

 [image:]

 Deep Learning with Structured Data

 Mark Ryan

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Christina Taylor

 	
 Technical development editor:

 	
 Al Krinker

 	
 Review editor:

 	
 Ivan Martinović

 	
 Production editor:

 	
 Lori Weidert

 	
 Copy editor:

 	
 Keir Simpson

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Karsten Strobek

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617296727

 dedication

 To my daughter, Josephine, who always reminds me that God is the Author.

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Why deep learning with structured data?

 Overview of deep learning

 Benefits and drawbacks of deep learning

 Overview of the deep learning stack

 Structured vs. unstructured data

 Objections to deep learning with structured data

 Why investigate deep learning with a structured data problem?

 An overview of the code accompanying this book

 What you need to know

 Summary

 2 Introduction to the example problem and Pandas dataframes

 Development environment options for deep learning

 Code for exploring Pandas

 Pandas dataframes in Python

 Ingesting CSV files into Pandas dataframes

 Using Pandas to do what you would do with SQL

 The major example: Predicting streetcar delays

 Why is a real-world dataset critical for learning about deep learning?

 Format and scope of the input dataset

 The destination: An end-to-end solution

 More details on the code that makes up the solutions

 Development environments: Vanilla vs. deep-learning-enabled

 A deeper look at the objections to deep learning

 How deep learning has become more accessible

 A first taste of training a deep learning model

 Summary

 3 Preparing the data, part 1: Exploring and cleansing the data

 Code for exploring and cleansing the data

 Using config files with Python

 Ingesting XLS files into a Pandas dataframe

 Using pickle to save your Pandas dataframe from one session to another

 Exploring the data

 Categorizing data into continuous, categorical, and text categories

 Cleaning up problems in the dataset: missing data, errors, and guesses

 Finding out how much data deep learning needs

 Summary

 4 Preparing the data, part 2: Transforming the data

 Code for preparing and transforming the data

 Dealing with incorrect values: Routes

 Why only one substitute for all bad values?

 Dealing with incorrect values: Vehicles

 Dealing with inconsistent values: Location

 Going the distance: Locations

 Fixing type mismatches

 Dealing with rows that still contain bad data

 Creating derived columns

 Preparing non-numeric data to train a deep learning model

 Overview of the end-to-end solution

 Summary

 5 Preparing and building the model

 Data leakage and features that are fair game for training the model

 Domain expertise and minimal scoring tests to prevent data leakage

 Preventing data leakage in the streetcar delay prediction problem

 Code for exploring Keras and building the model

 Deriving the dataframe to use to train the model

 Transforming the dataframe into the format expected by the Keras model

 A brief history of Keras and TensorFlow

 Migrating from TensorFlow 1.x to TensorFlow 2

 TensorFlow vs. PyTorch

 The structure of a deep learning model in Keras

 How the data structure defines the Keras model

 The power of embeddings

 Code to build a Keras model automatically based on the data structure

 Exploring your model

 Model parameters

 Summary

 6 Training the model and running experiments

 Code for training the deep learning model

 Reviewing the process of training a deep learning model

 Reviewing the overall goal of the streetcar delay prediction model

 Selecting the train, validation, and test datasets

 Initial training run

 Measuring the performance of your model

 Keras callbacks: Getting the best out of your training runs

 Getting identical results from multiple training runs

 Shortcuts to scoring

 Explicitly saving trained models

 Running a series of training experiments

 Summary

 7 More experiments with the trained model

 Code for more experiments with the model

 Validating whether removing bad values improves the model

 Validating whether embeddings for columns improve the performance of the model

 Comparing the deep learning model with XGBoost

 Possible next steps for improving the deep learning model

 Summary

 8 Deploying the model

 Overview of model deployment

 If deployment is so important, why is it so hard?

 Review of one-off scoring

 The user experience with web deployment

 Steps to deploy your model with web deployment

 Behind the scenes with web deployment

 The user experience with Facebook Messenger deployment

 Behind the scenes with Facebook Messenger deployment

 More background on Rasa

 Steps to deploy your model in Facebook Messenger with Rasa

 Introduction to pipelines

 Defining pipelines in the model training phase

 Applying pipelines in the scoring phase

 Maintaining a model after deployment

 Summary

 9 Recommended next steps

 Reviewing what we have covered so far

 What we could do next with the streetcar delay prediction project

 Adding location details to the streetcar delay prediction project

 Training our deep learning model with weather data

 Adding season or time of day to the streetcar delay prediction project

 Imputation: An alternative to removing records with bad values

 Making the web deployment of the streetcar delay prediction model generally available

 Adapting the streetcar delay prediction model to a new dataset

 Preparing the dataset and training the model

 Deploying the model with web deployment

 Deploying the model with Facebook Messenger

 Adapting the approach in this book to a different dataset

 Resources for additional learning

 Summary

 appendix A Using Google Colaboratory

 index

front matter

 I believe that when people look back in 50 years and assess the first two decades of the century, deep learning will be at the top of the list of technical innovations. The theoretical foundations of deep learning were established in the 1950s, but it wasn’t until 2012 that the potential of deep learning became evident to nonspecialists. Now, almost a decade later, deep learning pervades our lives, from smart speakers that are able to seamlessly convert our speech into text to systems that can beat any human in an ever-expanding range of games. This book examines an overlooked corner of the deep learning world: applying deep learning to structured, tabular data (that is, data organized in rows and columns).

 If the conventional wisdom is to avoid using deep learning with structured data, and the marquee applications of deep learning (such as image recognition) deal with nonstructured data, why should you read a book about deep learning with structured data? First, as I argue in chapters 1 and 2, some of the objections to using deep learning to solve structured data problems (such as deep learning being too complex or structured datasets being too small) simply don’t hold water today. When we are assessing which machine learning approach to apply to a structured data problem, we need to keep an open mind and consider deep learning as a potential solution. Second, although nontabular data underpins many topical application areas of deep learning (such as image recognition, speech to text, and machine translation), our lives as consumers, employees, and citizens are still largely defined by data in tables. Every bank transaction, every tax payment, every insurance claim, and hundreds more aspects of our daily existence flow through structured, tabular data. Whether you are a newcomer to deep learning or an experienced practitioner, you owe it to yourself to have deep learning in your toolbox when you tackle a problem that involves structured data.

 By reading this book, you will learn what you need to know to apply deep learning to a wide variety of structured data problems. You will work through a full-blown application of deep learning to a real-world dataset, from preparing the data to training the deep learning model to deploying the trained model. The code examples that accompany the book are written in Python, the lingua franca of machine learning, and take advantage of the Keras/TensorFlow framework, the most common platform for deep learning in industry.

acknowledgments

 I have many people to thank for their support and assistance over the year and a half that I wrote this book. First, I would like to thank the team at Manning Publications, particularly my editor, Christina Taylor, for their masterful direction. I would like to thank my former supervisors at IBM—in particular Jessica Rockwood, Michael Kwok, and Al Martin—for giving me the impetus to write this book. I would like to thank my current team at Intact for their support—in particular Simon Marchessault-Groleau, Dany Simard, and Nicolas Beaupré. My friends have given me consistent encouragement. I would like to particularly thank Dr. Laurence Mussio and Flavia Mussio, both of whom have been unalloyed and enthusiastic supporters of my writing. Jamie Roberts, Luc Chamberland, Alan Hall, Peter Moroney, Fred Gandolfi, and Alina Zhang have all provided encouragement. Finally, I would like to thank my family—Steve and Carol, John and Debby, and Nina—for their love. (“We’re a literary family, thank God.”)

 To all the reviewers: Aditya Kaushik, Atul Saurav, Gary Bake, Gregory Matuszek, Guy Langston, Hao Liu, Ike Okonkwo, Irfan Ullah, Ishan Khurana, Jared Wadsworth, Jason Rendel, Jeff Hajewski, Jesús Manuel López Becerra, Joe Justesen, Juan Rufes, Julien Pohie, Kostas Passadis, Kunal Ghosh, Malgorzata Rodacka, Matthias Busch, Michael Jensen, Monica Guimaraes, Nicole Koenigstein, Rajkumar Palani, Raushan Jha, Sayak Paul, Sean T Booker, Stefano Ongarello, Tony Holdroyd, and Vlad Navitski, your suggestions helped make this a better book.

about this book

 This book takes you through the full journey of applying deep learning to a tabular, structured dataset. By working through an extended, real-world example, you will learn how to clean up a messy dataset and use it to train a deep learning model by using the popular Keras framework. Then you will learn how to make your trained deep learning model available to the world through a web page or a chatbot in Facebook Messenger. Finally, you will learn how to extend and improve your deep learning model, as well as how to apply the approach shown in this book to other problems involving structured data.

Who should read this book

 To get the most out of this book, you should be familiar with Python coding in the context of Jupyter Notebooks. You should also be familiar with some non-deep-learning machine learning approaches, such as logistic regression and support vector machines, and be familiar with the standard vocabulary of machine learning. Finally, if you regularly work with data that is organized in tables as rows and columns, you will find it easiest to apply the concepts in this book to your work.

How this book is organized: A roadmap

 This book is made up of nine chapters and one appendix:

 	
 Chapter 1 includes a quick review of the high-level concepts of deep learning and a summary of why (and why not) you would want to apply deep learning to structured data. It also explains what I mean by structured data.

 	
 Chapter 2 explains the development environments you can use for the code example in this book. It also introduces the Python library for tabular, structured data (Pandas) and describes the major example used throughout the rest of the book: predicting delays on a light-rail transit system. This example is the streetcar delay prediction problem. Finally, chapter 2 previews the details that are coming in later chapters with a quick run through a simple example of training a deep learning model.

 	
 Chapter 3 explores the dataset for the major example and describes how to deal with a set of problems in the dataset. It also examines the question of how much data is required to train a deep learning model.

 	
 Chapter 4 covers how to address additional problems in the dataset and what to do with bad values that remain in the data after all the cleanup. It also shows how to prepare non-numeric data to train a deep learning model. Chapter 4 wraps up with a summary of the end-to-end code example.

 	
 Chapter 5 describes the process of preparing and building the deep learning model for the streetcar delay prediction problem. It explains the problem of data leakage (training the model with data that won’t be available when you want to make a prediction with the model) and how to avoid it. Then the chapter walks through the details of the code that makes up the deep learning model and shows you options for examining the structure of the model.

 	
 Chapter 6 explains the end-to-end model training process, from selecting subsets of the input dataset to train and test the model, to conducting your first training run, to iterating through a set of experiments to improve the performance of the trained model.

 	
 Chapter 7 expands on the model training techniques introduced in chapter 6 by conducting three more in-depth experiments. The first experiment proves that one of the cleanup steps from chapter 4 (removing records with invalid values) improves the performance of the model. The second experiment demonstrates the performance benefit of associating learned vectors (embeddings) with categorical columns. Finally, the third experiment compares the performance of the deep learning model with the performance of a popular non-deep learning approach, XGBoost.

 	
 Chapter 8 provides details on how you can make your trained deep learning model useful to the outside world. First, it describes how to do a simple web deployment of a trained model. Then it describes how to deploy a trained model in Facebook Messenger by using the Rasa open source chatbot framework.

 	
 Chapter 9 starts with a summary of what’s been covered in the book. Then it describes additional data sources that could improve the performance of the model, including location and weather data. Next, it describes how to adapt the code accompanying the book to tackle a completely new problem in tabular, structured data. The chapter wraps up with a list of additional books, courses, and online resources for learning more about deep learning with structured data.

 	
 The appendix describes how you can use the free Colab environment to run the code examples that accompany the book.

 I suggest that you read this book sequentially, because each chapter builds on the content in the preceding chapters. You will get the most out of the book if you execute the code samples that accompany the book—in particular the code for the streetcar delay prediction problem. Finally, I strongly encourage you to exercise the experiments described in chapters 6 and 7 and to explore the additional enhancements described in chapter 9.

About the code

 This book is accompanied by extensive code examples. In addition to the extended code example for the streetcar delay prediction problem in chapters 3-8, there are additional standalone code examples for chapter 2 (to demonstrate the Pandas library and the relationship between Pandas and SQL) and chapter 5 (to demonstrate the Keras sequential and functional APIs).

 Chapter 2 describes the options you have for running the code examples, and the appendix has further details on one of the options, Google’s Colab. Whichever environment you choose, you need to have Python (at least version 3.7) and key libraries including the following:

 	
 Pandas

 	
 Scikit-learn

 	
 Keras/TensorFlow 2.x

 As you run through the portions of the code, you may need to pip install additional libraries.

 The deployment portion of the main streetcar delay prediction example has some additional requirements:

 	
 Flask library for the web deployment

 	
 Rasa chatbot framework and ngrok for the Facebook Messenger deployment

 The source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can find all the code examples for this book in the GitHub repo at http://mng.bz/v95x.

liveBook discussion forum

 Purchase of Deep Learning with Structured Data includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/deep-learning-with-structured-data/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Mark Ryan is a data science manager at Intact Insurance in Toronto, Canada. Mark has a passion for sharing the benefits of machine learning, including delivering machine learning bootcamps to give participants a hands-on introduction to the world of machine learning. In addition to deep learning and its potential to unlock additional value in structured, tabular data, his interests include chatbots and the potential of autonomous vehicles. He has a bachelor of mathematics degree from the University of Waterloo and a master’s degree in computer science from the University of Toronto.

about the cover illustration

 The figure on the cover of Deep Learning with Structured Data is captioned “Homme de Navarre,” or “A man from Navarre,” a diverse northern region of northern Spain. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

1 Why deep learning with structured data?

 This chapter covers

 	
A high-level overview of deep learning

 	
Benefits and drawbacks of deep learning

 	
Introduction to the deep learning software stack

 	
Structured versus unstructured data

 	
Objections to deep learning with structured data

 	
Advantages of deep learning with structured data

 	
Introduction to the code accompanying this book

 Since 2012, we have witnessed what can only be called a renaissance of artificial intelligence. A discipline that had lost its way in the late 1980s is important again. What happened?

 In October 2012, a team of students working with Geoffrey Hinton (a leading academic proponent of deep learning based at the University of Toronto) announced a result in the ImageNet computer vision contest that achieved an error rate in identifying objects that was close to half that of the nearest competitor. This result exploited deep learning and ushered in an explosion of interest in the topic. Since then, we have seen deep learning applications with world-class results in many domains, including image processing, audio to text, and machine translation. In the past couple of years, the tools and infrastructure for deep learning have reached a level of maturity and accessibility that make it possible for nonspecialists to take advantage of deep learning’s benefits. This book shows how you can use deep learning to get insights into and make predictions about structured data: data organized as tables with rows and columns, as in a relational database. You will see the capability of deep learning by going step by step through a complete, end-to-end example of deep learning, from ingesting the raw input structured data to making the deep learning model available to end users. By applying deep learning to a problem with a real-world structured dataset, you will see the challenges and opportunities of deep learning with structured data.

1.1 Overview of deep learning

 Before reviewing the high-level concepts of deep learning, let’s introduce a simple example that we can use to explore these concepts: detection of credit card fraud. Chapter 2 introduces the real-world dataset and an extensive code example that prepares this dataset and uses it to train a deep learning model. For now, this basic fraud detection example is sufficient for a review of some of the concepts of deep learning.

 Why would you want to exploit deep learning for fraud detection? There are several reasons:

 	
 Fraudsters can find ways to work around the traditional rules-based approaches to fraud detection (http://mng.bz/emQw).

 	
 A deep learning approach that is part of an industrial-strength pipeline—in which the model performance is frequently assessed and the model is automatically retrained if its performance drops below a given threshold—can adapt to changes in fraud patterns.

 	
 A deep learning approach has the potential to provide near-real-time assessment of new transactions.

 In summary, deep learning is worth considering for fraud detection because it can be the heart of a flexible, fast solution. Note that in addition to these advantages, there is a downside to using deep learning as a solution to the problem of fraud detection: compared with other approaches, deep learning is harder to explain. Other machine learning approaches allow you to determine which input characteristics most influence the outcome, but this relationship can be difficult or impossible to establish with deep learning.

 Assume that a credit card company maintains customer transactions as records in a table. Each record in this table contains information about the transaction, including an ID that uniquely identifies the customer, as well as details about the transaction, including the date and time of the transaction, the ID of the vendor, the location of the transaction, and the currency and amount of the transaction. In addition to this information, which is added to the table every time a transaction is reported, every record has a field to indicate whether the transaction was reported as a fraud.

 The credit card company plans to train a deep learning model on the historical data in this table and use this trained model to predict whether new incoming transactions are fraudulent. The goal is to identify potential fraud as quickly as possible (and take corrective action) rather than waiting days for the customer or vendor to report that a particular transaction is fraudulent.

 Let’s examine the customer transaction table. Figure 1.1 contains a snippet of what some records in this table would look like.

 [image: CH01_F01_Ryan]

 Figure 1.1 Dataset for credit card fraud example

 The columns customer ID, transaction date, transaction time, vendor ID, City, Country, currency, and amount contain details about individual credit card transactions for the previous quarter. The fraud column is special because it contains the label: the value that we want the deep learning model to predict when it has been trained on the training data. Assume that the default value in the fraud column is 0 (meaning “not a fraud”), and that when one of our customers or vendors reports a fraudulent transaction, the value in the fraud column for that transaction in the table is set to 1.

 As new transactions arrive, we want to be able to predict whether they are fraudulent so that we can quickly take corrective action. By training the deep learning model on the historical dataset, we will be defining a function that can predict whether new credit card transactions are fraudulent. In this example of supervised learning (http://mng.bz/pzBE), the model is trained by means of a dataset that incorporates examples with labels. The dataset that is used to train the model includes the value that the trained model will predict (in this case, whether a transaction is fraudulent). By contrast, in unsupervised learning the training dataset does not include labels.

 Now that we have introduced the credit card fraud example, let’s use it to take a brief tour of some of the concepts of deep learning. For a more in-depth description of these concepts, see François Chollet’s Deep Learning with Python, 2nd ed. (http://mng.bz/OvM2), which includes excellent descriptions of these concepts:

 	
 Deep learning is a machine learning approach in which multilayer artificial neural networks are trained by setting weights and offsets at each layer by optimizing a loss function (the delta between the actual outcome [the values in the fraud column] and the predicted outcome) through the use of gradient-based optimization and backpropagation.

 	
 Neural networks in a deep learning model have a series of layers, starting with the input layer, followed by several hidden layers, and culminating with an output layer.

 	
 In each of these layers, the output of the previous layer (or, in the case of the first layer, the training data, which for our example is the dataset columns from customer ID, date, time, vendor ID, City, Country, currency and amount) goes through a series of operations (multiplication by a matrix of weights, addition of an offset [bias], and application of a nonlinear activation function) to produce the input for the next layer. In figure 1.2, each circle (node) has its own set of weights. The inputs are multiplied by those weights, the bias is added, and an activation function is applied to the result to produce the output that is taken in by the next layer.

 [image: CH01_F02_Ryan]

 Figure 1.2 Multilayered neural network

 The final output layer generates the prediction of the model based on the input. In our example of predicting credit card fraud, the output indicates whether the model predicts a fraud (output of 1) or not a fraud (output of 0) for a given transaction.

 	
 Deep learning works by iteratively updating the weights in the network to minimize the loss function (the function that defines the aggregate difference between the predictions of the model and the actual result values in the training dataset). As the weights are adjusted, the model’s predictions in aggregate get closer to the actual result values in the fraud column of the input table. With each training iteration, the weights are adjusted based on the gradient of the loss function.

 	
 You can think of the gradient of the loss function as being roughly equivalent to the slope of a hill. If you make small, incremental steps in the direction opposite the slope of the hill, you will eventually get to the bottom of the hill. By making small changes to the weights in the direction opposite to the gradient for each iteration through the network, you reduce the loss function bit by bit. A process called backpropagation is used to get the gradient of the loss function, which can then be applied to update the weights for each node in the neural network in such a way that with repeated applications, the loss function is minimized and the accuracy of the model’s predictions is maximized. The training process is summarized in figure 1.3.

 [image: CH01_F03_Ryan]

 Figure 1.3 Training data is used when weights are iteratively updated in the network to train the model.

 	
 When the training is complete (the weights in the model have been repeatedly updated using the gradient provided by backpropagation to achieve the desired performance with the training data), the resulting model can be used to make predictions on new data that the model has never seen.

 The output of the process is a trained deep learning model that incorporates the final weights and can be used to predict outputs from new input data, as shown in figure 1.4.

 [image: CH01_F04_Ryan]

 Figure 1.4 A trained model generates predictions on new data.

 This book does not cover the mathematical basis of deep learning. The section on the mathematical building blocks of deep learning in Deep Learning with Python , 2nd ed., provides a clear, concise description of the math behind deep learning. You can also see the reference to the deeplearning.ai curriculum in chapter 9 for a good overview of the math behind deep learning.

1.2 Benefits and drawbacks of deep learning

 The core point of deep learning is both simple and profound: a trained deep learning model can incorporate a function of incredible complexity that accurately characterizes patterns implicit in the data on which the model is trained. Given enough labeled data to train on (such as a large-enough dataset of credit card transactions with a column to indicate whether each transaction is a fraud), deep learning can define a model that predicts the label values for new data that the model never saw during the training process. The functions that deep learning defines in the form of trained models can include millions of parameters, well beyond what any human could create by hand.

 In some use cases, such as image recognition, deep learning models have the benefit of being trainable on data that is closer to the raw input data than is possible with non-deep-learning machine learning approaches. Those approaches may require extensive feature engineering (hand-coded transformations of the input data and new columns in the input table) to achieve good performance.

 The benefits of deep learning don’t come free. Deep learning has several significant drawbacks that you need to be prepared to deal with. For deep learning to work, you need

 	
 Lots of labeled data —You may need millions of examples, depending on the domain.

 	
 Hardware capable of doing massive matrix manipulations —As you will see in chap-ter 2, a modern laptop may be sufficient to train a simple deep learning model. Bigger models will require specialized hardware (GPUs and TPUs) to train efficiently.

 	
 Tolerance for the model’s imperfect transparency —When you compare deep learning with classic, non-deep-learning machine learning, it can be more difficult to spell out why a deep learning model is making the predictions it is making. In particular, if a model is trained on a certain set of features (customer ID, transaction date, transaction time, and so on), it can be difficult to determine which features contribute most to the model’s capability to predict an outcome.

 	
 Significant engineering to avert common pitfalls —These pitfalls include overfitting (the model is accurate for the data it was trained on, but doesn’t generalize to new data) and vanishing/exploding gradients (backpropagation blows up or grinds to a halt because the modifications to the weights become too large or too small at each step).

 	
 Ability to manipulate multiple hyperparameters —Data scientists need to control a set of knobs called hyperparameters , including learning rate (the size of the steps taken each time the weights are updated), regularization (various tactics to avert overfitting), and the number of times the training process iterates through the input dataset to train the model. Adjusting these knobs to get a good result can be like trying to fly a helicopter. As a helicopter pilot needs to coordinate hands and feet in harmony to keep the machine on a steady path and avoid crashing, a data scientist training a deep learning model needs to coordinate the hyperparameters in harmony to get desired results out of the model and avoid pitfalls such as overfitting. See chapter 5 for details about the hyperparameters used to train the model for this book’s extended example.

 	
 Tolerance for less-than-perfect accuracy —Deep learning is, by its nature, not going to produce 100% accurate predictions. If absolute accuracy is required, it’s better to use a more deterministic approach.

 Here are some mitigations for these drawbacks:

 	
 Lots of labeled data —Deep learning’s thirst for massive amounts of labeled data can be tempered with transfer learning : reusing models or subsets of models that are trained to perform one task on a related task. A model trained on a large, general set of labeled image data can be used to jump-start a model that is being applied to a specific domain in which labeled image data is scarce. The extended example in this book does not apply transfer learning, but you can see Transfer Learning for Natural Language Processing by Paul Azunre (http:// mng.bz/GdVV) for details on the key role that transfer learning plays in deep learning use cases such as natural language processing and computer vision.

 	
 Hardware capable of doing massive matrix manipulations — Today, it’s easy to get access to environments (including the cloud environments introduced in chapter 2) with sufficient hardware power to train challenging models at modest cost. The extended deep learning example in this book can be exercised faster in a cloud environment with hardware specifically designed for deep learning, but you can also exercise it on a reasonably provisioned modern laptop.

 	
 Tolerance for the model’s imperfect transparency — Several vendors (including Amazon, Google, and IBM) now offer solutions to help make deep learning models more transparent and explain the behavior of deep learning models.

 	
 Significant engineering to avert common pitfalls — Algorithm improvements keep making their way into common deep learning frameworks to help insulate you from problems like exploding gradients.

 	
 Ability to manipulate multiple hyperparameters — Automated approaches to optimizing hyperparameters have the potential to reduce the complexity of tuning hyperparameters and make the experience of training a deep learning model less like flying a helicopter and more like driving a car, in that a limited set of inputs (steering wheel, accelerator) has direct results (car changes direction, car changes speed).

 Less-than-perfect accuracy remains a challenge. The impact of imperfect accuracy depends on the problem that you are trying to solve. If you are predicting whether a client is going to churn (take its business to a competitor), being right 85% or 90% of the time may be more than sufficient for the problem. If you are predicting a potentially fatal medical condition, however, the intrinsic limits of deep learning are harder to get around. How much inaccuracy you can tolerate will depend on the problem you are solving.

1.3 Overview of the deep learning stack

 A variety of deep learning frameworks is available today. The two most popular are TensorFlow (https://www.tensorflow.org), which dominates in industrial applications of deep learning, and PyTorch (https://pytorch.org), which has a strong following in the research community.

 In this book, we’re going to use Keras (https://keras.io) as our deep learning library. Keras began life as a freestanding project that could be used as a frontend for a variety of deep learning frameworks. As explained in chapter 5, as of TensorFlow 2.0, Keras is integrated into TensorFlow. Keras is the recommended high-level API for TensorFlow. The code accompanying this book has been validated with TensorFlow 2.0, but you should not have any issues using later versions of TensorFlow.

 Here is a brief introduction to the main components of the stack:

 	
 Python —This easy-to-learn, flexible interpreted language is by far the most popular language for machine learning. Python’s growth in popularity has closely tracked the machine learning renaissance in the past decade, and it now far outstrips its closest rival, R, as the lingua franca of machine learning. Python has a huge ecosystem and a massive set of libraries that cover not only everything you want to do with machine learning, but also the gamut of development. In addition, Python has a huge developer community, and you can easily find answers online to almost any Python question or problem. The code examples in this book are written entirely in Python, with the exception of the YAML config files described in chapter 3; an SQL example in chapter 2; and the deployments described in chapter 8, which include code in Markdown, HTML, and JavaScript.

 	
 Pandas —This Python library gives you everything you need to conveniently deal with tabular, structured data within Python. You can easily import structured data (whether from CSV or Excel files or directly from a table in a relational database) into a Pandas dataframe and then manipulate it with table operations (such as dropping and adding columns, filtering by column values, and joining tables). You can think of Pandas as being Python’s answer to SQL. Chapter 2 contains several examples of loading data into Pandas dataframes and using Pandas to perform common SQL-type operations.

 	
 scikit-learn —scikit-learn is an extensive Python library for machine learning. The extended example in this book makes extensive use of this library, including the data transformation utilities described in chapters 3 and 4 and the facility described in chapter 8, to define trainable data pipelines that prepare data both for training the deep learning model and for getting predictions from the trained model.

 	
 Keras —Keras is a straightforward library for deep learning that gives you ample flexibility and control while abstracting out some of the complexity of the low-level TensorFlow API. Keras has a large, active community that includes beginners and experienced machine learning practitioners, and it’s easy to find solid examples of using Keras for deep learning applications.

1.4 Structured vs. unstructured data

 The title of this book contains two terms that do not commonly appear together: deep learning and structured data. Structured data (in the context of this book) refers to data that is organized in tables with rows and columns—the kind of data that resides in relational databases. Deep learning is an advanced machine learning technique that has demonstrated success on a range of problems with data that is not commonly stored in tables, such as images, video, audio, and text.

 Why apply deep learning to structured data? Why combine a data paradigm that is 40 years old with cutting-edge deep learning? Aren’t there simpler approaches to solving problems that involve structured data? Aren’t there better applications of the power of deep learning than attempting to train models with data that resides in tables?

 To answer these valid questions, we’re first going to define in a bit more detail what we mean by structured and unstructured data; in section 1.5, we’ll address these and other objections to applying deep learning to structured tabular data.

 In this book, structured data is data that has been organized to reside in a relational database with rows and columns. The columns can contain numeric values (such as currency amounts, temperatures, time durations, or other quantities expressed as integer or floating-point values) or non-numeric values (such as strings, embedded structured objects, or unstructured objects).

 All relational databases support SQL (albeit with varying dialects) as the primary interface to the database. Common relational databases include the following:

 	
 Proprietary databases —Oracle, SQL Server, Db2, Teradata

 	
 Open source databases —Postgres, MySQL, MariaDB

 	
 Propriety database offerings based on open source —AWS Redshift (based on Postgres)

 Relational databases can include relationships between tables, such as foreign keys (in which the permissible values in the column of one table depend on the values in an identified column in another table). Tables can be joined to create new tables that contain combinations of the rows and columns from the tables participating in the join. Relational databases can also incorporate sets of code, such as sets of SQL statements called stored procedures, that can be invoked to access and manipulate data in the database. For the purposes of this book, we will be focusing on the row and typed column nature of tables rather than the additional intertable interactions and code interfaces provided by relational databases.

 Relational databases are not the only possible repositories of structured tabular data. As shown in figure 1.5, data in Excel or CSV files is intrinsically structured in rows and columns, although unlike in relational tables, the types of the columns are not encoded as part of the structure but inferred from the column contents. The dataset for the main example in this book comes from a set of Excel files.

 [image: CH01_F05_Ryan]

 Figure 1.5 Examples of tabular structured data

 For the purposes of this book, we will not be looking at unstructured data—data that is not organized to reside in tabular form in a relational database. As shown in figure 1.6, unstructured data includes image, video, and audio files, as well as text and tagged formats such as XML, HTML, and JSON. By this definition, unstructured data doesn’t necessarily have zero structure. The key/value pairs in JSON are a kind of structure, for example, but in its native state JSON is not organized in a tabular form with rows and columns, so for the purposes of this book, it is unstructured. To complicate matters further, structured data can contain unstructured elements, such as columns in a table that contain freeform text or that refer to XML documents or BLOBs (binary large objects).

 [image: CH01_F06_Ryan]

 Figure 1.6 Examples of unstructured data

 Many books cover applications of deep learning to unstructured data such as images and text. This book takes a different direction by focusing exclusively on deep learning applied to tabular structured data. Sections 1.5 and 1.6 provide some justification for this focus on structured data, first discussing some reasons why you might be skeptical about a focus on structured data, and then reviewing the benefits of exploring a structured data problem with deep learning.

1.5 Objections to deep learning with structured data

 Many of the celebrated applications of deep learning have involved unstructured data such as images, audio, and text. Some deep learning experts question whether deep learning should be applied to structured data at all and insist that a non-deep-learning approach is best for structured data.

 To motivate your exploration of deep learning with structured data, let’s review some of the objections:

 	
 Structured datasets are too small to feed deep learning. Whether this objection is valid depends on the domain. Certainly, there are many domains (including the problem explored in this book) in which the labeled structured dataset contains tens of thousands or even millions of examples, making them large enough to be in contention for training a deep learning model.

 	
 Keep it simple. Deep learning is hard and complicated, so why not use an easier solution, such as non-deep-learning machine learning or traditional business intelligence applications? This objection was more valid three years ago than it is today. Deep learning has reached a tipping point in terms of simplicity and widespread use. Thanks to the popularity of deep learning, the tools available to exploit it are much easier to use. As you will see in the extended coding examples in this book, deep learning is now accessible to nonspecialists.

 	
 Handcrafted deep learning solutions are becoming less necessary. Why go through the effort of creating an end-to-end deep learning solution, particularly if you are not a full-time data scientist, if handcrafted solutions will increasingly be replaced by solutions that require little or no coding? The fast.ai library (https://docs.fast.ai), for example, allows you to create powerful deep learning models with a few lines of code, and data science environments like Watson Studio offer GUI-based model builders (as shown in figure 1.7) that let you create a deep learning model without doing any coding at all.

