

 F# Deep Dives

 Edited by Tomas Petricek and Phillip Trelford

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

 	[image:]
 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Copyeditor: Liz Welch
Proofreader: Tiffany Taylor
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN 9781617291326

 Printed in the United States of America

 2 3 4 5 6 7 8 9 10 – SP – 23 22 21 20 19 18

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Contributors

 Preface

 Acknowledgments

 About this Book

 Chapter 1. Succeeding with functional-first languages in the industry

 1. Introduction

 Chapter 2. Calculating cumulative binomial distributions

 Chapter 3. Parsing text-based languages

 2. Developing analytical components

 Chapter 4. Numerical computing in the financial domain

 Chapter 5. Understanding social networks

 Chapter 6. Integrating stock data into the F# language

 3. Developing complete systems

 Chapter 7. Developing rich user interfaces using the MVC pattern

 Chapter 8. Asynchronous and agent-based programming

 Chapter 9. Creating games using XNA

 Chapter 10. Building social web applications

 4. F# in the larger context

 Chapter 11. F# in the enterprise

 Chapter 12. Software quality

 F# walkthrough: looking under the covers

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Contributors

 Preface

 Acknowledgments

 About this Book

 Chapter 1. Succeeding with functional-first languages in the industry

 F# as part of an ecosystem

 Reflecting industry trends

 Building a healthy environment

 F# from a business perspective

 Understanding business problems and implications

 Inferring business needs

 Writing correct software

 Reducing time to market

 Managing complexity

 Writing efficient and scalable software

 Learning from case studies

 Balancing the power-generation schedule

 Analyzing data at Kaggle

 Scaling the server side of online games

 Summary

 About the authors

 1. Introduction

 Chapter 2. Calculating cumulative binomial distributions

 Implementing the formula

 The formula for cumulative binomial distribution

 Coding the formula

 Adding tests

 Adding NUnit and FsUnit

 Generating test cases in Excel

 Exposing the Fact function to unit testing

 Returning large integers from the Fact function

 Processing large integers in the Binomial function

 Time for a rethink

 An alternative approach

 Implementing the Excel algorithm

 Refactoring

 Eliminating the cumulative flag

 Identifying common functions between the two while loops

 Eliminating duplication, mutables, and loops

 Summary

 About the author

 Chapter 3. Parsing text-based languages

 Introducing the Markdown format

 Formatting text with Markdown

 Why another Markdown parser?

 Representing Markdown documents

 Parsing spans using recursive functions

 Implementing the parser using active patterns

 Parsing spans using active patterns

 Parsing blocks using active patterns

 Turning Markdown into HTML

 Processing Markdown documents

 Implementing the tree-processing patterns

 Generating references from hyperlinks

 Summary

 About the author

 2. Developing analytical components

 Chapter 4. Numerical computing in the financial domain

 Introducing financial derivatives and underlying assets

 Non-dividend-paying stocks

 European call options

 Using probability functions of Math.NET

 Configuring F# Interactive

 Downloading and setting up Math.NET Numerics

 Random variables, expectation, and variance

 Generating normal random samples

 Geometric Brownian motion and Monte Carlo estimates

 Modeling stock prices using geometric Brownian motion

 Payoff function, discounted payoff, and Monte Carlo estimates

 Analyzing Monte Carlo estimates using variance

 Pricing path-dependent options

 Variance reduction using antithetic variates

 Summary

 About the author

 Chapter 5. Understanding social networks

 Social networks on Twitter

 Connecting to Twitter

 Downloading the social network around the F# Software Foundation

 Nodes in the Twitter network

 Links in the Twitter network

 Network representation in the JSON format

 Visualization with D3.js

 Visualization Parameters

 Exploring the social network

 Representing a network with an adjacency matrix

 Reading JSON files with type providers

 In-degrees and out-degrees

 Finding the most-connected users

 Using the R provider to visualize the degree distribution

 Log degree distribution and scale-free networks

 PageRank

 Mathematical formulation of PageRank

 Calculating PageRank with a damping factor

 Using MapReduce to compute PageRank

 PageRank results

 Visualizing important nodes

 Summary

 About the author

 Chapter 6. Integrating stock data into the F# language

 Introducing type providers

 Using the CSV type provider

 How the CSV provider works

 The philosophy behind type providers

 Designing and implementing the CSV type provider

 Design strategy

 Inferring column types

 Implementing the runtime and type provider

 Implementing the Yahoo! Finance type provider

 Getting company information using YQL

 Implementing the type provider

 Generating company names lazily

 Reusing the CSV provider

 Yahoo! Finance provider in action

 Summary

 About the author

 3. Developing complete systems

 Chapter 7. Developing rich user interfaces using the MVC pattern

 Setting the scene

 The trading application

 Introducing the MVC pattern

 Defining the model

 Implementing the main trading view

 Handling interactions in the controller

 Gluing together the MVC pieces

 Living in an asynchronous world

 Making data binding safer

 Are magic strings the only choice?

 Introducing statically typed data binding

 Handling nullable values in data binding

 Handling conversions

 Adding transformations

 Summary

 About the author

 Chapter 8. Asynchronous and agent-based programming

 All about asynchronous workflows

 What are asynchronous workflows?

 Meet the agents

 Extracting data from the world

 The extract, transform, and load (ETL) model

 Scheduling ETL work

 Implementing ETL pipeline workers

 Putting a system together

 Introducing scalable systems

 Building on event streams

 Designing for scalability

 Implementing the system

 Going beyond simple agents

 Summary

 About the author

 Chapter 9. Creating games using XNA

 Getting started

 Defending Europe against incoming missiles

 Understanding the execution flow of an XNA game

 Structure of an XNA game in Visual Studio

 Selecting the input device on the Press Start screen

 Modeling and updating the game world

 Rendering the game and the scoreboard

 Rendering the game

 Rendering the scoreboard

 Performing I/O safely using async

 Putting it all together

 Summary

 About the author

 Chapter 10. Building social web applications

 Designing a social game

 Features

 The UI

 Client-server interaction

 Prerequisites

 Implementing the contracts

 The model

 Requests and response objects

 Implementing the server

 Common utility functions

 The data access layer

 The game engine

 The HTTP server

 Implementing the client

 The XAML

 Representing the game state

 Utility functions

 The app

 Putting it together

 Summary

 About the author

 4. F# in the larger context

 Chapter 11. F# in the enterprise

 Sample project

 We’ll start with some data

 Creating the basic service implementation

 Creating a client wrapper for the service

 Giving your application a user interface

 Creating the basic Prism shell

 Creating a Prism WPF plug-in module in F#

 Making your service available throughout the application

 Summary

 About the author

 Chapter 12. Software quality

 What software quality really means

 Understanding requirements

 Avoiding defects early with types

 Holistic approach to testing

 From exploratory to unit testing

 Exploratory testing

 Unit testing

 Parameterized tests

 Writing effective unit tests

 Fuzz testing with FsCheck

 Avoiding dependencies with test doubles

 Acceptance testing

 State of the art

 Specifying behavior with TickSpec

 Summary

 About the author

 F# walkthrough: looking under the covers

 From expressions to functions

 Starting with expressions

 Wrapping expressions in functions

 Using functions as values

 Constructing and destructing data

 Representing composite values with tuples

 Representing composite values with records

 Representing choices with unions

 Object-oriented programming: the good parts

 From functions to interfaces

 Implementing interfaces

 Composition over inheritance

 Summary

 About the author

 Index

 List of Figures

 List of Tables

 List of Listings

Contributors

 	Chris Ballard
 	chapter 11

 	Keith Battocchi
 	chapter 6

 	Colin Bull
 	chapter 8

 	Chao-Jen Chen
 	chapter 4

 	Yan Cui
 	chapter 10

 	Johann Deneux
 	chapter 9

 	Kit Eason
 	chapter 2

 	Evelina Gabasova
 	chapter 5

 	Dmitry Morozov
 	chapter 7

 	Tomas Petricek
 	
chapters 1 and 3, appendix

 	Don Syme
 	chapter 1

 	Phillip Trelford
 	chapter 12

Preface

 For the last two years, interest in F# and functional-first programming has been growing steadily. More than 10 books about F# are now on the market, more than one new user group has appeared somewhere in the world every month during the last year, and the number of members of and visitors to the F# Software Foundation has been increasing at a steady rate.

 Many people become interested in F# because they hear about the benefits that functional-first programming gives you: the F# type system mostly removes the need for null checking and other invalid states; avoiding a mutable state and its declarative nature makes it easier to understand your programs; and the agent-based programming model simplifies concurrency. These are all nice facts about F#, but how do you put them into practice?

 We provide the answer with this book. Rather than introducing F# language features using simple, toy examples, we worked with F# experts who have hands-on F# experience. We asked each of them to write a chapter based on a real scenario that they solved with F#. Each chapter is a case study documenting not just the source code written, but also the author’s approach to solving the problem, how it integrates with the broader ecosystem, and the business benefits gained from using F#.

 This means the narrative of the book isn’t built along the technical aspects of the F# language. Instead, we focus on the business benefits you get from using F# in practice. Although we look at diverse domains ranging from game development to financial systems and social network analysis, there is still a common theme. The four key concepts you’ll see repeated over and over are time-to-market, taming complexity, correctness, and performance. How these concepts fit with actual business problems is covered in detail in chapter 1, which was coauthored by lead F# language designer Don Syme.

Acknowledgments

 As the editor of this book, but author of only part of it, I feel slightly uncomfortable writing the acknowledgements section, because this book would not exist without the authors of the individual chapters, and they deserve most of the credit and thanks. In other words, if the book feels inconsistent, it’s because of me; but if you like the content, you should thank the individual authors! You will find their names and bios at the end of each of the chapters. I would also like to thank my co-editor, Phil, who helped to shape the book and find an interesting group of contributors.

 The main theme of this section is patience. I’m grateful to everyone at Manning for their continued support despite the numerous delays as we worked on this book. I would also like to thank all the readers of the MEAP (Manning Early Access Program) version of this book who did not ask for a refund and believed that they would eventually receive a finished book. It took a long time, but it’s finally here!

 As I said, most of the acknowledgments should be dedicated to the authors of the individual chapters and the great people around them who supported them while they were writing (and hopefully made my continuous nagging bearable!). Thank you all for letting your friends, husbands and wives, or fathers and mothers work on this book for so many nights and weekends!

 I want to thank everyone at Manning who made this book possible: Mike Stephens, who helped start the project; Marjan Bace, who trusted us; Cynthia Kane, who kept the project alive during crucial times; and the many individuals who worked on the book during production, including copyeditor Liz Welch, proofreader Tiffany Taylor, typesetter Dennis Dalinnik, and many others who worked behind the scenes. Special thanks to Mark Seemann for his careful technical proofread of the book shortly before it went into production.

 Finally, the book also benefited greatly from the feedback that was provided by the reviewers of early drafts. This includes Adrian Bilauca, Christopher Reed, Dave Arkell, David Castro Esteban, Dennis Sellinger, Jeff Smith, Jon Parish, Jonathan DeCarlo, Kostas Passadis, M Sheik Uduman, Mark Elston, and Pasquale Zirpoli. Thank you!

 TOMAS PETRICEK

About this Book

 Have you looked into F# briefly, found it interesting, and felt that your business could benefit from using it—but you aren’t sure how to best use F# in practice, how to approach problems from the functional-first perspective, and how to convince your colleagues that F# is the right choice? If you’re nodding while reading these words, then you’re holding the right book!

 In this book, we’ve tried to answer many of the difficult questions that you have to answer when you learn F# and want to use it in practice. What does your business gain from adopting functional-first programming? What are some of the areas where people have succeeded with F#, and what is the best strategy for integrating F# with the rest of your ecosystem? And how do F# developers and architects think when they approach a problem?

 These aren’t easy questions, and there isn’t a single answer. So rather than seeking just 1 answer, we collected 11 answers from different people who come from different backgrounds and different industries. If you’re working in a particular industry, then you’ll likely find a chapter that is close to what you’re doing, and you can start reading the book from there, focusing on the topic(s) that are close to you. That said, none of the chapters is specific to a single industry or a single problem. Each chapter has a more general takeaway point that is interesting even if you’re coming from elsewhere.

 Although the chapters were written by different people and cover different topics, we tried to find a common narrative for the book. This link is provided by chapter 1, “Succeeding with Functional-First Languages in the Industry,” which is based on Don Syme’s talk from NDC 2013. As someone who has been in touch with many successful F# users since the first versions of F#, Don is the most qualified person to give the bigger picture. And you’ll see that the points discussed in chapter 1 keep reappearing in the later chapters.

What will this book give you?

 If you’re still wondering whether this is the right book for you, here’s what you’ll get from reading it:

 	
Industrial case studies —Rather than focusing on toy examples to demonstrate language features, this book is based on real uses of F# in the industry. In other words, you won’t see another naïve Fibonacci calculation, but rather a calculation of a cumulative binomial distribution used in a real-world life expectancy model, with unit tests and C# integration.

 	
Functional-first thinking —When explaining the implementation, each chapter offers a bigger picture and describes not just the finished code, but also the considerations that motivated the solution. This means you’ll learn how experienced F# developers and architects approach the problem and how this differs from (and overlaps with) other methodologies, such as object-oriented and test-driven approaches.

 	
Business value —As developers, we often get carried away with interesting technical problems and forget that software is created to solve business problems and produce a unique business value. We tried to keep this in mind throughout the book. For more business-minded readers, this book explains what you gain by using F#. For more technical readers, we give you all you need to effectively explain the benefits of F# to your colleagues and managers.

 Of course, no single book can be a great fit for all purposes, so it’s worth saying what this book isn’t, to avoid disappointment.

What won’t this book give you?

 This book is not an F# language introduction. Although it includes an appendix that gives a quick overview of the most important F# language features, it’s probably not the first F# resource you should look at. You don’t need to be an F# expert to read this book, but some basic familiarity with the language is useful if you want to understand all the technical content of the book.

 The book includes 11 different case studies, but you probably won’t find a ready-to-use solution to the problem you’re currently solving (unless you’re really lucky). We teach you how to use the functional-first approach to solve problems in the industry, and we demonstrate this using a number of examples from diverse domains, but in the end, you’ll have to do the work on your own.

 If there is a single rule in computing that always holds, it’s the rule that there is no single rule in computing that always holds. Keep this in mind when reading this book and using the ideas described here!

How to read this book

 Unfortunately, books these days still have to be organized in a sequential order, including this one. This is perhaps the best order to follow if you want to read the entire book, because it starts with more accessible chapters and continues to more advanced topics. But there are other options:

 	
By problem domain —Later chapters don’t generally rely on earlier chapters, so if you’re working in a specific industry (say, finance or gaming), you can start with the chapters that discuss topics that are closest to your domain.

 	
By programming theme —Similarly, you can look at the cross-cutting problems that interest you. For example, choose the chapters that talk about user-interface development, writing numerical calculations, testing, and enterprise or asynchronous and concurrent programming.

 	
As a technology overview —Finally, you can read parts of this book to get an overall idea about the business value that F# provides. If you’re not interested in all the technical details but want to know why and how F# is used, you can read chapter 1 and then read the first few pages of the other chapters. Each chapter starts with the business perspective, so you get a good idea of the reasons to choose F# for different problems and tasks.

 To help you find what you’re interested in, let’s quickly go through the table of contents.

Roadmap

 The book starts with an introductory chapter, followed by four parts that group the content by theme. It ends with a brief F# overview in an appendix:

 	
Chapter 1 looks at the business motivations behind using functional-first programming languages. What are the problems faced by businesses when developing software (especially analytical components)? How does F# help to solve those?

 Part 1 contains easier-to-read chapters that serve as a great starting point to refresh your F# knowledge. It also demonstrates how F# makes it possible to write code that corresponds to the description of a problem domain:

 	
Chapter 2 presents a relatively simple numerical problem that arises when modeling life expectancies. It shows how you can easily encode numerical computations in F# and goes into interesting details about making the implementation practical.

 	
Chapter 3 explores the power of pattern matching for encoding the logic of your code. The example used throughout the chapter is a simple Markdown parser, but the chapter also highlights the benefits of modeling domain using functional types.

 Part 2 focuses on implementing advanced analytical components for calculations and data processing:

 	
Chapter 4 looks at using F# for financial simulations using Monte Carlo methods. Because of the nature of the problem, this chapter is more mathematical than the others, but the key point is easy to see: F# makes it easy to turn mathematical models into code.

 	
Chapter 5 uses F# to understand social networks—specifically, Twitter. It’s a great example of end-to-end data analysis with F#, starting from data access, implementing algorithms such as Page Rank, and visualizing data using the D3 visualization library.

 	
Chapter 6 looks at writing type providers—a unique F# feature that makes it possible to integrate external data sources directly into the F# language. The chapter describes the implementation of a type provider for easy access to stock prices using Yahoo! Finance.

 Part 3 discusses how to use F# for the development of complete systems:

 	
Chapter 7 is a myth buster. It shows not only that F# can be used for user interface programming, but also that using F#, you get additional safety and correctness that would be impossible in other languages. The chapter uses a simple trading application as an example.

 	
Chapter 8 discusses the development of scalable concurrent data processing using F# asynchronous workflows and the agent-based programming model. Along the way, it creates a simple agent-based framework and also an elegant computation expression for writing data-processing computations.

 	
Chapter 9 is about game development with F#. It incorporates topics that are important in pretty much any application: how to asynchronously handle user interactions and how to implement control-flow logic that is modeled using state machines.

 	
Chapter 10 is based on experience with developing the server-side part of social games using F#. It discusses the unique challenges of social gaming (like scalability) and develops a simple yet complete multiplayer farming game.

 Part 4 describes how to integrate F# with the larger context:

 	
Chapter 11 takes a step back from the technical perspective and discusses how to succeed when introducing F# into the enterprise. It talks about using F# in a risk-free way and integrating F# components into larger C# solutions.

 	
Chapter 12 talks about one of the easiest ways of introducing F# into the enterprise: testing. It doesn’t just talk about unit tests, but instead discusses what should be tested, how to write useful tests, and how F# simplifies this task through a number of great libraries.

 Finally, the appendix is a quick overview (and reminder) of key F# features. Rather than going through language features one by one, it tries to show the bigger picture—the focus on compositionality that exists in all aspects of the language.

Online resources

 As already mentioned, this book doesn’t cover all aspects of the F# language. You may find it useful to read it with an internet connection available, so that you can find the F# details that didn’t fit into the book.

 The best starting point for finding information about F# is the F# Software Foundation (www.fsharp.org). Its learning page provides links to other great F# books, as well as a number of great free resources that cover most of F#:

 	Try F# (www.tryfsharp.org) is a website with interactive tutorials that you can run in your web browser (using Silverlight). It includes tutorials that introduce F#, work with data, and also use F# in finance.

 	F# for Fun and Profit (www.fsharpforfunandprofit.com) is a great website that includes tutorials on some of the most important F# features, such as understanding F# types.

 	F# Wikibook (http://en.wikibooks.org/wiki/F_Sharp_Programming) is a detailed site that documents most of the F# language constructs, ranging from expressions to object-oriented features and advanced topics.

Code conventions and downloads

 All the source code in the book, whether in code listings or snippets, is in a fixed-width font like this, which sets it off from the surrounding text. Output from F# Interactive appears in an italicized fixed-width font. In most listings, the code is annotated to point out the key concepts, and numbered bullets are sometimes used in the text to provide additional information about the code. We have tried to format the code so that it fits within the available page space in the book by adding line breaks and using indentation carefully.

 The code examples in most of the chapters are self-contained, but we also maintain a repository where you can easily download all the samples and play with them without typing everything yourself. You can find all the links on the book website maintained by the authors at www.functional-programming.net/deepdives.

 The code for the examples in the book can also be downloaded from the publisher’s website at www.manning.com/FSharpDeepDives.

Author Online

 Purchase of F# Deep Dives includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and other users. To access the forum and subscribe to it, point your web browser to www.manning.com/FSharpDeepDives. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum.

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 Chapter 1. Succeeding with functional-first languages in the industry

 Tomas Petricek with Don Syme

 Any other programming book would start by introducing the technology it’s about, but we’re going to do things differently. See, most of the time, you don’t read programming books just because you want to learn about a technology. Of course you want to learn the technology, but that’s secondary—you want to learn it because you face a practical problem that you need to solve, and you want to do this more rapidly, more reliably, and with fewer bugs than with the technologies you were using before. For that reason, this chapter isn’t focused on the F# language, but instead on solving practical business problems.

 When talking about programming languages, it’s easy to lose this big picture—we programmers are often excited about interesting technical aspects, innovative language features, or elegant ideas. But the evolution of programming languages really does matter in practice, because it enables us to tackle more complex problems and build products that we couldn’t even imagine a couple of years ago. For example, who would believe that computers would be able to instantly translate spoken English to spoken Chinese, while maintaining the style of the speaker’s voice?[1]

 1 BBC News, “Microsoft demos instant English-Chinese translation,” November 9, 2012, www.bbc.co.uk/news/technology-20266427.

 In this chapter, we’ll look at the business motivations behind using F#, drawing from a number of case studies made by existing F# users. The technical aspects of many of the case studies are explained in later chapters by the people who developed and successfully deployed them. We’ll start with a business situation that many F# users share, and then we’ll look at the business problems they faced and how they solved them.

 But before discussing the main topic of this chapter—business motivations—we’ll briefly look at how F# fits in with the current industry trends and at the rich F# ecosystem that combines commercial companies and an enthusiastic open source community.

F# as part of an ecosystem

 Technologies never exist separately in themselves, and F# is no different. From an overall perspective, it fits perfectly with two important trends in the industry: functional and polyglot programming. At a closer look, there’s a large and lively ecosystem around F# that’s represented by the F# Software Foundation (www.fsharp.org). Let’s look at what this means in practice.

Reflecting industry trends

 In recent years, there have been two clear trends in the programming language world:

 	
Functional programming is now undeniably a trend in the industry. An increasing number of programming languages support the functional paradigm, including C++, C#, JavaScript, Python, and Java 8. Moreover, the functional approach underlies many successful libraries, including LINQ and Task Parallel Library (TPL) in the .NET world, and also jQuery and Node.js.

 	
Polyglot programming is the trend of combining multiple languages or paradigms in a single project to take advantage of their benefits where they can be of most use. At the same time, polyglot programming makes it easier to integrate existing stable components with new additions. When using multiple languages, you don’t need to rewrite the entire system in a new language when you want to use it—it’s perfectly possible to write new components in a different language and integrate them with the existing codebase.

 How about F#? First, it’s a functional-first language. This means F# encourages programmers to use the functional approach, but it fully supports other paradigms. You can use object-oriented style for integrating F# code in larger systems, and you can use imperative style to optimize performance-critical parts of your code.

 Second, F# can integrate with a wide range of platforms and languages. It can be compiled to .NET and Mono, and also to iOS and Android (using Xamarin tools) or JavaScript (using WebSharper or FunScript). The type-provider mechanism allows integration with environments like R and MATLAB, as well as databases, WSDL and REST services, and Excel. Let’s go a little bit deeper before moving on.

Making functional-programming first-class

 The About F# page on the F# Software Foundation website has the following tagline:

 F# is a strongly-typed, functional-first programming language for writing simple code to solve complex problems.

 The strongly typed part refers to the fact that F# uses types to catch potential errors early and also to integrate diverse data sources and other programming environments into the language. As you’ll see in later chapters, the types in F# feel different from those in languages like C++, C#, and Java. This is mainly thanks to type inference, which figures out most of the types for you.

 The functional-first wording refers to F#’s support for immutable data types, higher-order functions, and other functional concepts. They’re the easiest way to write F# code, but they’re not the only way. As already mentioned, F# supports object-oriented and imperative but also concurrent and reactive programming paradigms.

 Finally, the last part of the statement says that F# is a language that lets you solve complex problems with simple code. This is where we need to look at the broader business perspective. We encourage all readers, including developers, to continue reading this chapter; understanding the business perspective will help you succeed with F#.

Making polyglot programming first-class

 These days, polyglot programming goes well beyond combining F# and C# on a single .NET runtime. Applications consist of components written in multiple languages, using remote services via REST or WSDL. Scientific computations may call scripts written in R or MATLAB or use optimized FORTRAN or C/C++ libraries; web applications need to call JavaScript libraries; and so on.

 As a language that can be compiled to .NET and Mono, F# easily interoperates with languages like C++, C#, and Visual Basic .NET, but that’s just the beginning. Without going into the details, here are some of the options:

 	
F# on iOS and Android —Thanks to the Xamarin tools, it’s possible to develop iPhone, iPad, and Android applications in F#. The tools come with full F# editor support, based on the community-developed open source MonoDevelop integration.

 	
F# for the web and HTML5 apps —WebSharper is a supported product that lets you develop cross-tier and client-side HTML5 applications using F#. An open source project called FunScript has similar aims and can also import JavaScript libraries using the type-provider mechanism.

 	
F# for GPU programming —F# can be compiled to GPU code using Alea.cuBase. There are also efficient GPU stats libraries like StatFactory FCore.

 	
F# and R, MATLAB, and Excel —F# 3.0 type providers enable integration with R and MATLAB. You can call R and MATLAB functions directly from F# in a typed way with auto-completion. Similarly, you can access Excel data or even run F# in Excel.

 	
F# and web-scale data sources —Type providers bring web-based knowledge to the language. They provide integration with Freebase (a knowledge database), World Bank data, and arbitrary web services and REST-based services.

 The type-provider mechanism is explained in chapter 6, and we’ll look at how you can write a provider that integrates stock data directly into the language. To understand the balance between different languages in an enterprise context, see chapter 11. For all the other topics, the F# Software Foundation website (http://fsharp.org) is the best starting point.

 Before moving to the main topic of this chapter—the business perspective—let’s switch from looking at general industry trends to the ecosystem that exists around the F# language and its commercial and open source contributors.

Building a healthy environment

 F# is an open source, cross-platform language that has a number of industrial supporters as well as a lively open source community. The contributors work together through the F# Software Foundation, which also hosts the F# homepage at www.fsharp.org—a useful resource if you’re looking for both technical and nontechnical information about F#.

 	

 F# Software Foundation (FSSF)
 To quote the mission statement, “The mission of the F# Software Foundation is to promote, protect, and advance the F# programming language, and to support and facilitate the growth of a diverse and international community of F# programmers.” This is achieved in a number of ways.

 	FSSF maintains an open source repository for the F# source code and community projects (http://github.com/fsharp), and it manages contributions to key F# projects.

 	FSSF seeks to expand the relevance of F# skills and the range of platforms and technologies that can be used with F# and to promote the adoption of F#. This is done, for example, by supporting conferences, training, and other events and collecting testimonials from existing users (http://fsharp.org/testimonials).

 	FSSF provides room for affiliated groups, including F# user groups around the world (http://c4fsharp.net) and technical working groups that focus on developing F# in a specific direction, such as data science and machine learning or open engineering.

 The F# Software Foundation is registered as a non-profit organization and allows those who agree with the mission statement to join. It also encourages members to join specific technical working groups where they can engage with the community and help to work toward FSSF’s goals.

 	

 FSSF guarantees long-term support for F# and provides a collaboration platform for all the interested parties:

 	MSR Cambridge contributes to the language design.

 	The community develops open source extensions and tools.

 	Xamarin provides support for iOS and Android.

 	The Microsoft product group builds professional F# tooling for Windows.

 	SkillsMatter provides F# training and conferences.

 	BlueMountain Capital contributes to key data-science libraries.

 And this is just the start of the list!

F# from a business perspective

 The problem with understanding the business needs for F# (or any other programming language) is that programming languages are complex technologies. Their implications for business are indirect and can be hard to imagine. The “Learning from case studies” section later in this chapter will discuss concrete areas where F# is used, but first let’s look at the problem more generally—what are the business motivations for adopting F#?

 To deal with this question, we’ll borrow ideas from SPIN,[2] which is a methodology for “selling complex products.” But don’t worry—this isn’t a sales-pitch chapter! The methodology tells us that we need to ask four important questions to understand the business perspective for a complex technology. In this chapter, we’ll go through some common answers from F# adopters (but, of course, the situation is different for every company).

 2 Neil Rackham, SPIN Selling (McGraw-Hill, 1988).

 	

 SPIN selling
 The idea of SPIN selling is to ask potential customers a series of questions that help them understand the business needs for the new technology (as illustrated in the figure):

 	
Situation —What is the customers’ existing situation? In our context, what software are they developing, and what are their constraints?

 	
Problem —What problems do the customers face in their current situation? What do they struggle with during the development of their projects?

 	
Implication —What are the business implications of those problems? Do the problems mean projects aren’t finished on time or that developers can’t deliver products with all the required features?

 	
Need —What is needed to overcome these problems? How can a new technology, such as a programming language, help solve these problems?

 [image:]

 The SPIN selling methodology describes the situation, followed by a specific problem. It proceeds to implications of the problem and only then asks, “What is needed to solve the problem?”

 You can probably imagine a lengthy sales call based on these questions, but also look at the positive side. It’s all too easy for a technical person to skip the first and third questions and say something like, “Our trading system doesn’t scale, so we need to rewrite it in F#.” This might be true, but it’s a difficult argument to make without understanding the business context.

 	

 The business situations for each chapter in this book are different, ranging from companies developing financial systems or models to companies developing user interfaces in games and web applications. One of the most common situations for F# adopters is the development of analytical and data-rich components.

 	

 Analytical and data-rich components
 Most applications contain a computational core that implements business logic, or a component that accesses a wide range of data sources. For some applications (such as CRUD user interfaces), the computational core may be simple, and most of the focus may be on data. For other applications (such as games), data access is minimal, but the computation matters.

 Such analytical and data-rich components are what make the application valuable, but with such a general definition, the value may be hard to see. Here are some examples from later chapters:

 	Financial models and insurance-calculation engines, such as those discussed in chapters 2 and 4, are examples of analytical components.

 	Analytical components in games include artificial intelligence but also the component that’s responsible for managing the flow of the gameplay (see chapter 9).

 	Another example of an analytical component is an algorithm that analyzes social networks and tells you how to better target advertisements, or recommends people whom you might want to follow (see chapter 5).

 	

 So, what’s the general business situation we’re looking at? For the purposes of this chapter, let’s imagine that you’re leading a team developing analytical or data-rich components. Other business situations, such as developing complex user interfaces, are equally important, but choosing one scenario will help us keep the chapter focused.

 	

 Technology Radar

 The choice of analytical and data-rich components as our motivating scenario isn’t an arbitrary decision. ThoughtWorks’ Technology Radar publication recommends exactly this use of F#, although using a different wording: “F# is excellent at concisely expressing business and domain logic. Developers trying to achieve explicit business logic in an application may opt to express their domain in F# with the majority of plumbing code in C#.”[3]

 3 ThoughtWorks, Technology Radar, March 2012, http://mng.bz/wZvF.

 	

 The first task is to understand the business problems that you might have as a team leader for a company developing analytical and data-rich components.

Understanding business problems and implications

 As already mentioned, we’re focusing on analytical and data-rich components. Imagine a team developing financial or actuarial models, a team developing server-side components for a massive multiplayer game, or a team building machine-learning algorithms for a social network or ecommerce recommendation system.

 There are a number of specific criteria for such systems. An important part of the development process is research or prototyping. Developers need to be able to quickly try multiple, often complex, algorithms and test them. These then have to be deployed to production as soon as possible; and for computationally heavy tasks, the algorithms need to be efficient.

 The four most common problems are summarized in figure 1. Analytical applications typically implement more complex tasks than the rest of the system; they only deliver value if the implementation is correct, is delivered in time, and satisfies nonfunctional requirements such as efficiency. Table 1 revisits the problems and explores their business implications.

 Figure 1. The key business concerns for developing analytical and data-rich components

 [image:]

 Table 1. Business problems and their implications

 	
 	
 Problems

 	
 Implications

 	Correctness
 	As computers become more efficient, financial and actuarial models grow increasingly complicated. The amount of available data grows equally quickly, so algorithms that process this data become more advanced. Maintaining the correctness of such systems raises many problems. It becomes difficult to add new features without breaking existing code, and systems may break as data sources and formats evolve. In settings where models are developed by researchers and are later reimplemented by developers for production code, it’s hard to keep the two in sync. An incorrect system that produces incorrect values can easily lead to wrong decisions being made.
 	If a user interface displays a picture incorrectly, your user will likely be annoyed, but they won’t lose money. But money can easily be lost if something goes wrong in an analytical component of a financial system. An infamous example of a correctness problem was the Mars Climate Orbiter probe launched by NASA in 1998. The probe failed during launch because one part of the system was using metric units (force measured in Newtons) and another was using imperial units (measured in pound force). Even when incorrect systems don’t have such massive consequences, they may lead to buggy services and the loss of reputation for the company, or to buggy products and a loss of customers.

 	Time to market
 	Another important consideration for analytical and data-rich components is the time to market—how much time is needed before an initial idea can be turned into production-quality code. For example, a financial company might have a research department that develops models in statistical or numerical environments like R and MATLAB. When a model is designed and tested, it’s passed to developers who translate the models to C++ for deployment to production. Such translation can easily take six months. Consider another example from the social gaming domain. A quick release cycle is important to make sure that your players keep getting new features, or even new games, every few weeks.
 	In the financial sector, the inability to turn a new mathematical model into a system that can be used in production might mean the business loses an opportunity that exists only in a short timeframe. In the social gaming world, a company will quickly lose players if the games aren’t rapidly updated or new features aren’t added. The time to market is also important in the startup world, which is symbolized by the phrase “fail fast.” You want to be able to develop initial prototypes quickly, so that you can immediately verify the viability of some idea. If the prototype does work, you should also be able to quickly turn it into a complete project.

 	Efficiency and scalability
 	Two related concerns are efficiency and scalability. Efficiency is mainly important for computationally heavy software such as financial models. For example, models that were originally developed by researchers in R or Python need to be translated to more efficient C++ code or optimized Python. If the researchers were able to write their models more efficiently, then the translation step wouldn’t be needed. Scalability matters even for software that doesn’t perform heavy computations. A server-side application (such as a social game backend) or UI (a game frontend) needs to handle multiple concurrent requests or user interactions.
 	Efficiency and scalability have varying importance in different contexts. A common case for efficiency in financial systems is that models need to be recalculated overnight, so there’s a hard limit. Failure here means up-to-date information isn’t available. Similarly, when serving a web page with ads, the ad service needs to choose an appropriate ad based on the user’s information almost instantly. As for scalability, server-side code that doesn’t scale will consume excessive resources and make maintenance costly. On the client side, nonscalable applications can hang and lead to a poor user experience.

 	Complexity
 	Analytical and data-centric components are usually the parts of an application that implement advanced logic. They provide value by implementing mathematical models, data analyses, or processing of concurrent events. In a poorly designed system, complexity can easily grow beyond a tractable level, most commonly because different features that should be independent interact in unexpected ways.
 	As a result of increasing complexity, your company might not be able to implement a desired financial model, AI behavior, or data analytical component, because it’s too complex. As a result, you won’t be able to provide the data that users and customers need (or not at the required quality), or an entire project or product may fail. In other words, without the right tools, you’ll often have to settle for a suboptimal solution.

 The business problems and implications outlined here are by no means complete, and they overlap. Handling efficiency or complexity often impacts time to market—you need to spend more time optimizing your system or tracking bugs. Efficiency and scalability are also often linked to correctness. In an attempt to make code more efficient, you could easily introduce bugs when trying to parallelize code that uses shared state.

 The key takeaway from this section is that developing software is hard. Exactly where the difficulties lie will depend on the particular software you’re developing. Understanding these difficulties and how they affect the business is crucial to finding the right way to tackle them, and one solution may be using a more appropriate programming language!

Inferring business needs

 Many of the business problems discussed in the previous section are directly addressed by language features in functional-first programming languages or by their inherent aspects. We’ll discuss F#-specific features, but many of these observations apply to other functional-first languages.

 	

 Functional-first programming languages
 We use the term functional-first to distinguish between purely functional languages and those that combine functional aspects with other paradigms. As with any language classification, this is, to a large extent, a subjective measure.

 In traditional functional languages, such as Miranda, Haskell, and ML, the only way to write programs is to fully adopt a functional style. There may be some exceptions (such as effects in ML), but the overall program structure has to be functional.

 In functional-first languages, the functional approach is highly encouraged. This is done mainly by choosing the right defaults and using syntax that makes the functional style more convenient. But it’s still possible to use other styles.

