

[image: Cover Page]





Praise for the First Edition



From the first edition of Unity in Action by Joseph Hocking

“The text is clear and concise, and the examples are outstanding. As a new user, I found this book to be an invaluable resource.”

—Dan Kacenjar Sr., Cornerstone Software

“All the roadblocks evaporated, and I took my game from concept to build in short order.”

—Philip Taffet, SOHOsoft LLC 

“Gets you up and running in no time.”

—Sergio Arbeo, codecantor 

“Covers all the key elements for using Unity effectively.”

—Shiloh Morris, Southern Nevada Water Authority 

“Useful and to the point! You will learn the basics and more to start developing your own games”

—Victor M. Perez, Software developer 

“Recommended for anyone starting out with Unity.”

—Alex Lucas, Independent Contractor 

“Teaches with good clean code and gives ideas on how to alter it for more interesting results.”

—Amazon reader






Unity in Action




Multiplatform game development in C#

Second Edition


Joseph Hocking





[image: ManningBlackSized.png]





MANNING

Shelter Island







For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.

 

For more information, please contact

 

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

 

©2018 by Manning Publications Co. All rights reserved.

 

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 

	Manning Publications Co.

20 Baldwin Road

PO Box 761 

Shelter Island, NY 11964

 

	Development editor:	Candace West

	Technical development editor:	René van den Berg

	Review editor:	Ivan Martinovic

	Project editor:	David Novak

	Copy editor:	Safis Editing

	Proofreader:	Elizabeth Martin

	Technical proofreader:	Shiloh Morris

	Typesetter:	Happenstance Type-O-Rama

	Cover designer:	Marija Tudor

 

ISBN 9781617294969

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 - EBM - 22 21 20 19 18






foreword



I started programming games in 1982. It wasn’t easy. We had no internet. Resources were limited to a handful of mostly terrible books and magazines that offered fascinating but confusing code fragments, and as for game engines—well, there weren’t any! Coding games was a massive uphill battle.

How I envy you, reader, holding the power of this book in your hands. The Unity engine has done so much to open game programming up to so many people. Unity has managed to strike an excellent balance by being a powerful, professional game engine that’s still affordable and approachable for someone just getting started.

Approachable, that is, with the right guidance. I once spent time in a circus troupe run by a magician. He was kind enough to take me in and helped guide me toward becoming a good performer. “When you stand on a stage,” he pronounced, “you make a promise. And that promise is ‘I will not waste your time.’”

What I love most about Unity in Action is the “action” part. Joe Hocking wastes none of your time and gets you coding fast—and not just nonsense code, but interesting code that you can understand and build from, because he knows you don’t just want to read his book, and you don’t just want to program his examples—you want to be coding your own game.

And with his guidance, you’ll be able to do that sooner than you might expect. Follow Joe’s steps, but when you feel ready, don’t be shy about diverging from his path and breaking out on your own. Skip to what interests you most—try experiments, be bold and brave! You can always return to the text if you get too lost.

But let’s not dally in this foreword—the entire future of game development is impatiently waiting for you to begin! Mark this day on your calendar, for today is the day that everything changed. It will be forever remembered as the day you started making games.

From the First Edition

Jesse Schell

CEO of Schell Games

Author of The Art of Game Design

https://www.amazon.com/Art-Game-Design-Lenses-Second/dp/1466598646/






preface



I’ve been programming games for quite some time, but only started using Unity relatively recently. Unity didn’t exist when I first started developing games; the first version was released in 2005. Right from the start, it had a lot of promise as a game development tool, but it didn’t come into its own until several versions later. In particular, platforms like iOS and Android (collectively referred to as “mobile”) didn’t emerge until later, and those platforms factor heavily into Unity’s growing prominence.

Initially, I viewed Unity as a curiosity, an interesting development tool to keep an eye on but not actually use. During that time, I was programming games for both desktop computers and websites and doing projects for a range of clients. I was using tools like Blitz3D and Flash, which were great to program in but were limiting in a lot of ways. As those tools started to show their age, I kept looking for better ways to develop games.

I started experimenting with Unity around version 3, and then completely switched to it for my development work at Synapse Games. At first, I worked for Synapse on web games, but we eventually moved over to mobile games. And then we came full circle because Unity enabled us to deploy to the web in addition to mobile, all from one codebase!

I’ve always seen sharing knowledge as important, and I’ve taught game development for several years. A large part of why I do this is the example set for me by the many mentors and teachers I’ve had. (Incidentally, you may even have heard of one of my teachers because he was such an inspiring person: Randy Pausch delivered The Last Lecture shortly before he passed away in 2008.) I’ve taught classes at several schools, and I’ve always wanted to write a book about game development.

In many ways, what I’ve written here is the book I wish had existed back when I was first learning Unity. Among Unity’s many virtues is a huge treasure trove of learning resources, but those resources tend to take the form of unfocused fragments (like the script reference or isolated tutorials) and require much digging to find what you need. Ideally, I’d have a book that wrapped up everything I needed to know in one place and presented it in a clear and logical manner, so now I’m writing such a book for you. I’m targeting people who already know how to program but who are newcomers to Unity, and possibly new to game development in general. The choice of projects reflects my experience of gaining skills and confidence by doing a variety of freelance projects in rapid succession.

In learning to develop games using Unity, you’re setting out on an exciting adventure. For me, learning how to develop games meant putting up with a lot of hassle. You, on the other hand, have the advantage of a single coherent resource to learn from: this book!






acknowledgments



I would like to thank Manning Publications for giving me the opportunity to write this book. The editors I worked with, including Robin de Jongh and especially Dan Maharry, helped me throughout this undertaking, and the book is much stronger for their feedback. Candace West took over as primary editor for the second edition. My sincere thanks also to the many others who worked with me during the development and production of the book.

My writing benefited from the scrutiny of reviewers every step of the way. Thanks to Alex Lucas, Craig Hoffman, Dan Kacenjar, Joshua Frederick, Luca Campobasso, Mark Elston, Philip Taffet, René van den Berg, Sergio Arbeo Rodríguez, Shiloh Morris, Victor M. Perez, Christopher Haupt, Claudio Caseiro, David Torribia Iñigo, Dean Tsaltas, Eric Williams, Nickie Buckner, Robin Dewson, Sergey Evsikov, and Tanya Wilke. Special thanks to the notable review work by technical development editor Scott Chaussee and by technical proofreader Christopher Haupt, with René van den Berg and Shiloh Morris stepping into those roles for the 2nd edition. And I also want to thank Jesse Schell for writing the foreword to my book.

Next, I’d like to recognize the people who’ve made my experience with Unity a fruitful one. That, of course, starts with Unity Technologies, the company that makes Unity (the game engine). I am indebted to the community at gamedev.stackexchange.com/; I visit that QA site almost daily to learn from others and to answer questions. And the biggest push for me to use Unity came from Alex Reeve, my boss at Synapse Games. Similarly, I’ve picked up tricks and techniques from my coworkers, and they all show up in the code I write.

Finally, I want to thank my wife, Virginia, for her support during the time I was writing the book. Until I started working on it, I never really understood how much a book project takes over your life and affects everyone around you. Thank you so much for your love and encouragement.






about this book



Unity in Action, Second Edition is a book about programming games in Unity. Think of it as an intro to Unity for experienced programmers. The goal of this book is straightforward: to take people who have some programming experience but no experience with Unity and teach them how to develop a game using Unity.

The best way of teaching development is through example projects, with students learning by doing, and that’s the approach this book takes. I’ll present topics as steps toward building sample games, and you’ll be encouraged to build these games in Unity while exploring the book. We’ll go through a selection of different projects every few chapters, rather than one monolithic project developed over the entire book. (Sometimes other books take the “one monolithic project” approach, but that can make it hard to jump into the middle if the early chapters aren’t relevant to you.)

This book will have more rigorous programming content than most Unity books (especially beginners’ books). Unity is often portrayed as a list of features with no programming required, which is a misleading view that won’t teach people what they need to know in order to produce commercial titles. If you don’t already know how to program a computer, I suggest going to a resource like Codecademy first (the computer programming lessons at Khan Academy work well, too) and then come back to this book after learning how to program.

Don’t worry about the exact programming language; C# is used throughout this book, but skills from other languages will transfer quite well. Although the first part of the book will take its time introducing new concepts and will carefully and deliberately step you through developing your first game in Unity, the remaining chapters will move a lot faster in order to take readers through projects in multiple game genres. The book will end with a chapter describing deployment to various platforms like the web and mobile, but the main thrust of the book won’t make any reference to the ultimate deployment target because Unity is wonderfully platform-agnostic.

As for other aspects of game development, extensive coverage of art disciplines would water down how much the book can cover and would be largely about software external to Unity (for example, the animation software used). Discussion of art tasks will be limited to aspects specific to Unity or that all game developers should know. (Note, though, that there is an appendix about modeling custom objects.)

Roadmap

Chapter 1 introduces you to Unity, the cross-platform game development environment. You’ll learn about the fundamental component system underlying everything in Unity, as well as how to write and execute basic scripts.

Chapter 2 progresses to writing a demo of movement in 3D, covering topics like mouse and keyboard input. Defining and manipulating both 3D positions and rotations are thoroughly explained.

Chapter 3 turns the movement demo into a first-person shooter, teaching you raycasting and basic AI. Raycasting (shooting a line into the scene and seeing what it intersects) is a useful operation for all sorts of games.

Chapter 4 covers art asset importing and creation. This is the one chapter of the book that does not focus on code, because every project needs (basic) models and textures.

Chapter 5 teaches you how to create a 2D puzzle game in Unity. Although Unity started exclusively for 3D graphics, there’s now excellent support for 2D graphics.

Chapter 6 expands the 2D game explanations with platform game mechanics. In particular, we’ll implement controls, physics, and animation for the player.

Chapter 7 introduces you to the latest GUI functionality in Unity. Every game needs a UI, and the latest versions of Unity feature an improved system for creating UIs.

Chapter 8 shows how to create another movement demo in 3D, only seen from third-person perspective this time. Implementing third-person controls will demonstrate a number of key 3D math operations, and you’ll learn how to work with an animated character.

Chapter 9 goes over how to implement interactive devices and items within your game. The player will have a number of ways of operating these devices, including touching them directly, touching triggers within the game, or pressing a button on the controller.

Chapter 10 covers how to communicate with the internet. You’ll learn how to send and receive data using standard internet technologies, like HTTP requests to get XML data from a server.

Chapter 11 teaches how to program audio functionality. Unity has great support for both short sound effects and long music tracks; both sorts of audio are crucial for almost all video games.

Chapter 12 walks you through bringing together pieces from different chapters into a single game. In addition, you’ll learn how to program point-and-click controls and how to save the player’s game.

Chapter 13 goes over building the final app, with deployment to multiple platforms like desktop, web, mobile, and even VR. Unity is wonderfully platform-agnostic, enabling you to create games for every major gaming platform!

There are also four appendixes with additional information about scene navigation, external tools, Blender, and learning resources.

Code conventions, requirements, and downloads

All the source code in the book, whether in code listings or snippets, is in a fixed-width font like this, which sets it off from the surrounding text. In most listings, the code is annotated to point out key concepts, and numbered bullets are sometimes used in the text to provide additional information about the code. The code is formatted so that it fits within the available page space in the book by adding line breaks and using indentation carefully. 

The only software required is Unity; this book uses Unity 2017.1, which is the latest version as I write this. Certain chapters do occasionally discuss other pieces of software, but those are treated as optional extras and not core to what you’re learning. 






WARNING  Unity projects remember which version of Unity they were created in and will issue a warning if you attempt to open them in a different version. If you see that warning while opening this book’s sample downloads, click Continue and ignore it.








The code listings sprinkled throughout the book generally show what to add or change in existing code files; unless it’s the first appearance of a given code file, don’t replace the entire file with subsequent listings. Although you can download complete working sample projects to refer to, you’ll learn best by typing out the code listings and only looking at the working samples for reference. Those downloads are available from the publisher’s website (www.manning.com/books/unity-in-action-second-edition) and on GitHub (https://github.com/jhocking/uia-2e).

Book forum

Purchase of Unity in Action, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/unity-in-action-second-edition. You can also learn more about Manning's forums and the rules of conduct at https://forums.manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.






about the author




[image: image1.png]


Joseph Hocking is a software engineer who specializes in interactive media development. He currently works for InContext Solutions and wrote the first edition while working for Synapse Games. He has also taught classes at the University of Illinois at Chicago, the School of the Art Institute of Chicago, and Columbia College Chicago. His website is www.newarteest.com.






about the cover illustration



The figure on the cover of Unity in Action, Second Edition is captioned “Habit of the Master of Ceremonies of the Grand Signior.” The Grand Signior was another name for a sultan of the Ottoman Empire. The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (4 volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771), was called “Geographer to King George III.” An English cartographer who was the leading map supplier of his day, Jeffreys engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local dress customs of the lands he surveyed, which are brilliantly displayed in this four-volume collection.

Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late eighteenth century and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries. The diversity of the drawings in Jeffreys’ volumes speaks vividly of the uniqueness and individuality of the world's nations some 200 years ago. Dress codes have changed since then and the diversity by region and country, so rich at the time, has faded away. It is now hard to tell the inhabitant of one continent apart from another. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life, or a more varied and interesting intellectual and technical life.

At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’ pictures.







Part 1

First steps




It’s time to take your first steps in using Unity. If you don’t know anything about Unity, that’s okay! I’m going to start by explaining what Unity is, including the fundamentals of how to program games in it. Then we’ll walk through a tutorial about developing a simple game in Unity. This first project will teach you a number of specific game development techniques, as well as giving you a good overview of how the process works.

Onward to chapter 1!







1

Getting to know Unity




This chapter covers


	What makes Unity a great choice

	Operating the Unity editor

	Programming in Unity

	Comparing C# and JavaScript



If you’re anything like me, you’ve had developing a video game on your mind for a long time. But it’s a big jump from playing games to making them. Numerous game development tools have appeared over the years, and we’re going to discuss one of the most recent and most powerful of these tools. Unity is a professional-quality game engine used to create video games targeting a variety of platforms. Not only is it a professional development tool used daily by thousands of seasoned game developers, it’s also one of the most accessible modern tools for novice game developers. Until recently, a newcomer to game development would face lots of imposing barriers right from the start, but Unity makes it easy to start learning these skills.

Because you’re reading this book, chances are you’re curious about computer technology and you’ve either developed games with other tools or built other kinds of software, such as desktop applications or websites. Creating a video game isn’t fundamentally different from writing any other kind of software; it’s mostly a difference of degree. For example, a video game is a lot more interactive than most websites, and thus involves very different sorts of code, but the skills and processes involved in creating both are similar. If you’ve already cleared the first hurdle on your path to learning game development, having learned the fundamentals of programming software, then your next step is to pick up some game development tools and translate that programming knowledge into the realm of gaming. Unity is a great choice of game development environment to work with.






A warning about terminology

This book is about programming in Unity and is therefore primarily of interest to coders. Although many other resources discuss other aspects of game development and Unity, this is a book where programming takes front and center.

Incidentally, note that the word developer may have an unfamiliar meaning in the context of game development: developer is a synonym for programmer in disciplines like web development, but in game development the word developer often refers to anyone who works on a game, with programmer being a specific role within that. Other kinds of game developers are artists and designers, but this book focuses on programming.








To start, go to www.unity3d.com to download the software. This book uses Unity 2017.1, which is the latest version as of this writing. The URL is a leftover from Unity’s original focus on 3D games; support for 3D games remains strong, but Unity works great for 2D games as well, and this book covers both. Indeed, even when demonstrated on a 3D demo, many topics (saving data, playing audio, and so on) apply to both. Meanwhile, although there are also paid versions, the base version is free. Everything in this book works in the free version, and none of it requires the paid versions of Unity, which differ mainly in commercial licensing terms.

1.1	Why is Unity so great?

Let’s take a closer look at that description from the beginning of the chapter: Unity is a professional-quality game engine used to create video games targeting a variety of platforms. That’s a fairly straightforward answer to the straightforward question: “What is Unity?” But, what exactly does that answer mean, and why is Unity so great?

1.1.1	Unity's strengths and advantages

Game engines provide a plethora of features that are useful across many different games. A game implemented using a particular engine will get all those features, while adding custom art assets and gameplay code specific to that game. Unity has physics simulation, normal maps, screen space ambient occlusion (SSAO), dynamic shadows . . . and the list goes on. Many game engines boast such features, but Unity has two main advantages over similar cutting-edge game development tools: an extremely productive visual workflow and a high degree of cross-platform support.

The visual workflow is a fairly unique design, different from most other game development environments. Whereas other game development tools are often a complicated mishmash of disparate parts that must be wrangled, or perhaps a programming library that requires you to set up your own integrated development environment (IDE), build-chain, and whatnot, the development workflow in Unity is anchored by a sophisticated visual editor. The editor is used to lay out the scenes in your game and to tie together art assets and code into interactive objects. The beauty of this editor is that it enables professional-quality games to be built quickly and efficiently, giving developers tools to be incredibly productive, while still using an extensive list of the latest technologies in video gaming.






NOTE  Most other game development tools that have a central visual editor are also saddled with limited and inflexible scripting support, but Unity doesn’t suffer from that disadvantage. Although everything created for Unity ultimately goes through the visual editor, this core interface involves a lot of linking projects to custom code that runs in Unity’s game engine. That’s not unlike linking in classes in the project settings for an IDE like Visual Studio or Eclipse. Experienced programmers shouldn’t dismiss this development environment, mistaking it for some click-together game creator with limited programming capability!








The editor is especially helpful for doing rapid iteration, honing the game through cycles of prototyping and testing. You can adjust objects in the editor and move things around even while the game is running. Plus, Unity allows you to customize the editor itself by writing scripts that add new features and menus to the interface.

Besides the editor’s significant productivity advantages, the other main strength of Unity’s toolset is a high degree of cross-platform support. Not only is Unity multiplatform in terms of deployment targets (you can deploy to PC, web, mobile, or consoles), but it’s also multiplatform in terms of development tools (you can develop a game on Windows or macOS). This platform-agnostic nature is largely because Unity started as Mac-only software and was later ported to Windows. The first version launched in 2005, but now Unity is past its fifth major version (with lots of minor updates released frequently). Initially, Unity supported only Mac for both development and deployment, but within months Unity had been updated to work on Windows as well. Successive versions gradually added more deployment platforms, such as a cross-platform web player in 2006, iPhone in 2008, Android in 2010, and even game consoles like Xbox and PlayStation. More recently, they’ve added deployment to WebGL, the new framework for 3D graphics in web browsers, and there’s even support for VR platforms like Oculus Rift and Vive. Few game engines support as many deployment targets as Unity, and none make deploying to multiple platforms so simple.

In addition to these main strengths, a third, more subtle, benefit comes from the modular component system used to construct game objects. In a component system, components are mix-and-match packets of functionality, and objects are built up as a collection of components, rather than as a strict hierarchy of classes. A component system is a different (and usually more flexible) approach to doing object-oriented programming (OOP), where game objects are constructed through composition rather than inheritance. Figure 1.1 diagrams an example comparison.


[image: c01-1.png]
Figure 1.1 Inheritance vs. components




In a component system, objects exist on a flat hierarchy and different objects have different collections of components, rather than an inheritance structure where different objects are on completely different branches of the tree. This arrangement facilitates rapid prototyping, because you can quickly mix and match different components rather than having to refactor the inheritance chain when objects change.

Although you could write code to implement a custom component system if one didn’t exist, Unity already has a robust component system, and this system is even integrated with the visual editor. Rather than only being able to manipulate components in code, you can attach and detach components within the visual editor. Meanwhile, you aren’t limited to only building objects through composition; you still have the option of using inheritance in your code, including all the best-practice design patterns that have emerged based on inheritance.

1.1.2	Downsides to be aware of

Unity has many advantages that make it a great choice for developing games, and I highly recommend it, but I’d be remiss if I didn’t mention its weaknesses. In particular, the combination of the visual editor and sophisticated coding, though very effective with Unity’s component system, is unusual and can create difficulties. In complex scenes, you can lose track of which objects in the scene have specific components attached. Unity does provide a search feature for finding attached scripts, but it could be more robust; sometimes you still encounter situations where you need to manually inspect everything in the scene in order to find script linkages. This doesn’t happen often, but when it does happen, it can be tedious.

Another disadvantage that can be surprising and frustrating for experienced programmers is that Unity doesn’t support linking in external code libraries. Necessary libraries must be manually copied into every project that they’ll be used in, as opposed to referencing one central shared location. The lack of a central location for libraries can make it awkward to share functionality between multiple projects. This disadvantage can be worked around with clever use of version control systems, but Unity doesn’t support external code libraries out of the box.






NOTE  Difficulty working with version control systems (such as Subversion, Git, and Mercurial) used to be a significant weakness of Unity, but more recent versions work fine. You may find out-of-date resources telling you that Unity doesn’t work with version control, but newer resources will describe which files and folders in a project need to be put in the repository and which don’t. To start out, read Unity’s documentation (http://mng.bz/BbhD) or look at the .gitignore file maintained by GitHub (http://mng.bz/g7nl).








A third weakness has to do with working with prefabs. Prefabs are a concept specific to Unity and are explained in chapter 3; for now, all you need to know is that prefabs are a flexible approach to visually defining interactive objects. The concept of prefabs is both powerful and unique to Unity (and yes, the concept of prefabs only makes sense in the context of Unity’s component system), but it can be surprisingly awkward to edit prefabs. Considering that prefabs are such a useful and central part of working with Unity, I hope that future versions improve the workflow for editing them.

1.1.3	Example games built with Unity

You’ve heard about the pros and cons of Unity, but you might still need convincing that the development tools in Unity can give first-rate results. Visit the Unity gallery at http://unity3d.com/showcase/gallery to see a constantly updated list of hundreds of games and simulations developed using Unity. This section explores a handful of games, showcasing a number of genres and deployment platforms.


Desktop (Windows, Mac, and Linux)

Because the Unity editor runs on the same platform, deployment to Windows or Mac is often the most straightforward target platform. Here are a couple of examples of desktop games in different genres:


	
Guns of Icarus Alliance (figure 1.2), a first-person shooter developed by Muse Games

[image: c01-2.png]
Figure 1.2 Guns of Icarus Alliance






	
Gone Home (figure 1.3), an exploration adventure developed by The Fullbright Company

[image: c01-3.png]
Figure 1.3 Gone Home









Mobile (iOS and Android)

Unity can also deploy games to mobile platforms like iOS (iPhones and iPads) and Android (phones and tablets). Here are three examples of mobile games in different genres:


	
Lara Croft GO (figure 1.4), a 3D puzzle game developed by Square Enix

[image: c01-4.png]
Figure 1.4 Lara Croft GO






	
INKS (figure 1.5), a 2D puzzle game developed by State of Play

[image: c01-5.png]
Figure 1.5 INKS






	
Tyrant Unleashed (figure 1.6), a collectible card game developed by Synapse Games

[image: c01-6.png]
Figure 1.6 Tyrant Unleashed








Console (PlayStation, Xbox, and Switch)

Unity can even deploy to game consoles, although the developer must obtain licensing from Sony, Microsoft, or Nintendo. Because of this requirement and Unity’s easy cross-platform deployment, console games are often available on desktop computers as well. Here are a couple of examples of console games in different genres:


	
Yooka-Laylee (figure 1.7), a 3D platformer developed by Playtonic Games

[image: c01-7.png]
Figure 1.7 Yooka-Laylee






	
Shadow Tactics (figure 1.8), a stealth game developed by Mimimi Productions

[image: c01-8.png]
Figure 1.8 Shadow Tactics








As you can see from these examples, Unity’s strengths can definitely translate into commercial-quality games. But even with Unity’s significant advantages over other game development tools, newcomers may misunderstand the involvement of programming in the development process. Unity is often portrayed as a list of features with no programming required, which is a misleading view that won’t teach people what they need to know in order to produce commercial titles. Though it’s true that you can click together a fairly elaborate prototype using pre-existing components even without a programmer being involved (which is itself a pretty big feat), rigorous programming is required to move beyond an interesting prototype to a polished game ready for release.

1.2	How to use Unity

The previous section talked a lot about the productivity benefits of Unity’s visual editor, so let’s go over what the interface looks like and how it operates. If you haven’t done so, download the program from www.unity3d.com/ and install it on your computer (be sure to include Example Project if that’s unchecked in the installer). After you install it, launch Unity to start exploring the interface.

You probably want an example to look at, so open the included example project; a new installation should open the example project automatically, but you can also select File > Open Project to open it manually. The example project is installed in the shared user directory, which is something like C:\Users\Public\Documents\Unity Projects\ on Windows, or Users/Shared/Unity/ on macOS. You may also need to open the example scene, so double-click the Car scene file (highlighted in figure 1.9; scene files have the Unity cube icon), which is found by going to SampleScenes/Scenes/ in the file browser at the bottom of the editor. You should see a screen similar to figure 1.9.


[image: c01-9.png]
Figure 1.9 Parts of the interface in Unity




The interface in Unity is split into sections: the Scene tab, the Game tab, the Toolbar, the Hierarchy tab, the Inspector, the Project tab, and the Console tab. Each section has a different purpose, but all are crucial to the game building lifecycle.


	You can browse through all the files in the Project tab.

	You can place objects in the 3D scene being viewed using the Scene tab.

	The Toolbar has controls for working with the scene.

	You can drag and drop object relationships in the Hierarchy tab.

	The Inspector lists information about selected objects, including linked code.

	You can test playing in Game view while watching error output in the Console tab.



This is the default layout in Unity; all of the views are in tabs and can be moved around or resized, docking in different places on the screen. Later, you can play around with customizing the layout, but for now, the default layout is the best way to understand what all the views do.

1.2.1	Scene view, Game view, and the Toolbar

The most prominent part of the interface is the Scene view in the middle. This is where you can see what the game world looks like and move objects around. Mesh objects in the scene appear as, well, their mesh (defined in a moment). You can also see a number of other objects in the scene, represented by icons and colored lines: cameras, lights, audio sources, collision regions, and so forth. Note that the view you’re seeing here isn’t the same as the view in the running game—you’re able to look around the scene at will without being constrained to the game’s view.






DEFINITION  A mesh objectis a visual object in 3D space. Visuals in 3D are constructed out of lots of connected lines and shapes; hence the word mesh.








The Game view isn’t a separate part of the screen but rather another tab located right next to Scene (look for tabs at the top left of views). A couple of places in the interface have multiple tabs like this; if you click a different tab, the view is replaced by the new active tab. When the game is running, what you see in this view is the game. It isn’t necessary to manually switch tabs every time you run the game, because the view automatically switches to Game when the game starts.






TIP  While the game is running, you can switch back to the Scene view, allowing you to inspect objects in the running scene. This capability is extremely useful for seeing what’s going on while the game is running and is a helpful debugging tool that isn’t available in most game engines.








Speaking of running the game, that’s as simple as hitting the Play button just above the Scene view. That whole top section of the interface is referred to as the Toolbar, and Play is located right in the middle. Figure 1.10 breaks apart the full editor interface to show only the Toolbar at the top, as well as the Scene/Game tabs right underneath.


[image: c01-10.png]
Figure 1.10 Editor screenshot cropped to show Toolbar, Scene, and Game




At the left-hand side of the Toolbar are buttons for scene navigation and transforming objects—how to look around the scene and how to move objects. I suggest you spend time practicing these, because they are two of the most important activities you’ll do in Unity’s visual editor. (They’re so important that they get their own section following this one.) The right-hand side of the Toolbar is where you’ll find drop-down menus for layouts and layers. As mentioned earlier, the layout of Unity’s interface is flexible, so the Layouts menu allows you to switch between layouts. As for the Layers menu, that’s advanced functionality that you can ignore for now (layers will be mentioned in future chapters).

1.2.2	Using the mouse and keyboard

Scene navigation is primarily done using the mouse, along with a few modifier keys used to modify what the mouse is doing. The three main navigation maneuvers are Move, Orbit, and Zoom. The specific mouse movements, because they vary depending on which mouse you’re using, are described in appendix A. The three different movements involve clicking-and-dragging while holding down a combination of Alt (or Option on Mac) and Ctrl. Spend a few minutes moving around in the scene to understand what Move, Orbit, and Zoom do.






TIP  Although Unity can be used with one- or two-button mice, I highly recommend getting a three-button mouse (and yes, a three-button mouse works fine on Mac OS X).








Transforming objects is also done through three main maneuvers, and the three scene navigation moves are analogous to the three transforms: Translate, Rotate, and Scale (figure 1.11 demonstrates the transforms on a cube).


[image: c01-11.png]
Figure 1.11 Applying the three transforms: Translate, Rotate, and Scale. (The lighter lines are the previous state of the object before it was transformed.)




When you select an object in the scene, you can then move it around (the mathematically accurate technical term is translate), rotate it, or scale how big it is. Relating back to scene navigation maneuvers, Move is when you Translate the camera, Orbit is when you Rotate the camera, and Zoom is when you Scale the camera. Besides the buttons on the Toolbar, you can switch between these functions by pressing W, E, or R on the keyboard. When you activate a transform, you’ll notice that a set of color-coded arrows or circles appears over the object in the scene; this is the Transform gizmo, and you can click-and-drag this gizmo to apply the transformation.

There’s a fourth tool next to the transform buttons. Called the Rect tool, it’s designed for use with 2D graphics. This one tool combines movement, rotation, and scaling. These operations have to be separate tools in 3D but are combined in 2D because there’s one less dimension to worry about. Unity has a host of other keyboard shortcuts for speeding up a variety of tasks. Refer to appendix A to learn about them. And with that, on to the remaining sections of the interface!

1.2.3	The Hierarchy view and the Inspector panel

Looking at either side of the screen, you’ll see the Hierarchy tab on the left and the Inspector tab on the right (see figure 1.12). Hierarchy is a list view with the name of every object in the scene listed, with the names nested together according to their hierarchy linkages in the scene. Basically, it’s a way of selecting objects by name instead of hunting them down and clicking them within Scene. The Hierarchy linkages group objects together, visually grouping them like folders and allowing you to move the entire group as one.


[image: c01-12.png]
Figure 1.12 Editor screenshot cropped to show the Hierarchy and Inspector tabs




The Inspector shows you information about the currently selected object. Select an object and the Inspector is then filled with information about that object. The information shown is pretty much a list of components, and you can even attach or remove components from objects. All game objects have at least one component, Transform, so you’ll always at least see information about positioning and rotation in the Inspector. Often, objects will have several components listed here, including scripts attached to them.

1.2.4	The Project and Console tabs

At the bottom of the screen, you’ll see Project and Console (see figure 1.13). As with Scene and Game, these aren’t two separate portions of the screen, but rather tabs that you can switch between. Project shows all the assets (art, code, and so on) in the project. Specifically, on the left-hand side of the view is a listing of the directories in the project; when you select a directory, the right side of the view shows the individual files in that directory. The directory listing in Project is similar to the list view in Hierarchy, but Hierarchy shows objects in the scene; Project shows files that may not be contained within any specific scene (including scene files—when you save a scene, it shows up in Project!).


[image: c01-13.png]
Figure 1.13 Editor screenshot cropped to show the Project and Console tabs









TIP  Project view mirrors the Assets directory on disk, but generally, you shouldn’t move or delete files directly by going to the Assets folder. If you do those things within the Project view, Unity will keep in sync with that folder.








The Console is the place where messages from the code show up. Some of these messages will be debug output that you placed deliberately, but Unity also emits error messages if it encounters problems in the script you wrote.

1.3	Getting up and running with Unity programming

Now let’s look at how the process of programming works in Unity. Although art assets can be laid out in the visual editor, you need to write code to control them and make the game interactive. Unity supports multiple programming languages, in particular JavaScript and C#. Both have their pros and cons, but you’ll be using C# throughout this book.






Why choose C# over JavaScript?

All of the code listings in this book use C# because it has a number of advantages over JavaScript and fewer disadvantages, particularly for professional developers (it’s certainly the language I use at work).

One benefit is that C# is strongly typed, whereas JavaScript is not. Now, there are lots of arguments among experienced programmers about whether or not dynamic typing is a better approach for, say, web development, but programming for certain gaming platforms (such as iOS) often benefits from or even requires static typing. Unity has even added the directive #pragma strictto force static typing within JavaScript. Technically this works, but it breaks one of the bedrock principles of how JavaScript operates, and if you’re going to do that, then you’re better off using a language that’s intrinsically strongly typed.

This is just one example of how JavaScript within Unity isn’t quite the same as JavaScript elsewhere. JavaScript in Unity is certainly similar to JavaScript in web browsers, but there are lots of differences in how the language works in each context. Many developers refer to the language in Unity as UnityScript, a name that indicates similarity to but separateness from JavaScript. This similar-but-different state can create issues for programmers, both in terms of bringing in knowledge about JavaScript from outside Unity, and in terms of applying programming knowledge gained by working in Unity.

Meanwhile, for these reasons, Unity is in the process of removing JavaScript/UnityScript support. As explained on its blog, the support is gradually being phased out: http://mng.bz/B9au.








Let’s walk through an example of writing and running some code. Launch Unity and create a new project; choose New in Unity’s starting window, or File > New Project if Unity was already running. Type a name for the project, leave the default 3D setting (future chapters will mention 2D), and then choose where you want to save it. A Unity project is simply a directory full of various asset and settings files, so save the project anywhere on your computer. Click Create Project and then Unity will briefly disappear while it sets up the project directory.






WARNING  Unity projects remember which version of Unity they were created in and will issue a warning if you attempt to open them in a different version. Sometimes it doesn’t matter (for example, ignore the warning if it appears while opening this book’s sample downloads), but sometimes you will want to back up your project before opening it.













WARNING  Along similar lines, Unity may emit the following message when you open the sample downloads: Rebuilding Library because the asset database could not be found! This literally refers to the project’s Library folder; that folder contains files generated by Unity and used while working, but it is not necessary to distribute those files.








When Unity reappears, you’ll be looking at a blank project. Next, let’s discuss how programs get executed in Unity.

1.3.1	How code runs in Unity: script components

All code execution in Unity starts from code files linked to an object in the scene. Ultimately, it’s all part of the component system described earlier; game objects are built up as a collection of components, and that collection can include scripts to execute.






NOTE  Unity refers to the code files as scripts, using a definition of “script” that’s most commonly encountered with JavaScript running in a browser: the code is executed within the Unity game engine, as opposed to compiled code that runs as its own executable. But don’t get confused, because many people define the word differently; for example, “scripts” often refer to short, self-contained utility programs. Scripts in Unity are more akin to individual OOP classes, and scripts attached to objects in the scene are object instances.








As you’ve probably surmised from this description, in Unity, scripts are components—not all scripts, mind you, only scripts that inherit from MonoBehaviour, the base class for script components. MonoBehaviour defines the invisible groundwork for how components attach to game objects, and (as shown in Listing 1.1) inheriting from it provides a couple of automatically run methods that you can implement. Those methods include Start(), called once when the object becomes active (which is generally as soon as the level with that object has loaded), and Update(), which is called every frame. Your code is run when you put it inside these predefined methods.






DEFINITION  A frameis a single cycle of the looping game code. Nearly all video games (not only in Unity, but video games in general) are built around a core game loop, where the code executes in a cycle while the game is running. Each cycle includes drawing the screen; hence the name frame (like the series of still frames of a movie).








Listing 1.1 Code template for a basic script component

using UnityEngine;    

Include namespaces for Unity and Mono classes.



using System.Collections;
using System.Collections.Generic;
public class HelloWorld : MonoBehaviour {    

The syntax for inheritance



    void Start() {
        // do something once    

Put code in here that runs once.



    }
    
    void Update() {
        // do something every frame    

Put code in here that runs every frame.



    }
}


This is what the file contains when you create a new C# script: the minimal boilerplate code that defines a valid Unity component. Unity has a script template tucked away in the bowels of the application, and when you create a new script it copies that template and renames the class to match the name of the file (which is HelloWorld.cs in my case). There are also empty shells for Start() and Update(), because those are the two most common places to call your custom code from.

To create a script, select C# Script from the Create menu, which you access either under the Assets menu (note that Assets and GameObjects both have listings for Create but they’re different menus) or by right-clicking in the Project view. Type in a name for the new script, such as HelloWorld. As explained later in the chapter (see figure 1.15), you’ll click-and-drag this script file onto an object in the scene. Double-click the script and it’ll automatically be opened in another program for editing, as discussed next.

1.3.2	Using MonoDevelop, the cross-platform IDE

Programming isn’t done within Unity exactly, but rather code exists as separate files that you point Unity to. Script files can be created within Unity, but you still need to use a text editor or IDE to write all the code within those initially empty files. Unity comes bundled with MonoDevelop, an open source, cross-platform IDE for C# (figure 1.14 shows what it looks like). You can visit www.monodevelop.com/ to learn more about this software, but the version to use is the version bundled along with Unity, rather than a version downloaded from its website, because some modifications were made to the base software in order to better integrate it with Unity.


[image: c01-14.png]
Figure 1.14 Parts of the interface in MonoDevelop









NOTE  MonoDevelop organizes files into groupings called a solution. Unity automatically generates a solution that has all the script files, so you usually don’t need to worry about that.








Because C# originated as a Microsoft product, you may be wondering whether you can use Visual Studio to do programming for Unity. The short answer is yes, you can. Support tools are available for using Visual Studio with Unity (particularly so that debugging and breakpoints work properly). To see if this support is already installed, check the Debug menu for the option Attach Unity Debugger. If it isn’t installed, simply run the Visual Studio Installer to modify your install and look for the Unity game development module.

I generally use MonoDevelop, but if you’re already using Visual Studio to do programming, then you could keep using it and not have any problems following along with this book. (Beyond this introductory chapter, I’m not going to talk about the IDE.) Tying your workflow to Windows, though, would run counter to one of the biggest advantages of using Unity. Although C# originated as a Microsoft product, and thus only worked on Windows with the .NET Framework, C# has now become an open language standard and there’s a significant cross-platform framework: Mono. Unity uses Mono for its programming backbone, and using MonoDevelop allows you to keep the entire development workflow cross-platform.






WARNING  MonoDevelop is the IDE bundled with Unity 2017.1, but as explained on Unity’s blog http://mng.bz/9HR8, this will be changed in Unity 2018.1.








Always keep in mind that, although the code is written in Visual Studio or MonoDevelop, the code isn’t run there. The IDE is pretty much a fancy text editor, and the code is run when you hit Play within Unity.

1.3.3	Printing to the console: Hello World!

All right, you already have an empty script in the project, but you also need an object in the scene to attach the script to. Recall figure 1.1 depicting how a component system works; a script is a component, so it needs to be set as one of the components on an object.

Select GameObject > Create Empty, and a blank GameObject will appear in the Hierarchy list. Now drag the script from the Project view over to the Hierarchy view and drop it on the empty GameObject. As shown in figure 1.15, Unity will highlight valid places to drop the script, and dropping it on the GameObject will attach the script to that object. To verify that the script is attached to the object, select the object and look at the Inspector view. You should see two components listed: the Transform component, which is the basic position/rotation/scale component all objects have and which can’t be removed, and below that, your script.


[image: c01-15.png]
Figure 1.15 How to link a script to a GameObject









NOTE  Eventually, this action of dragging objects from one place and dropping them on other objects will feel routine. A lot of different linkages in Unity are created by dragging things on top of each other, not only attaching scripts to objects.








When a script is linked to an object, you’ll see something like figure 1.16, with the script showing up as a component in the Inspector. Now the script will execute when you play the scene, although nothing is going to happen yet, because you haven’t written any code. Let’s do that next!


[image: c01-16.png]
Figure 1.16 Linked script being displayed in the Inspector




Open the script in MonoDevelop to get back to Listing 1.1. The classic place to start when learning a new programming environment is having it print the text “Hello World!”, so add this line inside the Start() method.

Listing 1.2 Adding a console message

...
void Start() {
    Debug.Log("Hello World!");    

Add the logging command here.



}
...


What the Debug.Log() command does is print a message to the Console view in Unity. Meanwhile, that line goes in the Start() method because, as was explained earlier, that method is called as soon as the object becomes active. Start() will be called once, as soon as you hit Play in the editor. Once you’ve added the log command to your script (be sure to save the script), hit Play in Unity and switch to the Console view. You’ll see the message “Hello World!” appear. Congratulations, you’ve written your first Unity script! Of course, the code will be more elaborate in later chapters, but this is an important first step.






“Hello World!” steps in brief

Let’s reiterate and summarize the steps from the last few pages:

1. Create a new project.

2. Create a new C# script.

3. Create an empty GameObject.

4. Drag the script onto the object.

5. Add the log command to the script.

6. Press Play!








You could now save the scene; that would create a .unity file with the Unity icon. The scene file is a snapshot of everything currently loaded in the game so that you can reload this scene later. It’s hardly worth saving this scene because it’s so simple (a single empty GameObject), but if you don’t save the scene, then you’ll find it empty again when you come back to the project after quitting Unity.






Errors in the script

To see how Unity indicates errors, purposely put a typo in the HelloWorld script. For example, if you type an extra parenthesis symbol, an error message will appear in the Console with a red error icon.


[image: c01-17.png]









Summary


	Unity is a multiplatform development tool.

	Unity’s visual editor has several sections that work in concert.

	Scripts are attached to objects as components.

	Code is written inside scripts using MonoDevelop.





OEBPS/image_fi/294969c01/c01-17.png
onsole
| Clear | | Collapse | Clear on Play | Error Pause

(@) /ssets/HelloWorld.cs(8,42): error CS1525: Unexpected symbol *)', expecting *;
Script Location within Description
containing that script (line, of the error

the error character)





OEBPS/image_fi/294969c01/c01-2.png





OEBPS/image_fi/294969c01/c01-12.png
e
¥ Cameras

_ covamen |
> Free Look Camera Rig
» CarCamerailg.
¥ GeometryDynamic
> Geometrystatic
rul
vaur
» Colliders
> WheelsHubs.
» particles
> Helpers
> Uights
> SiyCar
> Helpers.
> Lights
¥ CarTitControls
Accelerator
Brake
Titteerinput
LookUpAndDownTouchpad

e ——

Omspector I e

o OcVGmen ] Osuatic ~
L e r— P r—
Prefab '&\x Rewen Ew
YA Tanstorm
Position x[o__Iv[z71 1[—znn
Rotation xo__vo 20 |
sale Are Tl —
V& Camen [FE

Clear Flags
Background _ﬂ
Culling Mask

Projection
Fieldof View ———0 ]
Clipping Panes  Near T \
far (4060 ]
Viewport Rect
X0 Y0 ]
" o— ]
Depth 0 ]
Rendering Path
TargerTexture  None (Render Texture) | ©
Occlusion Cullng &
HOR ™)





OEBPS/image_fi/294969c01/c01-13.png





OEBPS/image_fi/294969c01/c01-3.png





OEBPS/image_fi/book_art/image1.png





OEBPS/image_fi/294969c01/c01-7.png





OEBPS/image_fi/294969c01/c01-14.png
Document Outline may
Don't hit the Run button ot be showing by default.  Script files open as tabs

within MonoDevelop; hit  Select it under View>Pads  in the main viewing area.
Play in Uity to run and then drag the tab Muliple script fles can
the code. — to where you want be open at once.

N

shows all sript
files in the project.






OEBPS/image_fi/book_art/ManningBlackSized.png





OEBPS/image_fi/294969c01/c01-4.png





OEBPS/image_fi/294969c01/c01-8.png





OEBPS/image_fi/294969c01/c01-10.png
Options for aspects of
the scene to display (for
Navigate example, toggle button

scene  Scale to show lighting) Play
NN A
x VAN \J / 4
=T
O\ Reet
Translate

Light  Toolbar

N [

Rotate

Mesh object





OEBPS/image_fi/294969c01/c01-5.png





OEBPS/image_fi/294969c01/c01-15.png
= Hierarchy
Create | @AT 1 Click-and-drag the script
from the Project view up
to the Hierarchy view and

release on the GameObject.

Main Camera
Directional Light

@ Project O console |

Create ~

7 Favorites Assets

©) All Materials

©\ All Models
@l prabe HelloWorld (MonoScript

(© All scripts

& Assets






OEBPS/image_fi/294969c01/c01-9.png
Scene and Game are The whole top area is the Toolbar.  The inspector fills the right side.

tabs for viewing the To the left are buttons for looking  This displays information about
3D scene and playing around and moving obiects, and in  the currently selected object
the game, respectively. the middle i the Play button. (alist of components mostly).

jevarchy shows a
ext lst of all objects

in the scene, nested
according to how
they're linked together.
Drag objects i the
hierarchy to link them.

Project and Console —=
are tabs for viewing

all ies in the project
and messages from
the code, respectively.

Navigate folders on the left, then
double-click the Car example scene.





OEBPS/image_fi/294969c01/c01-16.png
© Inspector |

(M [GameObject

Tag [ Untagged

4 | Layer| Default

¥ .\ Transform

Position X0 Yo

Rotation X0 Y0

Scale X |1 Y1
¥ [G:| M Hello World (Script)

Script i Helloworld

Add Component






OEBPS/image_fi/294969c01/c01-6.png





OEBPS/image_fi/294969c01/c01-11.png
Translate Rotate Scale





OEBPS/image_fi/294969c01/c01-1.png
Inheritance

The separate inheritance branches for
‘mobile and stationary enemies need
separate duplicated shooter classes.
Every behavior change and new enemy
type requires a lot of refactoring.

(Component system

Mobile enemy

Mobile shooter

’III

Stationary shooter

/

The mix-and-match components enable
a single shooter component to be added
anywhere it's needed, on both mobile
and stationary enemies.





OEBPS/image_fi/book_art/cover.png
Multiplatform game devel

Joseph Hocking

Foreword by Jesse Schell

/'l MANNING

SECOND EDITION






