

 [image: cover]

Grokking Deep Learning

 Andrew W. Trask

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road, PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
Shelter Island, NY 11964

 Development editor: Christina Taylor
Review editor: Aleksandar Dragosavljevic
Production editor: Lori Weidert
Copyeditor: Tiffany Taylor
Proofreader: Sharon Wilkey
Technical proofreader: David Fombella Pomball
Typesetter: Dennis Dalinnik
Cover designer: Leslie Haimes

 ISBN: 9781617293702

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – SP – 23 22 21 20 19 18

Dedication

 To Mom. You sacrificed so much time in your life to bless Tara and me with education. I hope you see your work behind this
 book.

 And to Dad. Thank you for loving us so much and for taking the time to teach me programming and technology at such a young
 age. I wouldn’t be doing this without you.

 It is a great honor to be your son.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 Chapter 1. Introducing deep learning: why you should learn it

 Chapter 2. Fundamental concepts: how do machines learn?

 Chapter 3. Introduction to neural prediction: forward propagation

 Chapter 4. Introduction to neural learning: gradient descent

 Chapter 5. Learning multiple weights at a time: generalizing gradient descent

 Chapter 6. Building your first deep neural network: introduction to backpropagation

 Chapter 7. How to picture neural networks: in your head and on paper

 Chapter 8. Learning signal and ignoring noise: introduction to regularization and batching

 Chapter 9. Modeling probabilities and nonlinearities: activation functions

 Chapter 10. Neural learning about edges and corners: intro to convolutional neural networks

 Chapter 11. Neural networks that understand language: king – man + woman == ?

 Chapter 12. Neural networks that write like Shakespeare: recurrent layers for variable-length data

 Chapter 13. Introducing automatic optimization: let’s build a deep learning framework

 Chapter 14. Learning to write like Shakespeare: long short-term memory

 Chapter 15. Deep learning on unseen data: introducing federated learning

 Chapter 16. Where to go from here: a brief guide

 Index

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 Chapter 1. Introducing deep learning: why you should learn it

 Welcome to Grokking Deep Learning

 You’re about to learn some of the most valuable skills of the century!

 Why you should learn deep learning

 It’s a powerful tool for the incremental automation of intelligence

 Deep learning has the potential for significant automation of skilled labor

 It’s fun and creative. You’ll discover much about what it is to be human by trying to simulate intelligence and creativity

 Will this be difficult to learn?

 How hard will you have to work before there’s a “fun” payoff?

 Why you should read this book

 It has a uniquely low barrier to entry

 It will help you understand what’s inside a framework (Torch, TensorFlow, and so on)

 All math-related material will be backed by intuitive analogies

 Everything after the introduction chapters is “project” based

 What you need to get started

 Install Jupyter Notebook and the NumPy Python library

 Pass high school mathematics

 Find a personal problem you’re interested in

 You’ll probably need some Python knowledge

 Python is my teaching library of choice, but I’ll provide a few others online

 How much coding experience should you have?

 Summary

 Chapter 2. Fundamental concepts: how do machines learn?

 What is deep learning?

 Deep learning is a subset of methods for machine learning

 What is machine learning?

 Supervised machine learning

 Supervised learning transforms datasets

 Unsupervised machine learning

 Unsupervised learning groups your data

 Parametric vs. nonparametric learning

 Oversimplified: Trial-and-error learning vs. counting and probability

 Supervised parametric learning

 Oversimplified: Trial-and-error learning using knobs

 Step 1: Predict

 Step 2: Compare to the truth pattern

 Step 3: Learn the pattern

 Unsupervised parametric learning

 Nonparametric learning

 Oversimplified: Counting-based methods

 Summary

 Chapter 3. Introduction to neural prediction: forward propagation

 Step 1: Predict

 This chapter is about prediction

 A simple neural network making a prediction

 Let’s start with the simplest neural network possible

 What is a neural network?

 Here is your first neural network

 What does this neural network do?

 It multiplies the input by a weight. It “scales” the input by a certain amount

 Making a prediction with multiple inputs

 Neural networks can combine intelligence from multiple datapoints

 Multiple inputs: What does this neural network do?

 It multiplies three inputs by three knob weights and sums them. This is a weighted sum

 Multiple inputs: Complete runnable code

 Making a prediction with multiple outputs

 Neural networks can also make multiple predictions using only a single input

 Predicting with multiple inputs and outputs

 Neural networks can predict multiple outputs given multiple inputs

 Multiple inputs and outputs: How does it work?

 It performs three independent weighted sums of the input to make three predictions

 Predicting on predictions

 Neural networks can be stacked!

 A quick primer on NumPy

 NumPy does a few things for you. Let’s reveal the magic

 Summary

 To predict, neural networks perform repeated weighted sums of the input

 Chapter 4. Introduction to neural learning: gradient descent

 Predict, compare, and learn

 Compare

 Comparing gives a measurement of how much a prediction “missed” by

 Learn

 Learning tells each weight how it can change to reduce the error

 Compare: Does your network make good predictions?

 Let’s measure the error and find out!

 Why measure error?

 Measuring error simplifies the problem

 Different ways of measuring error prioritize error differently.

 Why do you want only positive error?

 What’s the simplest form of neural learning?

 Learning using the hot and cold method

 Hot and cold learning

 This is perhaps the simplest form of learning

 Characteristics of hot and cold learning

 It’s simple

 Problem 1: It’s inefficient

 Problem 2: Sometimes it’s impossible to predict the exact goal prediction

 Calculating both direction and amount from error

 Let’s measure the error and find the direction and amount!

 One iteration of gradient descent

 This performs a weight update on a single training example (input->true) pair

 Learning is just reducing error

 You can modify weight to reduce error

 Let’s watch several steps of learning

 Will we eventually find the bottom of the bowl?

 Why does this work? What is weight_delta, really?

 Let’s back up and talk about functions. What is a function? How do you understand one?

 Tunnel vision on one concept

 Concept: Learning is adjusting the weight to reduce the error to 0

 A box with rods poking out of it

 Derivatives: Take two

 Still a little unsure about them? Let’s take another perspective

 What you really need to know

 With derivatives, you can pick any two variables in any formula, and know how they interact

 What you don’t really need to know

 Calculus

 How to use a derivative to learn

 weight_delta is your derivative

 Look familiar?

 Breaking gradient descent

 Just give me the code!

 Visualizing the overcorrections

 Divergence

 Sometimes neural networks explode in value. Oops?

 Introducing alpha

 It’s the simplest way to prevent overcorrecting weight updates

 Alpha in code

 Where does our “alpha” parameter come into play?

 Memorizing

 It’s time to really learn this stuff

 Chapter 5. Learning multiple weights at a time: generalizing gradient descent

 Gradient descent learning with multiple inputs

 Gradient descent also works with multiple inputs

 Gradient descent with multiple inputs explained

 Simple to execute, and fascinating to understand

 How do you turn a single delta (on the node) into three weight_delta values?

 Let’s watch several steps of learning

 Freezing one weight: What does it do?

 Gradient descent learning with multiple outputs

 Neural networks can also make multiple predictions using only a single input

 Gradient descent with multiple inputs and outputs

 Gradient descent generalizes to arbitrarily large networks

 What do these weights learn?

 Each weight tries to reduce the error, but what do they learn in aggregate?

 Visualizing weight values

 Visualizing dot products (weighted sums)

 Summary

 Gradient descent is a general learning algorithm

 Chapter 6. Building your first deep neural network: introduction to backpropagation

 The streetlight problem

 This toy problem considers how a network learns entire datasets

 Preparing the data

 Neural networks don’t read streetlights

 Matrices and the matrix relationship

 Translate the streetlight into math

 Good data matrices perfectly mimic the outside world

 Matrices A and B both contain the same underlying pattern

 Creating a matrix or two in Python

 Import the matrices into Python

 Building a neural network

 Learning the whole dataset

 The neural network has been learning only one streetlight. Don’t we want it to learn them all?

 Full, batch, and stochastic gradient descent

 Stochastic gradient descent updates weights one example at a time

 (Full) gradient descent updates weights one dataset at a time

 Batch gradient descent updates weights after n examples

 Neural networks learn correlation

 What did the last neural network learn?

 Up and down pressure

 It comes from the data

 Edge case: Overfitting

 Sometimes correlation happens accidentally

 Edge case: Conflicting pressure

 Sometimes correlation fights itself

 It doesn’t always work out like this

 Learning indirect correlation

 If your data doesn’t have correlation, create intermediate data that does!

 Creating correlation

 Stacking neural networks: A review

 Chapter 3 briefly mentioned stacked neural networks. Let’s review

 Backpropagation: Long-distance error attribution

 The weighted average error

 Backpropagation: Why does this work?

 The weighted average delta

 Linear vs. nonlinear

 This is probably the hardest concept in the book. Let’s take it slowly

 Why the neural network still doesn’t work

 If you trained the three-layer network as it is now, it wouldn’t converge

 The secret to sometimes correlation

 Turn off the node when the value would be below 0

 A quick break

 That last part probably felt a little abstract, and that’s totally OK

 Your first deep neural network

 Here’s how to make the prediction

 Backpropagation in code

 You can learn the amount that each weight contributes to the final error

 One iteration of backpropagation

 Putting it all together

 Here’s the self-sufficient program you should be able to run (runtime output follows)

 Why do deep networks matter?

 What’s the point of creating “intermediate datasets” that have correlation?

 Chapter 7. How to picture neural networks: in your head and on paper

 It’s time to simplify

 It’s impractical to think about everything all the time. Mental tools can help

 Let’s start by reviewing the concepts you’ve learned so far

 Correlation summarization

 This is the key to sanely moving forward to more advanced neural networks

 The previously overcomplicated visualization

 While simplifying the mental picture, let’s simplify the visualization as well

 The simplified visualization

 Neural networks are like LEGO bricks, and each brick is a vector or matrix

 Simplifying even further

 The dimensionality of the matrices is determined by the layers

 Let’s see this network predict

 Let’s picture data from the streetlight example flowing through the system

 Visualizing using letters instead of pictures

 All these pictures and detailed explanations are actually a simple piece of algebra

 Linking the variables

 The letters can be combined to indicate functions and operations

 Everything side by side

 Let’s see the visualization, algebra formula, and Python code in one place

 The importance of visualization tools

 We’re going to be studying new architectures

 Chapter 8. Learning signal and ignoring noise: introduction to regularization and batching

 Three-layer network on MNIST

 Let’s return to the MNIST dataset and attempt to classify it with the new network

 Well, that was easy

 The neural network perfectly learned to predict all 1,000 images

 Memorization vs. generalization

 Memorizing 1,000 images is easier than generalizing to all images

 Overfitting in neural networks

 Neural networks can get worse if you train them too much!

 Where overfitting comes from

 What causes neural networks to overfit?

 The simplest regularization: Early stopping

 Stop training the network when it starts getting worse

 Industry standard regularization: Dropout

 The method: Randomly turn off neurons (set them to 0) during training

 Why dropout works: Ensembling works

 Dropout is a form of training a bunch of networks and averaging them

 Dropout in code

 Here’s how to use dropout in the real world

 Dropout evaluated on MNIST

 Batch gradient descent

 Here’s a method for increasing the speed of training and the rate of convergence

 Summary

 Chapter 9. Modeling probabilities and nonlinearities: activation functions

 What is an activation function?

 It’s a function applied to the neurons in a layer during prediction

 Constraint 1: The function must be continuous and infinite in domain

 Constraint 2: Good activation functions are monotonic, never changing direction

 Constraint 3: Good activation functions are nonlinear (they squiggle or turn)

 Constraint 4: Good activation functions (and their derivatives) should be efficiently computable

 Standard hidden-layer activation functions

 Of the infinite possible functions, which ones are most commonly used?

 sigmoid is the bread-and-butter activation

 tanh is better than sigmoid for hidden layers

 Standard output layer activation functions

 Choosing the best one depends on what you’re trying to predict

 Configuration 1: Predicting raw data values (no activation function)

 Configuration 2: Predicting unrelated yes/no probabilities (sigmoid)

 Configuration 3: Predicting which-one probabilities (softmax)

 The core issue: Inputs have similarity

 Different numbers share characteristics. It’s good to let the network believe that

 softmax computation

 softmax raises each input value exponentially and then divides by the layer’s sum

 Activation installation instructions

 How do you add your favorite activation function to any layer?

 Multiplying delta by the slope

 To compute layer_delta, multiply the backpropagated delta by the layer’s slope

 Converting output to slope (derivative)

 Most great activations can convert their output to their slope. (Efficiency win!)

 Upgrading the MNIST network

 Let’s upgrade the MNIST network to reflect what you’ve learned

 Chapter 10. Neural learning about edges and corners: intro to convolutional neural networks

 Reusing weights in multiple places

 If you need to detect the same feature in multiple places, use the same weights!

 The convolutional layer

 Lots of very small linear layers are reused in every position, instead of a single big one

 A simple implementation in NumPy

 Just think mini-linear layers, and you already know what you need to know

 Summary

 Reusing weights is one of the most important innovations in deep learning

 Chapter 11. Neural networks that understand language: king – man + woman == ?

 What does it mean to understand language?

 What kinds of predictions do people make about language?

 Natural language processing (NLP)

 NLP is divided into a collection of tasks or challenges

 Supervised NLP

 Words go in, and predictions come out

 IMDB movie reviews dataset

 You can predict whether people post positive or negative reviews

 Capturing word correlation in input data

 Bag of words: Given a review’s vocabulary, predict the sentiment

 Predicting movie reviews

 With the encoding strategy and the previous network, you can predict sentiment

 Intro to an embedding layer

 Here’s one more trick to make the network faster

 After running the previous code, run this code

 Interpreting the output

 What did the neural network learn along the way?

 Neural architecture

 How did the choice of architecture affect what the network learned?

 What should you see in the weights connecting words and hidden neurons?

 Comparing word embeddings

 How can you visualize weight similarity?

 What is the meaning of a neuron?

 Meaning is entirely based on the target labels being predicted

 Filling in the blank

 Learn richer meanings for words by having a richer signal to learn

 Meaning is derived from loss

 Neural networks don’t really learn data; they minimize the loss function

 The choice of loss function determines the neural network’s knowledge

 King – Man + Woman ~= Queen

 Word analogies are an interesting consequence of the previously built network

 Word analogies

 Linear compression of an existing property in the data

 Summary

 You’ve learned a lot about neural word embeddings and the impact of loss on learning

 Chapter 12. Neural networks that write like Shakespeare: recurrent layers for variable-length data

 The challenge of arbitrary length

 Let’s model arbitrarily long sequences of data with neural networks!

 Do comparisons really matter?

 Why should you care about whether you can compare two sentence vectors?

 The surprising power of averaged word vectors

 It’s the amazingly powerful go-to tool for neural prediction

 How is information stored in these embeddings?

 When you average word embeddings, average shapes remain

 How does a neural network use embeddings?

 Neural networks detect the curves that have correlation with a target label

 The limitations of bag-of-words vectors

 Order becomes irrelevant when you average word embeddings

 Using identity vectors to sum word embeddings

 Let’s implement the same logic using a different approach

 Matrices that change absolutely nothing

 Let’s create sentence embeddings using identity matrices in Python

 Learning the transition matrices

 What if you allowed the identity matrices to change to minimize the loss?

 Learning to create useful sentence vectors

 Create the sentence vector, make a prediction, and modify the sentence vector via its parts

 Forward propagation in Python

 Let’s take this idea and see how to perform a simple forward propagation

 How do you backpropagate into this?

 It might seem trickier, but they’re the same steps you already learned

 Let’s train it!

 You have all the tools; let’s train the network on a toy corpus

 Setting things up

 Before you can create matrices, you need to learn how many parameters you have

 Forward propagation with arbitrary length

 You’ll forward propagate using the same logic described earlier

 Backpropagation with arbitrary length

 You’ll backpropagate using the same logic described earlier

 Weight update with arbitrary length

 You’ll update weights using the same logic described earlier

 Execution and output analysis

 You’ll update weights using the same logic described earlier

 Looking at predictions can help you understand what’s going on

 Summary

 Recurrent neural networks predict over arbitrary-length sequences

 Chapter 13. Introducing automatic optimization: let’s build a deep learning framework

 What is a deep learning framework?

 Good tools reduce errors, speed development, and increase runtime performance

 Introduction to tensors

 Tensors are an abstract form of vectors and matrices

 Introduction to automatic gradient computation (autograd)

 Previously, you performed backpropagation by hand. Let’s make it automatic!

 A quick checkpoint

 Everything in Tensor is another form of lessons already learned

 Tensors that are used multiple times

 The basic autograd has a rather pesky bug. Let’s squish it!

 Upgrading autograd to support multiuse tensors

 Add one new function, and update three old ones

 How does addition backpropagation work?

 Let’s study the abstraction to learn how to add support for more functions

 Adding support for negation

 Let’s modify the support for addition to support negation

 Adding support for additional functions

 Subtraction, multiplication, sum, expand, transpose, and matrix multiplication

 Using autograd to train a neural network

 You no longer have to write backpropagation logic!

 Adding automatic optimization

 Let’s make a stochastic gradient descent optimizer

 Adding support for layer types

 You may be familiar with layer types in Keras or PyTorch

 Layers that contain layers

 Layers can also contain other layers

 Loss-function layers

 Some layers have no weights

 How to learn a framework

 Oversimplified, frameworks are autograd + a list of prebuilt layers and optimizers

 Nonlinearity layers

 Let’s add nonlinear functions to Tensor and then create some layer types

 The embedding layer

 An embedding layer translates indices into activations

 Adding indexing to autograd

 Before you can build the embedding layer, autograd needs to support indexing

 The embedding layer (revisited)

 Now you can finish forward propagation using the new .index_select() method

 The cross-entropy layer

 Let’s add cross entropy to the autograd and create a layer

 The recurrent neural network layer

 By combining several layers, you can learn over time series

 You can learn to fit the task you previously accomplished in the preceding chapter

 Summary

 Frameworks are efficient, convenient abstractions of forward and backward logic

 Chapter 14. Learning to write like Shakespeare: long short-term memory

 Character language modeling

 Let’s tackle a more challenging task with the RNN

 The need for truncated backpropagation

 Backpropagating through 100,000 characters is intractable

 Truncated backpropagation

 Technically, it weakens the theoretical maximum of the neural network

 Let’s see how to iterate using truncated backpropagation

 A sample of the output

 By sampling from the predictions of the model, you can write Shakespeare!

 Vanishing and exploding gradients

 Vanilla RNNs suffer from vanishing and exploding gradients

 A toy example of RNN backpropagation

 To see vanishing/exploding gradients firsthand, let’s synthesize an example

 Long short-term memory (LSTM) cells

 LSTMs are the industry standard model to counter vanishing/exploding gradients

 Some intuition about LSTM gates

 LSTM gates are semantically similar to reading/writing from memory

 The long short-term memory layer

 You can use the autograd system to implement an LSTM

 Upgrading the character language model

 Let’s swap out the vanilla RNN with the new LSTM cell

 Training the LSTM character language model

 The training logic also hasn’t changed much

 Tuning the LSTM character language model

 I spent about two days tuning this model, and it trained overnight

 Summary

 LSTMs are incredibly powerful models

 Chapter 15. Deep learning on unseen data: introducing federated learning

 The problem of privacy in deep learning

 Deep learning (and tools for it) often means you have access to your training data

 Federated learning

 You don’t have to have access to a dataset in order to learn from it

 Learning to detect spam

 Let’s say you want to train a model across people’s emails to detect spam

 Let’s make it federated

 The previous example was plain vanilla deep learning. Let’s protect privacy

 Hacking into federated learning

 Let’s use a toy example to see how to still learn the training dataset

 Secure aggregation

 Let’s average weight updates from zillions of people before anyone can see them

 Homomorphic encryption

 You can perform arithmetic on encrypted values

 Homomorphically encrypted federated learning

 Let’s use homomorphic encryption to protect the gradients being aggregated

 Summary

 Federated learning is one of the most exciting breakthroughs in deep learning

 Chapter 16. Where to go from here: a brief guide

 Congratulations!

 If you’re reading this, you’ve made it through nearly 300 pages of deep learning

 Step 1: Start learning PyTorch

 The deep learning framework you made most closely resembles PyTorch

 Step 2: Start another deep learning course

 I learned deep learning by relearning the same concepts over and over

 Step 3: Grab a mathy deep learning textbook

 You can reverse engineer the math from your deep learning knowledge

 Step 4: Start a blog, and teach deep learning

 Nothing I’ve ever done has helped my knowledge or career more

 Step 5: Twitter

 A lot of AI conversation happens on Twitter

 Step 6: Implement academic papers

 Twitter + your blog = tutorials on academic papers

 Step 7: Acquire access to a GPU (or many)

 The faster you can experiment, the faster you can learn

 Step 8: Get paid to practice

 The more time you have to do deep learning, the faster you’ll learn

 Step 9: Join an open source project

 The best way to network and career-build in AI is to become a core developer in an open source project

 Step 10: Develop your local community

 I really learned deep learning because I enjoyed hanging with friends who were

OEBPS/common2.jpg

OEBPS/logo.jpg

OEBPS/common1.jpg

OEBPS/cover.jpg

