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         Chapter 1. Introducing deep learning: why you should learn it


         
            Welcome to Grokking Deep Learning


            
               You’re about to learn some of the most valuable skills of the century!


            

            Why you should learn deep learning


            
               It’s a powerful tool for the incremental automation of intelligence


               Deep learning has the potential for significant automation of skilled labor


               It’s fun and creative. You’ll discover much about what it is to be human by trying to simulate intelligence and creativity


            

            Will this be difficult to learn?


            
               How hard will you have to work before there’s a “fun” payoff?


            

            Why you should read this book


            
               It has a uniquely low barrier to entry


               It will help you understand what’s inside a framework (Torch, TensorFlow, and so on)


               All math-related material will be backed by intuitive analogies


               Everything after the introduction chapters is “project” based


            

            What you need to get started


            
               Install Jupyter Notebook and the NumPy Python library


               Pass high school mathematics


               Find a personal problem you’re interested in


            

            You’ll probably need some Python knowledge


            
               Python is my teaching library of choice, but I’ll provide a few others online


               How much coding experience should you have?


            

            Summary


         

         Chapter 2. Fundamental concepts: how do machines learn?


         
            What is deep learning?


            
               Deep learning is a subset of methods for machine learning


            

            What is machine learning?


            Supervised machine learning


            
               Supervised learning transforms datasets


            

            Unsupervised machine learning


            
               Unsupervised learning groups your data


            

            Parametric vs. nonparametric learning


            
               Oversimplified: Trial-and-error learning vs. counting and probability


            

            Supervised parametric learning


            
               Oversimplified: Trial-and-error learning using knobs


               Step 1: Predict


               Step 2: Compare to the truth pattern


               Step 3: Learn the pattern


            

            Unsupervised parametric learning


            Nonparametric learning


            
               Oversimplified: Counting-based methods


            

            Summary


         

         Chapter 3. Introduction to neural prediction: forward propagation


         
            Step 1: Predict


            
               This chapter is about prediction


            

            A simple neural network making a prediction


            
               Let’s start with the simplest neural network possible


            

            What is a neural network?


            
               Here is your first neural network


            

            What does this neural network do?


            
               It multiplies the input by a weight. It “scales” the input by a certain amount


            

            Making a prediction with multiple inputs


            
               Neural networks can combine intelligence from multiple datapoints


            

            Multiple inputs: What does this neural network do?


            
               It multiplies three inputs by three knob weights and sums them. This is a weighted sum


            

            Multiple inputs: Complete runnable code


            Making a prediction with multiple outputs


            
               Neural networks can also make multiple predictions using only a single input


            

            Predicting with multiple inputs and outputs


            
               Neural networks can predict multiple outputs given multiple inputs


            

            Multiple inputs and outputs: How does it work?


            
               It performs three independent weighted sums of the input to make three predictions


            

            Predicting on predictions


            
               Neural networks can be stacked!


            

            A quick primer on NumPy


            
               NumPy does a few things for you. Let’s reveal the magic


            

            Summary


            
               To predict, neural networks perform repeated weighted sums of the input


            

         

         Chapter 4. Introduction to neural learning: gradient descent


         
            Predict, compare, and learn


            Compare


            
               Comparing gives a measurement of how much a prediction “missed” by


            

            Learn


            
               Learning tells each weight how it can change to reduce the error


            

            Compare: Does your network make good predictions?


            
               Let’s measure the error and find out!


            

            Why measure error?


            
               Measuring error simplifies the problem


               Different ways of measuring error prioritize error differently.


               Why do you want only positive error?


            

            What’s the simplest form of neural learning?


            
               Learning using the hot and cold method


            

            Hot and cold learning


            
               This is perhaps the simplest form of learning


            

            Characteristics of hot and cold learning


            
               It’s simple


               Problem 1: It’s inefficient


               Problem 2: Sometimes it’s impossible to predict the exact goal prediction


            

            Calculating both direction and amount from error


            
               Let’s measure the error and find the direction and amount!


            

            One iteration of gradient descent


            
               This performs a weight update on a single training example (input->true) pair


            

            Learning is just reducing error


            
               You can modify weight to reduce error


            

            Let’s watch several steps of learning


            
               Will we eventually find the bottom of the bowl?


            

            Why does this work? What is weight_delta, really?


            
               Let’s back up and talk about functions. What is a function? How do you understand one?


            

            Tunnel vision on one concept


            
               Concept: Learning is adjusting the weight to reduce the error to 0


            

            A box with rods poking out of it


            Derivatives: Take two


            
               Still a little unsure about them? Let’s take another perspective


            

            What you really need to know


            
               With derivatives, you can pick any two variables in any formula, and know how they interact


            

            What you don’t really need to know


            
               Calculus


            

            How to use a derivative to learn


            
               weight_delta is your derivative


            

            Look familiar?


            Breaking gradient descent


            
               Just give me the code!


            

            Visualizing the overcorrections


            Divergence


            
               Sometimes neural networks explode in value. Oops?


            

            Introducing alpha


            
               It’s the simplest way to prevent overcorrecting weight updates


            

            Alpha in code


            
               Where does our “alpha” parameter come into play?


            

            Memorizing


            
               It’s time to really learn this stuff


            

         

         Chapter 5. Learning multiple weights at a time: generalizing gradient descent


         
            Gradient descent learning with multiple inputs


            
               Gradient descent also works with multiple inputs


            

            Gradient descent with multiple inputs explained


            
               Simple to execute, and fascinating to understand


               How do you turn a single delta (on the node) into three weight_delta values?


            

            Let’s watch several steps of learning


            Freezing one weight: What does it do?


            Gradient descent learning with multiple outputs


            
               Neural networks can also make multiple predictions using only a single input


            

            Gradient descent with multiple inputs and outputs


            
               Gradient descent generalizes to arbitrarily large networks


            

            What do these weights learn?


            
               Each weight tries to reduce the error, but what do they learn in aggregate?


            

            Visualizing weight values


            Visualizing dot products (weighted sums)


            Summary


            
               Gradient descent is a general learning algorithm


            

         

         Chapter 6. Building your first deep neural network: introduction to backpropagation


         
            The streetlight problem


            
               This toy problem considers how a network learns entire datasets


            

            Preparing the data


            
               Neural networks don’t read streetlights


            

            Matrices and the matrix relationship


            
               Translate the streetlight into math


               Good data matrices perfectly mimic the outside world


               Matrices A and B both contain the same underlying pattern


            

            Creating a matrix or two in Python


            
               Import the matrices into Python


            

            Building a neural network


            Learning the whole dataset


            
               The neural network has been learning only one streetlight. Don’t we want it to learn them all?


            

            Full, batch, and stochastic gradient descent


            
               Stochastic gradient descent updates weights one example at a time


               (Full) gradient descent updates weights one dataset at a time


               Batch gradient descent updates weights after n examples


            

            Neural networks learn correlation


            
               What did the last neural network learn?


            

            Up and down pressure


            
               It comes from the data


            

            Edge case: Overfitting


            
               Sometimes correlation happens accidentally


            

            Edge case: Conflicting pressure


            
               Sometimes correlation fights itself


               It doesn’t always work out like this


            

            Learning indirect correlation


            
               If your data doesn’t have correlation, create intermediate data that does!


            

            Creating correlation


            Stacking neural networks: A review


            
               Chapter 3 briefly mentioned stacked neural networks. Let’s review


            

            Backpropagation: Long-distance error attribution


            
               The weighted average error


            

            Backpropagation: Why does this work?


            
               The weighted average delta


            

            Linear vs. nonlinear


            
               This is probably the hardest concept in the book. Let’s take it slowly


            

            Why the neural network still doesn’t work


            
               If you trained the three-layer network as it is now, it wouldn’t converge


            

            The secret to sometimes correlation


            
               Turn off the node when the value would be below 0


            

            A quick break


            
               That last part probably felt a little abstract, and that’s totally OK


            

            Your first deep neural network


            
               Here’s how to make the prediction


            

            Backpropagation in code


            
               You can learn the amount that each weight contributes to the final error


            

            One iteration of backpropagation


            Putting it all together


            
               Here’s the self-sufficient program you should be able to run (runtime output follows)


            

            Why do deep networks matter?


            
               What’s the point of creating “intermediate datasets” that have correlation?


            

         

         Chapter 7. How to picture neural networks: in your head and on paper


         
            It’s time to simplify


            
               It’s impractical to think about everything all the time. Mental tools can help


               Let’s start by reviewing the concepts you’ve learned so far


            

            Correlation summarization


            
               This is the key to sanely moving forward to more advanced neural networks


            

            The previously overcomplicated visualization


            
               While simplifying the mental picture, let’s simplify the visualization as well


            

            The simplified visualization


            
               Neural networks are like LEGO bricks, and each brick is a vector or matrix


            

            Simplifying even further


            
               The dimensionality of the matrices is determined by the layers


            

            Let’s see this network predict


            
               Let’s picture data from the streetlight example flowing through the system


            

            Visualizing using letters instead of pictures


            
               All these pictures and detailed explanations are actually a simple piece of algebra


            

            Linking the variables


            
               The letters can be combined to indicate functions and operations


            

            Everything side by side


            
               Let’s see the visualization, algebra formula, and Python code in one place


            

            The importance of visualization tools


            
               We’re going to be studying new architectures


            

         

         Chapter 8. Learning signal and ignoring noise: introduction to regularization and batching


         
            Three-layer network on MNIST


            
               Let’s return to the MNIST dataset and attempt to classify it with the new network


            

            Well, that was easy


            
               The neural network perfectly learned to predict all 1,000 images


            

            Memorization vs. generalization


            
               Memorizing 1,000 images is easier than generalizing to all images


            

            Overfitting in neural networks


            
               Neural networks can get worse if you train them too much!


            

            Where overfitting comes from


            
               What causes neural networks to overfit?


            

            The simplest regularization: Early stopping


            
               Stop training the network when it starts getting worse


            

            Industry standard regularization: Dropout


            
               The method: Randomly turn off neurons (set them to 0) during training


            

            Why dropout works: Ensembling works


            
               Dropout is a form of training a bunch of networks and averaging them


            

            Dropout in code


            
               Here’s how to use dropout in the real world


            

            Dropout evaluated on MNIST


            Batch gradient descent


            
               Here’s a method for increasing the speed of training and the rate of convergence


            

            Summary


         

         Chapter 9. Modeling probabilities and nonlinearities: activation functions


         
            What is an activation function?


            
               It’s a function applied to the neurons in a layer during prediction


               Constraint 1: The function must be continuous and infinite in domain


               Constraint 2: Good activation functions are monotonic, never changing direction


               Constraint 3: Good activation functions are nonlinear (they squiggle or turn)


               Constraint 4: Good activation functions (and their derivatives) should be efficiently computable


            

            Standard hidden-layer activation functions


            
               Of the infinite possible functions, which ones are most commonly used?


               sigmoid is the bread-and-butter activation


               tanh is better than sigmoid for hidden layers


            

            Standard output layer activation functions


            
               Choosing the best one depends on what you’re trying to predict


               Configuration 1: Predicting raw data values (no activation function)


               Configuration 2: Predicting unrelated yes/no probabilities (sigmoid)


               Configuration 3: Predicting which-one probabilities (softmax)


            

            The core issue: Inputs have similarity


            
               Different numbers share characteristics. It’s good to let the network believe that


            

            softmax computation


            
               softmax raises each input value exponentially and then divides by the layer’s sum


            

            Activation installation instructions


            
               How do you add your favorite activation function to any layer?


            

            Multiplying delta by the slope


            
               To compute layer_delta, multiply the backpropagated delta by the layer’s slope


            

            Converting output to slope (derivative)


            
               Most great activations can convert their output to their slope. (Efficiency win!)


            

            Upgrading the MNIST network


            
               Let’s upgrade the MNIST network to reflect what you’ve learned


            

         

         Chapter 10. Neural learning about edges and corners: intro to convolutional neural networks


         
            Reusing weights in multiple places


            
               If you need to detect the same feature in multiple places, use the same weights!


            

            The convolutional layer


            
               Lots of very small linear layers are reused in every position, instead of a single big one


            

            A simple implementation in NumPy


            
               Just think mini-linear layers, and you already know what you need to know


            

            Summary


            
               Reusing weights is one of the most important innovations in deep learning


            

         

         Chapter 11. Neural networks that understand language: king – man + woman == ?


         
            What does it mean to understand language?


            
               What kinds of predictions do people make about language?


            

            Natural language processing (NLP)


            
               NLP is divided into a collection of tasks or challenges


            

            Supervised NLP


            
               Words go in, and predictions come out


            

            IMDB movie reviews dataset


            
               You can predict whether people post positive or negative reviews


            

            Capturing word correlation in input data


            
               Bag of words: Given a review’s vocabulary, predict the sentiment


            

            Predicting movie reviews


            
               With the encoding strategy and the previous network, you can predict sentiment


            

            Intro to an embedding layer


            
               Here’s one more trick to make the network faster


               After running the previous code, run this code


            

            Interpreting the output


            
               What did the neural network learn along the way?


            

            Neural architecture


            
               How did the choice of architecture affect what the network learned?


               What should you see in the weights connecting words and hidden neurons?


            

            Comparing word embeddings


            
               How can you visualize weight similarity?


            

            What is the meaning of a neuron?


            
               Meaning is entirely based on the target labels being predicted


            

            Filling in the blank


            
               Learn richer meanings for words by having a richer signal to learn


            

            Meaning is derived from loss


            
               Neural networks don’t really learn data; they minimize the loss function


               The choice of loss function determines the neural network’s knowledge


            

            King – Man + Woman ~= Queen


            
               Word analogies are an interesting consequence of the previously built network


            

            Word analogies


            
               Linear compression of an existing property in the data


            

            Summary


            
               You’ve learned a lot about neural word embeddings and the impact of loss on learning


            

         

         Chapter 12. Neural networks that write like Shakespeare: recurrent layers for variable-length data


         
            The challenge of arbitrary length


            
               Let’s model arbitrarily long sequences of data with neural networks!


            

            Do comparisons really matter?


            
               Why should you care about whether you can compare two sentence vectors?


            

            The surprising power of averaged word vectors


            
               It’s the amazingly powerful go-to tool for neural prediction


            

            How is information stored in these embeddings?


            
               When you average word embeddings, average shapes remain


            

            How does a neural network use embeddings?


            
               Neural networks detect the curves that have correlation with a target label


            

            The limitations of bag-of-words vectors


            
               Order becomes irrelevant when you average word embeddings


            

            Using identity vectors to sum word embeddings


            
               Let’s implement the same logic using a different approach


            

            Matrices that change absolutely nothing


            
               Let’s create sentence embeddings using identity matrices in Python


            

            Learning the transition matrices


            
               What if you allowed the identity matrices to change to minimize the loss?


            

            Learning to create useful sentence vectors


            
               Create the sentence vector, make a prediction, and modify the sentence vector via its parts


            

            Forward propagation in Python


            
               Let’s take this idea and see how to perform a simple forward propagation


            

            How do you backpropagate into this?


            
               It might seem trickier, but they’re the same steps you already learned


            

            Let’s train it!


            
               You have all the tools; let’s train the network on a toy corpus


            

            Setting things up


            
               Before you can create matrices, you need to learn how many parameters you have


            

            Forward propagation with arbitrary length


            
               You’ll forward propagate using the same logic described earlier


            

            Backpropagation with arbitrary length


            
               You’ll backpropagate using the same logic described earlier


            

            Weight update with arbitrary length


            
               You’ll update weights using the same logic described earlier


            

            Execution and output analysis


            
               You’ll update weights using the same logic described earlier


               Looking at predictions can help you understand what’s going on


            

            Summary


            
               Recurrent neural networks predict over arbitrary-length sequences


            

         

         Chapter 13. Introducing automatic optimization: let’s build a deep learning framework


         
            What is a deep learning framework?


            
               Good tools reduce errors, speed development, and increase runtime performance


            

            Introduction to tensors


            
               Tensors are an abstract form of vectors and matrices


            

            Introduction to automatic gradient computation (autograd)


            
               Previously, you performed backpropagation by hand. Let’s make it automatic!


            

            A quick checkpoint


            
               Everything in Tensor is another form of lessons already learned


            

            Tensors that are used multiple times


            
               The basic autograd has a rather pesky bug. Let’s squish it!


            

            Upgrading autograd to support multiuse tensors


            
               Add one new function, and update three old ones


            

            How does addition backpropagation work?


            
               Let’s study the abstraction to learn how to add support for more functions


            

            Adding support for negation


            
               Let’s modify the support for addition to support negation


            

            Adding support for additional functions


            
               Subtraction, multiplication, sum, expand, transpose, and matrix multiplication


            

            Using autograd to train a neural network


            
               You no longer have to write backpropagation logic!


            

            Adding automatic optimization


            
               Let’s make a stochastic gradient descent optimizer


            

            Adding support for layer types


            
               You may be familiar with layer types in Keras or PyTorch


            

            Layers that contain layers


            
               Layers can also contain other layers


            

            Loss-function layers


            
               Some layers have no weights


            

            How to learn a framework


            
               Oversimplified, frameworks are autograd + a list of prebuilt layers and optimizers


            

            Nonlinearity layers


            
               Let’s add nonlinear functions to Tensor and then create some layer types


            

            The embedding layer


            
               An embedding layer translates indices into activations


            

            Adding indexing to autograd


            
               Before you can build the embedding layer, autograd needs to support indexing


            

            The embedding layer (revisited)


            
               Now you can finish forward propagation using the new .index_select() method


            

            The cross-entropy layer


            
               Let’s add cross entropy to the autograd and create a layer


            

            The recurrent neural network layer


            
               By combining several layers, you can learn over time series


               You can learn to fit the task you previously accomplished in the preceding chapter


            

            Summary


            
               Frameworks are efficient, convenient abstractions of forward and backward logic


            

         

         Chapter 14. Learning to write like Shakespeare: long short-term memory


         
            Character language modeling


            
               Let’s tackle a more challenging task with the RNN


            

            The need for truncated backpropagation


            
               Backpropagating through 100,000 characters is intractable


            

            Truncated backpropagation


            
               Technically, it weakens the theoretical maximum of the neural network


               Let’s see how to iterate using truncated backpropagation


            

            A sample of the output


            
               By sampling from the predictions of the model, you can write Shakespeare!


            

            Vanishing and exploding gradients


            
               Vanilla RNNs suffer from vanishing and exploding gradients


            

            A toy example of RNN backpropagation


            
               To see vanishing/exploding gradients firsthand, let’s synthesize an example


            

            Long short-term memory (LSTM) cells


            
               LSTMs are the industry standard model to counter vanishing/exploding gradients


            

            Some intuition about LSTM gates


            
               LSTM gates are semantically similar to reading/writing from memory


            

            The long short-term memory layer


            
               You can use the autograd system to implement an LSTM


            

            Upgrading the character language model


            
               Let’s swap out the vanilla RNN with the new LSTM cell


            

            Training the LSTM character language model


            
               The training logic also hasn’t changed much


            

            Tuning the LSTM character language model


            
               I spent about two days tuning this model, and it trained overnight


            

            Summary


            
               LSTMs are incredibly powerful models


            

         

         Chapter 15. Deep learning on unseen data: introducing federated learning


         
            The problem of privacy in deep learning


            
               Deep learning (and tools for it) often means you have access to your training data


            

            Federated learning


            
               You don’t have to have access to a dataset in order to learn from it


            

            Learning to detect spam


            
               Let’s say you want to train a model across people’s emails to detect spam


            

            Let’s make it federated


            
               The previous example was plain vanilla deep learning. Let’s protect privacy


            

            Hacking into federated learning


            
               Let’s use a toy example to see how to still learn the training dataset


            

            Secure aggregation


            
               Let’s average weight updates from zillions of people before anyone can see them


            

            Homomorphic encryption


            
               You can perform arithmetic on encrypted values


            

            Homomorphically encrypted federated learning


            
               Let’s use homomorphic encryption to protect the gradients being aggregated


            

            Summary


            
               Federated learning is one of the most exciting breakthroughs in deep learning


            

         

         Chapter 16. Where to go from here: a brief guide


         
            Congratulations!


            
               If you’re reading this, you’ve made it through nearly 300 pages of deep learning


            

            Step 1: Start learning PyTorch


            
               The deep learning framework you made most closely resembles PyTorch


            

            Step 2: Start another deep learning course


            
               I learned deep learning by relearning the same concepts over and over


            

            Step 3: Grab a mathy deep learning textbook


            
               You can reverse engineer the math from your deep learning knowledge


            

            Step 4: Start a blog, and teach deep learning


            
               Nothing I’ve ever done has helped my knowledge or career more


            

            Step 5: Twitter


            
               A lot of AI conversation happens on Twitter


            

            Step 6: Implement academic papers


            
               Twitter + your blog = tutorials on academic papers


            

            Step 7: Acquire access to a GPU (or many)


            
               The faster you can experiment, the faster you can learn


            

            Step 8: Get paid to practice


            
               The more time you have to do deep learning, the faster you’ll learn


            

            Step 9: Join an open source project


            
               The best way to network and career-build in AI is to become a core developer in an open source project


            

            Step 10: Develop your local community


            
               I really learned deep learning because I enjoyed hanging with friends who were
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