

 [image:]

 gRPC Microservices in Go

 Hüseyin Babal

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Doug Rudder

 	
 Technical development editor:

 	
 Bartosz Solowiej

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Michele Mitchell

 	
 Proofreader:

 	
 Meredith Mix

 	
 Technical proofreader:

 	
 Peter Hampton

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439207

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. gRPC and microservices architecture

 1 Introduction to Go gRPC microservices

 1.1 Benefits of gRPC microservices

 Performance

 Code generation and interoperability

 Fault tolerance

 Security

 Streaming

 1.2 REST vs. RPC

 1.3 When to use gRPC

 Who is this book for?

 1.4 Production-grade use cases

 Microservices

 Container runtime

 CI/CD pipeline

 Monitoring and observability

 Public access

 2 gRPC meets microservices

 2.1 Monolithic architecture

 Development

 Deployment

 Scaling

 2.2 Scale cube

 X-axis scaling

 Z-axis scaling

 Y-axis scaling

 2.3 Microservice architecture

 Handling data consistency

 Saga pattern

 Choreography-based saga

 Orchestrator-based saga

 2.4 Service discovery

 2.5 Using gRPC for interservice communication

 Working with protocol buffers

 Generating Go source code

 Connecting wires

 Part 2. Developing, testing, and deploying a gRPC microservice application

 3 Getting up and running with gRPC and Golang

 3.1 Protocol buffers

 Defining message type

 Protocol buffer encoding

 3.2 Generating stubs

 Protocol buffer compiler installation

 Using the protocol buffer compiler

 3.3 Maintaining .proto files

 Proto project structure

 Automation for source code generation

 3.4 Backward and forward compatibility

 Adding new fields

 Upgrading the server but not the client

 Upgrading the client but not the server

 Adding/removing oneof fields

 Moving fields out of or into oneof fields

 4 Microservice project setup

 4.1 Hexagonal architecture

 Application

 Actors

 Ports

 Adapters

 4.2 Order service implementation

 Project folders

 Initializing a Go project

 Implementing the application core

 Implementing ports

 Implementing adapters

 Implementing a gRPC adapter

 Dependency injection and running the application

 Calling a gRPC endpoint

 5 Interservice communication

 5.1 gRPC service-to-service communication

 Server-side load balancing

 Client-side load balancing

 5.2 Depending on a module and implementing ports and adapters

 Payment port

 Payment adapter

 Implementing the payment port

 Implementing the payment adapter

 Client configuration for a payment stub

 Using a payment adapter in gRPC

 5.3 Error handling

 Status codes

 Returning an error code and message

 Errors with details

 Handling errors on the client side

 Running the Payment service

 6 Resilient communication

 6.1 Resiliency patterns

 Timeout pattern

 Retry pattern

 Circuit breaker pattern

 6.2 Error handling

 gRPC error model

 gRPC error response

 6.3 Securing gRPC communication

 TLS handshake

 Certificate generation

 gRPC TLS credentials

 7 Testing microservices

 7.1 Testing pyramid

 7.2 Testing with a unit test

 System under test

 Test workflow

 Working with mocks

 Implementing a mock

 Automatic mock generation

 7.3 Integration testing

 Test suite preparation

 Working with Testcontainers

 7.4 End-to-end tests

 Specifications

 Understanding Docker Compose service definitions

 End-to-end test folder structure

 Database layer

 The Payment service layer

 The Order service layer

 Running tests against the stack

 7.5 Test coverage

 Coverage information

 Testing in a CI pipeline

 8 Deployment

 8.1 Docker

 Building images

 8.2 Kubernetes

 Kubernetes architecture

 Kubernetes resources

 Eagle view of microservices deployment

 Pod

 Deployment

 Service

 NGINX Ingress controller

 8.3 Certificate management

 Installation

 ClusterIssuer

 Certificate usage in Ingress

 Certificates on the client side

 8.4 Deployment strategies

 RollingUpdate

 Blue-Green Deployment

 Canary deployment

 Final thoughts on deployment

 Part 3. gRPC and microservices architecture

 9 Observability

 9.1 Observability

 Traces

 Metrics

 Logs

 9.2 OpenTelemetry

 Instrumentation locations

 Instrumentation

 Metric backend

 Service performance monitoring

 9.3 Observability in Kubernetes

 Jaeger All in One

 OpenTelemetry Collector

 Prometheus

 Jaeger installation

 OpenTelemetry interceptor for the Order service

 Understanding the metrics of the Order service

 Application logging

 Logs collection

 Elasticsearch as a logging backend

 Kibana as a logging dashboard

 index

 front matter

preface

 I started as a software developer in 2007, and over the years, I’ve seen the evolution of web-based projects and the shift toward enterprise applications. In 2014, I was introduced to microservices and have advocated for this modern software architecture ever since.

 In my journey with microservices, I’ve used various technologies to develop and deploy microservices to production environments. A tool that caught my attention was gRPC, which is a high-performance, open-source framework developed by Google and built on top of HTTP/2. I was fascinated by gPRC’s potential regarding microservices communication. Its support for multiple languages, including Go, and its ease of building cloud-native applications made it an obvious choice for me.

 However, I soon realized that there weren’t enough resources to cover all the pieces of microservices to help developers like me get started. There were individual tutorials like the Hello World program and a couple about Protobuf, but no comprehensive guides existed that explained gRPC and Protobuf with production-grade examples. Over time, I worked through the processes and learned to use gRPC to build microservices that communicate effectively with each other. gRPC has never let me down.

 That’s why I decided to write this book. I wanted to provide a comprehensive resource to help developers get up to speed with the technology and put it into practice. In this book, I have drawn on my experience with microservices and gRPC to provide a complete guide to building microservices with both gRPC and Protobuf. We’ll write the code in Go, a popular programming language for building cloud-native applications and microservices. Throughout the book, we’ll use an e-commerce application, deployed on Kubernetes, as an example to guide you on your own journey into gRPC and microservices. We’ll also cover advanced topics such as error handling, testing, and security, which are vital for building product-grade applications.

 I wrote this book to make it easier for developers like me to get started with gRPC, and I hope you’ll find it a valuable resource. Thank you for choosing gRPC Microservices in Go.

acknowledgments

 Writing a book is never easy, and writing gRPC Microservices in Go was no exception. I have spent countless hours working on this book both in various cafes and at home, and while traveling, to produce comprehensive content.

 First and foremost, I want to thank my beautiful wife, Emel, who has supported me throughout this journey. She has always encouraged me to pursue my passion, even when I was exhausted and felt like giving up. Her unwavering support and understanding have been a constant source of inspiration for me.

 Next, I want to extend my heartfelt gratitude to my editor, Doug Rudder, for his support during several months of work on this book. His feedback, suggestions, and edits have been invaluable, and I could not have completed this book without him. I also want to thank my technical editor, Bartosz Solowiej; his attention to detail and thoroughness helped me refine and polish the technical aspects of the book. My thanks to everyone else at Manning: my project editor, Deirdre Hiam; my copyeditor, Michelle Mitchell; and my proofreader, Meredith Mix.

 I want to thank the reviewers who provided valuable feedback during the writing process. Your comments and suggestions helped me improve the book’s content and make it more useful for readers. Thank you to Alain Couniot, Alceu Rodrigues de Freitas Junior, Alessandro Campeis, Andrea Monacchi, Ashish Kumar Pani, Borko Djurkovic, Cameron Singe, Dr. Keith L Mannock, Dylan Guedes, Fatih Akturk, Germano Rizzo, Gowtham Sadasivam, Horaci Macias, Jeelani Shaik, Christian B. Madsen, Joel Holmes, Jonathan Reeves, Karthikeyarajan Rajendran, Kelum Prabath Senanayake, Manzur Mukhitdinov, Marco Massenzio, Michael Haller, Mikael Dautrey, Muneeb Shaikh, Neil Croll, Nolan To, George Onofrei, Peter Hampton, Rahul Modpur, Rich Yonts, Ryan Burrows, Ryan Huber, Satadru Roy, Stanley Anozie, Syed Basheeruddin Ahmed, Tim Homan, Vadim Turkov, and Walter Alexander Mata Lopez.

 Finally, I want to express my sincere gratitude to the Go, gRPC, and Kubernetes communities. Your contributions, support, and enthusiasm have been a constant source of motivation and inspiration for me. I am honored to be part of such a vibrant and dynamic community.

 Thank you all for your support and encouragement throughout this journey.

about this book

 gRPC Microservices in Go was written for anyone who wants to apply production-grade practices from gRPC, Go, and/or Kubernetes to microservice applications that run in a live environment. It starts with microservices theory and cloud-native application development, then dives into the technical development of microservices in Kubernetes using Go and gRPC.

Who should read this book

 This book will help developers design and implement their microservices projects using Go and gRPC in the Kubernetes environment. There are some examples of Kubernetes deployment and gRPC usage online, but this book provides a step-by-step explanation of a gRPC microservice life cycle, from beginning to production. For this reason, this book will be a good reference for architects, chief technology officers, and engineering managers in applying microservice principles to development life cycles.

How this book is organized: A road map

 This book has three sections that cover nine chapters.

 Part 1 contains theoretical information about microservices and gRPC:

 	
 Chapter 1 briefly introduces gRPC microservices and provides an overview of the book.

 	
 Chapter 2 discusses microservices, including their communication patterns, and explains how to use gRPC during development.

 Part 2 provides step-by-step instructions for implementing gRPC microservices and deploying them to the Kubernetes environment:

 	
 Chapter 3 provides information about installing gRPC and related tools (e.g., Protobuf) for project development.

 	
 Chapter 4 explains hexagonal architecture and how to use it in microservices. It also explains how to structure a Go project with gRPC clients and servers to build a microservices project.

 	
 Chapter 5 explains how gRPC client–server interaction can be used in microservice service-to-service communication.

 	
 Chapter 6 describes how important resiliency is and how to apply resiliency patterns to gRPC service communications. The primary goals of this chapter are reader understanding of failover scenarios and recovering from them.

 	
 Chapter 7 explains how to write unit and integration tests for microservices. This is especially important for the microservices environment because many changing pieces must be maintained properly.

 	
 Chapter 8 goes deep into some of the Kubernetes resources and shows how to use them to deploy gRPC microservices to the Kubernetes environment. This chapter also covers how to expose services to the public.

 Part 3 covers gRPC microservice observability in the Kubernetes environment:

 	
 Chapter 9 focuses on observability and demonstrates how to integrate observability tools into gRPC microservices for better visibility on the entire platform.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/grpc-microservices-in-go. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/grpc-microservices-in-go, and from GitHub at https://github.com/huseyinbabal/microservices.

liveBook discussion forum

 Purchase of gRPC Microservices in Go includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/grpc-microservices-in-go/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Hüseyin Babal has been a software developer since 2007. Since 2016, he has built cloud-native applications with Kubernetes in major cloud providers. He has also worked with enterprise companies to help them with their DevOps and microservice transition projects. You can find him giving presentations at global conferences or doing live coding sessions on his Twitch channel.

about the cover illustration

 The figure on the cover of gRPC Microservices in Go is “Bohemienne de Prague,” or “Bohemian woman from Prague,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1. gRPC and microservices architecture

 There are three types of companies in software architecture: those that are content with their monolith applications, those that plan to switch to microservices, and those that already use microservices in production. Each company has its reasons for choosing a particular architecture, but using microservices comes with its own set of challenges. For instance, when you decide to break down a monolith application into services, you need to figure out how to manage communication between the services.

 In part 1, we will first look at the big picture of an e-commerce application and then delve into microservices architecture and its critical requirements, such as fault tolerance, security, continuous integration/continuous deployment (CI/CD), public access, and scaling, among others. Proper communication patterns between microservices are essential, and we will cover this topic as well.

 I will also introduce gRPC and show how it fits into a microservices environment for service-to-service communication. You will become familiar with gRPC and see how it prioritizes security and performance to give you a seamless experience.

1 Introduction to Go gRPC microservices

 This chapter covers

 	
Introducing Go gRPC microservices

 	
Comparing gRPC with REST

 	
Understanding when to use gRPC

 	
Applying gRPC microservices to production-grade use cases

 Good architecture design and proper technology selection help ensure a high-quality product by eliminating repetitive work and providing the best tool kit for software development and maintenance. While microservice architecture can be implemented in any language, Go is particularly suited for building high-performance cloud-native distributed applications such as microservices in Kubernetes on a large scale. Microservices with gRPC communication have already enabled many companies to implement their products with small services based on their business capabilities and have let those services communicate smoothly with each other and the public. With the help of Go, the distribution of those services becomes easier due to its fast compilation, ability to generate executable binaries, and many other reasons, which we will see in detail with real-life examples in the upcoming chapters.

 gRPC is an open source remote procedure call framework, initially developed by Google in 2015, that helps you to connect services with built-in support for load balancing, tracing, fault tolerance, and security. The main advantage of this framework comes from being able to generate server and client stubs (i.e., objects on the client side that implement the same methods as the service) for multiple languages that can be used both in consumer projects to call remote service methods and in server projects to define business logic behind those service methods.

 Microservice architecture is a form of service-oriented architecture that defines applications as loosely coupled, fine-grained services that can be implemented, deployed, and scaled independently. The main goal of this book is to provide production-grade best practices for gRPC microservices so that, by the end of this book, you will have the self-confidence to implement the entire system on your own.

1.1 Benefits of gRPC microservices

 Within a typical monolithic application, calling different business activities, such as calling a payment service from a checkout service, means accessing a class method in a separate module, which is very easy. If you use microservices, such calls will be converted to network communication. These can be TCP, HTTP, or event queue calls to exchange data between services. Handling network calls is more challenging than calling another class method, which can be managed with a simple error-handling mechanism such as try-catch blocks. Even monoliths are easy to use at first, but you may need to decompose them for several reasons, including slow deployments and inefficient resource utilization that affect feature development and product maintenance. This does not mean monoliths are bad and microservices are good; microservices also bring challenges, which we will look at in detail in chapter 2. With the help of gRPC, most of the challenges in microservices, such as handling network failures and applying TLS (Transport Layer Security) to service communications (see chapter 6), can be eliminated. By using these built-in features in gRPC, you can improve both the reliability of the product and the productivity of an entire team.

1.1.1 Performance

 gRPC provides better performance and security than other protocols, such as REST with JSON or XML communication, as it uses protocol buffers, and HTTP/2 over TLS is straightforward. Protocol buffers, also known as Protobuf, are language- and platform-neutral mechanisms for serializing structural data, which you will see in detail in chapter 3. This mechanism empowers gRPC to quickly serialize messages into small and compact messages on both the server and client sides. In the same way, HTTP/2 enables the performance with server-side push, multiplexing, and header compression, which we will see in more detail in chapter 5.

1.1.2 Code generation and interoperability

 Let’s say you have a checkout service and a payment service that allow a customer to check out a basket that then triggers a payment service call to pay for the products in the basket. To access the payment service, you need to have request and response models in some place, such as a shared library, to access them easily. Reusing a shared request and response model seems convenient in microservices but is not a good practice, especially if you are using different languages for each microservice. Duplicating models in a checkout service, typically by creating another data class to build request objects and deserialize response objects into, is a better choice. This is all about preventing an incorrect abstraction, as you may have already heard the statement, “A little duplication is far cheaper than wrong abstraction” (https://sandimetz.com/blog/ 2016/1/20/the-wrong-abstraction). There is an easier way: choose gRPC to define your messages and generate client stubs so that you can inject this dependency and use it directly in whatever language you prefer. We will dive deep into code generation in chapter 3.

 gRPC tools and libraries are compatible with multiple platforms and languages, including Go, Java, Python, Ruby, Javascript, C#, and more. The Protobuf binary wire format, as it travels on a wire like in a network, and well-designed code generation for almost all platforms enable developers to build performance-critical applications while retaining cross-platform support. We will see the details of why Protobuf performs well in interservice communication in chapter 3.

 gRPC is getting more popular (https://star-history.com/#grpc/grpc&Date) because you can quickly generate client stubs to provide an SDK of your services within different languages. You only need to decide what kind of business objects you need to have. Once you choose which fields you need for a checkout model, you can introduce respective request and response messages. Remember that those messages are just definitions in IDL (Interface Definition Language) and are independent of any language specification. After you define your message specifications, you can generate language-specific implementations so that any consumer can depend on that source. This also means that the development language on the server side can be different than the client side since server-side methods can be generated as stubs on the client side for specific languages supported by gRPC.

 In addition to business objects, you can similarly define service methods and generate implementations. Those service functions can be called after you initialize the gRPC client on the consumer side; again, this client is generated out of the box.

1.1.3 Fault tolerance

 Fault tolerance is a system’s ability to continue operating despite system failures. An idempotent operation has no additional effect, even if called more than once. Idempotency is key to a successful fault-tolerant environment since you need to be sure that, once you retry an operation with the same parameters in case of failure or not having an expected state, it doesn’t change the content of the actual resource. For example, we may want to retry a user delete operation in case of a network failure on response. If the operation returns the same result even if you call it more than once, we say this operation is idempotent.

 If an operation is not a good fit for an idempotency use case, you must provide proper validation errors in a response message that helps you know when to stop the retry operation. Once you guarantee this idempotency or proper validation, it is just a definition of the retry policy on the gRPC side. Fault tolerance also focuses on topics such as rate limiting, circuit breakers, and fault injection, which we will see in greater detail in chapter 6.

1.1.4 Security

 In most systems, you may need a security layer to protect your product against unverified sources. gRPC encourages HTTP/2 over SSL/TLS to authenticate and encrypt data exchanged between the client and server. More specifically, you can easily set that authentication system up using SSL/TLS, ALTS (Application Layer Transport Security), or a token-based authentication system, which we will cover in more detail in chapter 6.

1.1.5 Streaming

 Sometimes you may need to divide response data into several chunks in a paginated way that reduces bandwidth and returns them to the user quickly. Moreover, if users are only interested in specific pages, it is not meaningful to return all the data simultaneously. In gRPC, in addition to pagination, you can also stream this data to the consumer instead of forcing the user to do pagination to get the data iteratively. Streaming doesn’t necessarily have to be on the server side; it can also be on the client side or both sides simultaneously, called bidirectional streaming. In a typical streaming use case, you open the connection once, and the data is streamed through this opened connection. You will see different kinds of streaming use cases in this book, particularly in chapter 5, when we implement a complete application.

1.2 REST vs. RPC

 REST (Representational State Transfer) is a widely adopted protocol for microservices. Still, you may start to think about using gRPC if you have strict requirements such as low latency, multilanguage system support, and so forth. REST is based on HTTP 1.0 protocol that lets you exchange messages in a JSON or XML format between the client and server. On the other hand, gRPC is based on RPC (Remote Procedure Call) architecture that uses protocol buffers’ binary format to exchange data over HTTP 2.0 protocol. This does not mean that REST is not compatible with HTTP 2.0; you can set up your REST services based on that protocol with a custom implementation so that it is a built-in feature in gRPC.

 Since gRPC has built-in HTTP 2.0 support, you can also use unary and bidirectional streaming between clients and servers, resulting in high-speed communication. With REST services’ default settings, multiple client–server communications can introduce a delay in overall system performance.

 There are also cases in which REST is more beneficial than gRPC. For example, the REST protocol is supported in all kinds of browsers. Since gRPC support is minimal, you may need to use a proxy layer, such as gRPC Web (https://github.com/grpc/grpc-web), to easily communicate with the gRPC server.

 gRPC has lots of advantages, such as being able to define messages to easily exchange data between services. Regarding readability, JSON and XML usage in REST has advantages, such as changing the request freely if there is no explicit business validation for the changed fields. In contrast, you need to follow some rules in gRPC to make a change. We will explain this in detail in chapter 5.

 gRPC has a built-in client and server stub generation mechanism for which you need to use a framework in REST such as Swagger Codegen to generate client-side models. This becomes critical, especially once you have multiple services and maintain multiple SDKs for customers simultaneously. Now that we understand the differences between REST and gRPC, let’s look at when it makes sense to use gRPC.

1.3 When to use gRPC

 If you have strict requirements for browser support, then you need to think of using REST, because you will end up setting up another layer for conversion between HTTP/2 and HTTP/1. However, you can still use gRPC for interservice communication and attach a gRPC load balancer (http://mng.bz/BmZ8) to that service pool to expose API to the public for REST compatibility, which we will see in detail in chapter 9. Other alternatives include Twirp (https://github.com/twitchtv/twirp), an RPC framework built on Protobuf. Twirp lets you enable the REST layer for gRPC services in a way that allows you to access your endpoints, as in the following example, which sends a POST request with a JSON payload:

 curl -X "POST" \
 - H "Content-Type: application/json" \
 -d '{"name": "dev-cluster"}' \
 ➥ http://localhost:8080/twirp/github.com/huseyinbabal/microservices-
 ➥ proto/cluster/Create

 Polyglot development environments are ideal for gRPC integrations since using the Python client within the Checkout service to access the Payment service, which is written using Java, is very easy with client stub generation. You can apply the same strategy to your SDK generations for public consumers. Also, whenever you change your service definitions, the test fails on the client side, which is a suitable verification mechanism for your microservices.

 You will learn how to test gRPC microservices in chapter 7. gRPC may not be the proper selection for simple applications such as startup projects that contain only one to two services since maintaining the proto files that contain service definitions is not easy, especially for inexperienced users.

 It is, however, acceptable to use gRPC communication between internal services, but exposing a gRPC interface to customers may not be ideal, especially if there is no SDK for the client for gRPC service communication. If you prefer to expose gRPC without maintaining the SDKs for your consumers, then it is better to share your service definitions with them or provide a clear explanation about how to make gRPC calls to your gRPC services.

1.3.1 Who is this book for?

 This book contains many explanations, code examples, and tips and tricks supported by real-life examples that can be useful for the following roles:

 	
 Developers who don’t know Go or microservices—They can take advantage of starting with introductory chapters about Go, microservices, and gRPC and learn production-grade techniques for gRPC Go microservices. Readers who already know microservice architecture can refresh their knowledge with the resources described in Go, which can be easily adapted to any other language.

 	
 Engineering managers—They can improve team developer productivity by adding the best practices described in their playbooks. Applying techniques will introduce good visibility over the entire product that will help to quickly onboard new employees to the team.

 	
 Software architects—There are many handy examples and architectural designs that can be potential references for their decisions for new products or features.

1.4 Production-grade use cases

 As shown in figure 1.1, we will try to create an e-commerce product in this book with Go gRPC microservices that are automated within a proper CI/CD pipeline and live in a Kubernetes environment. In the following subsections, we’ll visit critical parts of the diagram to see how important they are for a typical development life cycle, how gRPC makes those parts easier to handle, and which technologies to use and where.

 [image:]

 Figure 1.1 Architecture diagram of an e-commerce product built with Go microservices on top of Kubernetes, including CI/CD flow and observability

 There will be production-grade examples in this book in the following format:

 	
 A completed project at the end of this book

 	
 Code examples to better understand a specific topic and how it works

 	
 Automation examples, especially with GitHub Actions, to reduce repetitive operations

 	
 Preparing artifacts for deployment

 	
 Security best practices

1.4.1 Microservices

 Microservice projects are full of challenges, especially at the beginning of the project, and you will often hear the following questions in your architectural decision meetings:

 	
 Let’s implement microservices, but how micro should it be?

 	
 Which strategy do we need to base our construct/decompose services on?

 Dividing microservices by business capabilities is one of the options (http://mng.bz/rWnD), and we will use that distinction as we focus on real-life use cases and implement them in upcoming chapters. As shown in figure 1.1, we have five services to provide different business features, such as a Shipping service to ship products to the customer and a payment service to charge a customer’s credit card using information in the checkout phase, which is composed of cart items. There are five business capabilities: product, cart, checkout, payment, and shipping. They connect using their generated stubs (e.g., Checkout uses Shipping gRPC stubs to call Shipping service functions).

 Monolith-to-microservice decomposition will replace service function calls with network calls, which means you need to implement a fault-tolerant client for interservice communication. gRPC provides basic things like connection pooling and resource access so that service functions can be accessed using their gRPC stubs on the client side after adding autogenerated stubs to the Consumer service as a Go dependency. As seen in figure 1.1, the Checkout service can call the Cart service to get cart items, the Shipping service to get the customer’s address, and the Payment service to charge the customer’s credit card by adding respectively generated stubs of Shipping, Cart, and Payment services to the Checkout service as a Go dependency. We will look at dependency management in detail in chapter 5; you will learn how to work with dependencies and how to automate them to generate in a CI (continuous integration) pipeline.

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/CH01_F01_Babal.png

OEBPS/OEBPS/Images/Manning_copyright.png

