

 inside front cover

 [image:]

 [image:]

 Google Anthos in Action

 Manage hybrid and multicloud Kubernetes clusters

 Antonio Gulli

 Michael Madison

 Scott Surovich

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Doug Rudder

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Pamela Hunt

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Paul Jones

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439573

contents

 front matter

 preface

 acknowledgments

 about this book

 about the lead authors

 about the cover illustration

 1 Overview of Anthos

 Aparna Sinha

 1.1 Anatomy of a modern application

 Accelerating software development

 Standardizing operations at scale

 1.2 Origins in Google

 2 One single pane of glass

 Melika Golkaram

 2.1 Single pane of glass

 2.2 Non-Anthos visibility and interaction

 Kubernetes Dashboard

 Provider-specific UIs

 Bespoke software

 2.3 The Anthos UI

 Fleets

 Connect: How does it work?

 Installation and registration

 2.4 The Anthos Cloud UI

 The Anthos dashboard

 Service Mesh

 Config Management

 Clusters

 Features

 Migrating to containers

 Security

 2.5 Monitoring and logging

 2.6 GKE dashboard

 2.7 Connecting to a remote cluster

 3 Computing environment built on Kubernetes

 Scott Surovich

 3.1 Why do you need to understand Kubernetes?

 Technical requirements

 History and overview

 Managing Kubernetes clusters

 3.2 Kubernetes architecture

 Understanding the cluster layers

 The control plane components

 Worker node components

 Understanding declarative and imperative

 Understanding Kubernetes resources

 Kubernetes resources in depth

 Controlling Pod scheduling

 3.3 Advanced topics

 Aggregate ClusterRoles

 Custom schedulers

 3.4 Examples and case studies

 FooWidgets Industries

 4 Anthos Service Mesh: Security and observability at scale

 Onofrio Petragallo

 4.1 Technical requirements

 4.2 What is a service mesh?

 4.3 An introduction to Istio

 Istio architecture

 Istio traffic management

 Istio security

 Istio observability

 4.4 What is Anthos Service Mesh?

 4.5 Installing ASM

 Sidecar proxy injection

 Uniform observability

 Operational agility

 Policy-driven security

 4.6 Conclusion

 4.7 Examples and case studies

 Evermore Industries

 5 Operations management

 Jason Quek

 5.1 Unified user interface from Google Cloud console

 Registering clusters to Google Cloud console

 Authentication

 Cluster management

 Logging and monitoring

 Service Mesh logging

 Using service-level indicators and agreements

 5.2 Anthos command-line management

 Using CLI tools for GKE on-prem

 GKE on AWS

 5.3 Anthos attached clusters

 5.4 Anthos on bare metal

 5.5 Connect gateway

 5.6 Anthos on Azure

 Cluster management: Creation

 Cluster management: Deletion

 6 Bringing it all together

 Onofrio Petragallo

 6.1 Application development

 6.2 Application deployment

 Cloud Source Repositories

 Cloud Build

 Artifact Registry

 Google Cloud Marketplace

 Migrate for Anthos

 6.3 Policy enforcement

 7 Hybrid applications

 Jason Quek

 7.1 Highly available applications

 Architecture

 Benefits

 Limitations

 7.2 Geographically distributed applications

 Ingress for Anthos architecture

 Ingress for Anthos benefits

 Ingress for Anthos limitations

 7.3 Hybrid multicloud applications with internet access

 Traffic Director architecture

 Traffic Director benefits

 Traffic Director limitations

 7.4 Applications regulated by law

 Architecture

 Benefits

 7.5 Applications that must run on the edge

 Architecture

 Benefits

 Limitations

 8 Working at the edge and the telco world

 Giovanni Galloro

 8.1 Evolution of telecom applications

 Introduction to network functions virtualization

 NFV use cases

 Evolution to cloud native network functions

 8.2 New edge applications

 5G as the enabler of new edge applications

 Edge computing

 Edge application examples

 8.3 Anthos as a platform for edge and telco workloads

 Google Distributed Cloud Edge

 Anthos capabilities for telco and edge workloads

 Solution architecture example: Smart retail

 9 Serverless compute engine (Knative)

 Konrad Cłapa

 9.1 Introduction to serverless

 9.2 Knative

 Introduction

 Knative history

 9.3 Knative architecture

 Knative Kubernetes resource types

 Knative Serving

 Knative Eventing

 Observability

 Installing Knative

 Deploying to Knative

 10 Networking environment

 Ameer Abbas

 10.1 Cloud networking and hybrid connectivity

 Single-cloud deployment

 Multi/hybrid cloud deployment

 10.2 Anthos GKE networking

 Anthos cluster networking

 Anthos GKE IP address management

 10.3 Anthos multicluster networking

 Multicluster networking on GCP

 Multicluster networking in hybrid and multicloud environments

 10.4 Services and client connectivity

 Client-to-Service connectivity

 Service-to-Service connectivity

 Service-to-external Services connectivity

 11 Config Management architecture

 Michael Madison

 11.1 What are we trying to solve?

 Managing complexity

 Transparency and inspection

 Remediating and preventing problems

 Bringing it together

 11.2 Overview of ACM

 ACM policy structure

 ACM-specific objects

 Additional components

 11.3 Examples and case studies

 Evermore Industries

 Village Linen, LLC

 Ambiguous Rock Feasting

 11.4 Conclusions

 12 Integrations with CI/CD

 Konrad Cłapa and Jarosław Gajewski

 12.1 Introduction to CI/CD

 Repeatability

 Reliability

 Reusability

 Automated tests

 Trunk-based development

 Environment parity

 Deployment automation

 Team culture

 Built-in security/DevSecOps

 Version control

 Artifact versioning

 Monitoring

 12.2 Continuous delivery vs. continuous deployment

 12.3 Continuous development

 Setting up a local preview minikube cluster

 Continuous development with Skaffold

 Cloud Code: Developing with a local IDE

 Anthos Developer Sandbox: Development with a cloud native IDE

 12.4 Continuous integration

 Cloud Source Repositories

 Artifact Registry

 Cloud Build

 Kustomize for generating environment-specific configuration

 12.5 Continuous deployment with Cloud Deploy

 Cloud Deploy in the Anthos CI/CD

 Google Cloud Deploy delivery pipeline for Anthos

 12.6 Modern CI/CD platform

 13 Security and policies

 Scott Surovich

 13.1 Technical requirements

 13.2 Hypervisors vs. container runtimes

 13.3 Kubernetes security overview

 Understanding Kubernetes security objects

 Types of security

 13.4 Common security concerns

 Understanding the Policy Controller

 Using Binary Authorization to secure the supply chain

 Using Gatekeeper to replace PSPs

 13.5 Understanding container scanning

 Enabling container scanning

 Adding images to your repository

 Reviewing image vulnerabilities

 13.6 Understanding container security

 Running containers as root

 Running privileged containers

 13.7 Using ACM to secure your service mesh

 Using ACM to enforce mutual TLS

 13.8 Conclusion

 13.9 Examples and case study

 Evermore Industries

 14 Marketplace

 Antonio Gulli

 14.1 The Google Marketplace

 Public Marketplace

 Service Catalog

 Deploying on a GKE on-prem cluster

 14.2 Real-world scenarios

 Example 1: Elasticsearch

 Example 2: MariaDB

 What we have done so far

 Example 3: Cassandra

 Example 4: Prometheus and Grafana

 15 Migrate

 Antonio Gulli

 15.1 Migrate for Anthos benefits

 Density

 Cost

 Infrastructure

 Automation

 Security

 Service management

 Day 2 operations

 15.2 Recommended workloads for migration

 15.3 M4A architecture

 Migration workflow

 From virtual machines to containers

 A look at the Windows environment

 A complete view of the modernization journey

 15.4 Real-world scenarios

 Using the fit assessment tool

 Basic migration example

 Google Cloud console UI migration example

 Windows migration

 Migration from other clouds

 15.5 Advanced topic: M4A best practices

 15.6 Postmigration integration with CI/CD pipelines

 15.7 Postmigration integration with ASM

 16 Breaking the monolith

 Phil Taylor

 16.1 Modernizing legacy applications

 16.2 Using Anthos for modernization

 Approach to modernization

 16.3 Benefits of Anthos for microservices

 16.4 Real-world examples

 16.5 Antipatterns to avoid

 17 Compute environment running on bare metal

 Giovanni Galloro

 17.1 Introduction to Anthos on bare metal

 Comparing Anthos on-prem deployment options

 17.2 Anthos bare metal architecture

 Cluster architecture

 17.3 Installation and configuration overview

 Operating systems and software requirements

 Hardware capacity requirements

 Admin workstation

 Networking requirements

 Google Cloud Platform requirements

 17.4 Creating clusters

 Creating an admin, hybrid, or standalone cluster

 Creating a user cluster

 17.5 Upgrading clusters

 Upgrading an admin, standalone, or hybrid cluster

 Upgrading a user cluster

 appendix A Cloud is the new computing stack

 Phil Taylor

 appendix B Lessons from the field

 Kyle Basset

 appendix C Compute environment running on VMware

 Jarosław Gajewski

 appendix D Data and analytics

 Patricia Florissi

 appendix E An end-to-end example of ML application

 Amita Kapoor

 appendix F Compute environment running on Windows

 Kaslin Fields

 index

front matter

preface

 The idea to write Google Anthos in Action came after discussions with hundreds of customers interested in managing applications anywhere, delivering software faster, and protecting applications and the software supply chain. Customers wanted to better understand how Anthos can help them manage their application deployments in traditional on-prem setups, at the edge, and in cloud native and multicloud environments. They were interested in achieving the benefits of containers, serverless, infrastructure as code, and service meshes to improve productivity and velocity. They wanted to understand how to guarantee and increase security in each stage of the application life cycle with automatization and transparent policy management.

 Google Anthos in Action brings together the collective expertise of Googlers passionate about Kubernetes, serverless, and Anthos, as well as Google Cloud Certified Fellows, an elite group of cloud architects and technical leaders who are experts in designing enterprise solutions.

acknowledgments

 Google Anthos in Action would not be possible without the work of countless fellow travelers (https://en.wikipedia.org/wiki/Fellow_traveller).

 The lead authors would like to thank the other authors for their contributions; in alphabetical order, we thank Ameer Abbas, Amita Kapoor, Aparna Sinha, Eric Brewer, Giovanni Galloro, Jarosław Gajewski, Jason Quek, Kaslin Fields, Konrad Cłapa, Kyle Bassett, Melika Golkaram, Onofrio Petragallo, Patricia Florissi, Phand Phil Taylor. Some of the authors were selected for the book’s preview edition published at Google Cloud Next in 2021. In this full-edition publication, all of the authors are included in the 17 chapters in this book and the six additional chapters available in the eBook and online in liveBook.

 The authors would like to thank all of the reviewers for their thoughtful input, discussion, and review. In alphabetical order, we thank Ady Degany, Alex Mattson, Alon Pildus, Amina Mansur, Amr Abdelrazik, Anil Dhawan, Ankur Jain, Anna Beremberg, Antoine Larmanjat, Ashwin Perti, Barbara Stanley, Ben Good, Bhagvan Kommadi, Brian Grant, Brian Kaufman, Chen Goldberg, Christoph Bussler, Clifford Thurber, Conor Redmond, Eric Johnson, Fabrizio Pezzella, Gabriele Di Piazza, Ganesh Swaminathan, Gil Fidel, Glen Yu, Guy Ndjeng, Harish Yakumar, Haroon Chaudhry, Hugo Figueiredo, Issy Ben-Shaul, Jamie Duncan, Jason Polites, Jeff Reed, Jeffrey Chu, Jennifer Lin, Jerome Simms, John Abel, Jonathan Donaldson, Jose San Leandro, Kamesh Ganesan, Karthikeyarajan Rajendran, Kavitha Radhakrishnan, Kevin Shatzkamer, Krzysztof Kamyczek, Laura Cellerini, Leonid Vasetsky, Louis Ryan, Luke Kupka, Maluin Patel, Manu Batra, Marco Ferrari, Marcus Johansonn, Massimo Mascaro, Maulin Patel, Micah Baker, Michael Abd-El-Malek, Michael Bright, Michelle Au, Miguel de Luna, Mike Columbus, Mike Ensor, Nima Badiey, Nina Kozinska, Norman Johnson, Purvi Desai, Quan To, Raghu Nandan, Raja Jadeja, Rambabu Posa, Rich Rose, Roman Zhuzha, Ron Avnur, Scott Penberthy, Simone Sguazza, Sri Thuraisamy, Stanley Anozie, Stephen Muss, Steren Giannini, Sudeep Batra, Tariq Islam, Tim Hockin, Tony Savor, Vanna Stano, Vinay Anand, Yoav Reich, Zach Casper, and Zach Seils.

 This book would not have been possible without a massive collaboration among the authors, reviewers, editors, and marketing. We are particularly thankful to Arun Ananthampalayam, J. P. Schaengold, Maria Bledsoe, Richard Seroter, Eyal Manor, and Yash Kamath from Google; and Doug Rudder, Aleksandar Dragosavljević, and Gloria Lukos from Manning. Thanks for your continuous support and inspiration.

 A special thanks goes to Will Grannis, founder and managing director of Google Cloud’s Office of the CTO, for being a servant leader, always inspiring others. In addition, special gratitude goes to Eric Brewer, professor emeritus of computer science at the University of California, Berkeley, and vice president of infrastructure at Google. This book could not have been written without his support and encouragement.

 All the authors’ royalties will be donated to charities.

Authors

 	
 Ameer Abbas, senior product manager at Google, focused on modern applications and platforms

 	
 Amita Kapoor, former associate professor, University of Delhi, now founder of NePeur, passionate about using AI for good

 	
 Antonio Gulli, director of engineering at Google, worked all his life on search and Cloud, proud father of three angels

 	
 Aparna Sinha, senior director, product management and DevRel, built and led Kubernetes and developed PM teams, growing the P&L 100 times

 	
 Eric Brewer, professor emeritus of computer science at the University of California, Berkeley, and vice president of infrastructure at Google

 	
 Giovanni Galloro, customer engineer at Google focused on Kubernetes, cloud-native tooling, and developer productivity

 	
 Jarosław Gajewski, global lead architect and Distinguished Expert in Atos, Google Cloud Certified Fellow, passionate about Cloud, Kubernetes, and the entire CNCF framework

 	
 Jason Quek, global CTO Devoteam, G Cloud, started as a programmer, now building on Google Cloud, passionate about Kubernetes and Anthos

 	
 Kaslin Fields, GKE and open source Kubernetes developer advocate at Google Cloud, CNCF ambassador

 	
 Konrad Cłapa, Google Cloud Certified Fellow #5 and a lead Cloud architect responsible for the design of managed GCP offerings at Atos

 	
 Kyle Bassett, cloud native community member and open source advocate, collaborated with Google product and engineering to lead the original design partnership for Anthos

 	
 Melika Golkaram (Googler), solutions architect in Google Cloud, with a focus on Kubernetes, Anthos, and Google Distributed Edge Cloud

 	
 Michael Madison, cloud architect at World Wide Technology, with a background in software development and IaC

 	
 Onofrio Petragallo (Googler), customer engineer at Google Cloud, focused on data analytics and artificial intelligence

 	
 Patricia Florissi (Googler), technical director, Office of the CTO, Google Cloud, worked the past 10 years on federated computations, a superset of federated analytics and federated learning

 	
 Phil Taylor, CTO at CDW Digital Velocity, started coding at age 13, relentless entrepreneur with a track record of taking products to market using the public Cloud and Kubernetes

 	
 Scott Surovich, global container engineering lead at HSBC Bank, Google Fellow, Kubernetes advocate, and coauthor of Kubernetes: An Enterprise Guide

about this book

 Anthos (https://cloud.google.com/anthos) is a multicloud containerized product working on-prem, on multiple public cloud platforms, on private clouds, and at the edge. It is also a managed application platform that extends Google Cloud services and engineering practices to many environments so you can modernize apps faster and establish operational consistency across them.

Who should read this book?

 Readers should have a general understanding of distributed application architecture and a baseline understanding of cloud technologies. They should also have a basic understanding of Kubernetes, including commonly used resources, how to create a manifest, and how to use the kubectl CLI.

 This book is designed for anyone interested in furthering their knowledge of Anthos and Kubernetes. After reading this book, the reader will have an increased knowledge of Anthos in GCP and multicloud platforms.

How this book is organized: A road map

 	
 Chapter 1—An introduction to how Anthos and modern applications benefit businesses in driving transformation in multiple industries and how cloud native microservices architecture provides the scalability and modularity that provide the foundation and competitive edge that businesses need in today’s world.

 	
 Chapter 2—Most organizations can manage a small number of clusters easily but often run into support issues as they scale out environments, making management a difficult task. In this chapter, you will learn how Anthos provides a single-pane-of-glass view to Kubernetes clusters running different cloud providers and on-prem clusters.

 	
 Chapter 3—Kubernetes is becoming “the data center API” and is the main component behind Anthos, providing the compute environment we need to power portable, cloud native applications and, in the right use cases, monolithic applications. This chapter teaches the components of Kubernetes and the differences between declarative and imperative deployment models and advanced scheduling concepts to keep your workloads available if certain portions of the infrastructure experience failures.

 	
 Chapter 4—Anthos provides a fully supported version of Istio, an open source service mesh that provides several features for workloads both running in an Anthos cluster and on external servers, like virtual machines. Learn about the components of ASM and how each provides features in the mesh and how to secure traffic using mutual TLS, provide advanced release cycles like A/B or canary testing, and offer visibility into mesh traffic using the GCP console.

 	
 Chapter 5—Dive deeper into managing clusters and workloads using the GCP console. Learn about the different logging and monitoring considerations, how to manage clusters and workloads using the CLI, and how to scale and design operations management in a hybrid environment.

 	
 Chapter 6—Using your knowledge from the previous chapters, learn about the Anthos components that provide tools for developers to create applications, including the Cloud Code plugin for IntelliJ, Visual Studio Code, and Google’s Cloud Shell, and to deploy applications using versioning and Cloud Build.

 	
 Chapter 7—Anthos allows an organization to standardize on Kubernetes, providing a unified pattern to develop, deploy, scale, and secure portability and high availability. Workloads can be secured using workload identity, which provides enhanced security across multiple clusters in hybrid and multicloud environments. Learn how to route traffic to clusters with load balancers and use Google’s Traffic Director to route traffic across multiple clusters, and see how VPC service controls are used to secure your clusters.

 	
 Chapter 8—Learn more about Anthos on the edge from telco examples and how they implement 5G to enhance quality checks, self-driving cars, and inventory tracking.

 	
 Chapter 9—Serverless removes the complexity of Kubernetes for developers. In this chapter, you will learn about Cloud Run, which is based on Knative, and how its components are used to address different use cases, including eventing, versioning, and traffic management.

 	
 Chapter 10—Anthos networking features multiple layers and options. In this chapter, you will learn about cloud networking and hybrid connectivity, including dedicated interconnects, Cloud VPC, and using standard public internet connections. Dive into the Anthos networking options and see how you can connect clusters running Anthos, or any compliant Kubernetes version, from other cloud service providers and on-prem.

 	
 Chapter 11—As an organization grows, the complexities of managing and scaling multiple clusters increase along with it. Anthos Config Management (ACM) provides security using gatekeeper policies, configuration management with standard tools like Git, and additional namespace controls using the hierarchical namespace controller.

 	
 Chapter 12—Continuous integration and continuous delivery are two of the main components to becoming an agile organization. To achieve your CI/CD goals, you will learn how to use Skaffold, Cloud Code, Cloud Source Repositories, Artifact Registry, and more to make your organization truly agile.

 	
 Chapter 13—Build on the foundation of Anthos Config Management to secure your clusters from malicious or accidental incidents. To understand how to secure a system, you need to understand how it can be compromised, and in this chapter, you will learn how a person can deploy an escalated Pod to take over a host or an entire cluster. Then, using ACM, learn how to secure various components from attacks or mistakes like vulnerable libraries in your image(s).

 	
 Chapter 14—You can run millions of images and products on Anthos, and your organization may maintain its own releases of products. Google makes it easier for you to use a collection of workloads that are curated by Google or other industry leaders like NetApp, IBM, Red Hat, and Microsoft. In this chapter, you will learn about the Google Marketplace and how you can use it to easily create solutions for your users.

 	
 Chapter 15—Convincing developers or businesses to move from heritage applications running on virtual services can be difficult and time consuming. They may not have the staff or subject matter experts to assist with the work and prefer the status quo. Anthos includes a utility to help with the process, from identifying workload candidates for migration up to the actual migration of these workloads from virtual machines to containers.

 	
 Chapter 16—To move a workload from any heritage technology to containers, you need to learn the best methods and the benefits of moving to microservices. This chapter will teach you how to use Anthos to modernize your applications through real-world examples and the antipatterns to avoid.

 	
 Chapter 17—It is becoming increasingly common for more advanced workloads to move to Kubernetes, including workloads that may require GPUs, PCI cards, or external hardware components. Although you can accomplish this in a virtual environment, doing so has limitations and several complexities. In this chapter, you will learn how to deploy Anthos on bare metal, to provide a platform to address the requirements for which you may encounter limitations on VMware.

 The following bonus appendixes are available in the ePub and Kindle versions of this book, and you can read them online in liveBook:

 	
 appendix A Cloud is the new computing stack

 Phil Taylor

 	
 appendix B Lessons from the field

 Kyle Basset

 	
 appendix C Compute environment running on VMware

 Jarosław Gajewski

 	
 appendix D Data and analytics

 Patricia Florissi

 	
 appendix E An end-to-end example of ML application

 Amita Kapoor

 	
 appendix F Compute environment running on Windows

 Kaslin Fields

liveBook discussion forum

 Purchase of Google Anthos in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/book/google-anthos-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the lead authors

 Antonio Gulli has a passion for establishing and managing global technological talent for innovation and execution. His core expertise is in cloud computing, deep learning, and search engines. Currently, he serves as engineering director for the Office of the CTO, Google Cloud. Previously, he served as Google Warsaw Site leader, doubling the size of the engineering site.

 So far, Antonio has enjoyed obtaining professional experience in four countries in Europe and has managed teams in six countries in Europe, the Middle East, Asia, and in the United States; in Amsterdam, as vice president at Elsevier, a leading scientific publisher; in London, as engineering site lead for Microsoft working on Bing; in Italy and the UK as CTO; in Europe and the UK for Ask.com; and in several cofounded startups, including one of the first web search companies in Europe.

 Antonio has co-invented several technologies for search, smart energy, and AI, with 20-plus patents issued/applied for, and he has published several books about coding and machine learning, also translated into Japanese, Russian, Korean, and Chinese. Antonio speaks Spanish, English, and Italian, and he is currently learning Polish and French. Antonio is a proud father of two boys, Lorenzo, 22, and Leonardo, 17, and a little queen, Aurora, 13. They all share a passion for inventions.

 Scott Surovich has been an engineer in one of the world’s largest banks, HSBC, for the last 20 years. There he has had various engineering roles, including working with Citrix, Windows, Linux, and virtualization. For the last three years, he has been part of the hybrid integration platform team as the lead engineer and product owner for Kubernetes/Anthos.

 Scott has always been passionate about training and writing about technology for anyone willing to learn. He was a certified trainer for years, teaching certified classes for multiple vendors, including Microsoft, Citrix, and CompTIA. In 2019, his first coauthored book, Kubernetes and Docker: An Enterprise Guide, was released. It was well received, and after the success of the first edition, an updated second edition was released on December 19, 2021, and became a number-one best seller in the first week of release.

 He is also a huge 3D printing enthusiast (bordering on addiction), microcontroller tinkerer, and avid hockey player. When Scott has any downtime, he prefers to spend it with his wife, Kim, and his dog, Belle.

 Scott also wants to thank Google for the opportunity to join the initial Google Fellow pilot group and entrusting him with participation in the creation of this book.

 Michael Madison enjoys exploring new cloud technology and finding ways to use advancements in computing to streamline company operations and open new avenues for delivering value to customers. His current position as a Cloud Platform architect at World Wide Technology allows him to assist companies and organizations in beginning or continuing their cloud journeys.

 Although he has been an IT professional for more than 15 years, Michael began in the entertainment sector, working for theme parks and cruise lines. Eventually, his hobby of programming became his primary career, and he expanded his domain to include infrastructure and cloud. When the opportunity arose, he focused on cloud initiatives fully, bringing his decade of software development experience to bear on the challenges surrounding cloud and hybrid deployments.

 Originally from Texas, Michael lived and went to school in Georgia, Alaska, and Texas. He eventually wound up working in Missouri, where he currently lives outside Saint Louis. Michael and his wife own an RV and plan to tour the country in a few years, accompanied by their dog, Shenzi.

about the cover illustration

 The figure on the cover of Google Anthos in Action is captioned “Habitante de Frascati,” or “Resident of Frascati,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Overview of Anthos

 Aparna Sinha

 This chapter covers

 	
Anatomy of a modern application

 	
Accelerating software development with Anthos

 	
Standardizing operations at scale with Anthos

 	
Origins at Google

 	
How to read this book

 Software has been running the world for a while. As consumers, we are used to applications that make it faster, smarter, and more efficient for us to do things like calling a cab or depositing a paycheck. Increasingly, our health, education, entertainment, social life, and employment are all enhanced by modern software applications. At the other end of those applications is a chain of enterprises, large and small, that deliver these improved experiences, services, and products. Modern applications are deployed not just in the hands of consumers but also at points along this enterprise supply chain. Major transactional systems in many traditional industries such as retail, media, financial services, education, and logistics are gradually being replaced by modern microservices that autoupdate frequently, scale efficiently, and incorporate more real-time intelligence. New digital-first startups are using this opportunity to disrupt traditional business models, whereas enterprise incumbents are rushing to modernize their systems so they can compete and avoid disruption.

 This book will take you through the anatomy of Anthos—the platform, the development environment, the elements of automation and scaling, and the connection to patterns adapted from Google to attain excellence in modern software development in any industry. Each chapter includes practical examples of how to use the platform, and several include hands-on exercises to implement the techniques.

1.1 Anatomy of a modern application

 What is a modern application? When you think of software that has improved your life, perhaps you think of applications that are interactive, fast (low latency), connected, intelligent, context aware, reliable, secure, and easy to use on any device. As technology advances, the capabilities of modern applications, such as the level of security, reliability, awareness, and intelligence, advance as well. For example, new development frameworks such as React and Angular have greatly enhanced the level of interactivity of applications, and new runtimes like Node.js have increased functionality. Modern applications have the property of constantly getting better through frequent updates. On the backend, these applications often comprise many services that are all continuously improving. This modularity is attained by breaking the older “monolith” pattern for writing applications, where all the various functions were tightly coupled to each other.

 Applications written as a set of modules or microservices offer several benefits: constituent services can be evolved independently or replaced with other, more scalable or otherwise superior, services over time. Also, the modern microservices pattern is better at separating concerns and setting contracts between services, making it easier to inspect and fix problems. This approach to writing, updating, and deploying applications as microservices that can be used together but also updated, scaled, and debugged independently is at the heart of modern software development. In this book, we refer to this pattern as “modern” or “cloud native” application development. The term cloud native applies here because the microservices pattern is well suited to run on distributed infrastructure or the cloud. Microservices can be rolled out incrementally, scaled, revised, replaced, scheduled, rescheduled, and bin packed tightly on distributed servers, creating a highly efficient, scalable, reliable system that is responsive and frequently updated.

 Modern applications can be written greenfield (from scratch) or refactored from existing brownfield applications by following a set of architectural and operational principles. The end goal of application modernization is typically revenue acceleration, and often this involves teams outside IT, in line-of-business (LOB) units. IT departments in most traditional enterprises have historically focused on reducing costs and optimizing operations. Although cost reduction and optimized operations can be by-products of application modernization, they are not the most important benefits. Of course, the modernization process itself requires up-front investment. Anthos is Google Cloud’s platform for application modernization in hybrid and multicloud environments. It provides the approach and technical foundation needed to attain high ROI application modernization. An IT strategy that emphasizes modularity through APIs, microservices, and cloud portability combined with a developer platform that automates reuse, experiments, and cost-efficient scaling along with secure, reliable operations are the basic critical prerequisites for successful application modernization.

 One aspect of Anthos is a modern developer experience that accelerates line-of-business application development. It is optimized for refactoring brownfield apps and writing microservices and API-based applications. It offers unified local, on-prem, and cloud development with event-driven automation from source to production. Developers can write code rapidly using modern languages and frameworks with local emulation and testing and integrated CI/CD, and Anthos supports rapid iteration, experimentation, and advanced rollout strategies. The Anthos developer experience emphasizes cloud APIs, containers, and functions, but enterprise platform teams can also customize it. A key goal of the Anthos developer experience is for teams to release code multiple times a day, thereby enhancing both velocity and reliability. Anthos features built-in velocity and ROI metrics to help development teams measure and optimize their performance. Data-driven benchmarks are augmented with prepackaged best practice blueprints that teams can deploy to achieve the next level of performance.

 Another aspect of Anthos is an operator experience for central IT. Anthos shines as the uniquely scalable, streamlined way to run operations across multiple clouds. This function is enabled by the remarkable foundation of technology invented and honed at Google over the past 20 years for running services with extremely high reliability on relatively low-cost infrastructure. This is achieved through the standardization of the infrastructure using a layer of abstraction comprising Kubernetes, Istio, Knative, and several other building blocks, along with Anthos-specific extensions and integrations for automated configuration, security, and operations. The operator experience on Anthos offers advanced security and policy controls, automated declarative configuration, highly scalable service visualization and operations, and automated resource and cost management. It features extensive automation, measurement and fault avoidance capabilities for high availability, secure service management across the cloud, and on-prem, edge, virtualized, and bare metal infrastructure.

 Enterprise and small companies alike find that multicloud and edge is their new reality, either organically or through acquisitions. Regulations in many countries require proven ability to migrate applications between clouds and a demonstration of failure tolerance with support for sovereignty. Unregulated companies find multicloud necessary for providing developers’ choice and access to innovative services. Opportunities for running services and providing greater intelligence at the edge add further surfaces to the infrastructure footprint. Some IT organizations roll their own cross-cloud platform integrations, but this job gets harder every day. It is extremely difficult to build a cross-cloud platform in a scalable, maintainable way, and, more importantly, that approach detracts from precious developer time for product innovation.

 Anthos provides a solution rooted in years of time-tested experience and technical innovation at Google in software development and site reliability engineering (SRE) operations, augmented with Google Cloud’s experience managing infrastructure for modern applications across millions of enterprise customers. Anthos is unique in serving the needs of LOB developers and central IT together, with advanced capabilities in both domains. Consistency of developer and operator experience across environments enables enterprises to obtain maximum ROI from application modernization with Anthos.

1.1.1 Accelerating software development

 Software product innovation and new customer experiences are the engine of new revenue generation in the digital economy. But in the innovation process, only a few ideas lead to successful new products; most fail and disappear. As every industry transitions to being software driven, new product innovation depends on having a highly agile and productive software development process. Developers are the new kingmakers. Without an agile, efficient development process and platform, companies can fail to innovate, or innovate at very high costs and even negative ROI. An extensive DevOps Research Assessment1 study (DORA) surveyed over 30,000 IT professionals over several years across a variety of IT functions. It shows that excellence in software development is a hallmark of business success. This is not surprising given the importance of modern applications in fueling the economy.

 DORA quantifies these benefits, showing that “elite,” or the highest-performing, software teams are two times more effective in attaining revenue and business goals than low-performing teams. The distinguishing characteristic of elite teams is the practice of releasing software frequently. DORA finds the following four key metrics provide an accurate measurement of software development excellence:

 	
 Deployment frequency

 	
 Lead time for changes

 	
 Change fail rate

 	
 Time to restore service

 High-performance teams release software frequently, for example, several times a day. In comparison, low performers release less than once a month. The study also found that teams that release frequently have a lower software defect ratio and recover from errors more rapidly than others. As a result, in addition to being more innovative and modern, their software is more reliable and secure. Year over year, DORA results also show that an increasing number of enterprises are investing in the tools and practices that enable elite performance.

 Why do teams with higher development velocity have better business results? In general, higher velocity means that developers can experiment more and test more, so they come up with a better answer in the same amount of time. But another reason exists. Teams with higher velocity have usually made writing and deploying code an automated, low-effort process, which has the side effect of enabling more people to become developers, especially those who are more entrenched in the business versus the tooling. As a result, high-velocity developer teams have more LOB thinking and a greater understanding of end user needs. The combination of rapid experimentation and focus on users yields better business results. Anthos is the common substrate layer that runs across clouds to provide a common developer experience for accelerating application delivery.

1.1.2 Standardizing operations at scale

 Developers may be the new kingmakers, but operations is the team that runs the kingdom day in and day out. Operations includes teams that provision, upgrade, manage, troubleshoot, and scale all aspects of services, infrastructure, and the cloud. Typically, networking, compute, storage, security, identity, asset management, billing, and reliability engineering are part of the operations team of an enterprise. Traditional IT teams have anywhere from 15%-30% of their staff in IT operations. This team is not always visibly engaged in new product introductions with the line of business, but it often lays the groundwork, selecting clouds, publishing service catalogs, and qualifying services for use by the business. Failing to invest in operations automation often means that this team become the bottleneck and a source of fixed cost.

 On the flip side, modernizing operations has a tremendous positive effect on velocity. Modern application development teams are typically supported by a very lean operations team, where 80%-plus of staff are employed in software development versus operations. Such a developer-centric ratio is achieved only through modern infrastructure with scaled, automated operations. This means operations are extremely streamlined and use extensive automation to bring new services online quickly. Perhaps the greatest value of Anthos is in automating operations at scale consistently across environments, which is enabled by a unique open cloud approach that has its origins in Google’s own infrastructure underpinning.

1.2 Origins in Google

 Google’s software development process has been optimized and fine tuned over many years to maximize developer productivity and innovation, which attracts the best software developers in the world and leads to a virtuous cycle of innovation in software and software development and delivery practices. The Anthos development stack has evolved from these foundations and is built on core, open source technology that Google introduced to the industry.

 At the heart of Anthos is Kubernetes, the extensive orchestration and automation model for managing infrastructure through the container abstraction layer. The layer above Kubernetes is grounded in Google’s SRE or operations practices, which standardize the control, security, and management of services at scale. This layer of service management is rooted in Google’s Istio-based Cloud Service Mesh. Enterprise policy and configuration automation is built in this layer using Anthos Config Management to provide automation and security at scale. This platform can run on multiple clouds and abstracts the disparate networking, storage, and compute layers underneath (see figure 1.1).

 [image: 01-01]

 Figure 1.1 Anthos components and functions

 Above this Anthos stack is developer experience and DevOps tooling, including a deployment environment that uses Knative and integrated CICD with Tekton.

Summary

 	
 Modern software applications provide a host of business benefits and are driving transformation in many industries.

 	
 The backend for these applications is typically based on the cloud native microservices architectural pattern, which allows for great scalability, modularity, and a host of operational and DevOps benefits that are well suited for running on distributed infrastructure.

 	
 Anthos, which originated in Google Cloud, is a platform for hosting cloud native applications, providing both development and operational benefits.

 1.https://www.devops-research.com/research.html.

2 One single pane of glass

 Melika Golkaram

 This chapter covers

 	
The advantages of having a single pane of glass and its components

 	
How different personas can use and benefit from these components

 	
Getting some hands-on experience configuring the UI and attaching a cluster to the Anthos UI

 We live in a world where application performance is critical for success. To better serve their end users, many organizations have pushed to distribute their workloads from centralized data centers. Whether to be closer to their users, to enhance disaster recovery, or to take advantage of the benefits of cloud computing, this distribution has placed additional pressure on the tooling used to manage and support this strategy. The tools that have flourished under this new paradigm are those that have matured and become more sophisticated and scalable.

 There is no one-size-fits-all tool. Likewise, no one person can manage the infrastructure of even a small organization. All applications require tools to manage CI/CD, monitoring, logging, orchestration, deployments, storage, authentication/ authorization, and more. In addition to the scalability and sophistication mentioned earlier, most of the tools in this space offer an informative and user-friendly graphical user interface (GUI). Having an easily understood GUI can help people use the tool more effectively because it lowers the bar for learning the software and increases the amount of pertinent output the user receives.

 Anthos itself has the capacity to support hundreds of applications and thousands of services, so a high-quality GUI and a consolidated user experience are required to use the ecosystem to its full potential and reduce the operational overhead. To this end, Google Cloud Platform offers a rich set of dashboards and integrated tools within the Google Cloud console to help you monitor, troubleshoot, and interact with your deployed Anthos clusters, regardless of their location or infrastructure provider. This single pane of glass allows administrators, operations professionals, developers, and business owners to view the status of their clusters and application workloads, all while benefiting from the capabilities of Google Cloud’s Identity and Access Management (IAM) framework and any additional security provided on each cluster.

 The Anthos GUI, its “single pane of glass,” is not the first product to attempt to centralize the visibility and operations of a fleet of clusters, but it is the one that offers support to provide real-time visibility to a large variety of environments. To fully understand the benefits of the Anthos GUI, in this chapter, we are going to look at some of the options available to aggregate and standardize interactions with multiple Kubernetes clusters.

2.1 Single pane of glass

 A single pane of glass offers the following three characteristics that are shared across all operators, industries, and operations scales:

 	
 Centralization—As the name suggests, a single pane of glass should provide a central UI for resources, no matter where they run and to whom they are provided. The former aspect relates to the infrastructure and cloud provider on which the clusters are operating and the latter relates to inherently multitenant services, where one operator centrally manages multiple clients’ clusters and workloads. With the benefits of a central dashboard, admins will be able to get a high-level view of resources and drill down to areas of interest without switching the view.

 	
 However, a central environment might cause some concern in areas of privacy and security. Not every administrator is required to connect to all clusters, and not all admins should be able to have access to the UI. A central environment should come with its own safeguards to avoid any operational compromise with industry standards.

 	
 Consistency—Let’s go back to the scenario of an operator running clusters and customers in multicloud or hybrid architectures. Most infrastructure providers, whether they offer proprietary services or run on open source, attempt to offer a solid interface for their users. However, they use different terminology and have inconsistent views on priorities. Finally, depending on their UI philosophy and approach, they design the view and navigation differently. Remember, for a cloud provider, cluster and container management are only parts of the bigger suite of services and components of a predesigned dashboard. Although this might be a positive element in single operating environments (you can learn to navigate outside of the Kubernetes dashboard into the rest of the Cloud Services dashboard with minimum switching), it becomes a headache in multienvironment services and for those who focus only on Kubernetes.

 	
 Ease of use—Part of the appeal of a single pane of glass in operation is how data coming from different sources is aggregated, normalized, and visualized. This brings a lot of simplicity in drilling down into performance management and triage, especially if it combines a graphical interface with it.

 A graphical UI has always been an important part of any online application. First, at some point in an app management cycle, a team doesn’t have either the skills or the interest for working with remote calls. They expect a robust, easy-to-navigate, and a highly device-agnostic UI for their day-to-day responsibilities.

 Second, regardless of the team’s skill sets, an aggregated dashboard has so much more to offer in one concentrated view than calling service providers and perhaps clusters individually given that the UI provides lots of data fields with the right installation and readability.

2.2 Non-Anthos visibility and interaction

 Anthos is not the first solution to expose information about a Kubernetes cluster through a more easily digested form than the built-in APIs. Although many developers and operators have used the command-line interface (CLI), kubectl, to interact with a cluster, the information presented can be very technical and does not usually display potential problems in a friendly way. Extensions to Kubernetes, such as Istio or Anthos Config Management, typically come with their own CLIs as well (istioctl and nomos, for example). Cross-referencing information between all the disparate tools can be a substantial exercise, even for the most experienced developer or operator.

2.2.1 Kubernetes Dashboard

 One of the first tools developed to solve this problem was the Kubernetes Dashboard (https://github.com/kubernetes/dashboard). Although this utility is not deployed by default on new Kubernetes clusters, it is easy to deploy to the cluster and begin using the information it provides. In addition to providing a holistic view of most of the components of a Kubernetes cluster, the dashboard also provides users with a GUI interface to deploy new workloads into the cluster. This makes the dashboard a convenient and quick way to view the status and interact with a new cluster.

 However, it works on only one cluster. You can certainly deploy the Kubernetes Dashboard to each of your clusters, but they will remain independent of each other and have no cross-connection. In addition, because the dashboard is located on the cluster itself, accessing it remotely requires a level of effort similar to using the CLI tool, requiring services, load balancing, and ingress rules to properly route and validate incoming traffic. Although the dashboard can be powerful for proof of concept or small developer clusters, multiuser clusters need a more powerful tool.

2.2.2 Provider-specific UIs

 Kubernetes was released from the beginning as an open source project. Though based on internal Google tools, the structure of Kubernetes allowed vendors and other cloud providers to easily create their own customized versions of Kubernetes, either to simplify deployment or management on their platforms or to add additional features. Many of these adaptations have customized UIs for either deployment or management operations.

 For cloud providers, many of the user interfaces for their other products already existed and followed a particular style. Each provider developed a different UI for their version of Kubernetes. Although a portion of these UIs dealt with provisioning and maintaining the infrastructure of a cluster, some of each UI was dedicated to cluster operations and manipulation. However, each UI was implemented differently and couldn’t manage clusters other than the native Kubernetes flavor for that cloud provider.

2.2.3 Bespoke software

 Some companies have decided to push the boundaries and develop their own custom software and UIs to visualize and manage their Kubernetes installations and operations. Though always an option due to the open standards of the Kubernetes APIs, any bespoke development brings all the associated challenges that come with maintaining any custom operations software: maintaining the software for new versions, bug fixing, handling OS and package upgrades, and so on. For the highest degree of customization, nothing beats bespoke software, but the cost-versus-benefit calculation does not work out for most companies.

2.3 The Anthos UI

 Each of the previous solutions has a fundamental flaw that prevents most companies from fully benefiting from it. The Kubernetes Dashboard has no multicluster capability and does not handle remote access easily. The provider-specific UIs work well for their flavor but cannot handle clusters that are not on their network or running their version of Kubernetes. And bespoke software comes with a high cost of development and maintenance. This is where the Anthos multicluster single pane of glass comes into play. This single pane of glass is an extension of, and embedded in, Google Cloud Platform’s already extensive Cloud console that allows users to view, monitor, and manage their entire cloud infrastructure and workloads.

 The solution Google has developed for multicluster visibility in Anthos depends on a new concept called fleets (formerly referred to as environs), the Connect framework, and the Anthos dashboard. The Anthos dashboard is an enhancement of the existing GKE dashboard that Google has provided for several years for its in-cloud GKE clusters. The Connect framework is new with Anthos and simplifies the communication process between Google Cloud and clusters located anywhere in the world. Fleets are methods of aggregating clusters to simplify common work between them. Let’s take a moment to discuss a bit more about fleets.

2.3.1 Fleets

 Fleets are a Google Cloud concept for logically organizing clusters and other resources, letting you use and manage multicluster capabilities and apply consistent policies across your systems. Think of them as a grouping mechanism that applies several security and operation boundaries to resources within a single project.1 They help administrators build a one-to-many relationship between a fleet and its member clusters and resources to reduce the configuration burden of individual security and access rules. The clusters in a fleet also exist in a higher trust relationship with each other by belonging to the same fleet. This makes it easier to manage traffic into and between the clusters and join their service meshes together.

 An Anthos cluster will belong to one and only one fleet and cannot join another without leaving the first. Unfortunately, this limitation can present a small problem in complex service communications. For example, assume we have an API service and a Data Processing service that need to run in distinct fleets for security reasons, but both need to talk to a bespoke Permissioning service. The Permissioning service can be placed in one of the two fleets, but whichever service does not belong to Permissioning’s fleet will need to talk to the service using outside-the-cluster networking. However, this rule for fleets prevents users from accidentally merging clusters that must remain separate, because allowing the common service to exist in both fleets simultaneously would open additional attack vectors (see figure 2.1).

 [image: 02-01]

 Figure 2.1 Example of fleet merging causing security problems

 When multiple clusters are in the same fleet, many types of resources must have unique names, or they will be treated as the same resource. This obviously includes the clusters themselves but also covers namespaces, services, and identities. Anthos refers to this as sameness. Sameness forces consistent ownership across all clusters within a fleet, and namespaces that are defined on one cluster, but not on another, will be reserved implicitly.

 When designing the architecture of your services, this sameness concept must be kept in mind. Anthos Service Mesh, for example, typically treats a service that exists in the same namespace with the same name as an identical service across the entire fleet and load balances traffic between clusters automatically. If the namespace and/or service in question has a unique name, this should not cause any confusion. However, accessing the Webserver service in the Demo namespace might yield unexpected results.

 Finally, Anthos allows all services to use a common identity when accessing external resources such as Google Cloud services, object stores, and so on. This common identity makes it possible to give the services within a fleet access to an external resource once, rather than cluster by cluster. Although this can be overridden and multiple identities defined, if resources are not architected carefully and configured properly, negative outcomes can occur.

2.3.2 Connect: How does it work?

 Now that we have discussed fleets, we need to examine how the individual clusters communicate with Google Cloud. Any cluster that is part of Anthos, whether attached2 or Anthos managed, has Connect deployed to the cluster as part of the installation or registration process. This deployment establishes a persistent connection from the cluster outbound to Google Cloud that accepts traffic from the cloud and provides cloud-side operations secure access to the cluster. Because the initial connection is outbound, it does not rely on a fully routable connection from the cloud to the cluster. This setup greatly reduces the security considerations and does not require the cluster to be discoverable on the public internet.

 Once the persistent connection is established, Anthos can proxy requests made by Google Cloud services or users using the Google Cloud UI to the cluster, whether it is located within Google Cloud, in another cloud provider, at the edge, or on-prem. These requests use the user’s or the service’s credentials, maintaining the security on the cluster and allowing the existing role-based access controls (RBAC)3 rules to span direct connectivity as well as connections through the proxy. A request using the Anthos UI may look like figure 2.2.

 [image: 02-02]

 Figure 2.2 Flow of request and response from Google Cloud to cluster and back

 While the tunnel from the Connect Agent to Google Cloud is persistent, each stage of each request is authenticated using various mechanisms to validate the identity of the requestor and confirm that layer is allowed to make the request. Skipping layers is not permitted and will be rejected by the next layer receiving the invalid request. An overview of the request-response authentication is seen in figure 2.3.

 [image: 02-03]

 Figure 2.3 Request validation steps from Google Cloud to cluster

 Regardless of any authorization measures at the cluster level, a user must still be allowed to view the Google Cloud project to which the cluster is attached to use the Connect functionality. This method uses the standard IAM processes for a given project, but having the separate permission allows the security team to grant a user access to a cluster through a direct connection (or some other tunnel) but not allow them remote access via Google Cloud.

 Connect is compliant with Google’s Access Transparency,4 which provides transparency to the customer in the following two areas:

 	
 Access approval—Customers can authorize Google support staff to work on certain parts of their services. Customers can view the reasons a Google employee might need that access.

 	
 Activity visibility—Customers can import access logs into their project cloud logging to have visibility into Google employees’ actions and location and can query the logs in real time, if necessary.

2.3.3 Installation and registration

 To use the Connect functionality, we obviously need to install the Connect Agent on our cluster. We also need to inform Google about our cluster and determine which project, and, therefore, which fleets, the cluster belongs to. Fortunately, Google has provided a streamlined utility for performing this task via the gcloud command-line tool (see http://mng.bz/Op72). This process uses either Workload Identity or a Google Cloud service account to enroll the cluster with the project’s Connect pool and install and start the Connect Agent on the cluster.

 Though these steps enroll the cluster with Google and enable most Anthos features, you still need to authenticate with the cluster from the Google Console to view and interact with the cluster from Google Cloud. Connect allows authentication via Cloud identity (when using the Connect gateway),5 bearer token, or OIDC, if enabled on the cluster. The easiest, and recommended, method is to use Cloud Identity, but this requires the activation and configuration of the Connect Gateway for the cluster. For more information on Connect Gateway, please see chapter 5 on operations management with Anthos.

2.4 The Anthos Cloud UI

 Now that we’ve done the plumbing, we can walk through and show off the UI. Google provides the Anthos UI via the Cloud console at the project level. Because the Anthos UI is visible only at the project level, only clusters registered to that project’s fleets are visible. The Anthos UI menu contains multiple subpages, each focusing on a distinct aspect of cluster management. At the time of writing, these sections are the Dashboard, Service Mesh, Config Management, Clusters, Features, Migrate to Containers, Security, Cloud Run for Anthos, and Virtual Machines. Let’s look at each of these pages.

2.4.1 The Anthos dashboard

 The default page for the Anthos menu, and the central hub for the UI, is the dashboard. The dashboard is intended to give admins a wide-angle view of the clusters in the current fleet, while making it easy to drill down into details for the specific components. To start, go to the hamburger menu on the top-left corner of the console (figure 2.4). Select Anthos from the menu to enter the Anthos Features page.

 [image: 02-04]

 Figure 2.4 Navigation to the Anthos dashboard

 Figure 2.5 shows an example of the Anthos dashboard view.

 [image: 02-05]

 Figure 2.5 Example of an Anthos dashboard

 Although this example shows the current Anthos project cost, the dashboard still uses Google’s IAM, and that information will appear only if the viewing user has the appropriate billing-related permissions. The remaining sections highlight critical errors or other user-involved problems for that aspect of Anthos. Following those links takes you to the appropriate subpage.

2.4.2 Service Mesh

 The Service Mesh page shows all services registered in any of the clusters in the current fleet. The initial list shows the names, namespaces, and clusters of each service, as well as basic metrics, such as error rate and latency, at predefined thresholds. You can also filter this list by namespace, cluster name, requests per second, error rate, latency, request size, and resource usage to allow admins to easily drill down for specific tasks. Figure 2.6 shows the Service Mesh screen filtered for services in the default namespace.

 [image: 02-06]

 Figure 2.6 Service Mesh UI with filters

2.4.3 Config Management

 Anthos Config Management, explored in depth in chapter 11, is Anthos’s method of automatically adding and maintaining resources on a Kubernetes cluster. These resources can include most common Kubernetes core objects (such as Pods, Services, and Service Accounts) as well as custom entities such as policies and cloud-configuration objects. This tab displays the list of all clusters in the current fleet, their sync status, and which revision is currently enforced on the cluster (figure 2.7). The table also shows whether Policy Controller6 has been enabled for the cluster.

 [image: 02-07]

 Figure 2.7 Clusters in Config Management view

 Selecting a specific cluster opens the Config Management cluster detail, as shown in figure 2.8. This detailed view gives further information about the configuration settings, including the location of the repo used, the cycle for syncing, and the version of ACM running on the cluster.

 [image: 02-08]

 Figure 2.8 Cluster detail in Config Management view

2.4.4 Clusters

 The Clusters menu lists all clusters in the current fleet, along with the location, type, labels, and any warnings associated with each cluster, as shown in figure 2.9. By selecting a cluster in the list, a more detailed view of the cluster, with the current Kubernetes version, the CPU and memory available, and the features enabled, will be displayed in the right sidebar, as shown in figure 2.10. Below the sidebar information, a Manage Features button will take you to the Features tab for that cluster. In figure 2.9, the following clusters are created on the project:

 	
 GKE (cluster-gcp)

 	
 Baremetal (cluster-1)

 	
 Azure AKS (azure-cluster and externalazure)

 [image: 02-09]

 Figure 2.9 List view in the Clusters menu

 [image: 02-10]

 Figure 2.10 Cluster detail sidebar in the Clusters menu

2.4.5 Features

 The Anthos service encompasses several features (covered in more detail in other chapters), including:

 	
 Configuration Management

 	
 Ingress

 	
 Binary Authorization

 	
 Cloud Run for Anthos

 	
 Service Mesh

 The Features menu provides an easy way to enable and disable specific services for the entire fleet. Figure 2.11 shows the list of existing features for every cluster.

 [image: 02-11]

 Figure 2.11 Features menu

 An admin also can disable or enable most of these features from the interface (some features are integral components of Anthos and cannot be disabled). The same possibility also exists through gcloud or the fleet management API for better automation. It’s worth noting that if enablement is not fully possible through the visual interface, the console generates the right commands for the admin to seamlessly enter them into their CLI.

2.4.6 Migrating to containers

 One of the major benefits of Anthos is the automatable migration of Windows and Linux VMs to containers and their deployment onto a compatible Anthos cluster. Previously, this was primarily done via CLI and initiated from the source cluster, but this menu now provides a convenient, centralized process for shifting VMs to containers and into a different deployment scheme. The menu contains tabs for viewing and managing your migrations, sources, and processing clusters. For more information on the process of migrating your existing VMs to containers, see chapter 15, “Migrate.”

2.4.7 Security

 The Security menu is where you find multiple tools related to viewing, enabling, and auditing the security posture of the clusters in the current fleet. Figure 2.12 shows the basic view when you first select the Security menu.

 [image: 02-12]

 Figure 2.12 Security menu

 As you can see, we do not currently have Binary Authorization7 enabled, but Anthos provides us a shortcut to quickly turn it on. Once we do, we are presented with the configuration page for Binary Authorization (figure 2.13), enabling us to view and edit the policy, if needed.

 [image: 02-13]

 Figure 2.13 Binary Authorization policy details

2.5 Monitoring and logging

 The Anthos menu in the GCP console is only part of the solution, however. Google also provides the operations suite, including Cloud Monitoring and Cloud Logging, to help with managing the operations of applications and infrastructure. Anthos simplifies the logging of application data and metrics to the operations suite as part of the default deployment. This can make it easy to add SLOs and SLAs based on these metrics.8 In addition, several pages within the Anthos menu include shortcuts and buttons that trigger wizards to create SLOs in a guided fashion.

2.6 GKE dashboard

 Google has provided the GKE dashboard for several years to assist with viewing and managing your clusters for GKE in GCP. With the release of Anthos, the GKE dashboard has been expanded to display the details for Kubernetes clusters attached via GKE Connect. Although the Anthos menu is focused on the clusters at a high level and on the Anthos-specific features, such as the Service Mesh and Config Management, the GKE dashboard allows an admin to drill down to specific workloads and services. The next section presents a tutorial to register an Azure AKS cluster into an Anthos dashboard.

2.7 Connecting to a remote cluster

 In this example, a cluster is already created in the Azure Kubernetes Service (AKS) engine. Google allows several cluster types to be registered remotely, referred to as attached clusters (see http://mng.bz/Y6ne). To attach these clusters, you will need to take the following steps:

 	
 Open a terminal window on a computer that has access to the cluster to be registered. Note the full path to the kubeconfig file used to connect to the cluster.

 	
 In the Google console, under the IAM section, create a Google Service account with the role GKE Connect Agent. Generate an account key and save it.

 	
 Decide on the official designation for the cluster in your Anthos project; this is the Membership Name.

 	
 Use the next command to register your cluster, replacing the <FULLCAPS> fields with the appropriate information:9

 gcloud container fleet memberships register <MEMBERSHIP_NAME> \
 --context=<KUBECONFIG_CONTEXT> \
 --kubeconfig=<KUBECONFIG_PATH> \
 --service-account-key-file=<SERVICE_ACCOUNT_KEY_PATH>

 In a few minutes, your cluster appears on the GCP console, as displayed in figure 2.14.

 [image: 02-14]

 Figure 2.14 Registered cluster view

 	
 Authenticate to the registered cluster. As you can see, a warning sign appears next to the recently created cluster (externalazure). That is normal and a reminder to sign in to the cluster to perform more operations on it. Figure 2.15 shows the view of the registration status of the cluster.

 [image: 02-15]

 Figure 2.15 View of the registration status of the cluster

 By clicking the three dots for a cluster, you can see the available actions. Click Login, and you can see the following login options are available:

 	
 Use your Google identity to log in

 	
 Token

 	
 Basic authentication

 	
 Authenticate with Identity Provider configured for the cluster

 Let’s go ahead and authenticate with a token. To do that, you need to have a Kubernetes Service Account (KSA) with the right permissions. If you do not already have one, create a KSA by typing the following in your terminal:

 KSA_NAME=[KSA_NAME]
kubectl create serviceaccount ${KSA_NAME}
kubectl create clusterrolebinding [VIEW_BINDING_NAME] \
--clusterrole view --serviceaccount default:${KSA_NAME}
kubectl create clusterrolebinding [CLOUD_CONSOLE_READER_BINDING_NAME] \
--clusterrole cloud-console-reader --serviceaccount default:${KSA_NAME}

 KSA permissions

 All accounts logging in to a cluster need to hold at least the following Kubernetes RBAC roles in the cluster:

 	
 view—Kubernetes primitive role that allows read-only access to see most objects in a namespace. It does not allow viewing roles or role bindings.

 	
 cloud-console-reader—Users who want to view your cluster’s resources in the console need to have the relevant permissions to do so. You define this set of permissions by creating a ClusterRole RBAC resource, cloud-console-reader, in the cluster. cloud-console-reader grants its users the get, list, and watch permissions on the cluster’s nodes, persistent volumes, and storage classes, which allow them to see details about these resources.

 Having created the KSA, acquire the KSA’s bearer token:

 SECRET_NAME=$(kubectl get serviceaccount [KSA_NAME] -o jsonpath=‘{$.secrets[0].name}’)
kubectl get secret ${SECRET_NAME} -o jsonpath=‘{$.data.token}’ | base64 --decode

 After you have pasted the token in the login prompt in the Google console, you immediately get the same view in your AKS cluster (externalazure) that you would see in other cluster types. Figure 2.16 provides that view.

 [image: 02-16]

 Figure 2.16 Anthos attached cluster authenticated

 Figure 2.17 shows the nodes and their health status through the dashboard.

 [image: 02-17]

 Figure 2.17 Node view on attached cluster

 Several other types of Kubernetes clusters that are not managed by GCP can be attached to Anthos this way. Doing so gives operations simplicity and consistency, and permits access security to administrators from a single platform.

Summary

 	
 Providing a single pane of glass to hybrid and multicloud Kubernetes for any organization who uses microservices is a stepping stone to a successful and global operation.

 	
 One of the biggest benefits to a single pane of glass is that admins can use the same interface to configure service-level objectives and alerts to reassure service guarantees.

 	
 The Anthos UI provides some major advantages including these:

 	
 Central operation of services and resources

 	
 Consistent operation experience across multiple service providers

 	
 Effortless navigation and easy staff training

 	
 A window to any organizational persona

 	
 The Anthos UI provides multiple usages, including cluster management, service operation, and observability, using a unified interface.

 1.A Google Cloud Platform project is a set of configuration settings that define how your app interacts with Google services and what resources it uses.

 2.Attaching clusters lets you view your existing Kubernetes clusters in the Google Cloud console along with your Anthos clusters and enable a subset of Anthos features on them, including configuration with Anthos Config Management. More details can be found at http://mng.bz/pdRE.

 3.Role-based access control (RBAC) is a set of permissions and an authorization component that allows or denies admin or compute objects access to a set of requesting resources.

 4.Access Transparency-enabled services let customers control access to their organization’s data by Google personnel. It also provides logs that capture the actions Google personnel take when accessing the customer’s content.

 5.Google Cloud Identity and Access Management (IAM) lets you grant more granular access to specific Google Cloud resources and prevents unwanted access to other resources.

 6.Policy Controller is part of Anthos Config Management, allowing administrators to define customized rules to place guardrails for security, resource management, or operational reasons.

 7.Binary Authorization is explored in further detail in chapter 12, “Integrations with CI/CD.”

 8.See chapter 4 for details on SLIs, SLOs, and SLAs with Anthos.

 9.The --kubeconfig line is the local filepath where your kubeconfig containing an entry for the cluster being registered is stored. This defaults to $KUBECONFIG if that environment variable is set; otherwise, this defaults to $HOME/.kube/config.

3 Computing environment built on Kubernetes

 Scott Surovich

 This chapter covers

 	
Understanding Kubernetes management, architecture, components, and resources

 	
Declarative application management

 	
Understanding Kubernetes resources

 	
Controlling Pod scheduling

 	
Examples and case study

 Like many new technologies, Kubernetes can be difficult to learn and implement. Creating a cluster manually requires an extensive skill set that includes public key infrastructure, Kubernetes, Linux, and networking. Many vendors recognized this problem and have automated cluster creation, allowing you to create Kubernetes clusters with little to no Kubernetes background. Although automation allows anyone to create a cluster, it also eliminates a lot of Kubernetes knowledge that can help you troubleshoot problems that you may encounter as a cluster administrator, or a developer, consuming the platform.

 The question that comes up frequently is, “Do you really need to know Kubernetes?” The answer differs, depending on the role you will play in the cluster, but no matter what role you will have, you will need to have some understanding of how Kubernetes functions. For example, if you are a cluster admin, you should understand how all the cluster components interact. This understanding will help you troubleshoot cluster and workload deployment problems. As a developer, you should understand basic Kubernetes operations and the various Kubernetes resources, also referred to as Kubernetes objects, which can be used to deploy your workloads. It’s also important to understand how to force your deployment to a node or a set of nodes by using options like selectors, tolerations, and affinity/anti-affinity rules.

 In this chapter, you will learn how each component in a Kubernetes cluster interacts with the others. Once you understand the basic interaction, you will learn about the most used Kubernetes resources. Finally, to end the chapter, you will learn the details of how Kubernetes schedules workloads and how to constrain the scheduler to place workloads based on labels, selectors, and affinity/anti-affinity rules.

3.1 Why do you need to understand Kubernetes?

 At the heart of Anthos is Kubernetes, which provides the compute engine for applications running in a cluster. Kubernetes is an open source project created by Google that has been around for years. At the time of this writing, the Cloud Native Computing Foundation has certified 90 Kubernetes offerings. Among the certified offerings are distributions from IBM, Canonical, SUSE, Mirantis, VMware, Rancher, Amazon, Microsoft, and, of course, Google.

 Hearing the common complaint that deploying Kubernetes was “too difficult,” most vendor solutions made it easier. Although making the installation easier is a necessary step for most enterprises and frees up time to focus on more important activities, it does lead to a problem: not understanding the basic components and resources included in a cluster.

 Using a different service example, assume you have an application that requires a new database. You may not have any idea how to create a new database schema or SQL queries, but you know that Google offers MySQL, and you create a new instance for the application. The MySQL instance will be created automatically, and once it has been deployed, you can create a database using the GCP console.

 Because you may not have a strong SQL background, you may stumble through and create a single table in the database with multiple fields that will work with the application. The database may perform well for a few days or weeks, but as it gets larger, the performance will start to slow down. A single-table database, though easy to implement, is not an optimized solution. If you had a SQL background, you would have created a database with multiple tables and relationships, making the database more efficient and scalable.

 This scenario is like understanding how Kubernetes works and the features provided by the system. To use Kubernetes to its full potential, you should understand the underlying architecture and the role of each component. Knowing how components integrate with one another and what resources can be used will help you make good architectural decisions when deploying a cluster or deploying an application.

 The details to cover each cluster component and the more than 60 resource types included with Kubernetes could fill a series of books. Because many of the topics in this chapter reference resources including Pods and DaemonSets, it will begin with a Kubernetes resource pocket guide, providing a brief definition of the most used API resources.

 In this chapter, we will provide a background of Kubernetes components, resources, and commonly used add-on components, which provide the compute power that powers Anthos. If you are newer to Kubernetes, many books on the market today explain how to build a cluster and how to use kubectl and devote entire chapters to each Kubernetes resource. This chapter should be viewed as an introduction to resources, with an in-depth focus on how to control the placement of deployments in a cluster.

3.1.1 Technical requirements

 The hands-on portion of this chapter will require you to have access to a Kubernetes cluster running in GCP with the following deployment pattern:

 	
 The cluster must be deployed across at least two different zones in the same region. The examples shown in this chapter will be based on us-east4 zones, across us-east4-a, us-east4-b, and us-east4-c, but you can use different zones for your cluster.

 	
 Each zone must contain at least one Kubernetes node.

 This chapter is not specific to Kubernetes on GCP; the resources and constructs used in the exercises are applicable to any Kubernetes cluster.

3.1.2 History and overview

 Because the audience for this book includes readers who may be newer to Kubernetes and readers who are seasoned Kubernetes administrators, we have added information covering some history and progression from physical servers to containers in the online appendix A.

3.1.3 Managing Kubernetes clusters

 When a company decides to run a Kubernetes cluster in the cloud, they will often use the cloud provider’s native offering, such as the following:

 	
 Google Kubernetes Engine (GKE): https://cloud.google.com/kubernetes-engine/

 	
 Amazon Elastic Kubernetes Service (EKS): https://aws.amazon.com/eks/

 	
 Azure Kubernetes Service (AKS): http://mng.bz/GR7V

 Using the native offering offers the quickest and easiest way to get a new cluster up and running, because the providers have automated the installation. To get from ground zero to a running cluster, you need to provide only a few pieces of information, like the number and size of the nodes, zones, and regions. With this information and a click or API call, you can have a cluster in a few minutes, ready to deploy your applications.

 Google was the first cloud service provider to offer their Kubernetes solution across both the cloud and on-prem, without requiring any specialized hardware solution. Before Google did this, other offerings required organizations to deploy a different solution for each cloud provider and their on-prem clusters. Using a different solution for multiple installations often leads to a variety of different problems, including these:

 	
 Increased staff to support each deployment

 	
 Differences in the deployment of an application for on-prem and off-prem

 	
 Different identity management solutions

 	
 Different Kubernetes versions

 	
 Different security models

 	
 Difficulty in standardizing cluster operations

 	
 No single view for all clusters

 Each of these differences makes the job of running Kubernetes more difficult and, ultimately, more costly for an organization.

 Google recognized these problems and created Anthos, which addresses the on-prem and off-prem challenges by providing a Kubernetes installation and management solution that not only works on GCP and on-prem clusters but also in other cloud providers like AWS and Azure running Anthos.

 Using Anthos provides a common environment no matter where you deploy it. Imagine having a single support path and a common set of tools for all your clusters in GCP, AWS, Azure, and on-prem. Anthos provides an organization with many advantages, including the following:

 	
 A consolidated view of clusters inside the Anthos console

 	
 A common service mesh offering

 	
 Configuration management using ACM

 	
 All options supported by Google: a single point of contact for all cluster components

 Best of all, Anthos is based on the upstream Kubernetes, so you get all the standard features but with the added tools and components that Anthos provides, making multiple cloud cluster management easier.

 Next, we will jump into the architecture that makes up a Kubernetes cluster and how the components communicate with each other.

3.2 Kubernetes architecture

 Like any infrastructure, Kubernetes consists of multiple components that communicate to create a cluster. The components are grouped into two layers: the control plane and the worker nodes. The control plane keeps the cluster state, accepting incoming requests, scheduling workloads, and running controllers, whereas the worker nodes communicate with the control plane to report available resources, run container workloads, and maintain node network rules.

 If you are running Anthos on GCP, you may not be familiar with the components of the control plane or the worker nodes, because you do not interact with them like you would with an on-prem installation. As this section will explain, Kubernetes clusters have a layer called the control plane that contains the components required to run Kubernetes. When a cluster is running in GCP, the control plane is created in a Google-managed project, which limits you from interacting with the admin nodes and the Kubernetes components.

 All GKE clusters can be viewed in your GCP console, located under the Kubernetes Engine section. For each cluster, you can view the details of the nodes by clicking on the cluster in the details pane, then selecting Nodes. The node details will be displayed, as shown in figure 3.1.

 [image: 03-01]

 Figure 3.1 GKE node details

 Unlike GKE on GCP, an on-prem installation of GKE provides access to the control plane nodes and Kubernetes resources for the clusters. Of course, Google still supports the on-prem control plane, but you may be asked to look at components to troubleshoot any problems or configuration changes to a cluster. If you have only deployed GKE on GCP, you may not know all the components of the control plane and how they interact. Understanding this interaction is vital to troubleshooting and finding root causes to any problems.

 Note When you deploy a GKE on-prem cluster, three Kubernetes config files are created. One will be named using the user cluster’s name with a suffix of -kubeconfig, one is called kubeconfig, and the last one is called internal-cluster-kubeconfig-debug. The kubeconfig file is configured to target the load-balanced address of the admin cluster, whereas internal-cluster-kubeconfig-debug is configured to target the admin cluster’s API server directly.

 To view the multiple configuration files, see figure 3.2.

 [image: 03-02]

 Figure 3.2 Admin cluster and user cluster configuration files

 With the importance of understanding the system, let’s move on to each layer in a cluster, starting with the control plane.

3.2.1 Understanding the cluster layers

 The first layer, the control plane, contains five or six components (in reality, the two controllers actually contain multiple components). The control plane includes the components that provide cluster management, cluster state, and scheduling features. We will detail each component in the next section, but for now, we just want to introduce the control plane components, shown here:

 	
 ETCD

 	
 The Kubernetes API server

 	
 The Kubernetes scheduler

 	
 The Kubernetes controller manager, which contains multiple controllers

 	
 Node controller

 	
 Endpoint controller

 	
 Replication controller

 	
 Service account/token controller

 	
 The cloud controller manager, which contains multiple controllers

 	
 Route controller

 	
 Service controller

 	
 Node controller

 To view a graphical representation of the control plane, see figure 3.3. At the end of this section, we will provide a complete component diagram, including how each component communicates.

 [image: 03-03]

 Figure 3.3 Control plane components

 The second layer in the cluster is the collection of worker nodes, which are responsible for running the cluster workloads. Each worker node has three components that work together to run applications, as shown in figure 3.4.

 [image: 03-04]

 Figure 3.4 Worker node components

 Up to this point, we haven’t explained how each component interacts with the others. Before we show a full diagram of cluster interactions, we need to understand each component in the cluster. In the next section, we will explain each cluster component, and, to close out the section, we will combine the two diagrams to show the connectivity between all components.

3.2.2 The control plane components

 As mentioned earlier, the control plane includes up to six components. Each of the components works together to provide cluster services. Understanding each component is key to delivering a robust, stable cluster.

 etcd

 Every resource in the cluster and its state are maintained in the etcd key-value database. The entire cluster state is stored inside this database, making etcd the most important component in a cluster. Without a functioning etcd database, you do not have a functioning cluster.

 Because etcd is so important, you should always have at least three replicas running in a cluster. Depending on the size of the cluster, you may want to have more than three, but no matter how many you decide to run, always run an odd number of replicas. Running an odd number of etcd nodes allows the cluster to elect a majority leader, minimizing the chance of the etcd cluster going into a split-brain state. If a cluster goes into a split-brain state, more than one node claims to be the majority leader, which leads to data inconsistencies and corruption. If you find yourself in a split-brain state, you will need to recreate the etcd cluster from an etcd backup.

 Although running multiple copies will make etcd highly available, you also need to create a regular backup of your database and store it outside of the cluster in a safe location. If you lose your entire cluster or your etcd database gets corrupted, you will be able to restore your backup to restore a node or the entire cluster. We will explain the process to back up etcd later in this chapter.

 The last consideration for etcd after making it highly available and creating regular backups is security. The etcd database contains every Kubernetes resource, so it will contain sensitive data like secrets, which may contain data like passwords. If someone gets a copy of your etcd database, they can easily pull any of the resources out because, by default, they are stored as clear text.

 Covering etcd could require an entire chapter. For more information on etcd, head over to the main etcd site at https://etcd.io/docs/. Google also provides the steps and a script to back up GKE on-prem clusters. You can find the documentation and the script at http://mng.bz/zm1r.

 The Kubernetes API server

 The API server is the front door to a cluster. All requests that come into the cluster enter through the API server, which will interact with the other component to fulfill requests. These requests come from users and services from the kubectl CLI, Kubernetes Dashboard, or direct JSON API calls.

 It’s really an event-driven hub-and-spoke model. The API server encapsulates etcd. All other components communicate with the API server. The API server doesn’t communicate with controllers directly in response to requests. Instead, the controllers watch for relevant change events.

 The Kubernetes scheduler

 If the API server receives a request to create a Pod, it will communicate with the Kubernetes scheduler, which decides which worker node will run the workload.

 When a workload attempts to request a resource that cannot be met, or has constraints that cannot be matched, it will fail to schedule and the Pod will not start. If this happens, you will need to find out why the scheduling failed and either change your deployment code or add resources to your nodes to fulfill the request.

 The Kubernetes controller manager

 The controller manager is often referred to as a control loop. To allow Kubernetes to keep all resources in a requested, desired state, the state of each resource must be compared to its requested state. The process that makes this happen is known as a control loop.

 The Kubernetes controller manager consists of a single binary that runs separate threads for each “logical” controller. The bundled controllers and their roles are shown in table 3.1.

 Table 3.1 Bundled controllers and their roles

 	
 Controller

 	
 Description

 	
 Node

 	
 Maintains the status of all nodes

 	
 Replication

 	
 Maintains the number of pods for replication controllers

 	
 Endpoint

 	
 Maintains the mapping of pods to services, creating endpoints for services

 	
 Service accounts/token

 	
 Creates the initial default account and API tokens for namespaces

 The main concept to take away from the table is that by using a control loop, the manager constantly checks the resource(s) that it controls to keep them in the declared state.

 The Kubernetes controller manager deals with internal Kubernetes resource states. If you are using a cloud provider, your cluster will need a controller to maintain certain resources, which is the role of the cloud controller manager.

 The cloud controller manager

 Note You may not see this controller on every cluster you interact with. A cluster will run a cloud controller only if it has been configured to interface with a cloud provider.

 To allow cloud providers flexibility, the cloud controller manager is separate from the standard Kubernetes controller manager. By decoupling the two controllers, each cloud provider can add features to their offering that may differ from other providers or base Kubernetes components.

 Like the Kubernetes controller manager, the cloud controller manager uses a control loop to maintain the desired state of resources. It is also a single binary that runs multiple controllers and their processes, as shown in table 3.2.

 Table 3.2 Controllers run by the cloud controller manager

 	
 Controller

 	
 Description

 	
 Node

 	
 Creates node resources and maintains the status of the nodes located in the cloud provider

 	
 Route

 	
 Maintains network routes to provide node communication

 	
 Service

 	
 Maintains cloud provider components like load balancers, network filtering, and IP addresses

 Finally, when we say cloud provider, we do not mean you are limited to only public cloud service providers. At the time of this writing, Kubernetes includes support for the following cloud providers:

 	
 Amazon AWS

 	
 Microsoft Azure

 	
 Google Cloud Platform (GCP)

 	
 OpenStack

 	
 Huawei

 	
 vSphere

 Now that the control plane has been explained, let’s move on to the worker node components.

3.2.3 Worker node components

 From a high level, you should have a basic understanding of the components in the control plane. It’s the layer responsible for cluster interaction and workload deployments. Alone, the control plane can’t do very much—it needs to have a target that can run the actual workload once it’s scheduled, and that’s where the worker node comes in.

 The kubelet

 The kubelet is the component responsible for running a Pod and for reporting the node’s status to the Kubernetes scheduler. When the scheduler decides which node will run a workload, the kubelet retrieves it from the API server, and the Pod is created based on the specs that were pulled.

 kube-proxy

 We will mention this in more detail when we discuss services in the next section, but for now you only need to understand a basic overview of kube-proxy. kube-proxy is responsible for creating and deleting network rules, which allow network connectivity to a Pod. If the host operating system offers a packet filter, kube-proxy will use it, but if no packet filter is offered, the traffic will be managed by kube-proxy itself.

 Depending on the network provider you decide to use for a cluster, you may have the option to run your cluster in a kube-proxyless mode. A Container Network Interface (CNI) like Cilium uses eBPF to provide the same functionality that kube-proxy provides but without requiring additional components outside of the base CNI deployment.

 Container runtime

 The container runtime is the component responsible for running the actual container on the host. It has become common for people to refer to the container runtime as simply Docker. This is understandable because Docker did bring containers to the masses, but over the years, other alternatives have been developed. Two of the most popular alternatives are CRI-O and containerd.

 At one time, the container runtime was integrated into the kubelet, which made adding a new runtime difficult. As Kubernetes matured, the team developed the Container Runtime Interface (CRI), which provides the ability to simply “plug in” a container runtime. No matter which runtime is in use, its responsibility is the same: to run the actual container on the node.

 Now that we have reviewed each layer and their components, let’s show the connectivity between the two layers and how the components interact, as illustrated in figure 3.5.

 [image: 03-05]

 Figure 3.5 Cluster component communications

 This concludes the section on Kubernetes cluster components. Knowing how the components interact will help you to diagnose problems and understand how the cluster interacts as a system.

 Depending on your role, understanding the cluster components and how they interact may be less important than understanding cluster resources. Kubernetes resources are used by every user that interacts with a cluster, and users should understand, at the very least, the most used resources. For reference, you can read about Kubernetes resources on the Kubernetes website at http://mng.bz/0yRm.

 To effectively deploy an application on Kubernetes, you need to understand the features of the infrastructure, starting with Kubernetes objects. Next, we will move on to DevOps paradigms and Kubernetes cluster components.

3.2.4 Understanding declarative and imperative

 In DevOps, an automation framework can use two different implementation methods, referred to as DevOps paradigms. They include the declarative model and the imperative model.

 Each of the paradigms will be explained in this chapter, but before diving into the differences between them, you should understand the concept of a control loop.

 Understanding control loops

 To maintain your desired state, Kubernetes implements a set of control loops. A control loop is an endless loop that is always checking that the declared state of a resource is the same as its current state.

 If you declare that a deployment should have three replicas of a Pod, and one Pod is deleted accidentally, Kubernetes will create a new Pod to keep the states in sync. Figure 3.6 shows a graphical representation of the ReplicaSet control loop and how it maintains the desired replica count.

 [image: 03-06]

 Figure 3.6 Control loop example

 As you can see, a control loop doesn’t need to be complex to maintain a desired state. The replication controller simply keeps looping through all the ReplicaSet resources in the cluster, comparing the currently available number of Pods to the desired number of Pods that is declared. Kubernetes will either add or delete a Pod to make the current replica count equal to the count that has been set on the deployment.

 Understanding the features of Anthos and how Kubernetes maintains the declared state of a deployment is important for any user of Kubernetes, but it’s only the beginning. Because deploying a cluster has been made so simple by many vendors, developers and administrators often overlook the advantages of understanding the entire system. As mentioned earlier, to design an effective cluster or application, you should understand the basic functionality of the cluster components. In the next section, the Kubernetes architecture will be covered, including the components of the control plane and worker nodes and how they interact with each other.

 One of the first concepts to understand is the difference between the declarative and imperative models. Table 3.3 provides a brief description of each model.

 Table 3.3 Declarative and imperative models

 	
 Model

 	
 Description

 	
 Declarative

 	
 Developers declare what they would like the system to do; there is no need to tell the system how to do it.

 The declarative model uses Kubernetes manifests to declare the application’s desired state.

 	
 Imperative

 	
 Developers are responsible for creating each step required for the desired end state. The steps to create the deployment are completely defined by the developer.

 The imperative model uses kubectl commands like create, run, and delete to tell the API server what resources to manage.

 In a declarative model, you can manage several resources in a single file. For example, if we wanted to deploy an NGINX web server that included a new namespace, the deployment, and a service, we would create a single YAML file with all the resources. The manifest would then be deployed using the kubectl apply command, which will create each resource and add an annotation that includes the last applied configuration. Because Kubernetes tracks the resources and you have all the resources in a single file, it is easier to manage and track changes to the deployment and resources.

 In an imperative model, you must run multiple commands to create your final deployment. Using the previous example where you want to deploy an NGINX server, a service, and an Ingress rule, you would need to execute the following three kubectl commands:

 kubectl create ns web-example
kubectl run ngnix-web --image=nginx:v1 -n web-example
kubectl create service clusterip nginx-web -tcp=80:80

 Although this would accomplish the same deployment as our declarative example, it has some limitations that are not immediately noticeable using our simple example. One limitation is that the kubectl command does not allow you to configure every option available for each resource. In the example, we deploy a Pod with a single container running NGINX. If we needed to add a second container to perform a specialized task, like logging, we wouldn’t be able to add it imperatively because the kubectl command does not have the option to launch two containers in a Pod.

 It is a good practice to avoid using imperative deployments unless you are attempting to resolve a problem quickly. If you find yourself using imperative commands for any reason, you should keep track of your changes so that you can alter your declarative manifests to keep them in sync with any changes.

 To understand how Kubernetes uses the declarative model, you need to understand how the system maintains the declared state with the currently running state for a deployment by using control loops.

3.2.5 Understanding Kubernetes resources

 Throughout this book, you will see references to multiple Kubernetes resources. As mentioned earlier in the chapter, there are more than 60 resource types included with a new cluster, not including any custom resources that may be added through CRDs (custom resource definitions). Multiple Kubernetes books are available, so this chapter will provide only an introduction to each resource to provide a base knowledge that will be used in most of the chapters.

 It’s challenging to remember all the base resources, and you may not always have a pocket guide available to you. Luckily, you can use a few commands to look up resources and the options that are available for each. The first command, shown next, lists all the API resources available on a cluster:

 kubectl api-resources
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings v1 true Binding
componentstatuses cs v1 false ComponentStatus
configmaps cm v1 true ConfigMap
endpoints ep v1 true Endpoints
events ev v1 true Event
limitranges limits v1 true LimitRange
namespaces ns v1 false Namespace
nodes no v1 false Node
persistentvolumeclaims pvc v1 true PersistentVolumeClaim
persistentvolumes pv v1 false PersistentVolume
pods po v1 true Pod
podtemplates v1 true PodTemplate
replicationcontrollers rc v1 true ReplicationController
resourcequotas quota v1 true ResourceQuota
secrets v1 true Secret
serviceaccounts sa v1 true ServiceAccount
services svc v1 true Service

 The output provides the name of the resource—any short name, if it can be used at a namespace level—and the kind of resource. This is helpful if you know what each one does, but you forgot the name or whether it can be set at a namespace level. If you need additional information for any resource, Kubernetes provides the next command, which provides the details for each one:

 kubectl explain <resource name>

 The explain command provides a short description of the resource and all the fields that can be used in a manifest. For example, next you see a brief description of what a Pod is and some of the fields that can be used when creating the resource:

 KIND: Pod
VERSION: v1

DESCRIPTION:
 Pod is a collection of containers that can run on a host. This resource is created by clients and scheduled onto hosts.
FIELDS:
 apiVersion <string>
 APIVersion defines the versioned schema of this representation of an
 object. Servers should convert recognized schemas to the latest internal
 value, and may reject unrecognized values. More info:
 https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources

 kind <string>
 Kind is a string value representing the REST resource this object
 represents. Servers may infer this from the endpoint the client submits
 requests to. Cannot be updated. In CamelCase. More info:
 https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds

 metadata <Object>
 Standard object’s metadata. More info:
 https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata

 As you can see from the output, each field has a detailed explanation and a link to provide additional detailed information, when applicable.

 You may not have access to a system with kubectl installed all the time, so table 3.4 provides a short description of most of the common resources you will use in a cluster.

 Table 3.4 Resources used in a cluster

 	
 Kubernetes resource

 	
 Description

 	
 ConfigMaps

 	
 Hold configuration data for Pods.

 	
 EndpointSlice

 	
 A collection of Pods that are used as targets by services.

 	
 Namespace

 	
 Used to divide clusters between multiple developers or applications.

 	
 Node

 	
 Provides the compute power to a Kubernetes cluster.

 	
 PersistentVolumeClaim

 	
 Allows an application to claim a persistent volume.

 	
 PersistentVolume

 	
 A storage resource provisioned at the cluster layer. Claims to PersistentVolume are provided by a PersistentVolumeClaim.

 	
 Pod

 	
 A container or a collection of containers.

 	
 ResourceQuota

 	
 Sets quota restrictions, enforced per namespace.

 	
 Secret

 	
 Holds secret data of a certain type. The total bytes of the values in the data field must be less than the MaxSecretSize bytes configuration value.

 	
 ServiceAccount

 	
 Provides an identity that can be authenticated and authorized to resources in a cluster.

 	
 Service

 	
 Provides a named abstraction of software service consisting of a local port that the proxy listens on and the selector that determines which Pods will answer requests sent through the proxy.

 	
 CustomResourceDefinition

 	
 Represents a resource that should be exposed on the API server.

 	
 DaemonSet

 	
 Used to deploy a container to all nodes, or a subset of nodes, in the cluster. This includes any new nodes that may be added after the initial deployment.

 	
 Deployment

 	
 Enables declarative updates for Pods and ReplicaSets.

 	
 ReplicaSet

 	
 Ensures that a specified number of Pod replicas are running at any given time.

 	
 StatefulSet

 	
 StatefulSet represents a set of Pods with consistent identities and controlled Pod starting and stopping.

 	
 Ingress

 	
 A collection of rules that direct inbound connections to reach the Pod endpoints.

 	
 NetworkPolicy

 	
 Defines what network traffic is allowed for a set of Pods.

 	
 PodSecurityPolicy

 	
 Controls the ability to make requests that affect the security context that will be applied to a Pod and container.

 	
 ClusterRole

 	
 A cluster-level, logical grouping of PolicyRules that can be referenced as a unit by a RoleBinding or ClusterRoleBinding.

 	
 ClusterRoleBinding

 	
 Assigns the permissions defined in a ClusterRole to a user, group, or service account. The scope of a ClusterRoleBinding is cluster wide.

 	
 Role

 	
 A namespaced, logical grouping of PolicyRules that can be referenced as a unit by a RoleBinding.

 	
 RoleBinding

 	
 Assigns the permissions defined in a Role to a user, group, or service account. It can reference a Role in the same namespace or a ClusterRole in the global namespace.

 The scope of a RoleBinding is only to the namespace it is defined in.

 	
 StorageClass

 	
 Describes the parameters for a class of storage for which PersistentVolumes can be dynamically provisioned.

 Understanding the resources available is one of the keys to creating the best application deployments and to helping troubleshoot cluster or deployment problems. Without an understanding of these resources, you may not know what to look at if an Ingress rule isn’t working as expected. Using the resources in the table, you can find three resources that are required for an Ingress rule. The first is the Ingress itself, the second is the Service, and the last is the Endpoints/EndpointSlices.

 Looking at the flow between resources for Ingress, an incoming request is evaluated by the Ingress controller, and a matching Ingress resource is found. Ingress rules route traffic based on the Service name defined in the Ingress rule, and, finally, the request is sent to a Pod from the Endpoints created by the Service.

3.2.6 Kubernetes resources in depth

 A brief overview of resources and what they are used for is a great refresher, if you already have experience with resources. We realize that not every reader will have years of experience interacting with Kubernetes resources, so in this section, you will find additional details on some of the most commonly used cluster resources.

 One thing that all GKE Kubernetes clusters have in common, on-prem or off-prem, is that they are built on the upstream Kubernetes code, and they all contain the base set of Kubernetes resources. Interacting with these base types is something you are likely to do daily, and having a strong understanding of each component, its function, and use case examples is important.

 Namespaces

 Namespaces provide a scope for names. Names of resources need to be unique within a namespace, but not across namespaces.

 Namespaces create a logical separation between tenants in the cluster, providing a cluster with multitenancy. As defined by Gartner, “Multitenancy is a reference to the mode of operation of software where multiple independent instances of one or multiple applications operate in a shared environment. The instances (tenants) are logically isolated, but physically integrated” (http://mng.bz/Kl74).

 Kubernetes resources that are created at a namespace level are referred to as being namespaced. If you read that a resource is namespaced, it means the resource is managed at a namespace level, rather than at a cluster level.

 In a namespace, you can create resources that will provide security and resource limits. To provide a safe multitenant cluster, you can use the following categories of Kubernetes resources:

 	
 RBAC

 	
 Resource quotas

 	
 Network policies

 	
 Namespace security resources (previously Pod security policies)

 We will discuss each of the resources in more detail in this section, but for now, you need to understand only that a namespace is a logical partition of a cluster.

 Namespaces are also used when you create a service, which we will cover in the services section. The service is assigned a DNS name that includes the service name and the namespace. For example, if you created two services called myweb1 and myweb2 in a namespace called sales, in a cluster named cluster.local, the assigned DNS names would be as follows:

 	
 myweb1.sales.svc.cluster.local

 	
 myweb2.sales.svc.cluster.local

 Pods

 A Pod is the smallest deployable unit that Kubernetes can manage and may contain one or more containers. If a Pod has multiple containers running, they all share a common networking stack, allowing each container to communicate with the other containers in the Pod using localhost or 127.0.0.1. They also share any volumes that are mounted to the Pod, allowing each container access to a shared file location.

 When a pod is created, it is assigned an IP address, and the assigned address should be considered ephemeral. You should never target the IP address of a Pod because it will likely change at some point when the Pod is replaced. To target an application that is running in a Pod, you should target a service name, which will use endpoints to direct traffic to the correct Pod where the application is running. We will discuss endpoints and services in their respective topics in this section.

 Although no standard exists for how many containers should be in a single Pod, the best practice is to add containers that should be scheduled and managed together. Actions such as scaling and Pod restarts should be considered when deciding to add multiple containers to a Pod. Events like these are handled at a Pod level, not at a container level, so these actions will affect all containers in the Pod.

 Example

 You create a Pod with a web server and a database. You decide that you need to scale the web server to handle the current traffic load. When you scale the Pod, it will scale both the web server and the database server.

 To scale only the web server, you should deploy a Pod with the web server and a second Pod with the database server, which will allow you to scale each application independently.

 Many design patterns use multiple containers in a Pod. A common use case for multiple containers in a Pod is referred to as a sidecar. A sidecar is a container that runs with the main container in your Pod, usually to add some functionality to the main container without requiring any changes to it. Some common examples that use sidecars to handle tasks follow:

 	
 Logging

 	
 Monitoring

 	
 Istio sidecar

 	
 Backup sidecar (i.e., Veritas NetBackup)

 You can look at other examples on the Kubernetes site at http://mng.bz/91Ja.

 Understanding Pods is a key point to understanding Kubernetes deployments. They will be the most common resource that you will interact with.

 Labels and selectors

 Kubernetes uses labels to identify, organize, and link resources, allowing you to identify attributes. When you create a resource in Kubernetes, you can supply one or more key-value pair labels like app:frontend-webserver or lob=sales.

 Selectors are used to reference a set of resources, allowing you to select the resource(s) you want to link, or select, using the assigned labels. You can think of selectors as a dynamic grouping mechanism—any label that matches the selector will be added as a target. This will be shown in the next section covering the services resource, which uses selectors to link the service to the Pods running the application.

 Services

 We can use many of the previous resources to provide a full picture of how they connect to create an application. The last piece of the puzzle is the Service resource, which exposes an application to allow it to accept requests using a defined DNS name.

 Remember that when you create a Pod with your application, it is assigned an IP address. This IP address will change when the Pod is replaced, which is why you never want to configure a connection to the Pods using an IP address.

 Unlike Pods, which are ephemeral by nature, a Service is stable once created and is rarely deleted and recreated, providing a stable IP address and DNS name. Even if a Service is deleted and recreated, the DNS name will remain the same, providing a stable name that you can target to access the application. You can create a few Service types in Kubernetes, as shown in table 3.5.

 Table 3.5 Services in Kubernetes

 	
 Service name

 	
 Description

 	
 Network scope

 	
 ClusterIP

 	
 Exposes the service internally to the cluster.

 	
 InternalExternal by using an Ingress rule

 	
 NodePort

 	
 Exposes the service internally to the cluster.Exposes the service to external clients using the assigned NodePort. Using the NodePort with any worker node DNS/IP address will provide a connection to the Pod(s).

 	
 Internal and external

 	
 LoadBalancer

 	
 Exposes the service internally to the cluster.Exposes the service externally to the cluster using an external load-balancer service.

 	
 Internal and external

 Now let’s use an example to explain how Kubernetes uses services to expose an application in a namespace called sales in a cluster using the name cluster.local:

 	
 A deployment is created for an NGINX server.

 	
 The deployment name is nginx-frontend.

 	
 The deployment has been labeled with app: frontend-web.

 	
 Three replicas have been created.

 The three running Pods have been assigned the IP addresses 192.10.1.105, 192.10.3.107, and 192.10.4.108.

 	
 To provide access to the server, a new service is deployed called frontend-web. In the manifest to create the service, a label selector is used to select any Pods that match app: frontend-web.

 	
 Kubernetes will use the service request and the selector to create matching endpoints.

 Because the selector matches the label that was used in the deployment for the NGINX server, Kubernetes will create an endpoint that links to the three Pod IPs: 192.10.1.105, 192.10.3.107, and 192.10.4.108.

 	
 The service will receive an IP address from the cluster’s Service IP pool, and a DNS name that is created using the <service name>.<namespace>.svc.<cluster domain>.

 Because the application name is nginx-frontend, the DNS name will be nginx-frontend.sales.svc.cluster.local.

