

 .NET Core in Action

 Dustin Metzgar

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editors: Cynthia Kane, Kristen Watterson
Review editor: Aleksandar Dragosavljević
Technical development editor: Mike Shepard
Project manager: Kevin Sullivan
Copyeditor: Andy Carroll
Proofreader: Melody Dolab
Technical proofreader: Ricardo Peres
Typesetter and cover designer: Marija Tudor
Illustrator: Chuck Larson

 ISBN 9781617294273

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 Chapter 1. Why .NET Core?

 Chapter 2. Building your first .NET Core applications

 Chapter 3. How to build with .NET Core

 Chapter 4. Unit testing with xUnit

 Chapter 5. Working with relational databases

 Chapter 6. Simplify data access with object-relational mappers

 Chapter 7. Creating a microservice

 Chapter 8. Debugging

 Chapter 9. Performance and profiling

 Chapter 10. Building world-ready applications

 Chapter 11. Multiple frameworks and runtimes

 Chapter 12. Preparing for release

 A. Frameworks and runtimes

 B. xUnit command-line options

 C. What’s in the .NET Standard Library?

 D. NuGet cache locations

 Options for .NET command-line dotnet tool

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 Chapter 1. Why .NET Core?

 1.1. Architecting enterprise applications before .NET Core

 1.2. If you’re a .NET Framework developer

 1.2.1. Your .NET apps can be cross-platform

 1.2.2. ASP.NET Core outperforms ASP.NET in the .NET Framework

 1.2.3. .NET Core is the focus for innovation

 1.2.4. Release cycles are faster

 1.3. If you are new to .NET

 1.3.1. C# is an amazing language

 1.3.2. .NET Core is not starting from scratch

 1.3.3. Focus on performance

 1.4. What is .NET Core?

 1.5. Key .NET Core features

 1.5.1. Expanding the reach of your libraries

 1.5.2. Simple deployment on any platform

 1.5.3. Clouds and containers

 1.5.4. ASP.NET performance

 1.5.5. Open source

 1.5.6. Bring your own tools

 1.6. Applying .NET Core to real-world applications

 1.7. Differences from the .NET Framework

 1.7.1. Framework features not ported to Core

 1.7.2. Subtle changes for .NET Framework developers

 1.7.3. Changes to .NET reflection

 Additional resources

 Summary

 Chapter 2. Building your first .NET Core applications

 2.1. The trouble with development environments

 2.2. Installing the .NET Core SDK

 2.2.1. Installing on Windows operating systems

 2.2.2. Installing on Linux-based operating systems

 2.2.3. Installing on macOS

 2.2.4. Building .NET Core Docker containers

 2.3. Creating and running the Hello World console application

 2.3.1. Before you build

 2.3.2. Running a .NET Core application

 2.4. Creating an ASP.NET Core web application

 2.4.1. ASP.NET Core uses the Kestrel web server

 2.4.2. Using a Startup class to initialize the web server

 2.4.3. Running the Hello World web application

 2.5. Creating an ASP.NET Core website from the template

 2.6. Deploying to a server

 2.6.1. Publishing an application

 2.6.2. Deploying to a Docker container

 2.6.3. Packaging for distribution

 2.7. Development tools available for .NET Core

 2.7.1. OmniSharp

 2.7.2. Visual Studio for Mac

 2.7.3. Visual Studio 2017

 Additional resources

 Summary

 Chapter 3. How to build with .NET Core

 3.1. Key concepts in .NET Core’s build system

 3.1.1. Introducing MSBuild

 3.1.2. Creating .NET projects from the command line

 3.1.3. Clearing up the terminology

 3.2. CSV parser sample project

 3.3. Introducing MSBuild

 3.3.1. PropertyGroups

 3.3.2. Targets

 3.3.3. ItemGroups

 3.4. Dependencies

 3.5. Targeting multiple frameworks

 Additional resources

 Summary

 Chapter 4. Unit testing with xUnit

 4.1. Why write unit tests?

 4.2. Business-day calculator example

 4.3. xUnit—a .NET Core unit-testing framework

 4.4. Setting up the xUnit test project

 4.5. Evaluating truth with xUnit facts

 4.6. Running tests from development environments

 4.7. When it’s impossible to prove all cases, use a theory

 4.8. Shared context between tests

 4.8.1. Using the constructor for setup

 4.8.2. Using Dispose for cleanup

 4.8.3. Sharing context with class fixtures

 4.8.4. Sharing context with collection fixtures

 4.9. Getting output from xUnit tests

 4.10. Traits

 Additional resources

 Summary

 Chapter 5. Working with relational databases

 5.1. Using SQLite for prototyping

 5.2. Planning the application and database schema

 5.2.1. Tracking inventory

 5.2.2. Creating tables in SQLite

 5.3. Creating a data-access library

 5.3.1. Specifying relationships in data and code

 5.3.2. Updating data

 5.3.3. Managing inventory

 5.3.4. Using transactions for consistency

 5.4. Ordering new parts from suppliers

 5.4.1. Creating an Order

 5.4.2. Checking if parts need to be ordered

 Additional resources

 Summary

 Chapter 6. Simplify data access with object-relational mappers

 6.1. Dapper

 6.1.1. Inserting rows with Dapper

 6.1.2. Applying transactions to Dapper commands

 6.1.3. The drawback of a micro-ORM

 6.1.4. A brief introduction to dependency injection

 6.1.5. Dependency injection in .NET Core

 6.1.6. Configuring the application

 6.1.7. When to build your own data-access layer

 6.2. Entity Framework Core

 6.2.1. Using EF migrations to create the database

 6.2.2. Running the tests using EF

 Additional resources

 Summary

 Chapter 7. Creating a microservice

 7.1. Writing an ASP.NET web service

 7.1.1. Converting Markdown to HTML

 7.1.2. Creating an ASP.NET web service

 7.1.3. Testing the web service with Curl

 7.2. Making HTTP calls

 7.3. Making the service asynchronous

 7.4. Getting data from Azure Blob Storage

 7.4.1. Getting values from configuration

 7.4.2. Creating the GetBlob method

 7.4.3. Testing the new Azure storage operation

 7.5. Uploading and receiving uploaded data

 7.6. Listing containers and BLOBs

 7.7. Deleting a BLOB

 Additional resources

 Summary

 Chapter 8. Debugging

 8.1. Debugging applications with Visual Studio Code

 8.1.1. Using the .NET Core debugger

 8.2. Debugging with Visual Studio 2017

 8.3. Debugging with Visual Studio for Mac

 8.4. SOS

 8.4.1. Easier to get started with a self-contained app

 8.4.2. WinDBG/CDB

 8.4.3. LLDB

 Additional resources

 Summary

 Chapter 9. Performance and profiling

 9.1. Creating a test application

 9.2. xUnit.Performance makes it easy to run performance tests

 9.3. Using PerfView on .NET Core applications

 9.3.1. Getting a CPU profile

 9.3.2. Analyzing a CPU profile

 9.3.3. Looking at GC information

 9.3.4. Exposing exceptions

 9.3.5. Collecting performance data on Linux

 Additional resources

 Summary

 Chapter 10. Building world-ready applications

 10.1. Going international

 10.1.1. Setting up the sample application

 10.1.2. Making the sample application world-ready

 10.2. Using a logging framework instead of writing to the console

 10.2.1. Using the Microsoft .Extensions.Logging library

 10.2.2. Internationalization

 10.2.3. Globalization

 10.2.4. Localizability review

 10.3. Using the Microsoft localization extensions library

 10.3.1. Testing right-to-left languages

 10.3.2. Invariant culture

 10.3.3. Using EventSource to emit events

 10.3.4. Using EventListener to listen for events

 10.4. Other considerations for globalization

 10.5. Localization

 Additional resources

 Summary

 Chapter 11. Multiple frameworks and runtimes

 11.1. Why does the .NET Core SDK support multiple frameworks and runtimes?

 11.2. .NET Portability Analyzer

 11.2.1. Installing and configuring the Visual Studio 2017 plugin

 11.2.2. Sample .NET Framework project

 11.2.3. Running the Portability Analyzer in Visual Studio

 11.3. Supporting multiple frameworks

 11.3.1. Using EventSource to replace EventProvider

 11.3.2. Adding another framework to the project

 11.3.3. Creating a NuGet package and checking the contents

 11.3.4. Per-framework build options

 11.4. Runtime-specific code

 Additional resources

 Summary

 Chapter 12. Preparing for release

 12.1. Preparing a NuGet package

 12.1.1. How to handle project references

 12.1.2. NuGet feeds

 12.1.3. Packaging resource assemblies

 12.2. Signing assemblies

 12.2.1. Generating a signing key

 12.2.2. Delay-signing

 12.2.3. Signing an assembly in .NET Core

 Additional resources

 Summary

 A. Frameworks and runtimes

 B. xUnit command-line options

 C. What’s in the .NET Standard Library?

 netstandard 1.0

 netstandard 1.1

 netstandard 1.2

 netstandard 1.3

 netstandard 1.4

 netstandard 1.5

 netstandard 1.6

 netstandard 2.0

 D. NuGet cache locations

 Options for .NET command-line dotnet tool

 Index

 List of Figures

 List of Tables

 List of Listings

 front matter

Foreword

 .NET Core is what we’ve always asked for as .NET developers: an open source, fast, and portable runtime for C#, VB, F#, and more. The book you’re holding is a great on-ramp to the world of .NET and .NET Core. You’ll learn the why, what, and how of building systems on this new platform. You’ll utilize a host of open source libraries to test your code, access databases, build microservices, and ultimately go live! You’ll also learn how to debug and profile real code in the real world with practical tips and a pragmatic perspective.

 .NET Core brings the Common Language Runtime not just to Windows, but also to Mac, Linux, and beyond. You can run .NET Core in a Docker container on an ARM-based Raspberry Pi if it makes you happy! You can code against the .NET Standard and create libraries that can be shared among all these platforms as well as iOS, Android, and even an Apple Watch.

 .NET Core is yours and mine, and I’m thrilled you’re joining us on this adventure. The .NET community has rallied alongside .NET Core like nothing we’ve seen before in the Microsoft development community. Over half the pull requests for the .NET Core framework come from outside Microsoft! You can run .NET Core apps in Azure, Amazon, Google, and more. Large-scale open source container orchestrators such as Kubernetes can build sophisticated hybrid systems that include all the languages that make you productive—all running side by side on the OS of your choice.

 SCOTT HANSELMAN

 PRINCIPAL PROGRAM MANAGER, .NET, MICROSOFT

Preface

 Software developers keep learning throughout their careers. It’s part of the appeal of the field. The more I learn, the more I discover how much I don’t know (the “known unknown”). The times when I learned the most were the times when an “unknown unknown” became a “known unknown”—when a whole category of development was revealed to me that I hadn’t heard of before. Subjects such as performance profiling and localization never even occurred to me when I started out. Yet they have an important role in professional software development.

 With so much information available through blogs, tweets, Stack Overflow, conferences, and online documentation, some may wonder if physical books can still be relevant, especially with a subject like .NET Core, where the book may be outdated by the time it reaches print. I believe the true value of a book, what gives it lasting impact, is the revelation of the unknown unknown to the reader. The book should cause you to ask questions you haven’t asked before and provide new context and ways to process the avalanche of information out there on a particular topic.

 While this book is about .NET Core, a lot of the concepts have been part of the .NET Framework for years. By opening .NET Core to other platforms, Microsoft hopes to reach a new audience of developers. I’m fortunate enough to be in the right place at the right time to write a book that introduces not only .NET Core but also some important aspects of software engineering and how they’re accomplished in the .NET ecosystem. It’s my goal with this book to make you a better developer and pique your curiosity about aspects of software engineering you may not have thought about before.

 A significant portion of my career has been spent on .NET. My introduction to .NET happened while I was working as a consultant for enterprise resource planning (ERP) systems. A salesman for the consulting company didn’t know (or care) that our web ERP portal product was written in Java. The customer liked the portal but wanted to customize it and to use .NET. We worked to rebuild the portal in .NET in a few months and collaborated with the customer’s development team on their customizations. That turned out to be my favorite consulting job. Years later, I was fortunate enough to be hired by Microsoft and work on the .NET Framework itself. I got to work with many talented developers and wrote code now used by countless applications.

 When .NET Core started, I was excited about its potential and got involved early. An editor at Manning saw some of my early work and gave me the opportunity to submit a proposal and table of contents. I’d always wanted to write a book, so I jumped at the chance. It takes a special kind of naïveté to think you have time to write a book after the birth of a child and after taking a larger lead role at work. Not only that, but .NET Core was a moving target in the beginning, which resulted in my having to throw out or rewrite finished chapters and parts of the table of contents.

 This book took way longer to write than I expected. But I learned a lot along the way, and I’m pleased with the result. I’m also proud that I was able to deliver most of the ambitious table of contents I originally planned. I hope you finish this book not only with the ability to write and publish libraries and applications in .NET Core, but also with a desire to learn more.

Acknowledgments

 This book wouldn’t have been possible without the support of my wife, Sherry. Our son is a handful sometimes, so I really appreciate you giving me time to write. I doubt I would have finished without your encouragement.

 Thanks also to the editors at Manning who kept the bar high and helped me write the book I wanted to write: Kristen Watterson, for guiding me to production; Cynthia Kane, for helping me through writing most of the manuscript; Mark Renfrow, for getting me to my first MEAP release; and Greg Wild, for giving me the chance to write this book and some useful advice along the way.

 My thanks also go to Mike Shepard, my technical editor, for telling me when my writing was crap.

 I’d also like to thank Samer Alameer for his help with the localization chapter. He not only helped me with the Arabic, but also taught me some important points about localization.

 Finally, thank you to all who bought the early access version of this book, to Ricardo Peres, for his technical proofread, and to the team of reviewers who provided invaluable feedback along the way, including Andrew Eleneski, Angelo Simone Scotto, Bruno Figueiredo, Daniel Vásquez, Daut Morina, Eddy Vluggen, Eric Potter, Eric Sweigart, George Marinos, Hari Khalsa, Igor Kokorin, Jeff Smith, Jürgen Hötzel, Mikkel Arentoft, Oscar Vargas, Renil Abdulkader, Rudi Steinbach, Srihari Sridharan, Tiklu Ganguly, and Viorel Moisei.

About this book

 .NET Core in Action was written to help you build libraries and applications in .NET Core. It takes you through many important aspects of developing high-quality software for release. Concepts are introduced “in action” with examples to show their practical application.

Who should read this book

 Whether you’re new to .NET and C# or a seasoned .NET Framework developer, this book has plenty of useful information for you. While all this information may be available online through documentation, blogs, and so on, this book compiles and organizes everything into a format that’s clear and easy to follow. The book assumes that you have a working knowledge of imperative, object-oriented programming languages, such as C++ or Java. Although this isn’t an instruction guide on C#, key concepts are explained to aid you. The book also assumes some proficiency with terminals or command lines and text editors.

How this book is organized: a roadmap

 This book has 12 chapters:

 	
Chapter 1 introduces .NET Core and .NET Standard—what they’re for and why you should learn them.

 	
Chapter 2 gets you started creating .NET Core applications.

 	
Chapter 3 explores the MSBuild build system and how to edit project files.

 	
Chapter 4 covers unit testing with xUnit. xUnit documentation online tends to be scattered, so this chapter will be useful as a reference later on.

 	
Chapter 5 introduces working with relational databases, a common thing for developers to do. .NET Framework developers familiar with relational databases may want to move on to chapter 6.

 	
Chapter 6 covers object-relational mappers (ORMs). It introduces two different types of ORMs: Dapper, a micro-ORM, and Entity Framework Core, a full-featured ORM.

 	
Chapter 7 explores building a REST endpoint with ASP.NET Core, as well as how to make HTTP calls to other services.

 	
Chapter 8 explores different options for debugging, from IDEs to command line.

 	
Chapter 9 introduces performance testing with xUnit.Performance and profiling with PerfView.

 	
Chapter 10 covers the internationalization process and how to make applications world-ready.

 	
Chapter 11 looks at how to build .NET Core libraries and applications that rely on framework- or operating system–specific constructs.

 	
Chapter 12 covers how to prepare your .NET Core library for release and distribution.

 	The appendixes contain specific details useful for writing .NET Core applications, such as target framework monikers and what’s in each version of the .NET Standard.

About the code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight changes from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 The source code for the book is located at https://github.com/dmetzgar/dotnetcoreinaction. This GitHub repository contains source for examples in all chapters except chapters 1, 8, and 12, which aren’t focused on particular examples.

 The source code is also available from the publisher’s website at www.manning.com/books/dotnet-core-in-action.

Book forum

 Purchase of .NET Core in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/dotnet-core-in-action. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Online resources

 At the end of each chapter, you’ll find a section called “Additional Resources” with references to books and online resources related to the contents of that chapter.

About the author

 [image:]

 DUSTIN METZGAR has been developing software professionally since 2003. His industry experience includes building software in areas such as enterprise resource planning, supply chain management, insurance, and loan origination. He joined the .NET team at Microsoft around the time of the .NET 4.0 release and later worked on Azure services. Currently, Dustin and his team own a few libraries in the .NET Framework and .NET Core, an Azure service, and some parts of Visual Studio.

 Dustin lives near Redmond, Washington. When not spending time with his son, he’s either bicycling or trying to weld sheet metal. You can find Dustin online through Twitter (@DustinMetzgar) or his blog at http://mode19.net.

About the cover illustration

 The figure on the cover of .NET Core in Action bears the caption “A Turk in a pelise.” The members of the Turkish court would wear certain outer robes linked to the season; of course, it was the sultan who decided when the season had changed and so the robes should too. The illustration is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection, and we’ve so far been unable to track it down. The book’s table of contents identifies the figures in both English and French, and each illustration also bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer programming book 200 years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan. The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation seemed hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with a handshake. The seller proposed that the money be transferred to him by wire, and the editor walked out with the bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on Manning’s covers, bring to life the richness and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every other historic period except our own hyperkinetic present. Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It’s now often hard to tell the inhabitant of one continent from that of another. Perhaps, viewed optimistically, we’ve traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based on the rich diversity of regional life as it was two centuries ago, brought back to life by the pictures from this collection.

 1. Why .NET Core?

 This chapter covers:

 	What is .NET Core?

 	The advantages of .NET Core

 	Differences from the .NET Framework

 Learning a new development framework is a big investment. You need to learn how to write, build, test, deploy, and maintain applications in the new framework. For developers, there are many frameworks to choose from, and it’s difficult to know which is the best for the job. What makes .NET Core worth the investment?

 To answer this question, it helps to know where you’re starting from. If you’re completely new to .NET, welcome! If you’re already a .NET developer, I’ll provide some guidance as to whether .NET Core is right for you at this time. .NET Core is still evolving to meet customer demands, so if there’s a critical piece of the .NET Framework that you need, it may be good to wait a few releases. Whether you’re already familiar with .NET or are just learning about it, this book will get you writing professional applications with .NET Core in no time.

1.1. Architecting enterprise applications before .NET Core

 Early in my career, I worked for a car insurance company. Its developers were attempting to improve the efficiency of claims adjusters. When you get into a car accident, a representative of the insurance company—a claims adjuster—will sometimes go directly to the scene of the accident and assess the damage. Adjustors would collect information, usually on paper, and then head back to the office where they could enter the data into an application on a desktop or laptop computer. The process was slow and required a lot of manual work.

 The insurance company wanted to enable claims adjusters to enter the data directly into the claims system from the scene. They would then be able to get cost estimates and access the car owner’s insurance policy on the spot. For the insurance company, this meant quicker claim resolution and less cost. One of the secrets I learned about the car insurance industry is that they want to get a disbursement to the claimant quickly. The less time the claimant has to reflect on the estimate, the less likely they are to negotiate for a higher payout.

 Accessing the claims system from the scene meant changing the architecture to incorporate mobile devices. Figure 1.1 shows the high-level design.

 Figure 1.1. Claims application high-level diagram

 [image:]

 In the past, implementing this kind of architecture equated to substantial costs. Creating cell phone and tablet applications required either hiring developers for both iOS and Android ports or standardizing on hardware to limit the number of platforms. An adjuster might travel to a remote location with poor or nonexistent cellular service, so the application needed to operate offline. The different languages and platforms used in each piece of the architecture made integration and maintenance difficult. Changes in business logic meant rewriting the logic in several languages. At the time, scaling was too slow to adjust for demand during the workday, so the hardware requirements were based on peak load. The expenses kept piling up.

 What if you could use not just the same code but the same libraries across the applications, website, and services? What if you built one app and it worked on iOS, Android, and Windows? What if your website and services could fit into small containers and elastically scale in response to demand? If all that were possible, it would dramatically reduce the cost of building and maintaining systems like the claims architecture.

 These questions are no longer hypothetical. .NET Core is a software framework that makes all of this possible. Developers aren’t confined to a particular language, operating system, or form factor. .NET Core is engineered to be small and modular, making it perfect for containers. It’s built and supported by Microsoft but is also open source, with an active community. Having participated in software projects like the claims application, I’m excited about the possibilities introduced by .NET Core.

1.2. If you’re a .NET Framework developer

 For some .NET Framework components, .NET Core is a reboot, and for others, it’s a chance to work cross-platform. Because the .NET Framework was built mostly in managed (C#) code, those portions didn’t need code changes to move to .NET Core. But there are libraries that depend on Windows-specific components, and they had to either be removed or refactored to use cross-platform alternatives. The same will apply to your applications.

 1.2.1. Your .NET apps can be cross-platform

 Once they’re ported to .NET Core, your existing .NET Framework applications can now work on other operating systems. This is great for library authors who want to expand their audience or developers who want to use the same code in different parts of a distributed application. It’s also great if you’d just like to develop in .NET on your shiny new MacBook without having to dual-boot to Windows.

 Although not all of the Framework has been ported to .NET Core, major portions have. There are also some API differences. For example, if you use a lot of reflection, you may need to refactor your code to work with .NET Core. Section 1.7 provides more information on the differences, which can help you determine if it’s feasible to port to .NET Core.

 1.2.2. ASP.NET Core outperforms ASP.NET in the .NET Framework

 The ASP.NET team built a new version of ASP.NET for .NET Core called ASP.NET Core. The difference in performance between ASP.NET Core and Framework ASP.NET is many orders of magnitude. Much of ASP.NET was built on the legacy System.Web library, and the .NET Framework supports older versions of ASP.NET projects. That constraint has restricted ASP.NET’s evolution. With .NET Core, Microsoft decided to rewrite the whole stack. Although this does mean breaking changes, the gains are worth the effort of migrating.

 1.2.3. .NET Core is the focus for innovation

 One of the critical principles of the .NET Framework is that new releases shouldn’t break existing applications. But this backwards compatibility is a double-edged sword. A lot of effort goes into making sure that changes made in new releases of the .NET Framework usually won’t break existing applications. But this goal of avoiding breaking changes restricts innovation. Changes to the .NET Framework need thorough justification (usually from customers), exhaustive testing, and approval from many levels of product groups. I’ve been in meetings where people argued over one- or two-line code fixes, which caused me to reconsider my life choices.

 With .NET Core, it’s much easier for internal Microsoft teams to work on their library independent of the core libraries. Changes to core libraries, like System.Collections, still require the same rigor as with .NET Framework, but it’s easier to make substantial changes to ASP.NET Core or Entity Framework Core without being constrained by backwards compatibility. This allows for greater innovation.

 .NET Framework ships as one product, whereas Core is broken up into pieces. Developers can now choose which version of a library they want to use, as long as it’s outside the .NET Standard Library, and .NET Core teams can innovate with less difficulty. This is why, in the future, you’ll see only bug fixes for the Framework. Core will get all the new features.

 1.2.4. Release cycles are faster

 If you’ve ever encountered a bug in the .NET Framework and reported it to Microsoft, you’re aware of how long it takes for a fix to be released. The Framework has long release cycles, usually measuring at least a year, and there are tiny windows during these cycles for feature work. Each code change can cause issues in unexpected places elsewhere in the Framework. To give each team enough time to test, there are many times when code changes are restricted or heavily scrutinized. If you find a bug in .NET, you’re better off finding a workaround than waiting for an update.

 .NET Core follows a faster release cadence. Developers can use nightly builds to test early. Libraries that aren’t part of the .NET Standard Library can release at their own pace. Because everything is open source, any developer can propose a fix if Microsoft doesn’t respond quickly enough. If the fix isn’t accepted, the discussion is held in public so everyone can see why that decision was made.

1.3. If you are new to .NET

 On Windows platforms, the .NET Framework hasn’t had much competition. Microsoft could make changes to everything from the OS kernel layers up through the high-level .NET libraries. By taking .NET to other platforms, the playing field has changed. .NET must now compete with all the other development frameworks out there. Here are some things that set .NET apart.

 1.3.1. C# is an amazing language

 The flagship language of .NET, C#, has many distinguishing features, such as Language Integrated Query (LINQ) and asynchronous constructs, which make it powerful and easy to use. It’s not my intention to teach C#, but I will be using it throughout this book. You’ll get to experiment with some of the many cool features of C#.

 C# also continues to innovate. The C# team designs the language openly so that anyone can make suggestions or participate in the discussion. The compiler (Roslyn) is entirely modular and extensible. I recommend picking up another Manning book, C# in Depth, Fourth Edition (2018) by Jon Skeet, to learn more.

 1.3.2. .NET Core is not starting from scratch

 .NET has been around since before 2000. The Framework code has been hardened over the years, and its developers have benefited from the experience. Much of the Framework code that has been ported to Core is untouched. This gives .NET Core a head start in terms of having a reliable framework for building applications. .NET Core is also completely supported by Microsoft. A lack of support can keep some organizations from adopting open source software. Microsoft’s support decreases the risk of using Core for your applications.

 1.3.3. Focus on performance

 The Common Language Runtime (CLR) team at Microsoft has been optimizing garbage collection and just-in-time (JIT) compilation since the beginning of .NET, and they’re bringing this highly tuned engine to .NET Core. They also have projects underway to perform native compilation of .NET Core applications, which will significantly reduce startup times and the size on disk—two important characteristics for fast scaling in container environments.

1.4. What is .NET Core?

 To understand .NET Core, it helps to understand the .NET Framework. Microsoft released the .NET Framework in the early 2000s. The .NET Framework is a Windows-only development framework that, at its lowest level, provides memory management, security, exception handling, and many other features. It comes with an extensive set of libraries that perform all kinds of functions, from XML parsing to HTTP requests. It also supports several languages and compiles them into the same common intermediate language, so any language can use a library built in any other language. These key concepts are also present in .NET Core.

 In 2016, Microsoft acquired Xamarin and released .NET Core 1.0. Xamarin was responsible for porting large parts of the .NET Framework to run on Linux/Unix-based operating systems in the past. Although some of the code could be shared between the .NET Framework, Xamarin, and the new .NET Core, the compiled binaries could not. Part of the effort of building .NET Core was to standardize so that all .NET implementations could share the same libraries. Figure 1.2 shows what this standardization looks like.

 Figure 1.2. .NET Framework, .NET Core, and Xamarin all implement the same standard called the .NET Standard Library.

 [image:]

 Xamarin and the .NET Framework were previously silos, where binaries couldn’t be shared between them. With the introduction of the .NET Standard Library and the common infrastructure, these two frameworks are now part of a unified .NET ecosystem.

 What is .NET Core, then? In figure 1.2 it appears that .NET Core is just another framework that includes UWP (Universal Windows Platform) and ASP.NET Core. In order to make .NET Core a reality, however, the authors also created the .NET Standard Library and the common infrastructure. .NET Core is really all three of these things.

1.5. Key .NET Core features

 .NET Core borrows the best from the .NET Framework and incorporates the latest advancements in software engineering. The following sections identify a few of the distinguishing features of .NET Core.

 1.5.1. Expanding the reach of your libraries

 With .NET Core you can write your application or library using the .NET Standard Library. Then it can be shared across many platforms. In figure 1.3, MyLibrary is deployed across cloud services, web servers, and many client platforms.

 Figure 1.3. .NET Core development

 [image:]

 The same library can work in your backend service on your premises or in the cloud and also in your client application running on a cell phone, tablet, or desktop. Instead of building separate apps for iOS, Android, and Windows, you can build one app that works on all platforms. .NET Core is small and perfect for use in containers, which scale easily and reduce development time.

 .NET Core and the .NET Standard Library establish a common standard. In the past when a new version of an operating system or a new device came along, it was the responsibility of the developer to rebuild their application or library for that new runtime or framework and distribute the update. With .NET Core there’s no need to rebuild and redistribute. As long as the new runtime or framework supports all of your dependent libraries, it will support your application.

 1.5.2. Simple deployment on any platform

 Microsoft products tend to have complex installation processes. COM components, registry entries, special folders, GAC—all are designed to take advantage of Windows-only features. The .NET Framework relies on these constructs, which makes it unsuitable for other operating systems.

 When shipping an application that relies on the .NET Framework, the installer has to be smart enough to detect whether the right .NET Framework version is installed, and if not, provide a way for the user to get it. Most modern Windows versions include the .NET Framework, and this makes certain applications easier to install, but it can cause complications if the application uses features that aren’t installed by default, such as ASP.NET integration with IIS or WCF components.

 Another complication comes from patches. Patches that include bug fixes or security updates can be distributed to customers via Windows updates or through the Microsoft Download Center. But the .NET Framework you test your application on may have different patches than the ones customers are using. It’s often difficult to determine what causes strange behavior in an application if you assume that the .NET Framework is the same for all customers.

 .NET Core’s modular design means that you only include the dependencies you need, and all of those dependencies go into the same folder as your application. Deploying an application is now as simple as copying a folder—what Microsofties refer to as “xcopy-deployable” (xcopy being a Windows tool for copying files and folders). Another advantage to this approach is that you can have multiple versions running side by side. This strategy is key to making the deployment experience consistent on all platforms.

 1.5.3. Clouds and containers

 In cloud systems, it’s important to strive for higher density—serving more customers with less hardware. The smaller the footprint of an application, the higher the density.

 The most common approach to deploying an application in cloud systems has been the virtual machine. A virtual machine allows an operating system to be installed on virtual hardware. The virtual machine is stored in a small number of files that can be easily replicated. But virtual machines have several problems:

 	
Size— A typical virtual machine file is gigabytes, if not tens of gigabytes. This makes it time-consuming to transfer them across networks, and it has significant requirements on disk space.

 	
Startup times— Starting a virtual machine means starting an operating system. For Windows, this presents a challenge, because it may take minutes to start a new machine. This can make handling sudden bursts of traffic difficult.

 	
Memory— The virtual machine needs to load an entire operating system into memory, along with the applications. This means a lot of a host’s memory can be redundant and therefore wasted.

 	
Inconsistency— Although the same virtual machine can be copied to multiple hosts, the hosts have to provide the same virtualized hardware, which can be dependent on the physical hardware. There’s no guarantee that a virtual machine will operate the same way, if at all, on any given host.

 Containers solve the issues of virtual machines by also virtualizing the operating system—the container only holds the application and its dependencies. File sizes are many times smaller, startup times are measured in seconds, only the application is loaded in memory, and the container is guaranteed to work the same on any host.

 The .NET Framework was designed to be built into Windows, and it doesn’t fit well into containers. A Framework application depends on the Framework being installed. Given the clear advantages of containers, one of the design decisions of .NET Core was to make it modular. This means that your .NET Core application can be “published” so that it and all of its dependencies are in one place, which makes it easy to put into a container.

 1.5.4. ASP.NET performance

 ASP.NET is a set of libraries built into the .NET Framework for creating web applications. It was released in 2002 with the first version of the .NET Framework, and it has continued to evolve. Despite its success (being used by many high-profile organizations, including Stack Overflow), there was a feeling among the ASP.NET team that they were losing developers because ASP.NET performance isn’t competitive, and because it only works on the Windows platform.

 A company called TechEmpower runs a benchmark of web application frameworks every few months and provides a ranking in several categories. The benchmarks are run on Linux, so Windows-only frameworks are not included. For the ASP.NET team, this was a problem. There are many frameworks for writing cross-platform web applications, and their performance numbers are impressive. Some Java frameworks, like Rapidoid and Undertow, were posting astronomical numbers: Rapidoid with 3.7 million plaintext requests per second and Undertow with 2.9 million (shown in figure 1.4).

 Figure 1.4. TechEmpower benchmark (round 14), May 2017

 [image:]

 On round 11 of the TechEmpower benchmark, ASP.NET MVC on the Mono framework was included in the testing. The results weren’t good. ASP.NET on Mono produced a paltry 2,000 plaintext requests per second. But because Mono wasn’t created by Microsoft, it wouldn’t have received the same amount of performance tuning as the regular .NET Framework. To get a fairer comparison, the ASP.NET team decided to run a benchmark with .NET 4.6 on the same hardware as TechEmpower. The result was around 50,000 requests per second, not even close to Node.js (320,000 requests per second) or any of the other top frameworks on the TechEmpower list.

 The pitifully low score wasn’t exactly a surprise. As mentioned before, the ASP.NET team knew some of the hurdles that stood in the way of being competitive with frameworks like Node.js. These hurdles could only be cleared by rewriting the whole thing. One major difficulty with ASP.NET was that it needed to support customers’ legacy code, including “classic ASP,” which preceded .NET. The only way to free ASP.NET from the legacy code burden was to start over.

 The ASP.NET team embarked on building ASP.NET Core, and many months later they celebrated crossing the 1 million requests per second mark (as you can see in figure 1.4). There is a team dedicated to pushing that number even higher, as well as to improving the performance of many other real-world scenarios.

 Improving the performance of ASP.NET is indicative of a shift in Microsoft’s thinking. Microsoft realizes that it has to be competitive to win developers. It also has to compete on platforms other than Windows. ASP.NET was the driving force behind the creation of .NET Core.

 1.5.5. Open source

 Historically, Microsoft has been very tight-lipped about new products and features under development. There are good reasons for this. First, the competition has less time to respond if they find out about a feature on the day it ships. Also, if a feature was targeted for a particular release date and wasn’t done on time, it could be postponed without causing an issue, because customers didn’t know about it. Plus, it always helps to have new stuff to announce at conferences.

 But modern software developers aren’t content to ask for a feature and hope it’s delivered in the next release, which could be a year away. This is especially true when there may be an open source project that could fulfill their needs. As large companies warm to open source software, even the most faithful Microsoft developers turn to other frameworks and libraries to get their own projects done on time and within budget. Microsoft needed to make a change.

 Exposing the source for the .NET Framework was the first step. The .NET Framework source code has been publicly available for years at https://referencesource.microsoft.com and also on GitHub. The Reference Source website makes it easy to search the source code of the .NET Framework.

 It’s one thing to expose the source and quite a different thing to accept external contributions. The .NET Core developers not only wanted to allow external contributions, they also wanted to include the community in the design and development. This led to a lot more transparency. Every week, the ASP.NET Core team holds a live community standup meeting at http://live.asp.net. The code for .NET Core has been available publicly on GitHub from the start, and anyone can make a pull request. Community members can also create bugs and feature requests in GitHub. .NET Core marked a significant change in direction for Microsoft regarding open source.

 1.5.6. Bring your own tools

 Because .NET Core works on many platforms, command-line functionality is crucial for .NET Core tooling. For some Linux variants, or when working with Docker containers, a terminal may be all that’s available. The .NET Command-Line Interface (CLI) was designed for this purpose.

 I can’t make any assumptions about what kind of editor you’ll use to write your code. You can use an integrated development environment like Visual Studio or a simple text editor like vi or emacs. There are also plenty of tools that feature syntax highlighting, like Notepad2 or Sublime. This book focuses on the use of the CLI so that you’ll be able to try all the examples regardless of which platform you’re using.

1.6. Applying .NET Core to real-world applications

 What sets .NET Core apart from other frameworks when it comes to building real-world applications? Let’s look back at the claims architecture from figure 1.1. A claims adjuster goes to the scene of an accident and enters the evidence (notes and photos, for example) into a software application that generates the estimate. In order to determine what evidence needs to be collected, the software may use complex, proprietary business logic. The adjuster needs to gather this information regardless of connectivity, so it will be helpful to have the business logic available in the mobile application.

 Rewriting all the business logic in a language suitable for a mobile application introduces a maintenance issue. Both the team working on the server side and the team writing the mobile application must update their codebases with any changes to the business logic. Ownership gets split between teams, and keeping in sync becomes difficult. With Xamarin support for the .NET Standard library, web services and mobile applications alike can use the same business logic library. Claims adjusters get consistent behavior, and maintenance costs go down.

