

[image: Cover Page]

TEAM
TOPOLOGIES

SECOND EDITION

ORGANIZING BUSINESS AND TECHNOLOGY FOR FAST FLOW OF VALUE

MATTHEW SKELTON and MANUEL PAIS

Foreword by Ruth Malan

[image: IT Revolution]

[image: IT Revolution]

25 NW 23rd Pl, Suite 6314

Portland, OR 97210

Second Edition Copyright © 2025 by Matthew Skelton and Manuel Pais

First Edition Copyright © 2019

For information about permission to reproduce selections from this book, write to

Permissions, IT Revolution Press, LLC, 25 NW 23rd Pl, Suite 6314, Portland, OR 97210.

Second Edition

Printed in the United States of America

30 29 28 27 26 25 1 2 3 4 5 6 7 8 9 10

Cover and book design by Devon Smith

Library of Congress Control Number: 2025940729

Second Edition Paperback: 9781966280002

Second Edition ebook: 9781966280019

Audiobook download: 9781942788843

For information about special discounts for bulk purchases, or for information on booking authors for an event, please visit our website at ITRevolution.com.

TEAM TOPOLOGIES, SECOND EDITION

[image: Matthew Manuel]

To my wife, Suzy Beck—for all your support and inspiration.

To Katie, my life partner and family stronghold—thanks for your tireless love and support.

To Dan and Ben, daily sources of warmth—hopefully this book can help you understand what Daddy does for a living.

CONTENTS

Figures & Tables

Note on the Second Edition

Foreword to the Second Edition by Matthew Skelton & Manuel Pais

Foreword to the First Edition by Ruth Malan

Preface

PART ITEAMS AS THE MEANS OF DELIVERY

Chapter 1: The Problem with Org Charts

Chapter 2: Conway’s Law and Why It Matters

Chapter 3: Team-First Thinking

PART IITEAM TOPOLOGIES THAT WORK FOR FLOW

Chapter 4: Static Team Topologies

Chapter 5: The Four Fundamental Team Topologies

Chapter 6: Choose Team-First Boundaries

PART IIIEVOLVING TEAM INTERACTIONS FOR INNOVATION AND RAPID DELIVERY

Chapter 7: Team Interaction Modes

Chapter 8: Evolve Team Structures with Organizational Sensing

Conclusion: The Next-Generation Digital Operating Model

APPENDIX CASE STUDIES

Afterword

References

Notes

Index

Acknowledgments

About the Authors

FIGURES & TABLES

FIGURES

0.1: Value Stream Grouping

0.2: The Four Team Types and Three Interaction Modes

1.1: Org Chart with Actual Lines of Communication

1.2: Obstacles to Fast Flow

2.1: Four Teams Working on a Software System

2.2: Software Architecture from Four-Team Organization

2.3: Microservices Architecture with Independent Services and Data Stores

2.4: Team Design for Microservices Architecture with Independent Services and Data Stores

2.5: Inter-Team Communication

3.1: Scaling Teams Using Dunbar’s Number

3.2: No More than One Complicated or Complex Domain per Team

3.3: Typical vs. Team-First Software Subsystem Boundaries

3.4: Office Layout at CDL

4.1: Organization not Optimized for Flow of Change

4.2: Organization Optimized for Flow of Change

4.3: Relationship between SRE Team and Application Team

4.4: Influence of Size and Engineering Discipline on Team Interaction Patterns

5.1: The Four Fundamental Team Topologies

5.2: Platform Composed of Several Fundamental Team Topologies

5.3: Traditional Infrastructure Team Organization

5.4: Support Teams Aligned to Stream of Change

6.1: Mobile, Cloud, and IoT Technology Fracture Plane Scenario

7.1: Collaboration vs. X-as-a-Service

7.2: The Three Essential Team Interaction Modes

7.3: Team Interaction Modes Scenario

7.4: X-as-a-Service Team Interaction Mode

7.5: Primary Interaction Modes for the Four Fundamental Team Topologies

7.6: Team Interaction Modes at IBM around 2014

8.1: Collaboration between Cloud and Embedded Teams

8.2: System Build and Platform Build Team at TransUnion

8.3: System Build and Platform Build Team Collaboration at TransUnion

8.4: System Build and Platform Build Teams Merged at TransUnion

8.5: System Build and Platform Build Teams Merged Back Into Dev and Ops at TransUnion

8.6: Evolution of Team Topologies

8.7: Evolution of Team Topologies in an Enterprise

8.8: Example of a “Platform Wrapper”

8.9: New-Service and “Business as Usual” (BAU) Teams

8.10: Side-by-Side New Service and BAU Teams

9.1: Core Ideas of Team Topologies

A.1: Original Team Organization at KFC

A.2: Reconfigured Team Organization at KFC

A.3: Three-Month Cognitive Load Assessment

A.4: Expanded Collaboration Scope

A.5: Conceptualization of the Generic Enterprise-Level Building Blocks

A.6: Adidas Digital Platform Teams Engage in Different Interaction Modes at Different Times

TABLES

7.1: Advantages and Disadvantages of Collaboration Mode

7.2: Advantages and Disadvantages of X-as-a-Service Mode

7.3: Advantages and Disadvantages of Facilitating Mode

7.4: Team Interaction Modes of the Fundamental Team Topologies

NOTE

on the Second Edition

One of the most important concepts in Team Topologies (and in related approaches) is the idea of a “fractal organization”—self-similar patterns at multiple “zoom levels.” This idea is present in the first edition of the book in numerous places (e.g., page 93: “several inner platform teams”; page 96: “logical platform”; page 168: “outer platform and inner platform”). Unfortunately, by referring to a platform as a type of team, we caused some inadvertent confusion. A platform is a grouping of teams providing a coherent capability or set of services to other teams.

In an organization larger than about forty to fifty people, an internal platform will typically need more than one eight-person team to provide the necessary services—a grouping of teams is needed. In the case of an internal platform, we’re now calling this a platform grouping. This means that where the phrase “platform team” is used in the book, it could refer to one of two things: 1) A single team of some kind working inside a platform, or 2) a grouping of multiple teams working on a platform.

If a team is working inside a platform, it’s important for the team to know the platform’s nature and mission. Most of the advice in Chapter 5 relates to such a situation. However, it’s vital to understand that most platforms will need more than one such team, and a “platform grouping” is a good way to refer to that collection of teams. This means that the four team types could really be three team types plus a special “platform grouping” of teams (or a team of teams). But we’ll still refer to them as the four team types. Just keep in mind that the platform team can be a single team or a grouping of teams.

In the second edition, we’ve updated Figure 5.1 (a diagram of the team types on page 80) to show the platform grouping with dotted lines to indicate it’s not a team type in the sense of a single team of around eight people, but instead a kind of “container” for one or more teams. With the fractal nature of organizations and internal platforms in particular, the types of teams working inside a platform are the same types of teams as outside a platform: stream-aligned, enabling, complicated subsystem, and other (inner) platform teams or groupings.

For any platform grouping, we can “zoom in” and see the same types of teams and groupings used as in the updated Figure 5.2 (on page 96). Conversely, we can “zoom out” of a platform grouping and visualize the blue box as the platform itself. This zooming back-and-forth between different levels is vital for understanding how Team Topologies platforms work.

Value Stream Grouping

It’s also valuable to take the “grouping” idea further and generalize it to a grouping of value stream activities, using what we’ve started to call a “value stream grouping.” (See the Telenet case study in the Appendix on page 229 for a similar approach with their internal and external customer-centric tribes).

[image: Diagram showing Value Stream Grouping organizational structure. The diagram displays teams arranged along a horizontal "Flow of Value" arrow from left to right. At the top level are three Stream-Aligned Teams in yellow boxes, with one containing a blue Inner Platform Team box. Below is a larger Platform grouping (outlined in blue) containing two Stream-Aligned Teams in yellow boxes, one standalone Stream-Aligned Team outside the platform grouping, and an Inner Platform Team in a blue box. Annotations explain that yellow boxes represent "Value stream grouping," blue boxes are "Small, focused platform inside a value stream grouping," and there are examples of "Stream-aligned team outside value stream grouping" and "Stream-aligned team outside value stream grouping but within a platform." The diagram is labeled "Figure 0.1: Value Stream Grouping" at the bottom.]

Figure 0.1: Value Stream Grouping

 In a future book, we expect to expand this idea further, but the key point is that a grouping brings multiple teams together into a common mission, and inside the grouping, there are different team types and groupings. In this scheme, it’s clear that a platform grouping is merely a special kind of value stream grouping that provides services to other teams or other groupings.

—Matthew Skelton & Manuel Pais, 2025

FOREWORD

to the Second Edition

What was essentially an aspiration back in 2019—that the ideas and patterns in the first edition of Team Topologies could help make work more humane while increasing organizational and financial effectiveness—turned into a reality. More and more organizations adopting Team Topologies reported not just faster flow but significant positive shifts in employee engagement and employee satisfaction. These improvements attest to the inherent humanity of the principles underpinning Team Topologies.

The Norwegian company Capra Consulting intentionally applied Team Topologies to their whole organization (including sales, operations, recruitment, and even the leadership group). Their goals were to increase employees’ engagement and strategic decision-making, as well as to increase autonomy and flexibility in teams. Other companies like Yassir specifically tracked employee satisfaction, with an impressive 230% increase in just a couple of years.*

Countless organizations have benefited from the shared vocabulary around organizational challenges and potential steps toward better flow brought by Team Topologies. But it hasn’t stopped there. There is a growing ecosystem of enthusiasts and advocates, as well as worldwide events such as the Fast Flow Conf, besides many talks and articles referencing the ideas in Team Topologies. This growth, however, wouldn’t have been possible if the ideas had not resulted in clear business results and across a range of industries.† EBSCO, for example, reported 26% faster feature delivery and over $9 million in cost savings. KFC’s digital sales increased threefold.

In the Appendix of this second edition, we wanted to bring to light some of these amazing transformation stories that have unfolded in the five years since the first edition was published. Most successful transformations we’ve witnessed have been driven by business needs and the pressure to stay competitive. However, large re-orgs with loosely defined goals around improved efficiency or adopting industry “best practices” tend to fall short or fizzle out over time. We’ve seen several Team Topologies adoptions happen just for the sake of adoption, with varying degrees of success depending on whether the underlying principles of fast flow were truly understood. Organizations “blinded” by a static view of the four team types and three team interaction modes tend to overlook or minimize the importance of an evolutionary approach, as described in Part 3.

Team types and interaction modes are just useful patterns—building blocks if you will—in the larger picture of true team-first empowerment (as described in Part 1) and evolving organizational operating models to support the business strategy while being mindful of human constraints, like trust boundaries and cognitive load in knowledge-intensive work (as described in Part 2).

It’s important to understand this is an ever-evolving approach, not a short-term, bounded change program. It might require an initial period of more intensive change to “start up the engine,” but the car never stops. It needs constant course correcting to move at a fast pace. There’s no autopilot for organizational change. As Ismail Chaib says, “Org design is like a martial art; you have to keep practicing to stay sharp.”

This constantly evolving, long-term view does not imply one must adopt all of the Team Topologies ideas, patterns, and practices, however. That would be like saying you must use all the primary colors to create a painting masterpiece.‡

We have seen examples in not-for-profit domains where strong financial and even political constraints acted as forcing functions for the critical adoption of ideas from Team Topologies. Kodea, an NGO with an agile mindset that promotes technological inclusion for underrepresented groups in Latin America, has been seeking to scale its social impact while maintaining budget efficiency.§ Team Topologies made sense to them as a way to improve flow and team autonomy, which led them to selectively adopt patterns from the book based on real operational challenges.

As they began evolving toward more cross-functional, stream-aligned teams tied to their social initiatives (e.g., teacher training in computer science, digital empowerment for women, and reskilling of workers), they quickly identified a major bottleneck in communications and branding. This had traditionally been the responsibility of a dedicated team, due to the required expertise, which made it difficult to respond promptly to the various demands from the stream teams.

Although they lacked the budget to create dedicated platform teams, Kodea explored the platform pattern as a way to differentiate low-risk needs (e.g., presentations about the NGO to local audiences), which the stream teams could develop themselves using a self-service platform composed of templates, brand assets, and design guidelines. This freed up the communications and marketing team to focus on higher-impact or higher-risk needs, such as presentations to public authorities or international bodies, or the preparation of strategic funding proposals.

This kind of thinking highlights the evolutionary approach to team design and interactions that is a key tenet of Team Topologies. It also shows that stream alignment, as well as enabling and platform patterns, can be applied outside of technology and be instilled from early stages, even when the organization lacks the capacity to establish dedicated teams neatly matching the team types.

In a tech startup of thirty people, “enabling” might mean senior practitioners consistently pairing with and mentoring junior team members. A well-maintained and used knowledge-sharing wiki with clear owners who harvest good practices and team insights into practical and easy-to-understand guidance (e.g., how to diagnose complicated production issues or the rationale behind a given technology or architecture choice) ticks the “platform” pattern. Setting in motion these patterns eases the transition to dedicated teams during later growth phases. It should become clearer to see when the impact of a senior practitioner’s expertise multiplies in a dedicated enabling or platform team instead of continuing to split their time (and attention) between delivery work in a stream-aligned team and mentoring new hires.

Susanne Kaiser and Nina Siessegger talked about this exact situation at the Fast Flow Conf 2025 in the Netherlands.1 Pirate Ship, a growing tech company, realized that their stream-aligned teams’s attention was being diverted as they tried to take care of technical components shared with other teams. “Are our product teams spending enough time focused on our end customers’s needs?” is a good heuristic to think about the right time to form platform teams. Or, when platform teams are already in place, push internal services with growing complexity being provided by stream-aligned teams into an adequate platform offering/team instead.

By discovering the needs of internal customers (i.e., other teams), Pirate Ship was able to identify good candidates for platform services based on the potential to accelerate the flow of changes for the Pirate Ship product teams. In our experience, this level of “platform maturity” is still fairly uncommon, even in much larger organizations. Too often, the “platform” is seen as a single entity where shared services of different nature are put together and handled by large teams with diverging responsibilities, rather than a grouping of small-ish teams clearly aligned to a stream or service of value to clearly identified and understood internal customers.¶

This naïve view of platforms gets exacerbated in enterprise settings when we not only need to consider internal platform streams of value but also multiple platforms for multiple sets of users across multiple business domains. NAV, the Norwegian Labour and Welfare Administration, took a sensible platform approach to support the 100+ teams working on digital services for their 2.5 million citizens: “We have a small number of coherent internal platforms [an application platform, a data platform, and a design system/platform], not a cumbersome single platform.”2

In large organizations, moving away from a “single platform that does it all” anti-pattern requires finding a sensible balance between too many internal platforms (likely increasing the cognitive load on the teams trying to use them as they need to understand different interfaces and usage patterns) and too few internal platforms (serving very different user personas and often leading to artificially imposed consistency for services that are totally unrelated). Adidas’s digital platform, for example, is really a logical, high-level grouping of multiple platforms and services, each with its dedicated teams, not an actual single “monolith” with a large number of disparate responsibilities.**

Effectively, a mature platform approach in large organizations needs to be both fractal (where a “platform team” is really an alias for a “stream team aligned to an internal platform service inside a platform grouping,” which likely consumes other platforms to keep its own cognitive load under control) and dynamic (growing and evolving platform groupings, services, and teams as the needs and strategy of the business change).

In a similar way, the “enabling pattern” can gain different forms based on organization size but also on the extent of the capability gaps that the enabling work aims to address. Often, platform teams are easier to “buy” from a senior management perspective, as they will build actual services to help the stream-aligned teams deliver value to end customers faster, with reduced cognitive load. But those platform teams often need to (or should) do enabling work in order to onboard new teams to the platform. More importantly, to help them understand the platform domains, whether that’s infrastructure, design, or some business capabilities.

That is absolutely fine. Understanding the context and the underlying principles of enabling work (such as multiplying impact via growing capabilities in others rather than hoarding expertise in a small group of people or teams) wins over dedicated enabling teams for the sake of enabling teams. For instance, we’ve talked with organizations such as KFC,†† Booking.com, IKEA, and others where Agile coaches and communities of practice effectively act as enablers, detecting common gaps across teams, fostering the necessary learning and facilitation to upskill them. Sometimes this acts as a starting point to show the value of enabling type work and eventually dedicated enabling teams.

Now, if a medium to large organization is very new to some organizational capability that is going to be fundamental to stay competitive in the long run (think of generative AI in 2025, data science during late 2010s, or mobile development during the early 2010s), then a more involved enabling approach will be required. It might start as just a couple of teams of experts in that field bringing knowledge into the organization (e.g., assessing new AI coding assistants or creating the first machine learning models or a first mobile app). It’s reasonable to do so for a period of time, but eventually scaling such capabilities to the entire organization will require adjusting organizational structures (at least if we want to keep fast flow without massive expertise bottlenecks).

Take the example of bol.com, a leading online retailer in The Netherlands, scaling their data science capabilities so that product teams could make data-driven customer recommendations, complex forecasting, and much more.3 They realized a few dedicated data science teams could not cope with the overall demand across the organization, so they created a central data science department. The mission, however, was not to centralize all the data science work. It was to grow that capability in the product teams via a mix of: 1) a long-lived, “structural” enabling team of data science leads, listening and sensing for team and organizational needs; and 2) data scientists and engineers working in temporary enabling teams to help upskill the product teams. Eventually, platform teams around data science were created as well, but the enabling teams continued to have an important role in surfacing new challenges, facilitating emerging practices in the industry, and helping inform and coevolve data platforms based on real input from product teams.

Another example of prioritizing the patterns and ideas from Team Topologies that match business needs comes from the State Treasury of the State of Rio de Janeiro in Brazil (SEFAZ-RJ), which provides over 250 citizen services (underpinned by more than sixty internal systems) for 17 million inhabitants, while implementing one of the most complex fiscal systems in the world.‡‡

In 2020, the IT department was mostly organized around technical component teams aligned to internal processes. Because many key citizen user journeys (e.g., tax refunds) and registered companies (e.g., closing down the company) typically spanned across multiple internal business areas, the end result was a maze of dependencies translated into infrequent and risky deliveries.

The accelerating pace of regulatory changes forced the agency to look for a new approach, partially based on the ideas from Team Topologies around socio-technical alignment and fast flow with parallel stream-aligned teams that work on real user needs. One particularly successful example was the “Easy Tax” system, which used to be quite slow and difficult to use. The problem was not the technical system or the user journeys it supported, but rather the diffused ownership across multiple business areas, which trickled down to helpless technical teams trying to maintain and evolve the system without clear prioritization or ownership.

By applying an inverse Conway’s maneuver (as described in Chapter 2) not just at the team level but at the organizational level (a new business area focusing on taxpayer citizen services was created, which took ownership of the “Easy Tax” system and others), they were able to achieve tax refunds for citizens in twenty-four hours (versus multiple months) and drastically reduce the number of taxpayer complaints to ombudsman about the agency. Over time, more systems and business areas were brought together in a similar fashion, shifting to a more value-stream oriented organization.

The notion that organizational structure alone will fundamentally improve the delivery of business value has led to many failed reorganizations. A naïve view of Team Topologies as an “ideal” operating model misses the need for continuous organizational evolution and the underlying principles necessary for success.

Underpinning the (more visible) patterns described in this book, like the team types or the team interaction modes, are principles such as:

	
•A fundamental focus on the flow of (actual) value to customers via incremental delivery.

	
•Supporting multiple flows of value with the parallelization of value streams via ongoing curation of boundaries and removal of blocking dependencies.

	
•Increasing teams’ agency and decision-making capabilities (with adequate guardrails and boundaries), which in turn requires increased trust levels across the organization.

	
•Leveraging dynamic interactions (between teams but also departments, value streams, etc.) to sense and correct breakdowns in the flow of information, knowledge, and skills.

	
•Understanding and respecting cognitive load limits on individuals and teams.

	
•Regular sharing and adoption of practices and solutions with/from other teams, treating this social learning as an active, deliberate approach: what can be called “active knowledge diffusion” across the organization.

A regular misunderstanding we noticed after the original publication of the book was people assuming fast flow means fast delivery, from idea inception all the way to customer’s hands. While that “left to right” acceleration is necessary to be able to make changes, experiment, and course correct quickly. Ultimately, it’s the value to the customer that is truly important. Which in turn means we need to be able to validate and measure whether customers are accruing value from using our services or products…and if not, then why?

As Piotr Kacała put it: “Flow is how quickly work moves from idea to customer value without getting stuck in organizational bottlenecks. Structure only matters if it helps ideas become reality faster.”4

Teams far removed from interactions with actual customers will have a hard time empathizing with their needs and frustrations. Realistically, in large organizations, removing some layers of indirection between direct customer support and product-focused teams and putting in place structured communication channels and regular feedback will go a long way toward faster flow of value to customers.

Another common misunderstanding we’ve seen relates to team cognitive load limits and how to deal with them. A misguided view would see the load as a bucket that we fill with water, and once it’s full, the team should never be asked to learn new things or take on new responsibilities. A river analogy is more on point. You don’t want an overflow causing disaster, but the river level is expected to change over time. Also, our goal should not be to always lower the level; otherwise, we end up with no flow!

A more helpful and dynamic view on team cognitive load sees a temporary increase in cognitive load as a “necessary evil” that teams might need as long as there’s a clear objective. That could mean increased service ownership (e.g., by taking on adjacent responsibilities that used to sit outside the team’s realm), improved productivity (e.g., integrating AI in the team’s workflows), or modernizing a software system (e.g., using better tools and frameworks).

What we must avoid ia continuously increasing the team’s cognitive load by demanding more ownership without adequate guidance and support, piling on responsibilities and expecting everything else to stay the same, or standing still while the number of tools, services, frameworks, and processes the team must handle proliferates without adequate platforms to handle some of that complexity.

Cognitive load theory (CLT) applied to the team dimension (as described in Chapter 3) has provided thousands of organizations with a useful model to understand the nature of team cognitive load and dig into many of the underlying issues. However, because there is no clean “split” between intrinsic, extrinsic, and germane types of cognitive load, we run the risk of overlooking drivers of team cognitive load that are not as visible or overinvest in solutions that address consequences rather than the causes of excessive cognitive load on teams.

To address these issues, we worked with Dr. Laura Weis, an expert in organizational psychology, to devise a scientific model for systematically assessing cognitive load in knowledge-intensive teams at large (not restricted to teams working in technology).5 We found more than twenty drivers of team cognitive load arranged into four clusters: team characteristics, work practices and processes, task characteristics, and work environments and tools. Surprisingly (or maybe not), people answering the model’s survey for the first time often convey that the questions alone made them realize how many factors that can impact their cognitive load were not even on their radar.

This systematic approach allows looking at team cognitive load trends and evolution over time (at the team, group, and even organizational level). The case study from Creditas highlights how this data-driven approach help them make sense of recurring cognitive load challenges across teams, make better informed decisions on how to address them, and finally evaluate if the changes made actually helped improve the overall cognitive health and performance of the teams.§§

As George Box said in his 1976 paper “Science and Statistics” (later made famous by W. Edwards Deming): “all models are wrong, but some are useful.”6 Contextual awareness, together with useful modelling, is key in understanding and driving change when it comes to team cognitive load. Both internal events (e.g., a re-org or a change in team responsibilities or composition) and external shifts in the industry (e.g., introducing AI-assisted workflows and agents) will contribute to variations in team cognitive load drivers. The goal is to have more accurate sensors of what’s happening in the teams and the organization in order to increase the odds of making the right organizational decisions.

Interestingly, since the first edition of this book, research by the originator of CLT, John Sweller, (and others) has expanded from CLT at an individual level into “collaborative cognitive load theory”7 within the scope of learning activities in groups. This focus on groups reflects a wider and growing industry-wide recognition that the team is the smallest useful unit of value delivery.

To finish, we wanted to acknowledge how Team Topologies is just one of multiple approaches and ways of working we need to onboard to achieve more humane and effective organizations, focused on the fast flow of value to customers but also increased employee engagement and satisfaction. We have been delighted to see the rise of new approaches that share a similar humanistic view and work well together with Team Topologies, including Jon Smart and coauthors’s Sooner Safer Happier, Heidi Helfand’s Dynamic Reteaming, and Zhamak Dehghani’s “data mesh” concept.

There is potential for exponential value to organizations combining related approaches for fast flow. Susanne Kaiser, for example, has talked and written extensively about evolving adaptive systems with “Architecture for Flow,” seamlessly bringing together Team Topologies, Wardley Maps, and domain-driven design.8

Of course, at the time of this writing, the artificial intelligence “revolution” is challenging many assumptions about individual, team, and organizational capabilities. It’s rewarding to see people like Roberta Lingnau9 and others rely on the ideas from Team Topologies in order to successfully make sense of and adapt to these new challenges.

—Matthew Skelton & Manuel Pais, 2025

*You can read the full case studies in the Appendix.

†See more at TeamTopologies.com/examples.

‡Case in point: Picasso’s grey-scale Guernica masterpiece.

§See more at TeamTopologies.com/kodea.

¶See the “platform grouping” key concept in the Note on the Second Edition for more details on what this approach looks like.

**Read the full case study in the Appendix.

††Read the full case study in the Appendix.

‡‡See more at TeamTopologies.com/sefazrj.

§§Read the full case study in the Appendix.

FOREWORD

to the First Edition

Keeping our systems small and simple is a worthy goal, yet it is also one that most successful systems defy. Lehman’s laws of software evolution, and, in particular, continuing growth, captures the evolutionary pressure to add capabilities as systems are used and new demands or opportunities are perceived. Being able to cope with, and even harness, this increasing complexity raises the importance of dual design arenas: the design of systems and the design of the organization that creates and evolves systems. We have a considerable body of work focused on the former; that is, on systems and software design and architecture, including an ever growing number of books on domain driven design and software architecture. Team Topologies addresses the design of the software development organization, with Conway’s law in view.

The basic thesis [....] is that organizations which design systems [....] are constrained to produce designs which are copies of the communication structures of these organizations. We have seen that this fact has important implications for the management of system design. Primarily, we have found a criterion for the structuring of design organizations: a design effort should be organized according to the need for communication.1

The above quote from the conclusion of Mel Conway’s classic paper on organizational design for software development is a most fitting beginning to this book. Team Topologies describes organizational patterns for team structure and modes of interaction, taking the force that the organization exerts on the system as a driving design concern.

As the complexity of the system increases, so, generally, do the cognitive demands on the organization building and evolving it. Managing cognitive load through teams with clear responsibilities and boundaries is a distinguishing focus of team design in the Team Topologies approach. To achieve duly scoped, bounded responsibilities, natural—and relatively independent—system (sub)structure is sought to align teams to. This takes Conway’s law into account and leverages it to help maintain cohesive structures with clear boundaries and loose coupling (known as the reverse Conway maneuver, and described herein).

If this was the extent of it, Team Topologies would be a useful elaboration of Conway’s paper, setting it in the current context. Of course, Team Topologies is even more than that. Notably, it identifies four team patterns, describing their outcomes, form, and the forces they address and are shaped by. Stream-aligned teams are the primary team form. These are teams that are optimized for flow, with all they need to effect continuous delivery of value and be fully responsive to the associated feedback cycles. This means that system design seeks not just loose coupling but a decomposition that supports flow and lowers dependencies and coordination needs between stream-aligned teams. Complicated-subsystem and platform teams reduce load for stream-aligned teams, where the latter are internal customers of the former’s subsystem or platform capabilities (supporting all phases of development, delivery, and operations for multiple stream teams). Enabling teams likewise serve other teams, but they are service providers, helping stream-aligned teams learn new techniques, investigate new technologies, and so forth, allowing stream-aligned teams to retain focus while growing effectiveness.

Matthew Skelton and Manuel Pais have brought their considerable experience to bear, describing what these various team forms need to be successful, but also highlighting variations in context, identifying the design implications thereof, and indicating anti-patterns to avoid. They also, with great generosity, weave in insights from and offer pointers to related work. This, along with a set of case studies, further textures the book.

Team Topologies informs and enriches our understanding of organizational architecture, via the nuanced presentation of these key structural patterns, interaction modes or dynamics, and considerations for evolution. And, due to its clarity and focus, it serves as a pragmatic guide whether forming teams and enabling them to meet their challenges or helping existing teams become more effective at responsive value delivery.

—Ruth Malan, Architecture Consultant at Bredemeyer Consulting

PREFACE

[Modern] organisational design...is about designing for collaborative technologies, for the voice of the customer.

—Naomi Stanford, Guide to Organization Design

Teams are always works in progress, but they are also your best shot at delivering value continuously and sustainably by aligning them with the business. Ideally, teams should be long lived and autonomous, with engaged team members. However, teams don’t live in isolation. They need to understand how and when to interact with each other. And these team interactions need to evolve over time to support the distinct phases of discovery and execution that products and technology go through during their lifetimes. In short, organizations not only need to strive for autonomous teams, they also need to continuously think about and evolve themselves in order to deliver value quickly to customers.

This book offers a practical, step-by-step, adaptive model for organizational design that we have used and seen work across businesses at varying levels of maturity: Team Topologies.

However, Team Topologies is not a universal formula for building and running software systems successfully. There are teams and organizations who succeed with organizational dynamics very different from those described and recommended here (particularly in organizations with excellent culture and best practices already in place).

Team Topologies is meant to provide clear patterns that are straightforward for many different teams and organizations to follow and interpret, not to dictate to outstanding players how to perform. We like to think of Team Topologies as a set of music parts for an orchestra or big band, not the melody for a top jazz trumpeter. Printed music for a large musical ensemble helps the group to succeed but does not dictate every aspect of performance; lots of detail is left for the ensemble to interpret to suit the occasion, venue, or mix of players. Likewise, there is huge value in agreeing to a coherent vocabulary and way of working together across teams to achieve good software delivery.

The Team Topologies approach helps organizations that are struggling to find a way to optimize their team structure, or for those that are not yet aware of the impact team design can have on good business outcomes and software systems in particular. Team Topologies helps organizations succeed more quickly and more continuously than before.

This book is for anyone who cares about the effectiveness of the delivery and operations of software systems: C-level leaders (including CTOs/CIOs, CEOs, CFOs, and so on) managers, heads of department, software architects and systems architects, and anyone else involved in building or running software systems who wants or needs to make the delivery and running of those systems more effective.

How We Came to Write This Book

In 2013, while introducing DevOps and Continuous Delivery at a company in the UK, Matthew devised the original DevOps Topologies patterns (and anti-patterns) in a blog post titled “What Team Structure Is Right for DevOps to Flourish?”1 At the time, the company he was consulting with was struggling to adopt modern approaches to software delivery, and the early topology patterns Matthew created provided the company a way to explore different options.

Manuel interviewed Matthew at the QCon London software development conference back in 2015, where Matthew was speaking on Conway’s law and the early DevOps Topology patterns. The resulting article, “How Different Team Topologies Influence DevOps Culture,” was published by InfoQ and translated into several languages.2 Later that year, Manuel helped to expand the DevOps Topology patterns and there were contributions from the community.

Since then, the use of DevOps Topology patterns has exploded. They have been referenced over and over again in talks, articles, and conversations. They have helped organizations of all sizes and from varying industries around the world to think about the relationships between teams and how their interactions influence both organizational culture and software architecture.

Over time, we realized that the original DevOps Topologies presented a static view of team interrelationships that, while useful for initial discussions, was quite limited in scope. Through our combined experience with training and consulting organizations from across the world, we discovered that some teams work better relatively isolated or autonomous, while other teams work better with strong collaboration. We asked ourselves why, and we kept evolving our ideas based on feedback from our clients.

Eventually, this led to the Team Topologies as you see them presented in this book: a dynamic and evolving approach to organizational design based on real scenarios from across different geographies and industries.

How to Use This Book

Team Topologies is meant to be a functional book. It is our intention to provide content that is interactive and delivers as much learning as we are able to fit within these pages. To help with that, we have made some design choices that will help you navigate this book.

First, the book is organized in three parts:

Part I of the book explores Conway’s law, the way organizational interrelationships constrain the design of systems we build, and how we can use this tendency to our advantage. We then define what we mean by teams and look at some practical constraints that affect effective teamwork.

In Part II, we investigate a set of static team patterns that have been proven in the industry and the implications of choosing one pattern over another with Conway’s law and organizational context in mind. This section should help you think about team topologies that are broadly suitable for your organizational context. This part also provides some guidance in deciding how to align teams to areas of the system, taking into account Conway’s law and fundamental team topologies.

Finally, in Part III, we deal with ways to evolve the organization design to provide powerful capabilities for innovation and rapid delivery in response to a quickly changing operating context. We explain how to use the Team Topologies approach to create a sensing organization that responds to the market and user demands, and accounts for the implications this has for hiring and skills.

Each part opens with a breakdown of key takeaways from each of the chapters. Throughout the chapters, we have included figures and callouts to highlight information we think is helpful to know and/or reference. We also provide easy-to-recognize scenarios, case studies, and explicit recommendations for different situations along the way.

Finally, the shapes, colors, and patterns found within many of the figures also have consistent meaning throughout much of the book. Here is the key:

[image: Conceptual diagram showing the four fundamental team topologies (stream-aligned team, enabling team, complicated-subsystem team, and platform team) arranged in a square, with arrows representing the three essential team interaction modes (collaboration, X-as-a-service, and facilitating) between them. The diagram provides a high-level visual overview of the key components of the Team Topologies model for organizing business and technology teams.
]

Figure 0.2: The Four Team Types and Three Interaction Modes

For the fullest understanding, you should read the book from cover to cover, as the subject matter builds up chapter by chapter. However, we have written the material so that each section is fairly independent.

In that spirit, here are some scenarios with corresponding ways to read the book that might match with your current situation:

	
•I need more clarity about different team types and which team types are effective.

	
○Review Chapter 1 (overview), then Chapter 4 (static topologies), then Chapter 5 (fundamental topologies).

	
•I need to split up a large, monolithic software system.

	
○Review Chapter 6 (boundaries) and then Chapter 3 (the team).

	
•I need to improve the architecture of the software system.

	
○Review Chapter 2 (Conway’s law), then Chapter 4 (static topologies), then Chapter 6 (boundaries).

	
•I need to improve the effectiveness of software development teams.

	
○Review Chapter 3 (the team), then Chapter 6 (boundaries), then Chapter 5 (fundamental topologies).

	
•I need to improve morale and effectiveness within teams.

	
○Review Chapter 3 (the team) and then Chapter 5 (fundamental topologies).

	
•I need to understand where to invest effort to help with projected growth.

	
○Review Chapter 1 (overview), then Chapter 5 (fundamental topologies), then Chapter 8 (topology evolution).

	
•I need to understand how to evolve team topologies to meet changing business needs.

	
○Review Chapter 7 (dynamic aspects) and then Chapter 8 (topology evolution and organizational sensing).

Key Influences that Informed this Book

In addition to our own experience, this book is strongly influenced by several related approaches and sets of thinking. First, we assume that an organization is a sociotechnical system or ecosystem that is shaped by the interaction of individuals and the teams within it; in other words, that an organization is the interaction between people and technology. In this aspect, the book fits with ideas from the fields of: cybernetics (especially the use of the organization as a “sensing mechanism,” which goes back as far as 1948, when Norbert Wiener’s book Cybernetics: Or Control and Communication in the Animal and the Machine was first published), systems thinking (particularly the work of W. Edwards Deming), and approaches such as the Cynefin framework for assessing domain complexity (described by Dave Snowden and Mary Boone in their 2007 Harvard Business Review paper titled “A Leader’s Framework for Decision Making”), and adaptive structuration theory (a term coined by Gerardine DeSanctis and Marshall Scott Poole in their Organization Science article, “Capturing the Complexity in Advanced Technology Use: Adaptive Structuration Theory,” where they emphasized that the impact of technology is not a given, as it depends on how groups and organizations perceive it).

Second, we assume that “the team” is something that behaves differently from a mere collection of individuals, and that the team should be nurtured and supported in its evolution and operation. In this respect, we draw on ideas from Bruce Tuckman (who proposed the four-stages model—forming, storming, norming, performing—for team development in his 1965 paper “Developmental Sequence in Small Groups”), Russ Forrester and Allan Drexler (who explored team-based organization performance in their 1999 paper “A Model for Team-Based Organization Performance”), Pamela Knight (who found evidence that storming takes place throughout the entire lifetime of a team in her 2007 paper “Acquisition Community Team Dynamics: The Tuckman Model vs. the DAU Model”), Patrick Lencioni (who explores common interaction issues in his seminal book The Five Dysfunctions of a Team: A Leadership Fable), and similar team-focused theories and research.

Third, we assume that Conway’s law (or a variant of it) is a strong driver of software product shape and that organizations would benefit from explicitly addressing the implications of this law. In this regard, we draw on writing and ideas from Mel Conway; from software architecture consultant and team organization design award-winner Ruth Malan; from ThoughtWorks technical director and one of the “reverse Conway maneuver” proponents James Lewis; and from similar authors and practitioners.

Finally, we draw on numerous sources that describe practical successes developing and running software systems at scale, including organizations such as Adidas, Auto Trader, Ericsson, Netflix, Spotify, TransUnion, and others. The size and speed of these organizations has made it possible for them to see tangible gains from changes in organization structure and team interaction over the space of several months to a few years.

As you travel through this book, we hope you get inspired to challenge how you think about teams, their structures, and how they function.

PART I

Teams As the Means of Delivery

KEY TAKEAWAYS

CHAPTER 1

	
•Conway’s law suggests major gains from designing software architectures and team interactions together, since they are similar forces.

	
•Team Topologies clarifies team purpose and responsibilities, increasing the effectiveness of their interrelationships.

	
•Team Topologies takes a humanistic approach to building software systems while setting up organizations for strategic adaptability.

CHAPTER 2

	
•Organizations are constrained to produce designs that reflect communication paths.

	
•The design of the organization constrains the “solution search space,” limiting possible software designs.

	
•Requiring everyone to communicate with everyone else is a recipe for a mess.

	
•Choose software architectures that encourage team-scoped flow.

	
•Limiting communication paths to well-defined team interactions produces modular, decoupled systems.

CHAPTER 3

	
•The team is the most effective means of software delivery, not individuals.

	
•Limit the size of multi-team groupings within the organization based on Dunbar’s number.

	
•Restrict team responsibilities to match the maximum team cognitive load.

	
•Establish clear boundaries of responsibility for teams.

	
•Change the team working environment to help teams succeed.

	
1

	The Problem with Org Charts

Organizations should be viewed as complex and adaptive organisms rather than mechanistic and linear systems.

—Naomi Stanford, Guide to Organisation Design

Technology workers are in a constant state of action: creating and updating systems at an unbelievable rate, and combining different types of technology to create a compelling user experience. Mobile applications; cloud-based services; web applications; and embedded, wearable, or industrial IoT devices all need to interoperate effectively to achieve the desired business outcomes.

Today, these systems affect nearly every aspect of people’s day-to-day lives in ways that are increasingly profound. If software is poorly designed—or more importantly, if there is a mismatch in the interaction of the software, the provider, and the customer—people will be adversely affected. They can be stranded long distances from home if a taxi-hailing application fails. They may be unable to pay rent if the software or processes for internet banking fail. They may even see their life in danger if a medical device fails. Never before has explicit sociotechnical design been so important.

Building and running these highly complex, interconnected software systems is a team activity, requiring the combined efforts of people with different skills across different platforms. In addition, modern IT organizations must deliver and operate software systems rapidly and safely, while simultaneously growing and adapting to changes and pressures in the business or regulatory environment. Businesses can no longer choose between optimizing for stability and optimizing for speed.

But despite these risks and demands, many organizations are still organizing their people and teams in ways that are counterproductive to modern software development and operations. Organizations that rely too heavily on org charts and matrixes to split and control work often fail to create the necessary conditions to embrace innovation while still delivering at a fast pace. In order to succeed at that, organizations need stable teams and effective team patterns and interactions. They need to invest in empowered, skilled teams as the foundation for agility and adaptability. To stay alive in ever more competitive markets, organizations need teams and people who are able to sense when context changes and evolve accordingly.

The good news is that it is possible to be fast and safe with the right mindset and with tools that emphasize adaptability as well as repeatability, while putting teams and people at the center. As Mark Schwartz and co-authors put it in their 2016 paper Thinking Environments, “the organizational structure must coordinate accountabilities to support the goals of delivering high-quality, impactful software.”1

As members of the technology teams managing these interfaces, we must shift our thinking from treating teams as collections of interchangeable individuals that will succeed as long as they follow the “right” process and use the “right” tools, to treating people and technology as a single human/computer carbon/silicon sociotechnical ecosystem. At the same time, we need to ensure that teams are intrinsically motivated and are given a real chance of doing their best work within such a system.

This chapter will introduce Team Topologies as an adaptive model for technology organization design allowing businesses to achieve speed and stability. But first, let’s look at how real communication structures in most organizations are often quite distinct from what the org chart tells us, and what the implications of that are.

Communication Structures of an Organization

Most organizations want or are required to have a single view of their teams and people called the “org chart.” This chart depicts the teams, departments, units, and other organizational entities, as well as how they relate to each other. It usually shows hierarchical lines of reporting, which imply lines of communication running “up and down” the organization.

The org chart does have its uses in the context of building software systems, specifically around regulatory and legal compliance. However, in a highly collaborative context filled with uncertainty over outcomes, relying on the org chart as a principal mechanism of splitting the work to be done leads to unrealistic expectations. We need to rely instead on decoupled, long-lived teams that can collaborate effectively to meet the challenge of balancing speed and safety.

The problem with taking the org chart at face value is that we end up trying to architect people as if they were software, neatly keeping their communication within the accepted lines. But people don’t restrict their communications only to those connected lines on the chart. We reach out to whomever we depend on to get work done. We bend the rules when required to achieve our goals. That’s why actual communication lines look quite different from the org chart, as shown in Figure 1.1 (see page 6).

[image: Diagram comparing a traditional hierarchical organizational chart with straight reporting lines to the actual complex network of communication pathways that form between individuals in different parts of the organization in order to get work done. The formal org chart is shown on the left with solid lines representing reporting relationships. On the right, the same boxes representing individuals are shown but now connected with a complex web of curved dotted lines representing all the communication paths needed to actually perform work, which extend across the formal hierarchy. This illustrates how real communication needs in an organization are not reflected by the formal management hierarchy.]

Figure 1.1: Org Chart with Actual Lines of Communication

In practice, people communicate laterally or “horizontally” with people from other reporting lines in order to get work done. This creativity and problem solving needs to be nurtured for the benefit of the organization, not restricted to optimize for top-down/bottom-up communication and reporting.

Org Chart Thinking Is the Problem

Traditional org charts don’t help us understand what the actual patterns of communication in our organization are, as illustrated in Figure 1.1. Instead, organizations need to develop more realistic pictures of the expected and actual communication happening between individuals and teams. The gaps will help inform what types of systems are a better fit for the organization.

Furthermore, decisions based on org-chart structure tend to optimize for only part of the organization, ignoring upstream and downstream effects. Local optimizations help the teams directly involved, but they don’t necessarily help improve the overall delivery of value to customers. Their impact might be negligible if there are larger bottlenecks in the stream of work. For example, having teams adopting cloud and infrastructure-as-code can reduce the time to provision new infrastructure from weeks or months to minutes or hours. But if every change requires deployment (to production) approval from a board that meets once a week, then delivery speed will remain weekly at best.

Systems thinking focuses on optimizing for the whole, looking at the overall flow of work, identifying what the largest bottleneck is today, and eliminating it. Then repeat. Team Topologies focuses on how to set up dynamic team structures and interaction modes that can help teams adapt quickly to new conditions, and achieve fast and safe software delivery. This might not be your largest bottleneck today, but eventually, you will face the issue of rigid team structures with poor communication and/or inadequate processes, slowing down delivery.

Thinking of the org chart as a faithful representation of how work gets done and how teams interact with each other leads to ineffective decisions around allocation of work and responsibilities. Much like a software architecture document gets outdated as soon as the actual software development starts, an org chart is always out of sync with reality.

Naturally, we are by no means the first to acknowledge the imbalance between formal organization structures and the way work actually gets done. Geary Rummler and Alan Brache’s book Improving Performance: How to Manage the White Space on the Organization Chart set the stage for continuous business process improvement and management. The recent focus (at least within IT) on product and team centricity, as illustrated by Mik Kersten’s book on moving from Project to Product, is another major milestone. We like to think that Team Topologies is another piece of this puzzle—in particular, having clear and fluid team structures, responsibilities, and interaction modes.

Beyond the Org Chart

So if org charts are not an accurate representation of organizational structures, what is? Niels Pflaeging, author of Organize for Complexity, identifies not one but three different organizational structures in every organization:2

	Formal structure (the org chart)—facilitates compliance

	Informal structure—the “realm of influence” between individuals

	Value creation structure—how work actually gets done based on inter-personal and inter-team reputation

Pflaeging suggests that the key to successful knowledge work organizations is in the interactions between the informal structure and the value creation structure (that is, the interactions between people and teams).3 Other authors have proposed similar characterizations, such as Frédéric Laloux in Reinventing Organizations or Brian Robertson’s Holacracy approach.4

The Team Topologies approach acknowledges the importance of informal and value creation structures as defined by Pflaeging. By empowering teams, and treating them as fundamental building blocks, individuals inside those teams move closer together to act as a team rather than just a group of people. On the other hand, by explicitly agreeing on interaction modes with other teams, expectations on behaviors become clearer and inter-team trust grows.

Over the last several decades, there have been many new approaches to organizing businesses, but usually the new design remains a static view of the organization that does not take into consideration the real behaviors and structures that emerge after reorganization. For instance, the “matrix management” approach that started in the 1990s—and became quite popular over the next couple of decades—tried to address the inherent complexity of highly uncertain, highly skilled work by having individuals report to both business and functional managers. Despite a clearer focus on business value compared to a purely functional organization of teams, this is still a static view of the world that becomes outdated as the business and technology domains quickly evolve.

For workers, re-orgs, like introducing matrix management, can bring a lot of fear and worry. Often, it’s seen as a time and effort drain that is more likely to set the business back rather than move it forward. And once the next technological or methodological revolution hits, the business undertakes yet another re-org, breaking down established forms of communication and splitting up teams that were just starting to get their mojo.

The Team Topologies approach adds the dynamic and sensing aspects required for technology organizations that are missing from traditional organization design.

It is increasingly clear that relying on a single, static organizational structure, like the org chart or matrix management, is untenable for effective outcomes with modern software systems. Instead of a single structure, what is needed is a model that is adaptable to the current situation—one that takes into consideration how teams grow and interact with each other. Team Topologies provides the (r)evolutionary approach required to keep teams, processes, and technology aligned for all kinds of organizations.

In her excellent 2015 book, Guide to Organisation Design: Creating High-Performing and Adaptable Enterprises, Naomi Stanford lists five rules of thumb for designing organizations:5

	Design when there is a compelling reason.

	Develop options for deciding on a design.

	Choose the right time to design.

	Look for clues that things are out of alignment.

	Stay alert to the future.

As we continue to move through this book, we will explore how to address these five heuristics for organization design.

Team Topologies: A New Way of Thinking about Teams

The Team Topologies approach brings new thinking around effective team structures for enterprise software delivery. It provides a consistent, actionable guide for evolving team design to continuously cope with technology, people, and business changes, covering size, shape, placement, responsibilities, boundaries, and interaction of teams building and running modern software systems.

Team Topologies provides four fundamental team types—stream-aligned, platform, enabling, and complicated-subsystem—and three core team interaction modes—collaboration, X-as-a-Service, and facilitating. Together with awareness of Conway’s law, team cognitive load, and how to become a sensing organization, Team Topologies results in an effective and humanistic approach to building and running software systems.

In particular, it looks at ways in which different team topologies can evolve with technological and organizational maturity. Periods of technical and product discovery typically require a highly collaborative environment (with overlapping team boundaries) to succeed. But keeping the same structures when discovery is over (established technologies and product) can lead to wasted effort and misunderstandings.

By emphasizing an adaptive model for organization design and actively prioritizing the interrelationship of teams, the Team Topologies approach provides a key technology-agnostic mechanism for modern software-intensive enterprises to sense when a change in strategy is required (either from a business or technology viewpoint). The end goal is to help teams produce software that aligns with customer needs and is easier to build, run, and own.

Team Topologies also emphasizes a humanistic approach to designing and building software systems. It sees the team as an indivisible element of software delivery and acknowledges that teams have a finite cognitive capacity that needs to be respected. Together with the dynamic team design solidly grounded on Conway’s law, Team Topologies becomes a strategic tool for solution discovery.

The Revival of Conway’s Law

We’ve mentioned the importance of Conway’s law as a driver for team design and evolution. But what is this law exactly?

In 1968, the computer systems researcher Mel Conway published a paper in Datamation called “How Do Committees Invent?” in which he explored the relationship between organizational structure and the resulting design of systems. The article is full of sparkling insights, some of which we cover later in this chapter, but this is the phrase that became known as Conway’s law: “Organizations which design systems...are constrained to produce designs which are copies of the communication structures of these organizations.”6

Conway based his observation on organizations building early electronic computer systems. In his words, this “law” indicates the strong correlation between an organization’s real communication paths (the value creation structures mentioned by Pflaeging) and the resulting software architecture,7 or what author Allan Kelly calls the “homomorphic force.”8 This homomorphic force tends to make things the same shape between the software architecture and team structures. In other words, building software requires an understanding of communication across teams in order to realistically consider what kind of software architectures are feasible. If the desired theoretical system architecture does not fit the organizational model, then one of the two will need to change.

Eric Raymond stated this in a humorous way in his book The New Hacker’s Dictionary: “If you have four groups working on a compiler, you’ll get a 4-pass compiler.”9

Since 1968, it has become increasingly clear that Conway’s law continues to apply to all software built. Those of us who have built software systems that had to comply with an “architecture blueprint” can surely remember having times when it felt like we were fighting against the architecture rather than it helping steer our work in the right direction. Well, that’s Conway’s law in action.

Team structures must match the required software architecture or risk producing unintended designs.

A sort of “revival” of Conway’s law took place around 2015, when microservices architectures were on the rise. In particular, James Lewis, Technical Director at Thoughtworks, and others came up with the idea of applying an “inverse Conway maneuver” (or reverse Conway maneuver), whereby an organization focuses on organizing team structures to match the architecture they want the system to exhibit rather than expecting teams to follow a mandated architecture design.10

The key takeaway here is that thinking of software architecture as a standalone concept that can be designed in isolation and then implemented by any group of teams is fundamentally wrong. This gap between architecture and team structures is visible across all types of architectures, from client-server to SOA and even microservices. Specifically, that is why monoliths need to be broken down (in particular, any indivisible software part that exceeds the cognitive capacity of any one team) while keeping a team focus, a topic we will discuss in depth in Chapter 6.

Cognitive Load and Bottlenecks

When we talk about cognitive load, it’s easy to understand that any one person has a limit on how much information they can hold in their brains at any given moment. The same happens for any one team by simply adding up all the team members’ cognitive capacities.

However, we hardly ever discuss cognitive load when assigning responsibilities or software parts to a given team. Perhaps because it’s hard to quantify both the available capacity and what the cognitive load will be. Or perhaps because the team is expected to adapt to what it’s being asked to do, no questions asked.

When cognitive load isn’t considered, teams are spread thin trying to cover an excessive amount of responsibilities and domains. Such a team lacks bandwidth to pursue mastery of their trade and struggles with the costs of switching contexts.

Miguel Antunes, R&D Principle Software Engineer at OutSystems, a low-code platform vendor, relayed an example of this very challenge. Their Engineering Productivity team at OutSystems was five years old. The team’s mission was to help product teams run their builds efficiently, maintain infrastructure, and improve test execution. The team kept growing and took on extra responsibilities around continuous integration (CI), continuous delivery (CD), and infrastructure automation.

Victims of their own success, sprint planning for the now eight-person-strong team was a mix and match of requests across their stack of responsibilities. Prioritization was hard, and the frequent context switching even throughout a single sprint led to a dip in people’s motivation. This is not surprising if we consider Dan Pink’s three elements of intrinsic motivation: autonomy (quashed by constant juggling of requests and priorities from multiple teams), mastery (“jack of all trades, master of none”), and purpose (too many domains of responsibility).11

OEBPS/images/ded.jpg
>

MANUEL

OEBPS/images/fig0-2.jpg
Four Team Types Three Interaction Modes

Stream-aligned
team

Enabling team Collaboration

Complicated-
subsytem team X-as-a-service

Platform team

Facilitating

OEBPS/images/fig1-1.jpg

OEBPS/images/fig0-1.jpg
Flow of Value co—f

Value stream
grouping

Small, focused platform
inside a value stream
grouping

ned team

Stream-aligs
e tside value stream

grouping

11

Value stream

oy -2 St
grouping within
aplatform

Stream-aligned team outside
p value stream grouping but
within a platform

Small, focused platform inside
a platform grouping

Platform grouping]

OEBPS/images/logo.jpg
IT Revolution

Portland, Oregon

OEBPS/images/Cover.jpg
TEAM |~

—
TOPOLOGIES

SECOND EDITION

ORGANIZING
BUSINESS AND
TECHNOLOGY

FOR FAST FLOW
OF VALUE

MATTHEW SKELTON
and MANUEL PAIS
|

OEBPS/images/copy-logo.jpg
gREVOLUTION

