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front matter


  
preface


  I joined Lightbend a little more than four years ago, and soon I began to visit customers and train them to build reactive architectures. I heard the same questions over and over again, and in trying to explain the principles, I learned much of what this book is about. But I wouldn’t have written the book if it weren’t for my friend Raymond Roestenburg.


  The opportunity to write this edition of this book came to me by accident. I was working with Ray, and one day, he told me that he had written the previous edition. It was a bit outdated by then, and he thought it would make sense to have the next edition deal with the conversion from Akka Classic to Akka Typed. Writing a book is a lot of work, and he didn’t have the time. I did, and I didn’t lack motivation. I got in touch with Manning, and we made a plan. And here we are.


  Since the first edition of this book, Akka has changed a lot, not only from untyped to typed actors but also to include some other abstractions—storing the state of actors with Akka Persistence, evenly distributing actors with Akka Sharding, creating views from an actor’s history with Akka Projections, and more. Some of these abstractions were already there but were not used as often, and others are brand new.


  This book’s scope is due to my experience as a trainer for Lightbend. Akka has many modules, and for new users, it is difficult to know where to look. This book should give you enough breadth and depth to be sure you know the essentials of Akka as well as the tools you should know and will use often.
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about this book


  Akka in Action, Second Edition is a book about the Akka basics: most of the primitives Akka provides so that you can build Akka microservices alongside traditional Akka applications in a professional context. It focuses on each topic and goes into examples that are simple at the beginning and more complex later, building on the previous chapters. This way, you end up with a complete application that resembles what you'll find in practice.


  
Who should read this book


  A minimally qualified reader is a developer with two to three years of experience as a developer, preferably in Java or Scala. You are familiar with object-oriented ideas such as methods, classes, and inheritance. You are also at least aware of the principles of functional programming. Finally, the idea of threads and the complexity of concurrent, distributed programming are not foreign to you, but previous experience solving those problems is not required.


  
How this book is organized: A roadmap


  The book includes 16 chapters and 2 appendixes:


  
    	
      Chapter 1 introduces Akka actors. You learn how the actor programming model solves a number of problems that have traditionally made scaling applications difficult.

    


    	
      Chapter 2 looks at a few minimal examples of how to create an Akka application with only one actor to send messages to.

    


    	
      Chapter 3 shows how to create a more realistic scenario with multiple actors sending messages back and forth.

    


    	
      Chapter 4 is about unit tests for actors with ScalaTest and the akka-testkit module.

    


    	
      Chapter 5 explains how supervision and monitoring enable the construction of reliable, fault-tolerant systems with multiple actors.

    


    	
      Chapter 6 explores how actors can communicate when they are not in a parent-child relationship, with the receptionist and with routers.

    


    	
      Chapter 7 explains how to use the Typesafe Config Library to configure Akka and your own application components.

    


    	
      Chapter 8 examines how clustering in Akka is necessary to create distributed applications. It also discusses internals such as the lifecycle of a node in relation to the cluster.

    


    	
      Chapter 9 shows how to use Akka Sharding and Akka Persistence to distribute actors in the cluster and keep their state in durable storage.

    


    	
      Chapter 10 covers the basics of creating streams with Akka Streams, querying the history of persistent actors with Akka Persistence Query, and creating views from this history with Akka Projections.

    


    	
      Chapter 11 is about creating Akka servers to make your actors accessible through HTTP and gRPC endpoints.

    


    	
      Chapter 12 summarizes most of what you've learned so far in a real-world example of a betting house, using Akka Persistence to build the actors: a bet, a market, and a wallet.

    


    	
      Chapter 13 expands your knowledge of clustering so that you can create clusters without knowing the IP addresses of your nodes in advance. After that, you learn how to deploy clusters in Kubernetes.

    


    	
      Chapter 14 introduces Alpakka as the umbrella project for all connectors in Akka that you can use to connect external services such as databases, Kafka, and files to your actors. This chapter covers Kafka and files.

    


    	
      Chapter 15 dives deep into the betting-house application, adding Akka endpoints to the application and projections from database to database and Kafka.

    


    	
      Chapter 16 covers Akka Streams: they are a fundamental part of many modules in Akka, and almost every application has a streaming element these days.

    


    	
      Appendix A shows you the tools you need to run all the examples.

    


    	
      Appendix B explores microservices and how their basic features are present in Akka.

    

  


  
About the code


  This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/akka-in-action-second-edition. The complete code for the examples in the book is available for download from GitHub at https://github.com/franciscolopezsancho/akka-topics, and from the Manning website at www.manning.com.


  
liveBook discussion forum


  Purchase of Akka in Action, Second Edition includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/akka-in-action-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.


  
about the author
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1 Introducing Akka


  This chapter covers


  
    	
Why scaling is hard


    	
Write once, scale anywhere


    	
Introduction to the actor programming model


    	
Akka actors


    	
What is Akka?

  


  In this book, you learn how the Akka toolkit provides a single simple programming model for coding concurrent and distributed applications: the actor programming model. Actors are nothing new in and of themselves. What’s unique is the way actors are provided in Akka to scale applications both up and out on the Java virtual machine (JVM). As you’ll see, Akka uses resources efficiently and makes it possible to keep complexity relatively low while an application scales.


  Akka’s primary goal is to make it simpler to build applications that are deployed in the cloud or run on devices with many cores and that efficiently take advantage of the full capacity of the computing power available. It’s a toolkit that provides the actor programming model, a runtime, and the necessary tools for building scalable applications. This chapter discusses the context in which Akka was created, the problem it is designed to solve, and its key architectural components.


  
1.1 What is Akka?


  Until the middle of the 1990s, just before the internet revolution, it was usual to build applications that only ever ran on a single computer (a single CPU). If an application wasn’t fast enough, the standard response was to wait for faster CPUs to be developed; there was no need to change the code. Problem solved. Programmers worldwide got a free lunch, and life was good.


  Note In 2005, Herb Sutter wrote in Dr. Dobb’s Journal about the need for a fundamental change (http://www.gotw.ca/publications/concurrency-ddj.htm): he said that the limit of increasing CPU clock speeds had been reached, and the free lunch was over.


  Around 2005, when Herb Sutter wrote his excellent article, companies ran applications on clustered multiprocessor servers (often no more than two or three—the spare was in case one of them crashed). Support for concurrency in programming languages was available but limited and was considered black magic by many mere mortal programmers. Sutter predicted that “programming languages . . . will increasingly be forced to deal well with concurrency.”


  Let’s see what has changed since then. Fast-forward to today, and applications run on large numbers of servers in the cloud; many systems are integrated across many data centers. The ever-increasing demands of end users push the performance and stability requirements for the systems you build. Concurrency is prevalent, and it is here to stay.


  But support for concurrency in most programming languages has hardly changed, especially on a JVM. Although the implementation details of concurrency APIs have improved, you still have to work with low-level constructs like threads and locks or fibers. Threads are notoriously difficult to work with, and fibers (lightweight threads) force you to think in terms of other low-level constructs like await, interrupt, and join.


  Concurrency is a means to achieve scalability: the premise is that, if needed, more CPUs can be added to servers, which the application then automatically starts using. It’s the next best thing to a free lunch. Scalability is how a system adapts to a change in demand for resources without negatively affecting performance.


  Unlike scaling up (increasing resources: for example, CPUs on existing servers), scaling out refers to dynamically adding more servers to a cluster. Not much has changed since the 1990s in terms of how programming languages support networking—many technologies still use remote procedure calls (RPCs) to communicate over the network.


  In the meantime, advances in cloud computing services and multicore CPU architecture have made computing resources ever more abundant. Platform as a Service (PaaS) offerings have simplified the provisioning and deployment of very large distributed applications, once the domain of only the largest players in the IT industry. Cloud services like Amazon Web Services Elastic Compute Cloud (AWS EC2) and Google Compute Engine allow you to spin up thousands of servers in minutes, while tools like Docker and Kubernetes make it easier to package and manage applications on virtual servers.


  The number of CPU cores in devices is also ever-increasing: even mobile phones and tablets have multiple CPU cores today. But that doesn’t mean you can afford to throw any number of resources at any problem. In the end, everything is about cost and efficiency: effectively scaling applications to get more bang for your buck. Just as you’d never use a sorting algorithm with exponential time complexity, it makes sense to think about the cost of scaling.


  You should have two expectations when scaling an application:


  
    	
      The ability to handle any demand increase with finite resources is unrealistic. So, ideally, you want the resources to increase slowly when demand grows: a linear relationship or better. Figure 1.1 shows the relationship between demand and required resources.

    


    	
      If resources must be increased, ideally, you want the complexity of the application to stay the same or increase slowly. (Remember the good old free lunch when no added complexity was required for a faster application!) Figure 1.2 shows the relationship between resources and complexity.
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  Figure 1.1 Demand vs. resources
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  Figure 1.2 Complexity vs. resources


  Both the number of required resources and the complexity of the application contribute to the cost of scaling. I’m leaving many factors out of this back-of-the-envelope calculation, but it’s easy to see that both rates have a significant effect on the total.


  In one doomsday scenario, you have to pay increasingly more for underutilized resources. In another, the complexity of the application shoots through the roof when more resources are added. This leads to two goals: complexity stays as low as possible, and resources must be used efficiently while you scale the application.


  Can you use today’s common tools (threads or fibers and RPC) to satisfy these two goals? Scaling out with RPC and scaling up with low-level threading aren’t good ideas. RPC pretends that a call over the network is no different from a local method call. Every RPC call, when synchronous, needs to block the current thread and wait for a response from the network for the local method call abstraction to work, which can be costly. This approach impedes the goal of using resources efficiently. When RPC is asynchronous, you are forced to pass a callback, which adds complexity. You may end up in the infamous callback hell: a callback that generates a callback that generates another, and so on, making the logic of the code hard to follow.


  Another problem with this approach is knowing exactly where to scale up or scale out. Multithreaded programming and RPC-based network programming are like apples and pears: they run in different contexts, use different semantics, and run on different levels of abstraction. You end up hardcoding which parts of your application use threads for scaling up and which parts use RPC for scaling out.


  Complexity increases significantly when you hardcode methods that work on different levels of abstraction. Quick—what’s simpler, coding with two entangled programming constructs (RPC and threads) or using just one programming construct? This multipronged approach to scaling applications is more complicated than necessary to adapt flexibly to changes in demand.


  Spinning up thousands of servers is simple today, but as you’ll see in this chapter, the same can’t be said for programming them. Akka gives you a single abstraction to deal with concurrency and scalability: the actor model, which provides coherent semantics that let you work on your business logic without worrying about whether your program needs to run on a thousand servers or just one.


  
1.2 Actors: A quick overview


  Akka is centered on actors. Most of the components in Akka provide support in some way for using actors, whether for configuring actors, connecting actors to the network, scheduling actors, or building a cluster out of actors. What makes Akka unique is how effortlessly it provides support and additional tooling for building actor-based applications so you can focus on thinking and programming in actors.


  Briefly, actors are a lot like message queues without the configuration and message-broker-installation overhead. They’re like programmable message queues shrunk to micro size—you can easily create thousands or even millions of them. They don’t “do” anything unless they’re sent a message.


  Messages are simple data structures that can’t be changed after they’ve been created: they’re immutable. Actors receive messages one at a time and execute some behavior whenever a message is received. Unlike queues, they can also send messages (to other actors).


  Everything an actor does is executed asynchronously, meaning you can send a message to an actor without waiting for a response. Actors aren’t like threads, but messages sent to them are pushed through on a thread at some point. How actors are connected to threads is configurable, as you’ll see later; for now, just know that this is not a hardwired relationship.


  We’ll get a lot deeper into exactly what an actor is. At this point, the most important aspect of actors is that you build applications by sending and receiving messages. A message can be processed locally on an available thread or remotely on another server. You can decide later where the message is processed and where the actor lives, which is very different than when you’re hardcoding threads or using RPC-style networking. Actors make it easy to build an application out of small parts that resemble networked services but have a much smaller footprint and less administrative overhead.


  The Akka team took some of the foundational ideas about actors and, in collaboration with other industry leaders working on how to build better systems, synthesized their knowledge into the Reactive Manifesto.


  
    The Reactive Manifesto


    The Reactive Manifesto (www.reactivemanifesto.org) is an initiative to push for the design of systems that are more robust, more resilient, more flexible, and better positioned to meet modern demands. The Akka team has been involved in writing the Reactive Manifesto from the beginning, and Akka is a product of the ideas expressed in the manifesto.


    Efficient resource usage and an opportunity for applications to automatically scale (also called elasticity) are the drivers for much of the manifesto:


    
      	
        Blocking I/O limits opportunities for parallelism, so nonblocking I/O is preferred.

      


      	
        Synchronous interaction limits opportunities for parallelism, so asynchronous interaction is preferred.

      


      	
        Polling reduces the opportunity to use fewer resources, so an event-driven style is preferred.

      

    


    If one node can bring down all other nodes, that’s a waste of resources. So you need isolation of errors (resilience) to avoid losing all your work.


    Systems need to be elastic: if there’s less demand, you want to use fewer resources. If there’s more demand, use more resources, but never more than required.


    Complexity is a big part of cost. So if you can’t easily test your system, change it, or add new features, you’ve got a big problem.

  


  
1.3 Two approaches to scaling: Setting up the example


  The rest of this chapter looks at a business chat application and the challenges when it has to scale to a large number of servers (and handle millions of simultaneous events). We’ll look at the traditional approach, a method you’re probably familiar with for building such an application (using threads and locks, RPC, and the like), and compare it to Akka’s approach.


  The traditional approach starts with a simple in-memory application that turns into an application that relies completely on a database for both concurrency and mutating state. Once the application needs to be more interactive, you have no choice but to poll the database. When more network services are added, the combination of working with the database and the RPC-based network increases complexity significantly. Isolating failure in this application becomes very hard as you go along. You’ll probably recognize a lot of this discussion.


  We’ll then look at how the actor programming model simplifies the application and how Akka makes it possible to write the application once and scale it to any demand (thereby handling concurrency problems on any scale needed). Table 1.1 highlights the differences between the two approaches. As we discuss these items in the following sections, keep this overview in mind.


  Table 1.1 Differences between the traditional approach and the Akka approach


  
    
      
      
      
    

    
      	
        Objective

      

      	
        Traditional method

      

      	
        Akka method

      
    


    
      	
        Scaling

      

      	
        Uses a mix of threads, shared mutable state in a database (create, insert, update, delete), and web service RPC calls

      

      	
        Actors send and receive messages. No shared mutable state. Log of immutable events.

      
    


    
      	
        Providing interactive information

      

      	
        Polls for current information

      

      	
        Event-driven: pushes when the event occurs

      
    


    
      	
        Scaling out on the network

      

      	
        Synchronous RPC, blocking I/O

      

      	
        Asynchronous messaging, nonblocking I/O

      
    


    
      	
        Handling failures

      

      	
        Handles all exceptions; continues only if everything works

      

      	
        Lets the application crash. Isolates the failure, and continues without the failing parts.

      
    

  


  Imagine that you have plans to conquer the world with a state-of-the-art chat application that will revolutionize the online collaboration space. It’s focused on business users to help teams easily find each other and work together. You probably have many ideas about how this interactive application can connect to project management tools and integrate with existing communication services.


  In good lean startup spirit, you start with a minimal viable product (MVP) of the chat application to learn as much as possible from your prospective users about what they need. If this ever takes off, you could potentially have millions of users (who doesn’t chat or work together in teams?). But two forces can slow your progress to a grinding halt:


  
    	
      Complexity—The application becomes too complex to add any new features. Even the simplest change takes a huge amount of effort, and it gets harder to test the application properly, causing ongoing worry: What will fail this time?

    


    	
      Inflexibility—The application isn’t adaptive. With every big jump in the number of users, the application has to be rewritten from scratch. Each rewrite takes a long time and is complex. You have more users than you can handle, and you’re split between keeping the existing application running and rewriting it to support more users.

    

  


  Let’s say you have been building applications for a while and choose to build this one the way you have in the past, taking the traditional approach: using low-level threads, locks, and RPCs; blocking I/O; and—first on the menu, in the next section—mutating state in a database.


  
1.4 Traditional scaling


  You start on one server. You set out to build the first version of the chat application and come up with a data-model design, shown in figure 1.3. For now, you keep these objects in memory.
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  Figure 1.3 Data model design


  A Team object is a group of Users, and many Users can be part of a Conversation. Conversation objects are collections of Messages. So far, so good.


  You flesh out the application’s behavior and build a web-based user interface (UI). You’re at the point where you can show the application to prospective users and give demos. The code is simple and easy to manage. But so far, the application only runs in memory, so whenever it’s restarted, all conversations are lost. It can also only run on one server. Your web app UI built with [insert shiny new JavaScript library] is so impressive that stakeholders want to immediately go live, even though you repeatedly warn that it’s just for demo purposes. Time to move to more servers and set up a production environment.


  
1.4.1 Traditional scaling and durability: Moving everything to the database


  You decide to add a database to the equation. You have plans to run the web application on two front-end web servers for availability, with a load balancer in front of the application. Figure 1.4 shows the new setup.
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  Figure 1.4 Load balancer/failover


  The code is becoming more complex: you can’t just work with in-memory objects anymore, because how would you keep the objects consistent on the two servers? Someone on your team says, “We need to go stateless!” You remove all feature-rich objects and replace them with database code.


  The state of the objects no longer resides in memory on the web servers, which means the methods on the objects can’t work on the state directly; essentially, all important logic moves to database statements. The change is shown in figure 1.5.
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  Figure 1.5 Data access objects


  This move to statelessness leads to you replacing the objects with a database access abstraction. For this example, it’s irrelevant which one; let’s say you feel retro and use data access objects (DAOs, which execute database statements) that are later used by controllers that define the business logic.


  Many things change:


  
    	
      You no longer have the same guarantees you had when you, for instance, called a method on a Conversation object to add a Message. Before, you were guaranteed that addMessage would never fail since it was a simple operation on an in-memory list (barring the exceptional case of the JVM running out of memory). Now, the database might return an error at any addMessage call. The insert might fail, or the database might not be available because the database server crashed or due to a network problem.

    


    	
      The in-memory version had a sprinkling of locks to ensure that the data wouldn’t get corrupted by concurrent users. Now that you’re using “Database X,” you have to handle that problem and make sure you don’t end up with duplicate records or other inconsistent data. You need to find out how to do that with the Database X library. All simple method calls to objects effectively become database operations, some of which must work in concert. Starting a conversation, for instance, requires at least an insert of a row in the Conversation and Message tables.

    


    	
      The in-memory version was easy to test, and unit tests ran fast. Now you run Database X locally for the tests and add database test utilities to isolate tests. Unit tests run a lot slower. But you tell yourself, “At least I’m also testing the Database X operations,” which were not as intuitive as you expected—they’re very different from previous databases you’ve worked with.

    

  


  You run into performance problems when you’re porting the in-memory code directly to database calls since every call now has network overhead. So, to optimize query performance, you design specific database structures that are specific to your choice of database (SQL or NoSQL, it doesn’t matter). The objects are anemic shadows of their former selves, merely holding data; all the interesting code has moved to the DAOs and the components of your web application. The saddest part of this situation is that you can reuse almost none of the earlier code; the structure of the code has completely changed.


  The “controllers” in your web application combine DAO methods to achieve changes in the data (findConversations, insertMessage, and so on). This combination of methods results in an interaction with the database that you can’t easily predict; the controllers are free to combine the database operations in any way, as illustrated in figure 1.6.
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  Figure 1.6 DAO interactions


  The figure shows one possible flow through the code to add a message to a conversation. You can imagine numerous variations of database access flows using DAOs. Allowing any party to mutate or query records at any time can lead to performance trouble that you can’t predict, like deadlocks and other problems. It’s exactly the kind of complexity you want to avoid.


  The database calls are essentially RPCs, and almost all standard database drivers (say, JDBC) use blocking I/O. So you’re already in the state described earlier, using threads and RPCs together. The memory locks that synchronize threads and the database locks that protect against mutation of table records are not the same thing, and you have to take great care when combining them.


  You went from one programming model to two that are interwoven. Your first rewrite of the application took a lot longer than expected.


  
    This is a dramatization


    The traditional approach to building the team chat app goes sour in a catastrophic way. Although the example is exaggerated, you’ve probably seen projects run into at least some of these problems (I have seen similar cases first-hand). To quote Dean Wampler from his presentation “Reactive Design, Languages, and Paradigms” (http://mng.bz/1q7n), “In reality, good people can make almost any approach work, even if the approach is suboptimal.”

  


  So, is this example project impossible to complete with the traditional approach? No, but it’s suboptimal. It will be very hard to keep complexity low and flexibility high while the application scales.


  
1.4.2 Traditional scaling and interactive use: Polling


  You run in this configuration for a while, and the number of users increases. The web application servers aren’t using many resources; most are spent on (de-)serializing requests and responses. Most of the processing time is spent in the database. The code on the web server is mostly waiting for a response from the database driver.


  You want to build more interactive features now that you have the basics covered. Users are used to Facebook and Twitter and want to be notified whenever their name is mentioned in a team conversation so they can chime in.


  You decide to build a Mentions component that parses every message written and adds the mentioned contacts to a notification table, which is polled from the web application to notify mentioned users. The web application polls other information more often to reflect changes to users more quickly because you want to give them a truly interactive experience.


  You don’t want to slow down the conversations by adding database code directly to the application, so you add a message queue. Every message written is sent to this queue asynchronously, and a separate process receives messages from the queue, looks up the users, and writes a record in a notifications table.


  The database is getting hammered at this point. You find out that the automated polling of the database and the Mentions component are causing database performance problems. You separate the Mentions component as a service and give it its own database, which contains the notifications table and a copy of the users table; these tables are kept up to date with a database synchronization job, as shown in figure 1.7.
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  Figure 1.7 Service component


  The complexity has increased again, and it’s becoming more difficult to add new interactive features. Polling the database wasn’t such a great idea for this kind of application, but there are no other real options because all the logic is in the DAOs, and Database X can’t “push” anything into the web server.


  You’ve also added more complexity to the application by adding a message queue: it has to be installed and configured, and code must be deployed. The message queue has its own semantics and context to work in; it’s not the same as the database RPC calls or the in-memory threading code. Fusing all this code responsibly will be, once again, more complex.


  
1.4.3 Traditional scaling: Transactions


  Users start to give feedback that they would love a way to find contacts using typeahead (the application gives suggestions while the user types part of a contact’s name) and automatically receive suggestions for teams and current conversations based on their recent email conversations. You build a TeamFinder object that calls out to several web services like the Google Contacts API and Microsoft Outlook.com API. You build these web service clients and incorporate the finding of contacts, as shown in figure 1.8.
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  Figure 1.8 TeamFinder component


  Then you find out that one of the services often fails in the worst possible way: you get long timeouts, or traffic slows to only a few bytes per minute. And because the web services are accessed one after the other, the TeamFinder—waiting for the response—fails the lookup after a long time even though the service that worked fine could have made many valid suggestions to the user.


  Even worse, although you have collected your database methods in DAOs and the contact lookup in a TeamFinder object, the controllers call these methods like any others. This means a user lookup sometimes happens between two database methods, keeping connections open longer than you want and eating up database resources. If the TeamFinder fails, everything else that’s part of the same flow in the application also fails. The controller throws an exception and can’t continue. How do you safely separate the TeamFinder from the rest of the code?


  It’s time for another rewrite, and it doesn’t look like the complexity is improving. You’re now using four programming models: one for in-memory threads, one for database operations, one for the Mentions message queue, and one for the contacts web services.


  How do you move from 3 servers to, say, 10, and then to 100 servers if need be? Obviously, this approach doesn’t scale well: you have to change direction with every new challenge. In the next section, you’ll find out if there’s a design strategy that doesn’t require you to constantly change direction.


  
1.5 Scaling with Akka


  Let’s see if it’s possible to deliver on the promise to use only actors to meet the application’s scaling requirements. Since it’s probably still unclear to you what actors are, I’ll use the terms objects and actors interchangeably and focus on the conceptual differences between this approach and the traditional one. Table 1.2 shows this difference in approaches.


  Table 1.2 Actors compared to the traditional approach


  
    
      
      
      
    

    
      	
        Goal

      

      	
        Traditional approach

      

      	
        Akka approach (actors)

      
    


    
      	
        Make conversation data durable, even if the application restarts or crashes.

      

      	
        Rewrite code into DAOs. Use the database as one big shared mutable state where all parties create, update, insert, and query the data.

      

      	
        Continue to use the in-memory state. Send changes to the state as messages to a log. This log is reread only if the application restarts.

      
    


    
      	
        Provide interactive features (mentions).

      

      	
        Poll the database. Polling uses many resources even if there’s no change in the data.

      

      	
        Push events to interested parties. The objects notify interested parties only when there’s a significant event, reducing overhead.

      
    


    
      	
        Decouple services. The mentions and chat features shouldn’t interfere with each other.

      

      	
        Add a message queue for asynchronous processing.


        

      

      	
        No need to add a message queue; actors are asynchronous by definition. No extra complexity; you’re familiar with sending and receiving messages.

      
    


    
      	
        Prevent failure of the entire system when critical services fail or behave outside of specified performance parameters for any given time.

      

      	
        Try to prevent any error from happening by predicting all failure scenarios and catching exceptions for these scenarios.

      

      	
        Send messages asynchronously. If a message isn’t handled by a crashed component, the crash has no effect on the stability of the other components.

      
    

  


  It would be great if you could write the application code once and then scale it any way you like. You want to avoid radically changing the application’s main objects: for example, the way you had to replace all logic in the in-memory objects with DAOs in section 1.4.1.


  The first challenge you wanted to solve was to safekeep conversation data. Coding directly to the database moved you away from one simple in-memory model. Methods that were once straightforward turned into database RPC commands, leaving you with a mixed programming model. You must find another way to ensure that the conversations aren’t lost while keeping things simple.


  
1.5.1 Scaling with Akka and durability: Sending and receiving messages


  Let’s first solve the initial problem of making conversations durable. The application objects must somehow save conversations. The conversations must be recovered when the application restarts. Figure 1.9 shows how a Conversation actor sends a MessageAdded event to the database log for every message that’s added in memory. The conversation can be rebuilt from these objects stored in the database whenever the web server (re)starts, as shown in figure 1.10.
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   Figure 1.9 Persisting conversations
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  Figure 1.10 Recovering conversations


  You’ll learn how this process works in chapter 9. But as you can see, you only use the database to recover the messages in the conversation. You don’t use it to express your code in database operations. The Conversation actor sends messages to the log and receives them again on startup. You don’t have to learn anything new; you’re just sending and receiving messages.


  Keeping changes as a sequence of events


  All changes are kept as a sequence of events—in this case, MessageAdded events. The current state of the Conversation can be rebuilt by replaying the events in the in-memory Conversation so it can continue where it left off. This type of database is often called a journal, and the technique is known as event sourcing. There’s more to event sourcing, but this definition will do for now.


  What’s important to note here is that the journal has become a uniform service. All it needs to do is store all events in sequence and make it possible to retrieve the events in the same sequence as they were written to the journal. (We’ll ignore some details for now, like serialization—if you can’t wait, look at chapter 9.)


  Spreading out the data: Sharding conversations


  The next problem is that you’re still putting all your eggs in one server. The server restarts, reads all conversations in memory, and continues to operate. The main reason for going stateless in the traditional approach is that it’s hard to imagine how you would keep the conversations consistent across many servers. And what would happen if there were too many conversations to fit on one server?


  A solution is to divide the conversations over the servers in a predictable way or keep track of where every conversation lives. This is called sharding or partitioning. Figure 1.11 shows some conversations in shards across two servers.
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  Figure 1.11 Sharding


  You can keep using the simple in-memory model of conversations if you have a generic event-sourced journal and a way to indicate how conversations should be partitioned. Many details about these two capabilities are covered in chapters 9 and 15. For now, let’s assume that you can use these services.


  
1.5.2 Scaling with Akka and interactive use: Pushing messages


  Instead of polling the database for every web application user, you can notify the user of an important change (an event) by directly sending messages to the user’s web browser. The application can also send event messages internally as signals to execute particular tasks. Every object in the application sends an event when something interesting occurs. Other objects in the application can decide whether an event is interesting and take action on it, as shown in figure 1.12.


  [image: CH01_F12_Abraham2]



  Figure 1.12 Events


  The events (depicted as ellipses) decouple the system where there used to be undesired coupling between the components. The Conversation actor only publishes that it added a Message and continues its work. Events are sent through a publish-subscribe mechanism instead of the components communicating with each other directly. An event will eventually get to the subscribers: in this case, to the Mentions component. Once again, you can model the solution to this problem by sending and receiving messages.


  
1.5.3 Scaling with Akka and failure: Asynchronous decoupling


  Users should be able to continue to have conversations even if the Mentions component crashes. The same goes for the TeamFinder component: existing conversations should be able to continue. Conversations can continue to publish events while subscribers—like the Mentions component and the TeamFinder object—crash and restart. The NotifyUser component can keep track of connected web browsers and send UserMentioned messages directly to the browser when they occur, relieving the application from polling.


  This event-driven approach has a few advantages:


  
    	
      It minimizes direct dependencies between components. The Conversation actor doesn’t know about the Mentions object and could not care less about what happens with the event. The Conversation can continue to operate when the Mentions object crashes.

    


    	
      The components of the application are loosely coupled in time. It doesn’t matter if the Mentions object gets the events a little later as long as it gets them eventually.

    


    	
      The components are decoupled in terms of location. The Conversation and Mentions objects can reside on different servers; the events are just messages that can be transmitted over the network.

    

  


  The event-driven approach solves the polling problem with the Mentions object and the direct coupling with the TeamFinder object. You can once again model the solution to this problem by sending and receiving messages.


  
1.5.4 The Akka approach: Sending and receiving messages


  Let’s recap what you’ve changed so far: Conversations are now stateful in-memory objects (actors) that store their internal state, recover from events, are partitioned across servers, and send and receive messages. You’ve seen how communicating between objects with messages instead of calling methods directly is a winning design strategy.


  A core requirement is that messages are sent to and received from every actor in order, one at a time, when one event is dependent on the next: otherwise, you’d get unexpected results. This requires that the Conversation keeps its messages secret from any other component. The order can never be maintained if any other component can interact with the messages.


  It shouldn’t matter if you send a message locally on one server or remotely to another. So you need a service that takes care of sending messages to actors on other servers if necessary. It must also keep track of where actors live and provide references so other servers can communicate with the actors. Akka does this for you, as you’ll soon see. Chapter 8 discusses the basics of distributed Akka applications, and chapter 13 looks at clustered Akka applications (groups of distributed actors).


  The Conversation actor doesn’t care what happens with the Mentions component; but on the application level, you need to know when the Mentions component stops working so you can show users that it’s temporarily offline, among other things. For this reason, you need to be able to monitor actors and reboot them if necessary. This monitoring should work across servers as well as locally on one server, so it must also send and receive messages. A possible high-level structure for the application is shown in figure 1.13.
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  Figure 1.13 High-level application structure


  The Supervisor watches over the components and takes action when they crash. For example, it can decide to continue running when the Mentions component or the TeamFinder doesn’t work. If both Conversation and NotifyUser stop working, the Supervisor can decide to restart or stop the application since there’s no reason to continue. A component can send a message to the Supervisor when it fails, and the Supervisor can send a message to a component to stop or try to restart. As you’ll see, this is conceptually how Akka provides error recovery, as discussed in chapter 4.


  In the next section, you’ll learn first about actors in general and then about Akka actors.


  
1.6 Actors: One programming model to rule up and out


  Most general-purpose programming languages are written in sequence (Scala and Java are no exception to the rule). A concurrent programming model is required to bridge the gap between sequential definition and parallel execution.


  Whereas parallelization is all about executing processes simultaneously, concurrency concerns itself with defining processes that can function simultaneously or overlap in time but don’t necessarily need to run simultaneously. A concurrent system is not, by definition, a parallel system. Concurrent processes can, for example, be executed on one CPU using time slicing, where every process gets a certain amount of time to run on the CPU, one after another.


  The JVM has a standard concurrent programming model (see figure 1.14) where, roughly speaking, processes are expressed in objects and methods, which are executed on threads. Threads can be executed on many CPUs in parallel or using a sharing mechanism like time slicing on one CPU. As discussed earlier, threads can’t be applied directly to scaling out, only to scaling up.
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  Figure 1.14 Concurrent programming model


  The concurrent programming model that you’re after should function for one CPU or many and for one server or many servers. The actor model chooses the abstraction of sending and receiving messages to decouple from the number of threads or servers being used.


  
1.6.1 An asynchronous model


  If you want the application to scale to many servers, there’s an important requirement for the programming model: it must be asynchronous, allowing components to continue working while others haven’t responded yet, as in the chat application.


  Figure 1.15 shows a possible configuration of the chat application, scaled to five servers. The Supervisor is responsible for creating and monitoring the rest of the application. The Supervisor now has to communicate over the network, which might fail, and every server could crash. If the Supervisor used synchronous communication, waiting for every response from every component, you could get into a problematic situation where one of the components didn’t respond, blocking all other calls from happening. For instance, what would happen if the Conversation server was restarting and not responding to the network interface when the Supervisor wanted to send messages to all components?
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  Figure 1.15 Scaled-out application


  
1.6.2 Actor operations


  Actors are the primary building blocks in the actor model. All the components in the example application are actors, shown in figure 1.16. An actor is a lightweight process with only four core operations: create, send, designate the next behavior, and supervise. All of these operations are asynchronous.
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  Figure 1.16 Application components


  
    The actor model—not new


    The actor model has been around for quite a while; the idea was introduced in 1973 by Carl Hewitt, Peter Bishop, and Richard Steiger. The Erlang language and its Open Telecom Platform (OTP) middleware libraries, developed by Ericsson around 1986, support the actor model and have been used to build massively scalable systems with requirements for high availability. An example of the success of Erlang is the AXD 301 switch product, which achieves a reliability of 99.9999999%, also known as nine nines reliability. The actor model implementation in Akka differs in a couple of details from the Erlang implementation but has been heavily influenced by Erlang and shares many of its concepts.

  


  Send


  An actor can only communicate with another actor by sending it messages. This takes encapsulation to the next level. With objects, you can specify which methods can be publicly called and which state is accessible from the outside. Actors don’t allow access to internal state (for example, the list of messages in a conversation). Actors can’t share mutable state; they can’t, for instance, point to a shared list of conversation messages and change the conversation in parallel at any point in time.


  The Conversation actor can’t simply call a method on any other actor, since doing so could lead to sharing mutable state. It has to send the other actor a message. Sending messages is always asynchronous in what is called a fire-and-forget style. If it’s important to know that another actor received the message, the receiving actor should send back an acknowledgment message.


  The Conversation actor doesn’t have to wait and see what happens with a message to the Mentions actor; it can send a message and continue its work. Asynchronous messaging helps the chat application decouple the components; this is one reason you used a message queue for the Mentions object, which is now unnecessary.


  The messages need to be immutable, meaning they can’t be changed once they’re created. This makes it impossible for two actors to change the same message by mistake or for a single actor to change a message twice but in different ways, both of which could result in unexpected behavior.


  So what do you do when a user wants to edit a message in a conversation? You can send an EditMessage message to the conversation. The EditMessage contains a modified copy of the message instead of updating the message in place in a shared messages list. The Conversation actor receives the EditMessage and replaces the existing message with the new copy.


  Immutability is an absolute necessity when it comes to concurrency. It is another restriction that simplifies life because there are fewer moving parts to manage.


  The order of sent messages is kept between a sending actor and a receiving actor. An actor receives messages one at a time. Imagine that a user edits a message many times; it would make sense for the user to eventually see the result of the final edit of the message. The order of messages is only guaranteed per sending actor, so if many users edit the same message in a conversation, the final result can vary depending on how the messages are interleaved over time.


  Create


  An actor can create other actors. Figure 1.17 shows how the Supervisor actor creates a Conversations actor. As you can see, this action automatically creates a hierarchy of actors. The chat application first creates the Supervisor actor, which in turn creates all other actors in the application. The Conversations actor recovers all Conversations from the journal. It then creates a Conversation actor for every Conversation that recovers itself from the journal.
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  Figure 1.17 Creating actors


  Designing the next behavior


  State machines are a great tool for ensuring that a system executes particular actions only when it’s in a specific state. Actors receive messages one at a time, which is a convenient property for implementing state machines. An actor can change how it handles incoming messages by swapping out its behavior. An actor must designate the behavior to be used for the next message it receives.


  Imagine that users want to be able to close a Conversation. The Conversation starts in a started state and becomes closed when a CloseConversation is received. Any message that’s sent to the closed Conversation can be ignored. The Conversation swaps its behavior from adding messages to itself to ignoring all messages.


  Supervise


  An actor needs to supervise the actors that it creates. The Supervisor in the chat application can keep track of what’s happening to the main components, as shown in figure 1.18.
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  Figure 1.18 Supervising actors


  The Supervisor decides what should happen when components fail in the system. For example, it can decide that the chat application continues when the Mentions component and the NotifyUser actor have crashed since they’re not critical components. The Supervisor is notified with special messages that indicate which actor has crashed and for what reason. The Supervisor can decide to restart an actor or take the actor out of service.


  Any actor can be a supervisor, but only for the actors it creates. In figure 1.19, the TeamFinder actor supervises the two connectors for looking up contacts. In this case, it could take the OutlookContacts actor out of service because it failed too often. The TeamFinder would then continue looking up contacts from Google only.


  [image: CH01_F19_Abraham2]



  Figure 1.19 TeamFinder supervising contacts actors


  
    Actors: Decoupled on three levels


    Another way to look at actors is how they’re decoupled for scaling on three levels: space/location, time, and interface. Actors can run simultaneously if there are enough CPUs or run one after the other if not. Actors can be co-located or far apart; and in a failure scenario, actors may receive messages they can’t handle.


    Decoupling on these three levels is important because this is exactly the flexibility required for scaling:


    
      	
        Space—An actor gives no guarantee and has no expectations about where another actor is located.

      


      	
        Time—An actor gives no guarantee and has no expectations about when its work will be done.

      


      	
        Interface—An actor has no defined interface. Nothing is shared between actors; actors never point to or use a shared piece of information that changes in place. Information is passed in messages.

      

    


    Coupling components in location, time, and interface is the biggest impediment to building applications that can recover from failure and scale according to demand. A system built out of components that are coupled on all three can only exist on one runtime and will fail completely if one of its components fails.

  


  Now that you’ve looked at the operations an actor can perform, let’s look at how Akka supports actors and what’s required to make them process messages.


  
1.7 Akka actors


  So far, you’ve learned about the actor programming model from a conceptual perspective and seen why you may want to use it. Let’s look at how Akka implements the actor model and get closer to where the rubber meets the road. This section examines how everything connects—which Akka components do what—beginning with actor creation.


  
1.7.1 ActorSystem


  The first thing we’ll look at is how actors are created. Actors can create other actors, but what creates the first one?


  All the actors shown in figure 1.20 are part of the same chat application. The application’s first actor is the Supervisor. How do you make actors part of one bigger whole? The answer Akka provides is the ActorSystem. The first thing every Akka application does is create an ActorSystem. The ActorSystem can create so-called top-level actors, and it’s a common pattern to create only one top-level actor for all actors in the application—in this case, the Supervisor actor that monitors everything.
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  Figure 1.20 TeamChat ActorSystem


  We’ve touched on the fact that you need support capabilities for actors, like remoting and a journal for durability. The ActorSystem is also the nexus for these support capabilities. Most capabilities are provided as Akka extensions: modules that can be configured specifically for the ActorSystem in question. A simple example of a support capability is the scheduler, which can send messages to actors according to a specific schedule.


  An ActorSystem returns an address to the created top-level actor instead of the actor itself. This address is called an ActorRef. The ActorRef can be used to send messages to the actor. This makes sense when you think about the fact that the actor could be on another server.


  Sometimes you’d like to look up an actor in the actor system. This is where ActorPaths come in. You can compare the hierarchy of actors to a URL path structure. Every actor has a name. This name needs to be unique per level in the hierarchy: two sibling actors can’t have the same name (if you don’t provide a name, Akka can generate one for you, but it’s a good idea to name all your actors). All actor references can be located directly by an actor path, which can be absolute or relative.


  
1.7.2 ActorRef, mailboxes, and actors


  Messages are sent to the actor’s ActorRef. Every actor has a mailbox—it’s a lot like a queue. Messages sent to the ActorRef are temporarily stored in the mailbox to be processed later, one at a time, in the order they arrived. Figure 1.21 shows the relationship between the ActorRef, the mailbox, and the actor. How the actor processes the messages is described in the next section.
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  Figure 1.21 The ActorRef, a mailbox, and an actor


  
1.7.3 Dispatchers


  Actors are invoked at some point by a dispatcher. The dispatcher pushes the messages in the mailbox through the actors, so to speak. This is shown in figure 1.22.
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   Figure 1.22 The dispatcher pushes messages through the mailbox.


  


  The type of dispatcher determines which threading model is used to push the messages through. Many actors can receive messages pushed through on several threads, as shown in figure 1.23.
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  Figure 1.23 Dispatcher pushing messages through multiple actors


  Figure 1.23 shows the dispatcher pushing messages m1-m6 on threads 1 and 2 and messages x4-x9 on threads 3 and 4. This figure shouldn’t make you think that you can or should control exactly which message will be pushed through on which thread. What’s important is that you can configure the threading model quite extensively. All kinds of dispatchers can be configured in some way, and you can allocate a dispatcher to an actor, a specific group of actors, or all actors in the system.


  So when you send a message to an actor, you’re really leaving a message behind in its mailbox. Eventually, a dispatcher will push the message through the actor. The actor, in turn, can leave a message behind for the next actor, and that message will be pushed through at some point.


  Actors are lightweight because they run on top of dispatchers; the number of actors isn’t necessarily directly proportional to the number of threads. Akka actors take a lot less space than threads: around 2.7 million actors can fit in 1 GB of memory. That’s a big difference compared to 4096 threads for 1 GB of memory, so you can create different types of actors more freely than you could using threads directly.


  You can choose different types of dispatchers that can be tuned to specific needs. Being able to configure and tune the dispatchers and mailboxes used throughout the application gives you a lot of flexibility when performance tuning.


  
    Callback hell


    A lot of frameworks provide asynchronous programming through callbacks. If you’ve used any of these frameworks, chances are good that you’ve been to a place called callback hell, where every callback calls another callback, which calls another callback, and so on.


    



    Compare this approach to how the dispatcher chops up the messages in the mailbox and pushes them through on a given thread. Actors don’t need to provide a callback in a callback, all the way down to some sulfur pit, which is good news. Actors drop off messages in a mailbox and let the dispatcher sort out the rest.

























































