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   The study of mathematics, like the Nile, begins in minuteness but ends in magnificence.
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Introduction

   The physical universe is vast beyond imagining. Even the nearest star lies at a distance almost impossible to grasp with our Earth-bound brains. The edge of the observable universe is inconceivably more remote: about 46 billion light-years, or 270 billion trillion miles, away. Yet we’re about to embark on a much greater voyage, not into the depths of space but into the farthest reaches of the mathematical cosmos.

   Along the way we’ll come across some extraordinary ideas, so alien to our normal way of thinking that the biggest challenge will be to find familiar words and concepts by which we can build bridges to understanding. We’ll venture far from home into regions of thought that, until now, few have seen or experienced. Our quest: nothing less than to find the edge of the numerical universe.

   Surely, you might say, there is no such edge. Numbers go on forever. Even if we were to fill this book, or a library full of books, with 1 followed by zeros – or all 9s – on every line on every page, at the end you could name a bigger number simply by saying ‘and 1’. And that’s true. The number line stretches away into the mists of infinite distance. But, as we’re about to find out, the search for an ultimately large number isn’t confined to trekking slowly, step by step, down an endless road. There are some surprising, mind-bending alternatives to the often-repeated mantra ‘there’s no biggest number’. Some of these will involve entering a shadowy land, still largely unexplored, between the finite and the infinite. Others will transport us into what are effectively parallel universes of maths, where different rules operate and what we thought was secure knowledge is easily overturned.

   As with any expedition into the unknown we need to go well prepared. We’ll look at the history of large numbers and how the subject has been mapped out up to this point. We’ll delve into a few areas – fascinating in themselves – that are rarely broached in school or university curricula in order to equip ourselves for the great quest ahead.

   Like mountaineers attempting to climb previously unconquered peaks, certain mathematicians throughout history have had the courage to try to scale new heights in the mighty ranges of towering numbers. Often they’ve ventured alone, not relying on the intellectual, moral or financial support of others to help them in their ambition. These pioneers of a strange land have had to develop new tools and techniques to go beyond what was possible before. And the vistas with which they’ve been rewarded are no less breathtaking and spectacular, in their way, than the views from the summits of Everest or the Matterhorn. These are the mind’s-eye spectacles that await us in the pages ahead.

   We also have personal reasons for writing this book. Number theory – and the mathematics of very large numbers, in particular – is a passion of Agnijo’s. It’s a subject that’s fascinated him throughout his school career, which culminated in him taking first place in the 2018 International Mathematical Olympiad, and as a student at Cambridge. David has always enjoyed finding ways to explain difficult ideas to a wide audience. The book is the culmination of an unusual writing partnership, which began while David was tutoring Agnijo as a young teenager.

   There’s a widespread suspicion that maths is cold and austere, somewhat aloof from the real world of people. But nothing could be further from the truth. Mathematics, along with music and art, is among the most human of enterprises, steeped in passion, tragedy, comedy and romance, wild and wonderful characters, and bold new ideas that constantly threaten the status quo. Nowhere is this drama of maths more evident than in the ultimate intellectual challenge: the search for the biggest number in the world.

  

 
  
   
Chapter 1

   Of Sand and Stars

   Are there more grains of sand on Earth or stars in the universe? With your eyes alone you can see at least a couple of thousand stars on a clear night well away from artificial lights, and nearer 4,000 if it’s moonless and your eyesight is keen. In a handful of sand are many more grains than that. But space is huge, dauntingly so, and powerful telescopes reveal that it contains a host of galaxies, each harbouring billions of stars. On the other hand, the deserts, beaches and ocean beds of our planet are home to sand particles in dizzying profusion. So, sand or stars, which wins in the numbers game?

   A study carried out by researchers at the University of Hawaii in 2003 estimated the number of sand grains in the world to be 7.5 million trillion, or 75 followed by 17 zeros. As for stars, the figure they came up with, for the whole of the observable universe, was 70 thousand million trillion. That’s about ten thousand stars for every sand grain.

   The Greek mathematician and scientist Archimedes was also interested in this kind of problem. In the third century bce he wrote a short treatise, addressed to Gelon, King of Syracuse, that’s come to be known as ‘The Sand Reckoner’. Sometimes described as the first research-expository paper, because it combines both accuracy and clear language, aimed at the layperson, it asks: How many grains of sand would fit in the universe?
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      Figure 1.1: Sand dunes in the Sahara, Libya.

     



   

   The answer, of course, depends on how big is an average grain of sand and how big is the universe. Archimedes figured, very generously (to the point of being unrealistic), that one poppy seed could contain 10,000 grains of sand, which would make the grains almost microscopic in size. He also reckoned that 40 poppy seeds, side by side, would stretch across one Greek dactyl, or finger-width, equal to about three quarters of an inch (19 millimetres). A sphere one dactyl wide would then be able to hold in the region of 640 million sand grains.

   As for the size of the universe, Archimedes based his estimate on the classical heliocentric theory of his predecessor Aristarchus. In this model of space, Earth orbits around the Sun while the stars are fixed to a sphere, also centred on the Sun, but much further out. The fact that the Greeks couldn’t discern any change in the relative positions of stars in the sky – a so-called parallax – as Earth moved from one side of the Sun to the other meant that stars had to lie a certain minimum distance away. This gave Archimedes his estimate for the smallest possible diameter of the then-known universe – in modern units, about two light-years.

   Today we can easily do the maths and arrive at how many Archimedean-sized sand grains would fit inside a ball two light-years wide. The answer comes out to be roughly one followed by 63 zeros, which can be written compactly as 1063 – meaning 10 × 10 × 10 × … × 10 (with 63 tens). The problem Archimedes faced is that our handy ways of representing big numbers didn’t exist in his day. The Arabic numerals, 0 to 9, that we now use, emerged about 800 years later (and in India, not Arabia). Place-value notation, in which the same symbol is used to represent different orders of magnitude depending on its position (for example, the ‘3’ in 30, 300, and 3,000) was still in its infancy in Babylon but hadn’t yet reached Greece. And there was in those days no such thing as index notation, in which how many times a number must be multiplied by itself is written as a superscript (as in 1063).

   At the time when Archimedes began his cosmic sand calculations the Greeks used letters of the alphabet to represent numerals. A different letter stood for the equivalent of our numbers 1 to 9, multiples of ten from 10 to 90, and multiples of a hundred from 100 to 900. The familiar 24 letters, alpha to omega, which have survived in present-day Greek, had to be supplemented by others taken from older languages and dialects to provide enough labels. Alpha to theta stood for 1 to 9, iota to koppa (borrowed from the Phoenician) for multiples of ten from 10 to 90, and rho to sampi (used in some eastern Ionic dialects) for multiples of a hundred from 100 to 900. The Greeks didn’t use the same letter again and again in different positions, so that, for example, 222 would be written as σκβ (sigma kappa beta = 200 + 20 + 2). For multiples of a thousand, from 1,000 to 9,000, some of the same letters were employed but with various extra marks. And that was as far as the ancient Greek labelling system of numerals went, except for the murious – the largest single unit defined, written as a capital mu (M) and equivalent to our 10,000. The Romans called it the myriad, a name that became absorbed into English but with the altered meaning of ‘countless’ or a very large (but undefined) number.

   The Greeks could write numbers that were bigger than a murious but only as multiples of M using strings of letters in the manner described. For example, 1,234,567 would be written as ρκγΜ ͵δφξζ (123 × 10,000 + 4,567). It’s an approach that quickly runs out of steam for anything beyond what we would call a few hundred million.

   Archimedes realised that to represent the kind of gigantic numbers that would arise from his cosmic sand calculations, he’d have to come up with a whole new system of number naming. He started by defining anything up to a myriad myriad as being a number of the ‘first order’. To us that mightn’t seem like a big step because we can easily write a myriad myriad as 104 × 104, which equals 108 (a hundred million), and then carry on indefinitely from there. But there was nothing like our index notation, in which an index or exponent is used to show how many times a number must be multiplied by itself, when Archimedes took on his big-number project.

   Having defined any number up to a myriad myriad as belonging to the first order, he moved on to numbers that lay between a myriad myriad and a myriad myriad times a myriad myriad (1 followed by 16 zeros, or 1016 in modern notation). These, he said, belonged to the ‘second order’. Then he progressed to the third order, and the fourth, and so on, in the same way – each successive order being a myriad myriad times larger than the numbers of the previous order. Eventually, he reached numbers of the myriad myriadth order, in other words, in our index notation, 108 multiplied by itself 108 times, or 108 raised to the power 108, which equals 10800,000,000. All these numbers, of which the largest would have 800 million digits if written out in full, he defined as belonging to the ‘first period’. The number 10800,000,000 itself he took to be the springboard for the second period, at which point he began the process all over again. He defined orders of the second period by the same method, each new order being a myriad myriad times greater than the last, until, at the end of the myriad myriadth period, he’d reached the colossal value of a myriad myriad raised to the power of a myriad myriad times a myriad myriad, which we’d write as 1080, 000, 000, 000, 000, 000, or 10 to the power of 80 thousand trillion.

   Remember, Archimedes had no knowledge of our compact ways of writing big numbers. There wasn’t even the concept of zero in ancient Greek maths. Starting from a system that struggled to name numbers that were bigger than a few hundred million, he fashioned a method to describe a number that, in decimal form, would have 80 thousand trillion digits.

   For the purposes of his sand-counting project, it turns out, Archimedes didn’t need numbers anywhere near this large. Using his estimates of the size of a grain of sand and of the whole universe, he came up with a value that was only of the eighth order of the first period. In index notation, a mere 8 × 1063 or so of Archimedes’ minuscule grains would have been enough to pack the two-light-year-wide Greek cosmos full of sand. Even using a modern, and much larger, estimate for the diameter of the observable universe of 92 billion light-years there’d be no room for more than about 1095 sand grains – still a number of just the twelfth order, first period.

   ‘The Sand Reckoner’ was cutting-edge stuff. Not only did Archimedes offer a picture of the universe that most closely resembles what we know today, given the limited data he had available, but he invented a whole new way of describing big numbers. He was the first person to tackle the problem of naming and manipulating large numbers without the benefit of modern notation. Using a system with base 10,000, he effectively pioneered exponentiation – the process of raising one quantity to the power of another. He also discovered the law of adding exponents, namely xm × xn = xm+n, for any numbers x, m, and n; for example, 32 × 33 = (3 × 3) × (3 × 3 × 3) = 35.

   Archimedes was the first person to show that it’s possible to go beyond the tradition of his era of simply calling huge numbers of things ‘innumerable’. Sand and stars, in particular, came in a lot for this kind of treatment. The Greek poet Pindar, who predated Archimedes, wrote in his Olympus Ode II: ‘sand escapes counting’. There’s even a Greek word, psammakósioi – literally, ‘sand-hundred’ – that’s used to mean ‘uncountable’. Writers of the Bible, too, gave up on the arithmetic of sand and stars. The phrase in Genesis (32:12) ‘the sand of sea, which cannot be counted for multitude’ is one of twenty-one Biblical references suggesting that it’s impossible to put a figure on the numbers of sand grains out there. Hebrews (11:12) conflates the two: ‘So many as the stars of the sky in multitude, and as the sand which by the seashore is innumerable.’

   As we’ve seen, Archimedes didn’t confine himself to the sand on a seashore or even on the Earth as a whole. He made sure that none of his contemporaries could possibly outdo his number count by imagining the entire universe to be packed full of sand grains so small that they’d be barely visible. It would be interesting to know what he’d have thought of the efforts of other intellectuals, a few hundred years later, who also wrote about large numbers but in a different part of the world, and for a very different reason.

   Eastern philosophy, and Buddhism in particular, has always been fascinated with the vastness of space, time, and mind. It’s not surprising, then, that scholars of these thought systems eventually came around to putting numbers to the age or extent of things on the broadest of cosmic scales. In one of the major scriptures, or sutras, of Mahayana Buddhism, written in the third century ce and known as Lalitavistara (Sanskrit for ‘The Play in Full’), a conversation takes place between Gautama Buddha, who’d died hundreds of years earlier, and a mythical mathematician named Arjuna. In reply to a question by Arjuna, the Buddha launches into a head-spinning exposition of a system of numerals based on the koti, a Sanskrit term for ten million (10,000,000). At each step the Buddha names a number that’s one hundred times greater than the last: one ayuta is 100 koti, one niyuta is 100 ayuta, and so on, until he reaches the tallakshana, which equals one followed by 53 zeros. Beyond the range of the tallakshana, the Buddha explains, lies another, that of the dvajagravati, which takes us to 1099, and then four others in an ascending hierarchy that reaches up to the uttaraparamanurajahpravesa, equivalent to 10421.

   Impressive though this number is, the Buddha’s only just getting into his stride. In the Avatamsaka (‘Flower Garland’ sutra) he reveals a different and hugely more powerful counting system. In Thomas Cleary’s translation of chapter 30 of the Avatamsaka, the Buddha explains how the system starts off:

   Ten to the tenth power times ten to the tenth power equals ten to the twentieth power; ten to the twentieth power times ten to the twentieth power is ten to the fortieth power…


   Then he continues, in exasperating detail, squaring each successive number, to yield 1080, 10160, 10320, and so on, until, after a couple more scrolls-worth of itemisation, he arrives at 10101, 493, 392, 610, 318, 652, 755, 325, 638, 410, 240. For some reason, unfortunately not explained in the sutra, the Buddha considers this number to mark some kind of limit. Further squaring, he says, leads to a number called ‘incalculable’. Next he moves to squaring the square – in other words, raising to the fourth power. ‘Incalculable’ to the fourth power gives ‘measureless’; repeating the process leads to ‘boundless’. After some more similar steps, and excursions into the Sanskrit thesaurus, we’re led to ‘unspeakable’, the raising to the fourth power of which culminates in ‘untold’. Then, in a final flourish, the Buddha reports that

   
Untold unspeakables

Fill all unspeakables

In unspeakable aeons

Explanation of the unspeakable cannot be unfinished



   Quite why those who wrote the Avatamsaka had the Buddha stop doing precise maths at ‘incalculable’ and resort instead to a string of superlatives isn’t clear. Maybe they got bored with writing out long lists of numerals or perhaps scrolls were in short supply. The likeliest reason, though, is that they wanted to give the impression that, in the end, the universe extends beyond ordinary logic and analysis into a realm accessible only to those who are enlightened.

   In any event, we can easily take the mystery out of all these shenanigans. The mighty untold, far from being incalculable or untellable, works out in reality to be, in modern notation

   1010×2122


   or approximately 1053, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000. It’s obviously a truly vast number. Archimedes would doubtless have been impressed with it because it dwarfs the biggest number he reached in ‘The Sand Reckoner’. Archimedes maxed out at 1080, 000, 000, 000, 000, 000, whereas to reach ‘untold’ you’d have to multiply Archimedes’ number by itself roughly 660 million trillion times.

   Both Archimedes and the Buddhist sutras used large numbers to give some impression of the immensity of their respective versions of the universe. With Archimedes it was more a scientific enterprise, whereas the Eastern goal seems to have been to inspire reverence for a holistic vision of the cosmos, inaccessible to conventional thought. These were early and isolated peaks in the quest to describe ever-larger numbers. Only comparatively recently, within the past century and a half, have mathematicians given much thought to looking at what lies beyond these seminal insights: at numbers that are incomparably larger and, as a consequence, demand innovations in order that they can be represented in a manageable way.

   For most practical purposes, whether it’s everyday conversation, economics, or measurement in science, we use words ending in ‘-illion’ to name big numbers. The current world population is about 7.8 billion, the nearest star (Proxima Centauri) lies at a distance of 40.2 trillion kilometres, and so on. It’s a method of number naming that has its roots in late mediaeval times when the word ‘million’ began to appear in writings such as Chaucer’s The Canterbury Tales. ‘Million’ comes from the Italian millione, which, in turn, stems from the Latin mille for ‘thousand’ and the augmentative suffix -one (hence ‘million’ = ‘thousand thousand’). ‘Bymillion’ (a million million) and ‘trymillion’ (a million million million) were in circulation by the 1470s and, in 1484, the Frenchman Nicolas Chuquet proposed a complete systematisation of number names using words ending in -illion (or -yillion).

   Not much is known about Chuquet beyond that he was born in Paris, held a bachelor’s degree in medicine, and later moved to Lyon, where he died in his thirties. He certainly wasn’t an eminent mathematician. He’s remembered today for only one achievement: an article called Triparty en la science des nombres (The Science of Numbers in Three Parts), which wasn’t published until 1880, almost four centuries after his death, by the linguist Aristide Marre who discovered Chuquet’s manuscript. It then became clear that a student of Chuquet’s, Estienne de la Roche, had essentially plagiarised his teacher’s writings in the first part of his handbook of algebra, l’Arismetique (1520).

   In his original work, Chuquet wrote down a very large number – 7493248043000700023654321 – and then used marks to break it down into groups of six digits, starting from the right. Up to the first mark were the millions. Thereafter:

   The second mark byllion, the third mark tryllion, the fourth quadrillion, the fifth quyillion, the sixth sixlion, the seventh septyllion, the eighth ottyllion, the ninth nonyllion and so on with others as far as you wish to go.


   We still use these names, with the ‘y’ replaced by ‘i’ and other minor changes, today. The only difference is that it’s become widely accepted in English-speaking countries and some others that a billion is a thousand million (109) rather than a million million (1012). Two different naming systems for large numbers emerged, which, in 1974, French mathematician Geneviève Guitel described as the ‘long scale’ and the ‘short scale’. In the former, each term after a million – a billion, a trillion, and so on – is defined to be a million times larger than the one before, whereas in the latter the jumps are by a factor of a thousand. In British English both systems were used up until the mid-1970s or so. Today, the short scale, long favoured in North America, has been adopted in most of the English-speaking and Arabic-speaking world, as well as in Brazil, Russia, and several other countries, while the long scale remains in vogue elsewhere. The system can easily be extended beyond a trillion, using the prefixes quad-, quin-, sex-, sept-, and so on. A quadrillion, for instance, using the short scale, is a thousand times greater than a trillion, or 1015; a quintillion is a thousand times greater than a quadrillion, or 1018, and so on. Each multiple of a thousand bumps the prefix up by one. A centillion (‘cent-’ meaning a hundred) is the same as 1 followed by 303 zeros and is the biggest number listed in standard dictionaries with a name that uses this convention: that every additional three zeros advances by one the Latin or Greek number prefix.

   Until a few centuries ago, there was really no practical need to have names for numbers that were much bigger than a million – unless you were doing something unusual like counting sand grains or extolling Eastern philosophy. It wasn’t until the start of the nineteenth century that the world’s population ticked past a billion, and later still that atoms were discovered and astronomers started to appreciate how many stars were in our galaxy, never mind all those that lay beyond. But pure mathematicians aren’t confined by the limits of physical reality and, early on, they realised that numbers went on and on, eventually far exceeding any system that had been devised for their description. By the dawn of the Renaissance, it had become simply unacceptable that numbers could exist for which there were neither convenient names nor ways to represent them.

   Chuquet systematised the ‘-illion’ way of naming numbers, while Archimedes and others, including Muhammad ibn Musa al-Khwarizmi, in ninth-century Persia, and Abu’l Hasan ibn Ali al Qalasadi, in the mid-fifteenth century, laid the basis for exponentiation. The word ‘exponent’ itself was coined in 1544 by German mathematician and monk Michael Stifel. Finally, in the early sixteenth century, French mathematician and philosopher René Descartes, in Book I of his text La Géométrie, introduced notation of the form xn or ‘x to the n’ (although, at the time, he was thinking more in terms of geometry than algebra). In the expression xn, x is a number, known as the base, and n is the index or exponent. It’s also common for n to be called the ‘power’ of x, although strictly speaking if a = xn then a is the power, not n.

   Just as multiplication can be thought of as repeated addition (4 × 3 = 3 + 3 + 3 + 3), exponentiation is a compact way of writing and performing repeated multiplication (65 = 6 × 6 × 6 × 6 × 6). For almost every purpose we need – except many of those we’ll meet in this book! – exponentiation, or working in index form, is sufficient for dealing with even extraordinarily large numbers. A number such as 100, 000, 000, 000, 000, 000, 000 – a hundred million trillion – can be written compactly as 1020 and described as ‘10 to the power 20’ or just ‘10 to the 20’.

   For the most part, describing big numbers in terms of ‘-illions’ works just fine. But sometimes it’s good to have a special name for a particular large number. One day in 1920, American mathematician Edward Kasner was walking with his nephews, nine-year-old Milton Sirotta and his brother Edwin, by the Palisades (the cliffs that line the Hudson River in New Jersey). Kasner got talking to them about numbers and how big they could be – as big as, say, one followed by a hundred zeros. Writing later in Mathematics and the Imagination (1940), which he co-authored with James Newman, Kasner recalled: ‘[Milton] was very certain that this number was not infinite, and therefore equally certain that it had to have a name.’ The name he came up with was ‘googol’. At the same time, young Milton suggested ‘googolplex’ for a number that was even bigger. Kasner wrote:

   A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out. It was suggested that a googolplex should be 1 followed by writing zeros until you get tired. This is a description of what would happen if one actually tried to write a googolplex, but different people get tired at different times and it would never do to have Carnera [a heavyweight boxing champion] a better mathematician than Dr. Einstein, simply because he had more endurance. 


   Kasner offered a more precise definition of a googolplex as ‘1 followed by a googol number of zeros’, or 10googol. Whereas a googol, albeit hard to imagine, is easy to write out in full:

   10, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000


   a googolplex is sensationally larger. There isn’t enough paper on Earth, or, come to that, matter in the entire observable universe, to write out the digits of a googolplex, not even if you wrote each zero as small as a subatomic particle. The googolplex utterly dwarfs any number named in antiquity, including the mighty ‘untold’.

   Mention ‘googol’ or ‘googolplex’ and most people will instantly think of the ubiquitous search engine or the place where it’s now headquartered. In 1996, the founders of what would become Google, Stanford PhD students Larry Page and Sergey Brin, were working out of a makeshift office – a garage rented to them by mutual friend and future YouTube CEO Susan Wojcicki – in Menlo Park, California. They’d called their prototype search engine ‘BackRub’ because it analysed the Web’s back links (incoming links to a webpage). But as their search technology rapidly improved they sought a more commercially appealing name for the new product. In September 1997, Page and his office mates held a brainstorming session, complete with whiteboard, in ‘Susan’s garage’ to think of something that would work – a word that captured the idea of indexing a huge amount of data. One of those present, graduate student Sean Anderson, suggested ‘googolplex’, which Page immediately shortened out loud to ‘googol’. Anderson, sat at his computer terminal, checked the internet domain registry to see if the name was still available for registration and use. But making the mistake of thinking that the word was spelled ‘google’ he checked ‘google.com’ instead of ‘googol.com’, and found it to be available. Page liked the name and within hours had registered ‘google.com’ on behalf of himself and Brin.

   The name is certainly suggestive of the immense volume of data now involved in web indexing. In 2017 Google reported that it stored information on about 30 trillion pages. Google, Microsoft, Amazon, and Facebook between them hold at least 1,200 petabytes (1.2 ×1015 bytes) of data – a figure that’s rising fast, month by month. If Google were to maintain its average annual rate of growth in indexing over the next few centuries (unlikely!), it would have indexed a googol pages by the year 2698.

   In ancient times only a few intellectuals, such as Archimedes, glimpsed how very large numbers might be relevant to the real world. But today we’re all familiar with hearing about billions and trillions of things, and scientists and mathematicians find uses for numbers that make even the googol seem small. Can we truly grasp the size of these numbers, let alone the vastness of others we’ll encounter later on in our quest to find the biggest number of all? No, not even the greatest mathematical genius can do that. But what we can do is try to find words or concepts that form a bridge between the world with which we’re familiar – the world we can sense or construct in our imagination – to numbers that lie far beyond the capacity of the physical universe to contain.

  

 
  
   
Chapter 2

   At the Limits of Reality

   Numbers both huge and tiny abound in science – and for obvious reasons. The universe is incredibly large and the particles of which it’s ultimately composed are fantastically small. We can quickly end up going well past a trillion if we start to count the numbers of very small things in nature (such as atoms) or measure on a cosmic scale with units that seem reasonable for everyday purposes. For instance, the metre is a sensible unit in the human world but not so much when we start talking about interstellar distances. Even the nearest star to the Sun, Proxima Centauri, lies about 40, 000, 000, 000, 000, 000 – 40 thousand trillion – metres away.

   The routine appearance of very large and very small numbers in science is why ‘scientific notation’ is commonly used. In scientific notation, also known as standard form or index form, 40 thousand trillion is written compactly as 4 × 1016. This makes it easy to see at a glance how many zeros come after the 4.

   Another way to make the numbers we’re dealing with more manageable is to use bigger units. That’s why astronomers often talk about distances in terms of light-years or parsecs. One light-year is the distance travelled by light, moving at a speed of 300 million metres per second, in one year. It equals about 9.46 trillion kilometres, so that the distance to Proxima comes out to be 4.24 light-years.

   A parsec is the distance at which the average diameter of Earth’s orbit around the Sun supports an angle of 1/3600th of a degree, known as one arcsecond. It works out to be 3.26 light-years. Proxima is 1.30 parsecs away and the centre of the Milky Way Galaxy a little over 8,000 parsecs from Earth. Even the parsec, though, starts to seem small once we move beyond our own galaxy and deep into the intergalactic void. Then astronomers turn to the kiloparsec, the megaparsec, and finally the gigaparsec – a billion parsecs. The distance across the entire observable universe is about 28.5 gigaparsecs or 8.8 × 1023 kilometres.

   As we saw in the first chapter, numbers of this magnitude are nothing new in science. Archimedes’ cosmic count of sand grains was around 8 × 1063 in modern notation. Fortunately for us, the universe isn’t actually packed full of sand. Nevertheless, there are some other extremely big numbers in science that apply to real situations or, at least, our attempts to estimate them.

   Back in 1811, Italian scientist Amedeo Avogadro proposed that the volume of a gas, at a given temperature and pressure, is proportional to the number of molecules within it regardless of the actual gas involved. This would mean that equal volumes of different gases, for example oxygen and carbon dioxide, under the same conditions, contained the same number of molecules. Although Avogadro believed in the existence of atoms and molecules, and drew a distinction between them, he’d no way of knowing their size. The first reasonably accurate measurements of what became known as Avogadro’s constant were made in the early 1900s from experiments carried out by French physicist Jean Perrin. Today the value of Avogadro’s constant is known accurately to be 6.02214076 × 1023. It’s defined to be the number of constituent particles, which may be molecules or atoms (or even ions), in a quantity of a substance called a mole. One mole is the molecular weight of a substance in grams. So, for instance, 31.9988 grams of oxygen and 44.0095 grams of carbon dioxide, under the same conditions, both contain 6.02214076 × 1023 molecules.

   By everyday standards, this number – six hundred billion trillion – is immense. In fact, it’s the largest physical constant with which scientists deal on a routine basis. It also gives a feel for the minuscule nature of atoms and molecules. One mole of water weighs just 18 grams and occupies only a few drops, yet it contains six hundred billion trillion water molecules!

   A much bigger number was named after another famous scientist, Sir Arthur Eddington. In his book The Mathematical Theory of Relativity, published in 1923, Eddington wrote:

   I believe there are 15, 747, 724, 136, 275, 002, 577, 605, 653, 961, 181, 555, 468, 044, 717, 914, 527, 116, 709, 366, 231, 425, 076, 185, 631, 031, 296 protons in the universe and the same number of electrons.


   What’s outrageous about this isn’t the size of the number – after all, the number of protons and electrons across the whole universe is bound to be humongous – but the extraordinary precision with which it was stated. Had Eddington simply declared the total number of protons to be ‘about 1.57 × 1079’, or ‘about 15.7 million trillion trillion trillion trillion trillion trillion’, it wouldn’t have created much of a stir. However, he claimed to have figured out the value down to the last particle!

   By the time Eddington became interested in large cosmic numbers, he was already a world-renowned astrophysicist. In 1919, he led an expedition to observe a total solar eclipse in South Africa which confirmed one of the key predictions of Einstein’s general theory of relativity – that the path of light from a star will be bent when it passes near a massive object (in this case, the Sun). He was also a pioneer investigator of stellar physics and the first to propose, in 1920, that stars generate their heat and light by the process of nuclear fusion.

   During the 1920s, Eddington began to obsess more and more about building a grand theory that would unite relativity, quantum mechanics, cosmology and gravitation. Although it started out conventionally enough, his work soon began to take on board elements of numerology and aesthetics. He wasn’t alone in this almost mystical fascination with what became known eventually as the ‘large numbers hypothesis’. In 1919, German mathematician Hermann Weyl started the ball rolling by noting that the ratios of some basic distances and forces in nature were both very large and very similar. For instance, the electric force between a proton and electron is about 1040 times as big as the gravitational force between them. This same factor of 1040 cropped up when Weyl divided the radius of the universe, as it was then estimated to be, by what’s called the classical electron radius.

   As Eddington delved into these same kinds of relationships that link the submicroscopic world with the macroscopic, he became especially intrigued by an enigmatic factor in nature known as the fine-structure constant. This constant crops up in all kinds of places in atomic and nuclear physics. One of the things it does is to calibrate the strength of the electromagnetic force between elementary charged particles, such as electrons. Other physicists, right up to the present, have been struck by its pivotal role in cosmic affairs at different scales. Wolfgang Pauli had a lifelong fascination with the number, once commenting: ‘When I die my first question to the Devil will be: What is the meaning of the fine-structure constant?’ Richard Feynman referred to it bluntly as ‘one of the greatest damn mysteries of physics’.

   At the time Eddington first turned his attention to the fine-structure constant, its value wasn’t known from experiment to any great accuracy. It was thought to be about 1/136. In a series of convoluted steps, Eddington claimed to have proved theoretically that the value was exactly 1/136 and, because of this, his reasoning led him to believe, the number of protons in the universe was 136 × 2256. This is the infamous Eddington number, which he wrote out in full in his 1923 book and repeated again in a public lecture he gave in 1938 at Trinity College, Cambridge.

   Unfortunately, later experiments led to the value of the fine-structure constant being adjusted downwards, putting it closer to 1/137. (In fact, it’s now known to be 1/137.03599084.) That experimental readjustment didn’t faze Eddington: he simply tweaked his theory so that it produced 1/137 exactly! But, not surprisingly, no one else was persuaded by such a convenient fudging of the issue. Other scientists lost faith in his large-number reasoning and the satirical magazine Punch captured the mood by dubbing him ‘Sir Arthur Adding-One’. Eddington’s number turned out to be a fiction. But it does retain one distinction: it’s the biggest specific number – not an estimate or approximation – that’s ever been claimed to have a bearing on the physical world.













