1. The amount of code in two popular apps reused between iOS and Android

 	
 	
 iCircuit (http://icircuitapp.com)

 	
 TouchDraw (http://elevenworks.com/home)

 	iOS
 	70%
 	61%

 	Android
 	86%
 	72%

 There’s one downside to using Xamarin for your mobile apps—you’re dependent on them wrapping the SDKs and ensuring that the
 compilers work on all required platforms. There’s an overhead to wrapping the SDKs, and although Xamarin has got very, very
 good at it, there can still be a gap between an API being made available from Apple and Google and Xamarin having it wrapped.
 This is usually not an issue, as both Apple and Google release beta versions early enough for Xamarin to have time to deal
 with any quirks.

 The only thing that has been a problem is when the underlying compiler requirements change. This happened recently with Apple
 Watch apps: originally they were compiled native code, but for watchOS 2 the Apple compiler changed to output bytecode instead
 of native code. It took a long time for Mono to catch up and be able to compile working watchOS 2 apps. This is the biggest
 risk with Xamarin—that Apple or Google could completely change how they build apps, and by the time Xamarin catches up, your
 app could have been late to market with a cool new feature or device support.

 Now that Xamarin is owned by Microsoft, I can see this being less of an issue as they’ll have more resources to throw against
 such a problem.

 1.1.4. Xamarin.Forms

 Xamarin also offers a more cross-platform solution called Xamarin.Forms that attempts to bring code reuse up to 95–98% by
 abstracting out the UI and device-specific code layers. Unlike Cordova apps that use HTML, Xamarin.Forms apps are still native
 apps. It uses an abstraction that sits on top of the iOS and Android platforms and provides a lowest common denominator experience,
 providing features that are common to both platforms. By doing this, you can get up to 98% code reuse. This is shown in figure 1.7.

 Figure 1.7. Xamarin.Forms apps have a cross-platform UI to share even more code.

 [image:]

 This abstraction is done using a set of UI classes that represent features common to both, and when the app is run, these are translated to the native equivalents behind the scenes. For example, each screen you see is a Page, and this is rendered on iOS using a UIViewController and on Android using an Activity. If you add a Button to this page, it’s a UIButton on iOS and a Button widget on Android. Unlike Cordova, which uses HTML to provide the cross-platform capability, Xamarin.Forms uses the actual,
 native controls, so you get a true native experience. If the OS updates the look of the buttons, your Forms apps will look
 like the new version. This abstraction is exposed not only as a set of C# classes you can use from your C# code, but you can
 also define your UI using XAML—a variant of XML originally defined by Microsoft for building UIs.

 XAML allows you to define your UI using a more declarative syntax, similar in nature to HTML, and it’s very familiar to developers
 from a Windows desktop background who are used to building apps with WPF. If you’ve built WPF or Windows 10 apps, you’ll probably
 have come across XAML before. Xamarin.Forms uses a slightly different variant of XAML than WPF/Windows 10, but most of the
 concepts are the same. This similarity will increase over time because Microsoft is in the process of defining XAML Standard,
 a single XAML syntax that will be used across all the Microsoft XAML tooling.

 The downside is that you’re building one app for all platforms. Although it tries to be as native as possible by using native
 controls, you can’t easily get around platform-specific idioms. For example, if you have an app that has two screens to work
 on, you’d navigate on Android using a drawer exposed by a hamburger menu, whereas on iOS you’d use tabs. This difference isn’t
 easy to implement in Forms without a lot of custom logic and custom UIs. If you want to go further than the lowest common
 denominator (for example, adding platform-specific behavior to one control on one platform) then you’d need to write a custom
 renderer for it—code that maps from the Forms controls to the underlying control.

 Forms does try to abstract away device-specific features like maps or the camera using plugins, but again it’s a lowest common
 denominator model. The camera plugin won’t give you live photos on iOS, and the maps plugin doesn’t give you the same amount
 of control as Google Maps on Android.

 For our indie developer, Forms might not be the best choice—the amount of work it would take to make an app look and feel
 like a true native experience might outweigh the time savings by maximizing code reuse.

 For corporate developers, it might be a better option. Certainly for in-house apps, where you don’t always need a killer native
 experience, it’s a great tool, but for consumer apps it might not provide all the features needed. I’m sure over time it will
 carry on getting better and better—it’s under heavy development at the moment—but it’s not quite there yet for a great consumer
 app.

 This book focuses on native Xamarin mobile apps, but the principles of MVVM that we’ll cover also apply to Xamarin.Forms apps.

 1.1.5. Xamarin developer tools

 As I’ve shown, Xamarin is far and away the best choice for mobile development—it gives you the power and performance of a
 native app, providing access to everything in the SDKs and on the devices, and it uses C# as a common language on all platforms
 so you can share the majority of your code base. So how do you go about building a Xamarin app?

 For pure native apps, tooling is provided by the vendors: iOS apps are built using Xcode on the Mac, and Android apps are
 built using Android Studio on Mac/Windows/Linux.

 For Xamarin apps, the best IDE around is Microsoft’s 20-year-old Visual Studio. It comes with a ridiculous number of features
 and tools, and it has a huge range of extensions to provide all manner of new features. It’s available as a community edition
 for indie developers and small teams for free, and it tiers up from there depending on how big your team is, what your support
 needs are, and whether you want enterprise features like profilers or embedding assemblies (you can compare the different
 tiers at www.visualstudio.com/vs/compare/). Xamarin is fully built into Visual Studio, providing a totally native experience where you can create a new app that targets
 iOS or Android just as easily as you can create a desktop WPF app or a class library. You can easily reference other projects,
 add in NuGet packages, and do everything with these project types that you can do with any native Windows project. From there
 you can build your Xamarin Android app and run it on an emulator (Visual Studio provides a number of built-in Android emulators)
 or on a real device. You can also build and run a Xamarin iOS app, albeit with some Apple-related restrictions.

 Apple’s licensing rules for its SDK, compiler, and build tools require that you build on a Mac. Seeing as our Xamarin apps
 wrap the SDKs and compile down to native code using the Apple toolchain, you have to have a Mac. Luckily Xamarin iOS on Windows
 takes away the pain of this and provides support inside Visual Studio on Windows for building and debugging iOS apps using
 a remote Mac—all you need is a Mac with Xamarin installed that you can connect to, and the magic just happens. Visual Studio
 connects to the Mac to compile your code. The iOS SDK on the Mac includes an iPhone/iPad simulator, which you can use to test
 your app, and a debugger that allows you to debug apps running on a device connected via USB to your Mac, so initially you
 still had to test your apps either by running the simulator on the Mac or using a device plugged into it. But Xamarin now
 has that covered as well—at least for simulators. It can share the screen from the simulator to your Windows box so you can
 debug on a simulator as if it were all available on Windows. This means the Mac you need for building need not be next to
 you, or even on the same network. There are cloud services that can rent you time on Macs, such as Mac In Cloud (www.macincloud.com). You can use these for building your apps, and you can test these apps by debugging through Visual Studio on a simulator
 that’s screen-shared back to your Windows box. Figure 1.8 shows an overview of this process. You only need access to a physical Mac if you want to test on a real device.

 Figure 1.8. Visual Studio can connect to a Mac locally or in the cloud to build and debug iOS apps in a simulator.

 [image:]

 So far, so cool. We’re building cross-platform mobile apps on Windows. But one of the founding principles of the Mono project
 that inspired the Xamarin we know and love is being able to run on different platforms, and Xamarin has you covered there.
 Visual Studio is now available on the Mac, albeit in a cut-down version compared to Visual Studio on Windows. Xamarin used
 to have an IDE called Xamarin Studio, and this became the basis of Visual Studio for Mac. Visual Studio for Mac supports building
 iOS and Android apps, as well as macOS apps, tvOS apps, and ASP.NET Core websites. It has Azure integration allowing you to
 build both the mobile and web components of your app ecosystem, and even to debug both mobile and web components inside the
 same debugging session. Visual Studio on the Mac has the same licensing as for Windows, so it’s free for indie developers
 and small teams, with paid plans available for larger teams.

 Which tool you use really depends on personal preference and the platforms you want to support. In this book we’ll be covering
 Visual Studio on both Windows and Mac.

 	

 Cross-platform all the things!

 One other awesome thing to note is that Microsoft has changed recently from a closed company that was Windows only to one
 that supports open source and multiple platforms. They’ve even open sourced parts of the .NET framework and the compiler and
 have made it cross-platform. This means that bits of Mono are slowly being replaced with the Microsoft implementations from
 their .NET framework. It also means that the compiler in Visual Studio is the same on Windows as on Mac, with both using the
 open source Roslyn compiler. When you compile on the Mac, it’s the same compiler as on Windows.

 	

 1.1.6. Mobile-optimized development lifecycle

 So far we’ve covered Xamarin apps, and, to a lot of people, this is what Xamarin is—a .NET framework and compiler for iOS
 and Android based on Mono. But as well as providing the tools to build cross-platform apps, Xamarin also provides the tooling you need to do a lot more than just write
 the code.

 One of the biggest concepts in the development world in recent years is DevOps—the cultural shift to a model where development
 and operations are combined. Some of the aims of DevOps include enabling individuals to be involved in all parts of the development
 and release cycle, automating as much as possible, and moving to a continuous delivery model where code can be checked in,
 built, and tested automatically and shipped to production with minimal human input. DevOps is a massive topic, well outside
 the scope of this book, but there are a number of tools, either provided by Xamarin or well integrated with other Xamarin
 tools, that can be used to help implement a good DevOps strategy.

 During the Xamarin Evolve conference in April 2016, one of the main themes of the keynote was the mobile-optimized development
 lifecycle (as illustrated in figure 1.9). During this keynote, a number of tools, both from Xamarin and their new parent company Microsoft, were discussed. It was
 pretty clear that this was a key focus for Xamarin as a company, and it’s only been growing with the introduction of Visual
 Studio App Center and the greater push towards DevOps. This is important as we consider how to build production-quality mobile
 apps.

 Figure 1.9. The mobile-optimized development lifecycle is a continuously iterating cycle of develop, test, build, distribute, and monitor.

 [image:]

1.2. Creating production-quality mobile apps

 It’s a long journey from a back-of-the-napkin idea to a fully working, deployed app of sufficient quality to be usable and
 not get bad reviews. It’s easy for developers to jump straight into coding, as this is the part we love, but if you want to
 build an app that’s successful, you have to consider the whole software-development lifecycle. There’s no point in diving
 into the code and building something that doesn’t look good or work well because you haven’t considered the design of your
 finished app. During coding, you have to keep testing and monitoring in mind so that you code in a way that supports them.
 For anything more than a prototype, you have to think about the whole lifecycle before you write a single line of code. This
 lifecycle is very similar to the mobile-optimized development lifecycle talked about at Xamarin Evolve, but it adds a few
 more steps.

 In this book we’ll be building a production-quality app, so let’s look at the stages a mobile app will need to go through
 on this journey. We’ll see what Xamarin can (or can’t) help with.

 	

 Starting with an MVP

 If you are not embarrassed by the first version of your product, you’ve released too late.

 Reid Hoffman

 It’s good practice when building a mobile app to start with an MVP—a minimum viable product. This is the smallest, simplest,
 fastest-to-market version you can deliver. Once this is in consumers’ hands, you can monitor how it’s used and deliver features
 based on what real people want. A lot of people think an app must be full-featured, based on their idea of what a full feature
 set is, to be successful, but your users might know better. It’s better to get an app out quickly and iterate based on real-world
 feedback, because it’s very easy to be wrong about what an app should have.

 For example, Flickr started out as an online role-playing game with a photo-sharing tool, and only the photo-sharing part
 now survives. Be prepared to pivot!

 	

 1.2.1. Design

 Designing an app is hard, especially for developers with no formal design training. We’ve all seen some pretty shocking UIs,
 mainly for in-house apps where developers have thrown all the content and controls onto the screen and left it at that. In
 the consumer mobile world, this is no longer an option. Users can jump ship to another app that does the same things as yours
 in the time it takes to download a few megabytes of data from an app store. They have no loyalty to your app, and a bad app
 can remove loyalty to your business.

 For example, if you’re a bank and people use your app to interact with their accounts every day and the experience is bad,
 they’d rather change their bank than keep using your bad app. You can get away with it in a corporate environment where your
 users are in-house and have to use whatever you put in front of them, but be prepared for complaints that may not be good
 for your career progression—especially if the CEO is one of the users.

 There are several things to consider when designing an app:

 	
Consistency— Does your app look and work like other apps on the same platform, especially the ones provided by the OS vendor.
 For example, Android apps should follow the activity stack with the Back button doing what you’d expect. iOS apps should use
 tabs to switch between popular actions.

 	
User experience— Is your app easy to use and intuitive? A user should be able to just pick it up and know how to use it without any training.
 Being consistent with other apps can help with this.
 For example, avoid custom icons for buttons or menu items. Instead, use ones that are industry standard or just use text.
 No one cares that you think having your own custom icons will help promote your brand and make an app look like it’s yours.
 Instead, they’ll dump it if they can’t understand how to use it.

 	
Flow— Does your app flow well? Is there an easy flow for a user to use the app? When one action naturally leads to another, the
 journey between the actions should be short and concise.
 For example, if your app is for taking photos, the options for editing or sharing a photo should be on the same screen where
 you view the photo you’ve taken, not buried in a menu that involves multiple steps to navigate.

 	
Good looks— Does your app look good, are any images well drawn and appropriate for the device size, is all text clear and readable, and
 are the colors consistent and appropriate?
 For example, an app could be run on a small phone, large phone, “phablet,” small tablet, or large tablet. Any text on the
 screen must be readable in all formats, images must be sized to look good on all device sizes, and on-screen items should
 be spaced so that it’s clear what the user is looking at without UI elements blending into each other due to lack of space.

 	
Accessibility— Is your app accessible to users with differing abilities?
 For example, if a user increases the default font size, is the app still usable? Are any audio alerts also available as visual
 alerts? Some of this is dependent on your target audience (for example, there is not much you can do to make a music player
 accessible to a deaf person), but a well-designed app will consider all possible users.

 It might seem odd to introduce design now, at the start of the book, but it’s an important thing to think about when you build
 your app. Although Xamarin provides you with the tools you need to write cross-platform apps sharing your core code, you still
 have to build the platform-specific layer, which includes different UI code for iOS and Android. As part of this UI layer,
 you need to consider what makes each platform different, and design each UI accordingly. For your app to be a success, it
 needs to be intuitive and look good on each platform, and part of this is consistency with what users of each platform are
 used to. I can’t overemphasize the word consistency enough—your app shouldn’t only be consistent with the platform but with itself. Any difference will cause user confusion,
 leading to a bad experience.

 Ideally you either need skill as a designer, or access to someone with that skill. This can be easy in a corporate environment,
 but maybe not so easy for an indie developer doing everything on their own. The good news, though, is that the different OS
 vendors have you covered. They’ve all published a set of guidelines on how to build apps that not only look and work well,
 but are also consistent with other apps on that platform. Google has Material Design, Apple has its Human Interface Guidelines. We’ll come back to these later in this book
 when we look at building UIs.

Usability

 One of the key things about design is how usable your app is. An app that looks slick but is impossible to use is probably
 worse than an app that is bad to look at but works well. When you are designing your app the relevant platform guidelines
 can help ensure some consistency with other apps, but you are still responsible for ensuring a great user experience. While
 you are thinking of design also try out your user experience virtually—either with online tools (of which there are plenty)
 or simple tools like paper prototypes. With these you can mock up the UI and how it works and actually try it out—have people
 use the virtual or paper version as if it was a real app and see if it is natural to them. If they see the first screen of
 your app and have no idea what to do then you could lose a customer. Sometimes you only have seconds to draw a user in before
 they decide your app is no good and delete it, so it’s vital to make those first user interactions simple and obvious. One
 very popular book on user experience design sums up the most important principle in its title: ‘Don’t make me think!’.

 1.2.2. Develop

 This is the fun part—the bit we as developers love the most. Despite it being the best bit, it can also be less fun if we
 don’t have good tools to help. A good developer can code in a raw text editor, but it’s painful when you’re used to a full-featured
 IDE. Luckily, as Xamarin developers, we’re spoiled. On Windows there is Visual Studio, which is in my mind the best IDE around,
 especially when coupled with extensions like ReSharper from JetBrains. On Mac there’s Visual Studio for Mac, which uses the
 same compiler platform as Visual Studio on Windows. These IDEs give you code completion, easy-to-use refactorings, and in-editor
 indications of suspect or erroneous code. They also provide full debugging support for Xamarin apps running either in an emulator/simulator
 or on an actual device.

 Seeing as all Xamarin apps are .NET apps using a platform-specific .NET framework, you have access to a whole host of libraries
 built by third-party developers that are also built on the .NET framework. Despite the differences between .NET on Windows,
 iOS, and Android, there’s a core subset that’s common to all platforms, so any libraries that target this subset can be used
 in all your apps, and any libraries that target a particular platform can be used against that platform. This gives you access
 to a wealth of code that does all manner of things, from connecting to databases, handling JSON, and constructing unit tests
 to providing frameworks for application development. Access to these is provided by a packaging tool called NuGet (pronounced
 New-Get)—these libraries are packaged into a zip file with multiple libraries separated by whichever platform they target.
 At the time of writing, there are almost 57,000 unique packages available on NuGet.org, and the tools to use these packages are built into Visual Studio. You simply right-click, select Manage NuGet Packages,
 and from there install whatever you need. We’ll look at these a bit more later because they’ll be used in the apps built throughout
 this book.

 Testing is an important part of coding—all good coders will write unit tests as they code, if not before. Luckily Visual Studio
 on Windows and Mac helps in this endeavor, providing a way to run or debug tests. With live unit testing in Visual Studio
 on Windows, or extensions like ReSharper with dotCover or NCrunch, you can even see in the editor which lines of code are
 covered by tests, color-coded to indicate which tests pass and which fail, and with the tests continuously running so it moves
 from red to green as you write code. You can also get IDE extensions to use things like behavior-driven design (BDD), which
 allows you to write your tests in natural language.

 When you code your app, you need to think about testing all the time, to the point of choosing design patterns that help keep
 your code separated enough that it can be tested easily and thoroughly. When we look at how to actually build an app later
 in this book, we’ll be using MVVM, a design pattern that enables this, and we’ll think about testing at every step.

 All these tools make coding a lot of fun and reduce the drudge work by making it easy to automate writing boilerplate code
 and easy to refactor, so you’re never fighting with your code to improve it.

 1.2.3. Test

 Testing really goes hand in hand with coding. It’s something that should be continuous, and ideally automated. Testing every
 feature of your app takes a long time, and sometimes it’s very difficult to test every scenario, including the edge cases.
 If you can automate this, not only does it save time but it means you can fully test your app at every stage of development.
 That way you can catch bugs as soon as they appear, so you know what changes introduced them and you can fix them while these
 changes are fresh in your mind. If you don’t know about them till the end of development, it’s a lot harder to determine what
 caused the bug and find a fix.

 The ability to run unit tests inside your IDE is a good thing because you have to think about how to test your code as you
 write. There are three types of testing to think about: unit testing, UI testing, and manual testing.

Unit testing

 Unit testing is testing units of code, with a unit being the smallest possible isolatable piece of code. These are black-box
 tests against the contract of a class, designed to test that class in isolation. If that class has dependencies on other classes,
 those dependencies should be mocked out and given predefined behavior to ensure you’re just testing the one class in isolation.

 For example, say you have a Counter class that has a Count property and an IncrementCount method. The behavior of the class is that when you call IncrementCount, the Count value goes up by 1. Here you can write a test that creates the class, calls IncrementCount, and verifies that the Count has gone up by 1 and only 1. If it doesn’t go up, the test fails; if it goes up by anything other than 1, the test fails.
 You don’t care about the implementation of the class—how it increments is of no interest, as this could change at any time.
 You just care about the contract—that IncrementCount increments the Count by 1. Once this test is written, you can be sure this method works, and if a bug appears in your app that looks like the Count is incremented by 2, you can easily see that if the unit test passes, the error is elsewhere in your app.

 Another example would be a SaveCount method on your Counter class that saves the count to a web server by making a REST call passing some JSON. If your class is well written, it shouldn’t
 talk to the web server directly but abstract that out to another class (we’ll call it WebService) that actually makes the call. Your class just needs to construct the JSON and tell the other class which REST endpoint to
 use, passing it the JSON. In this case when you construct your Counter class instance, you have to pass it the WebService instance so it has something to call. As is, this isn’t well separated into a unit for testing, but we can change that.

 Figure 1.10. Mocking is a simple technique to allow you to unit test without worrying about dependencies.

 [image:]

 If the WebService class implements an interface, IWebService, that defines the method to make the server call, you can instead pass the interface in when you construct your Counter. By doing this, you can mock the interface in your unit test—that is, have inside the test another object that implements
 the interface that you have control of. This way, you can call the SaveCount method and then inspect the call that was made to your interface and verify that the correct endpoint was called with the
 correct JSON.

UI testing

 UI testing is the complete opposite of unit testing. Here you’re considering your app as a whole and testing it as if you
 were a real user interacting with the app. Xamarin provides a tool called UITest to enable this. It’s a library that allows
 you to write tests that look like unit tests and that are run using NUnit (a popular unit-testing tool), but these tests will
 launch your app on an emulator/simulator or physical device and perform interactions like tapping or swiping and allow you
 to query the UI to verify that everything works as expected.

 For example, in an app that has a count shown in a label and a button that you tap to increment the count, you could write
 a UI test that launches the app, reads the value of the count label, taps the button, then re-reads the label, ensuring that
 the value has increased. Xamarin UITest does this by finding items inside the visual tree (the representation of the UI on
 screen) based on their name, ID, or contents. Once it finds these, you can read data or perform actions like tap, so a test
 could find the count label based on it having an ID of Count defined inside the Android layout or iOS storyboard, and it could read the text property from there. UI tests can also call
 backdoors—these are special methods embedded in your app to allow you make your tests more easily. You can use these to do
 things like prepopulate data to avoid performing lots of repetitive steps in the UI, or to emulate situations that are hard
 to do through a UI test, like switching off WiFi on Android to test connectivity issues.

 Once you have UI tests that run and pass on an emulator or your physical device, it would be nice to run them on more devices.
 One of the downsides to mobile development is the large number of possible devices and OS versions. On iOS this isn’t such
 an issue because most people keep their OS up to date, and there’s only a small range of devices. On Android it’s a massive
 problem as there are thousands of possible devices, and OS updates aren’t available to all due to manufacturer and carrier-provided
 tweaks. If Google updates Android, the device manufacturer needs to take that update and apply it to their version of Android
 and give it to the carrier, who then needs to apply it to their version before it’s available to be installed on the device.
 In a lot of cases, the manufacturer or carrier won’t do this, especially for older devices, meaning there’s massive fragmentation
 of OS versions on Android. At the time of writing, 85% of iOS devices are on the latest version of iOS. On Android, only 7.5%
 are on the latest, with 20% one version behind, 16% two versions behind, 33% three versions behind, and the remainder on even
 earlier versions.

 What Xamarin provides to get around this is a service called Test Cloud. This is thousands of physical devices from different
 manufacturers with different OS versions set up in a data center, and you can rent time on these devices to run your UI tests.
 This way you can cover a wide range of device sizes and OS versions, and when you review the results you see not only which
 tests pass or fail, but you can get screenshots of every step, so you can see how the UI looks. This can be invaluable when
 you have a bug that only manifests itself on one OS or one screen size and you don’t have an emulator or physical device available
 that replicates it. This is integrated into Visual Studio—one click to deploy your test and run it in the cloud.

Manual testing

 Yup, you’re on your own with this one. Manual testing means you have to interact with your app to try everything out. Ideally,
 if you’ve implemented good unit and UI tests, you’ve verified that your app works correctly. Manual testing should then be
 a quick sanity check to ensure any edge cases that can’t be tested using automation (such as launching external apps) are
 working. You should also manually test as you go along, to verify the usability of the app, verifying the user experience.
 Automated tests can verify whether something works correctly, but you still need to interact with the app yourself to see
 if things work intuitively. After implementing each feature in the app, you should try it out to make sure it follows your
 app’s design (as well as the design guidelines for each app), and to ensure it’s easy to use and gives good feedback.

 For usability testing you should also consider hallway testing—going up to people and getting them to try the app out and
 see what feedback they give. When you do this, you should try to mimic the real-world experience as much as possible. Just give them the app and leave them to it with
 no help, much like an end user who has just downloaded it from the app store. If they can’t work out how to use your app,
 you may need to reconsider the user experience.

 1.2.4. Build

 Continuous integration (CI) is the process whereby you continuously integrate your code changes into the core codebase and
 test it each time. In its simplest form, it’s having something that detects when code is changed inside your source code repository
 (such as on GitHub or BitBucket), builds your app, and runs your tests so you can see straightaway if you’ve broken the build
 or introduced a bug. This is a huge topic so I won’t cover it in much detail here, but I’ll touch on some areas that are relevant
 to Xamarin developers. There are a number of different CI tools around, and they all have some degree of support for Xamarin
 apps (even the most basic ones support Xamarin, because the tooling works from the command line).

 There are hundreds of possibilities for the kinds of builds you could set up from a CI system. For example, you could have
 a check-in build that monitors your source code repo, and every time new code is checked in, it builds it and runs all your
 unit tests. You could then have another build that runs at the same time every night, getting the latest code, building it,
 running the unit tests, and then running all of the UI tests locally. Finally, you could have a release build that’s triggered
 manually, which gets the code, builds it, runs the unit tests, runs the UI tests, and (if all passes) packages the build up
 and deploys it to the app store.

 The main thing you want with these builds is the continuous feedback loop—every check-in should be verified to see that it
 builds and the tests pass; if there are any errors, the person checking in the code should be notified so they can fix the
 error directly. Some CI systems can even take this further and provide precommit builds—the code you want to commit is built
 and tests are run, and only if everything passes is the code committed. If the build or tests fail, the commit is rolled back.

 When choosing a CI system, you need to consider how good their support is for Xamarin apps and how much time you want to spend
 configuring them. Jenkins, for example, is a free tool and is fantastic for Java apps, but its Xamarin support is nonexistent
 at the time of writing, so setting up builds is a lot of work. Other tools have Xamarin support out of the box, so it’s easy
 to set up. The main one for Xamarin apps is Visual Studio App Center.

 App Center (https://appcenter.ms) is described as “Mission Control for your apps.” You can connect to it using a GitHub or Microsoft account, point it to
 a Git repository in GitHub, VSTS, or BitBucket, and then it’s trivial to set up builds. You choose which type of app to build
 (iOS or Android), choose a branch to build from, point it at your solution or project file, choose the build configuration,
 and away it goes. You can also add signing certificates to allow your builds to run on real devices, and even launch your
 app on a device once it’s built as a sanity check to ensure that it works.

 1.2.5. Distribute

 You’ve designed your app, coded it up, tested it, and built it. Now you need to get it into the hands of your users. You could
 submit it to the relevant app store, but first it’s good to put it in the hands of beta testers.

 App Center allows you to set up alpha and beta users and distribute your app directly to them. Once they have your app, you
 can push out updated builds as you fix bugs or make tweaks, and when they relaunch the app your users will be prompted to
 install these updates. This is direct to the users you want to do the testing, it’s not an open marketplace. Your users will
 only be able to download your app if they’re registered against it, so you have complete control of the distribution.

 1.2.6. Monitor

 Once your app is released and being used, you should monitor it. If your users are experiencing crashes, you can expect a
 slew of one-star reviews that will drive potential new users away. Your app will have bugs in it (that’s a fact of software
 development), but if you can monitor for these and fix the issues as soon as possible, you can minimize the impact. If you
 know that crashes have happened, you can do something about it immediately, and that will help with your app downloads. Remember,
 your customers won’t file bug reports and eagerly await a fix. They’ll just download another app that does the same thing
 as yours.

 For the Xamarin developer, it’s easy to monitor for crashes using App Center. You can integrate the App Center SDK into your
 app as easily as installing a NuGet package and adding one line of code. This will track all crashes and upload stack traces
 to the App Center site so you can quickly see the line of code where it happened, get it fixed, and get a new version deployed.
 This is an invaluable tool—the quicker you can fix a crash, the less chance you have of losing users.

 In addition, App Center allows you to do user and event tracking so you can see not only the demographics of your audience
 but also how they’re using your app. Again, this can be important in making your app as good as possible. If a particular
 feature of your app is being used regularly, then it’s something to work on and improve. If a feature is never used, then
 either it’s not wanted by your users or not obvious, so you can strip it out or make it easier to discover. If your app is
 popular in a particular country, you can add native language support for that country if it’s not there already. You can also
 track the path a user takes through your app, and if popular features are hidden behind a lot of interactions, you can change
 the user experience to surface those features more quickly.

 All this is easy to add to your Xamarin app—just one line of code per user action to track what they’re doing. Demographic
 data comes as soon as you enable the SDK. If you capture the right data and use it correctly, you’ll have a powerful tool
 to help shape your app.

1.3. Rinse and repeat...

 Monitoring is the final step in the mobile-optimized development lifecycle, a cycle that repeats with every iteration of your
 app. It’s no good resting on your laurels after a release; it’s time to fix bugs and add new features. Figure 1.11 sums up the steps.

 Figure 1.11. A summary of all the steps for each cycle of a production app

 [image:]

 Keep your cycles small so it’s easy to change direction based on feedback from your monitoring or your users. But don’t make
 them so small that your users are updating their apps too often (next-day release is important for fixing bugs, but keep features
 updates at least a week apart). Regular updates are important because they make your users feel like your app is here to stay,
 and they’re good for promoting your app, as the stores highlight recently updated apps.

 Now that you’ve seen this lifecycle in detail, it’s time to put some of this into practice and write some code that demonstrates
 the power of Xamarin apps. In the next chapter we’ll look at a design pattern that can help you build cross-platform Xamarin
 apps by increasing the amount of cross-platform code that can be shared across iOS and Android apps. Then we’ll follow tradition
 and build a cross-platform Hello World application.

Summary

 In this chapter you learned

 	Xamarin native apps are apps built in C# using a version of the .NET framework based on Mono that’s been customized to run
 on iOS and Android and using libraries that wrap the native device SDKs.

 	Xamarin apps are better than native apps written using the vendor tools because you get all the power of a native app with
 all the features of the device and OS, but they’re written in a common language, allowing you to share common logic and code
 between apps on different platforms.

 	Xamarin has tools for the mobile-optimized development lifecycle, covering developing, testing, building, distributing, and
 monitoring.

 	There’s more to a production-quality mobile app than just coding. You first need to consider the design of your app to ensure
 that it’s suitable for the platform you’re targeting. You also need to code it well, ensure it’s fully tested, build it in
 a reproducible way, deploy it, and monitor it for issues once it’s in the wild.

Chapter 2. Hello MVVM—creating a simple cross-platform app using MVVM

 This chapter covers

 	What MVVM is and why it’s the best choice for cross-platform Xamarin apps

 	What the MVVM design pattern is all about, and why you’d want to use it to maximize your cross-platform code

 	Getting set up with Xamarin and the MvvmCross extension

 	Creating HelloCrossPlatformWorld, your first Xamarin mobile app

 	Running your app on iOS and Android

 Typically at this point in a book, it’s traditional to build a Hello World app to show off the technology in question. For
 this book, though, I’m going to go slightly against tradition and start by discussing the MVVM (model-view–view model) design
 pattern. Then we’ll get our hands dirty with some code toward the end of this chapter.

 	

 We’re discussing MVVM for cross-platform Xamarin apps

 The principles discussed in this chapter are for using MVVM with Xamarin apps. Although these follow the principles for MVVM
 on other platforms, such as desktop Windows apps or the web, there’s a lot more to it for Xamarin apps. If you’ve done MVVM
 before (maybe with WPF) it’s still worth reading this chapter as there are some important differences.

 	

2.1. What are UI design patterns?

 Over time, developers have come across and solved the same problems again and again. Out of this has come a set of abstract
 solutions that can be applied when building your code. These are known as design patterns—repeatable solutions to common problems that occur when designing and building software.

 Building apps that interact with the user through a user interface (UI) is no different. There are standard problems that
 developers want to solve, and a number of patterns have come about as solutions to these problems.

 Let’s consider a simple square-root calculator app called Sqrt that has a text box you can put a number in, and a button.
 When you tap the button, it calculates the square root of the number in the text box and shows the answer on a label. An example
 of this app is shown in figure 2.1.

 Figure 2.1. A simple square-root calculator app that calculates the square root of a given number

 [image:]

 The simplest way to write this app is to wire up the button to an event that takes the value directly from the text box, calculates
 the square root, and writes the value to a label. All this can be done in the code-behind file for the UI. Simple, and all
 in one class. The following listing has some pseudocode for the kind of thing you might write.

 Listing 2.1. Pseudocode for adding numbers by wiring to the UI directly

 MyAddButton.Click += (s, e) => 1
{
 var number = double.Parse(NumberTextBox.Text); 2
 var sqrt = Math.Sqrt(number); 3
 MyResultLabel.Text = sqrt.ToString(); 3
}

 	1 Listens for the Click event of the button

 	2 The number comes from reading the value from the Text property of the text box.

 	3 Once the square root is calculated, the Text property of the label is set directly.

 Although this seems simple, it has a number of flaws.

 First, this isn’t easily testable. You can only test this app by updating the value in the text box and tapping the button.
 It would be better if you could write unit tests so you could programmatically test the code, covering multiple cases including
 edge cases, such as missing inputs or large or negative numbers. This way you could run a set of automated tests quickly and
 repeatably every time you change your code.

 Second, this isn’t cross-platform. One of the reasons for building apps using Xamarin is so that parts of your app can be
 written in shared code that works on both iOS and Android. If your calculation is wired directly to the view, you can’t do
 this. Think back to the layers introduced in chapter 1, shown in figure 2.2.

 Figure 2.2. Xamarin apps are written in C# so you can share any common business logic while having a platform-specific UI.

 [image:]

 In a Xamarin app we have three layers:

 	
Application layer— This is a small part of the code that makes your app runnable on each platform and has different platform-specific implementations
 for iOS and Android.

 	
UI layer— The UI layer also has separate platform-specific implementations for iOS and Android.

 	
Business logic layer— The business logic layer is shared between the two platforms.

 To fit the calculator code into this structure, you’d need to have your calculation code in the cross-platform business logic
 layer, and the button, text box, label, and all the wiring in the UI layer. This is the kind of problem all UI developers
 come across on a daily basis, and, as you’d expect, there’s a design pattern to help with this—MVVM.

2.2. MVVM—the design pattern for Xamarin apps

 MVVM (model-view–view model) is the most popular design pattern for cross-platform apps built using Xamarin, and it has a
 history of being a very successful design pattern for building Windows desktop apps using WPF, Silverlight apps, and now Windows
 10 UWP apps. It has even made its way onto the web with frameworks like knockout.js using it. When Xamarin designed Xamarin.Forms,
 whose goal was to have as much code sharing as possible, the principles of MVVM were baked into the underlying framework right
 off the bat.

 Think back to the three layers in the Xamarin app. These three layers enable a reasonable amount of code sharing, but we can
 do better. In the UI layer there are really two layers—the actual UI widgets, and some logic around these widgets. For example,
 we could put some logic around the answer label to make it only visible once the square root has been calculated. This expands our three layers to four.

 Figure 2.3 shows the how the layers would look if we could move this UI logic into shared code. If we did this, the label in our example
 would be in the UI layer, and the logic that decides whether it should be visible or hidden would be in the cross-platform
 UI logic layer. This is a great way to do things—we’re maximizing code reuse by abstracting the UI logic into cross-platform
 code.

 Figure 2.3. To maximize code reuse, it would be good to have UI logic in shared code.

 [image:]

 MVVM helps with this splitting-out of the UI and its logic. This pattern is named based on the three layers that you use in
 your app, as shown in figure 2.4. Let’s look at these layers in the context of our calculator example:

 	
Model— Your data and business logic.
 The model is the data, business logic, and access to any external resources (such as web services or databases) defined in
 terms of the domain, and this maps to the business logic layer in our Xamarin app. In our example, the model contains the
 number, the logic to calculate the square root, and the result.

 	
View— The actual UI, buttons, text controls, and all other widgets.
 The view is the UI with all its widgets and layouts, and this maps to part of the UI layer and holds the UI widgets (the text
 box, button, and label). This is a passive view, so it doesn’t have any code to get or set the values or to handle events,
 such as the button click.

 	
View model— The UI data and logic.
 For our calculator app, this has properties that represent the numbers on the model—the input value and the result. It also
 has a command property that wraps the square root calculation logic on the model into an object (more on commands in the next
 chapter). The view model knows about the model but has no knowledge of the view.

 Figure 2.4. MVVM has a model, a view model, a view, and a binding layer that keeps the view and view model in sync and connects events
 on the view to the view model.

 [image:]

 In addition to these three layers, it has a binder, a binding layer that you can think of as glue that connects the view model to the view. This removes the need to write boilerplate
 code to synchronize the UI—the binder can watch for changes in the view model and update the view to match, or update the
 view model to match changes made by the user in the UI. This binder is loosely coupled rather than tightly coupled, and the
 connection is often made based on wiring up properties in the view and view model based on their names (so in the case of
 a binding between a property called Text and a property called Name, at runtime the binder will use reflection to map these string values to the underlying properties).

 	

 Reflecting on reflection

 If you’ve never heard of reflection before, it’s a part of the C# API that allows you to query details about a class—you can
 discover properties, fields, methods, or events. Once you’ve found out the details, you can also execute code. For example,
 you can find a property based on its name and then get the value of that property from a particular instance of that class.
 Reflection is also common in other languages such as Java—C# reflection is basically the same as Java reflection.

 This is great for binding—if you bind a property called Name, the binding code can use reflection to find a property on your view-model class with that same name, and then it can get
 the value on your view-model instance.

 	

 For our calculator app, the binding would wire up the text box, button, and label on the UI to the equivalent properties and
 a command on the view model.

 There’s a bit of magic involved in making this binder work, and this is usually implemented in an MVVM framework—a third-party
 library that gives you a set of base classes providing the implementation of this pattern. I cover how this works later in
 this chapter.

 	

 MVVM frameworks

 There are multiple MVVM frameworks that work with Xamarin native apps, such as MvvmCross, MVVM Light, and Caliburn.Micro.
 Although each one has differences, they all follow the same basic principles and do roughly the same things. Later in this
 book we’ll be using MvvmCross, but everything in this book is applicable to most frameworks.

 	

 For example, as shown in figure 2.5, we could have a text box on our calculator app UI that’s bound to a Number property. This means that at runtime it will try to find a public property called Number on the view model that it’s bound to using reflection, and it will show the string contained in that property in the text
 box. If the user changes the value inside the text box, it will update the value of the Number property to match what the user has typed in. Conversely, if the value of the Number property on the view model changes, the binding will update the text box to match.

 Figure 2.5. Binding keeps the value on the view in sync with the value in the view model.

 [image:]

 The binder doesn’t care what the underlying class type is of the view model you’re using, just that it has a public property
 called Number that it can extract the value from. In some of the MVVM frameworks, it doesn’t even care if the property is there or not.
 If it can’t find the property, it just treats it as an empty value. This loose coupling is what makes MVVM especially powerful—it
 allows view models to be completely agnostic to the view, so you can write unit tests against the view model that simulate
 the UI without worrying about UI code getting in the way. It also supports code reuse, so a view could be glued to any view
 model that has properties with the names it’s expecting.

 Figure 2.6 expands on the previous figures by showing how these layers map to the three layers of MVVM:

 	
App layer— The app layer is one that doesn’t really come under the pure MVVM design pattern, but the different MVVM frameworks do provide
 some application-layer features. This allows us to have some cross-platform code in our app layer that can control app logic,
 such as which view is shown first and how the different classes in the app are wired together, such as defining which view
 model is used for each view.

 	
UI layer— The UI layer is our view layer, and this is platform-specific code.

 	
Binding— The binding between the UI layer and the UI logic layer is the binder—the glue that connects the UI layer to its logic layer.
 This is usually a mix of cross-platform and platform-specific code provided by a third-party framework.

 	
UI logic layer— The UI logic layer is our view-model layer. It provides logic for the UI and other device interactions in a cross-platform
 way. Part of this logic is value conversion—converting from data in your domain objects to data on the UI. For example, you
 could model a user in your domain with a first name and last name but on the UI want to show the full name. The view model
 will provide this value conversion by concatenating the names and giving one string value that will be shown by the UI.

 	
Business logic layer— The business logic layer is the model layer. This contains data, domain objects, logic, and connectivity to external resources
 such as databases or web services. Again, this is cross-platform.

 Figure 2.6. The different layers of MVVM fit with the different layers of a Xamarin app.

 [image:]

 	

 A quick history lesson

 MVVM has been around since 2005 and was developed by two architects from Microsoft, Ken Cooper and Ted Peters. It was primarily
 created for use with the new UI technology stack coming out of Microsoft called WPF, and it leverages the data binding that
 was a key feature of WPF. In WPF you write your UI using XAML, a UI-based markup language, and in this XAML you can bind the
 properties of a UI widget to properties defined in the data context of the view—essentially the view model. This allowed UI/UX
 experts to design the UI using more designer-based tools, and to simply wire the widgets, based on their names, to code written
 independently by developers.

 	

2.3. What is cross-platform code?

 Some of the layers in our MVVM-based app use cross-platform code—specifically, part of the app layer, the UI logic (view-model)
 layer, and the business logic (model) layer. The reason for this is simple—we’re building an app for both iOS and Android,
 so the app will need to work the same way on both platforms, use the same type of data, and have roughly the same UI logic.
 It makes a lot of sense to build this once and use the same code on both apps—code that we write once and can run on iOS and
 Android. The term cross-platform code has come up a lot already in this book, and it will continue to be a theme throughout. But what exactly do we mean when we
 talk about cross-platform code in C#?

 	

 Cross-platform native apps are not truly cross-platform

 In the Xamarin world we talk of cross-platform native apps, but these are not true cross-platform apps where exactly the same
 app will run on all platforms. Neither is it cross-platform in that all the code runs on all platforms (with a hidden app
 layer).

 What I mean here is that we have two apps, one that runs on iOS and one that runs on Android, both developed using the same
 language and sharing a large portion of the code. They’re cross-platform in that the business logic (and ideally the UI logic)
 is truly cross-platform, and the smallest possible device-specific UI and feature layer is built to be platform-specific.

OEBPS/01fig03.jpg
i0S ! Android
Application | Provided by ||| Provided by
layer framework |[i| framework
Ul layer
HTMUCSS/JavaScript
Business

logic layer

OEBPS/01fig04.jpg
i0S | Android
Application ct || c#
layer :
Ul layer ct |I| c#
Business

logic layer

OEBPS/01fig01_alt.jpg
NGOF-SPECING apps: (Cordova apps Aamarnn apps Xamarin.Foms apps

08, 05 | Android 08 | Andoid 05 Android
Appication [Objecte-C Providod by [Providsaby | [z |1 s
oyer |__swit amonon. || vamowort i
Uayer [OPlecive o [e |
HIMLCSSUvasapt
Busioss | onecivec
ogemor | owih

OEBPS/01fig02.jpg
i0OS ' Android

Application [Objective-C |: [Java
layer Swift H Kotlin
Objective-C|:[Java

Ul layer swit |}| Kotiin
Business | Objective-C |!| Java
logic layer | Switt |i| Kotlin

OEBPS/common2.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/01fig05.jpg
i0S SDK
(Objective-C)

C# wrapper
(Xamarin.OS)

Chapp

AOT compiler

i0S app

OEBPS/01fig07.jpg
105 Android
Application | g c#
layer
Ul layer
ot
Business
logic layer

OEBPS/01fig06.jpg
‘Android SDK
(Java)

C#t wrapper
(Xamarin.Android)

1L compiler

Ci app

Android app
(IL code,

| Mono runtime,

JIT compiler)

OEBPS/cover.jpg
(reating native cross-platform mobile apps.

Jim Bennett
Forvoe

| | FTYTT

OEBPS/02fig06.jpg
i0S | Android
cit |i| c#
App f
layer
c#
Ul layer c# il c# View
e
Ullogic View
layer @ model
Business & Model

logic layer

OEBPS/01fig09_alt.jpg
Test Build

UlTest, Visual Stugio.
Test Cloud App Center

OEBPS/01fig08_alt.jpg
Simulator screen is
shared to Windows PC

Windows PC
running
Visual Studio

Code sent to Mac to build

Build results sent
back to Visual Studio

Simulator
runs on Mac

OEBPS/01fig11_alt.jpg
Design

Source code
control

Develop
Visual Studio

Build

Visual Studio
App Center

Distribute
Visual Studio
App Center

On Android, follow Google's material design guidelines
0ni08, follow Apple's human interface guidelines
Think about usability and accessibilty

+ Use source code control
+ Commityour code often
+ Gitis wellintegrated with Visual Studio

Use Visual Studio on efther Mac or Windows to develop your app.
ForiOS, you need a Mac to build, for debugging, and to host the simulator
Visual Studio on Windows can use a remote Mac for buikling i0S apps.
You can debug on a remote simulator screen shared over the network,
50 the Mac dossn't need to be physicaly accessible—it can be i the cloud.

Code your app in a way that allows testing

Unit test as much as possible

Create Ul tests to automatically test the user inerface

Use Test Cloud to run your tests or debug on devices you don't have

Use continuous integration (CI) to ensure that your code buids and that tests pass
Run your unit tests and Ul tests on a regular basis to get a fast feedback loop.
Consider continuous deployment—deploying builds that pass all tests to users
regularly, via tools like App Center

Deploy early versions of your app to alpha and beta testers to get as much real-worid
testing as possible

Allow users to provide feedback and raise bugs.

Respond to this feadback and fix bugs quickly, then redepioy to the alpha and

beta testers

Monitor for crashes so you can quickly fix the bugs that cause them
Monitor the details of your users so you can ensure you're targeting the
fight audience

Track the usage pattems of your app o you know what areas to focus on

OEBPS/01fig10.jpg
Counter

IWebService

MockWebService

WebService

Unit test

Production app

OEBPS/02fig02.jpg
i0S 1 Android
Application ct || o
layer :
Ul layer ct |I| c#
Business

logic layer

OEBPS/02fig01.jpg
Square Root

OEBPS/02fig04_alt.jpg
2. The view model updates
the model based on
changes pushed from
the binding layer.

Model

1. The binding keeps the data in
sync between the view and the
view model, and it wires events
up to view-model commands.

3. State changes in the model are
passed back to the view model,
which can then notify the binding
that something has changed, so

ing can keep the view in

the changes.

OEBPS/02fig03.jpg
ios Android

App c#
layer

C#

Ul layer c# c#

Ul logic: @
layer

Business o
logic layer

OEBPS/02fig05_alt.jpg
The Text property of the TextBox is bound to a property
called “Number” on the view model. The binding looks
up the “Number” property on the view model and finds
it using reflection.

The binding listens for updates to the Text property of
the TextBox (usually via a text-changed event raised by
the TextBox). When the user changes the text, the binding
updates the Number property on the view model.

The binding also listens for updates to Number. When
the property changes, it updates the Text property of the
TextBox on the U

TextBox

public string Text {get;set;)

View model
public string Number {get;set;}

