

 [image:]

 Java Persistence with Hibernate

 Second Edition

 Christian Bauer, Gavin King, and Gary Gregory

 Foreword by Linda DeMichiel

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

Praise for the First Edition

 The definitive guide to Hibernate and to object/relational mapping in enterprise computing.

 —From the Foreword by Linda DeMichiel

 Sun Microsystems

 This book is the ultimate solution. If you are going to use Hibernate in your application, you have no other choice; go rush to the store and get this book.

 —Meera Subbarao

 JavaLobby

 Java Persistence with Hibernate is the most comprehensive, authoritative, and definitive guide, tutorial, and reference to OR-mapped Java persistence.

 —Will Wagers

 C#online.net

 A definitive source on Hibernate. Great for any developer.

 —Patrick Peak, CTO

 BrowserMedia, Author of Hibernate Quickly

 I wholeheartedly recommend this book!

 —Stuart Caborn

 ThoughtWorks

 Great topic, great content—and there is a great need for this book!

 —Ryan Daigle, RTP Region

 ALTERthought

 This is the most complete book on Hibernate on the market. It covers everything, and I mean everything. From mapping to annotations to whatever ... it’s in here.

 —Liz Hills

 Amazon reviewer

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Christina Taylor

 	
 Technical development editor:

 	
 Palak Mathur

 	
 Copy editor:

 	
 Tiffany Taylor

 	
 Proofreaders:

 	
 Katie Tennant, Barbara Mirecki

 	
 Technical proofreader:

 	
 Christian Alfano

 	
 Typesetter:

 	
 Dottie Marsico

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617290459

Dedication

 To Alexander, for teaching me how to teach him

 —GG

 Brief Table of Contents

 Part 1. Getting started with ORM

 1 Understanding object/relational persistence

 2 Starting a project

 3 Domain models and metadata

 Part 2. Mapping strategies

 4 Mapping persistent classes

 5 Mapping value types

 6 Mapping inheritance

 7 Mapping collections and entity associations

 8 Advanced entity association mappings

 9 Complex and legacy schemas

 Part 3. Transactional data processing

 10 Managing data

 11 Transactions and concurrency

 12 Fetch plans, strategies, and profiles

 13 Filtering data

 Part 4. Writing queries

 14 Creating and executing queries

 15 The query languages

 16 Advanced query options

 17 Customizing SQL

 Part 5. Building applications

 18 Designing client/server applications

 19 Building web applications

 20 Scaling Hibernate

 Appendix. References

 Table of Contents

 Front matter

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Part 1. Getting started with ORM

 1 Understanding object/relational persistence

 1.1 What is persistence?

 1.1.1 Relational databases

 1.1.2 Understanding SQL

 1.1.3 Using SQL in Java

 1.2 The paradigm mismatch

 1.2.1 The problem of granularity

 1.2.2 The problem of subtypes

 1.2.3 The problem of identity

 1.2.4 Problems relating to associations

 1.2.5 The problem of data navigation

 1.3 ORM and JPA

 1.4 Summary

 2 Starting a project

 2.1 Introducing Hibernate

 2.2 “Hello World” with JPA

 2.2.1 Configuring a persistence unit

 2.2.2 Writing a persistent class

 2.2.3 Storing and loading messages

 2.3 Native Hibernate configuration

 2.4 Summary

 3 Domain models and metadata

 3.1 The example CaveatEmptor application

 3.1.1 A layered architecture

 3.1.2 Analyzing the business domain

 3.1.3 The CaveatEmptor domain model

 3.2 Implementing the domain model

 3.2.1 Addressing leakage of concerns

 3.2.2 Transparent and automated persistence

 3.2.3 Writing persistence-capable classes

 3.2.4 Implementing POJO associations

 3.3 Domain model metadata

 3.3.1 Annotation-based metadata

 3.3.2 Applying Bean Validation rules

 3.3.3 Externalizing metadata with XML files

 3.3.4 Accessing metadata at runtime

 3.4 Summary

 Part 2. Mapping strategies

 4 Mapping persistent classes

 4.1 Understanding entities and value types

 4.1.1 Fine-grained domain models

 4.1.2 Defining application concepts

 4.1.3 Distinguishing entities and value types

 4.2 Mapping entities with identity

 4.2.1 Understanding Java identity and equality

 4.2.2 A first entity class and mapping

 4.2.3 Selecting a primary key

 4.2.4 Configuring key generators

 4.2.5 Identifier generator strategies

 4.3 Entity-mapping options

 4.3.1 Controlling names

 4.3.2 Dynamic SQL generation

 4.3.3 Making an entity immutable

 4.3.4 Mapping an entity to a subselect

 4.4 Summary

 5 Mapping value types

 5.1 Mapping basic properties

 5.1.1 Overriding basic property defaults

 5.1.2 Customizing property access

 5.1.3 Using derived properties

 5.1.4 Transforming column values

 5.1.5 Generated and default property values

 5.1.6 Temporal properties

 5.1.7 Mapping enumerations

 5.2 Mapping embeddable components

 5.2.1 The database schema

 5.2.2 Making classes embeddable

 5.2.3 Overriding embedded attributes

 5.2.4 Mapping nested embedded components

 5.3 Mapping Java and SQL types with converters

 5.3.1 Built-in types

 5.3.2 Creating custom JPA converters

 5.3.3 Extending Hibernate with UserTypes

 5.4 Summary

 6 Mapping inheritance

 6.1 Table per concrete class with implicit polymorphism

 6.2 Table per concrete class with unions

 6.3 Table per class hierarchy

 6.4 Table per subclass with joins

 6.5 Mixing inheritance strategies

 6.6 Inheritance of embeddable classes

 6.7 Choosing a strategy

 6.8 Polymorphic associations

 6.8.1 Polymorphic many-to-one associations

 6.8.2 Polymorphic collections

 6.9 Summary

 7 Mapping collections and entity associations

 7.1 Sets, bags, lists, and maps of value types

 7.1.1 The database schema

 7.1.2 Creating and mapping a collection property

 7.1.3 Selecting a collection interface

 7.1.4 Mapping a set

 7.1.5 Mapping an identifier bag

 7.1.6 Mapping a list

 7.1.7 Mapping a map

 7.1.8 Sorted and ordered collections

 7.2 Collections of components

 7.2.1 Equality of component instances

 7.2.2 Set of components

 7.2.3 Bag of components

 7.2.4 Map of component values

 7.2.5 Components as map keys

 7.2.6 Collection in an embeddable component

 7.3 Mapping entity associations

 7.3.1 The simplest possible association

 7.3.2 Making it bidirectional

 7.3.3 Cascading state

 7.4 Summary

 8 Advanced entity association mappings

 8.1 One-to-one associations

 8.1.1 Sharing a primary key

 8.1.2 The foreign primary key generator

 8.1.3 Using a foreign key join column

 8.1.4 Using a join table

 8.2 One-to-many associations

 8.2.1 Considering one-to-many bags

 8.2.2 Unidirectional and bidirectional list mappings

 8.2.3 Optional one-to-many with a join table

 8.2.4 One-to-many association in an embeddable class

 8.3 Many-to-many and ternary associations

 8.3.1 Unidirectional and bidirectional many-to-many associations

 8.3.2 Many-to-many with an intermediate entity

 8.3.3 Ternary associations with components

 8.4 Entity associations with Maps

 8.4.1 One-to-many with a property key

 8.4.2 Key/Value ternary relationship

 8.5 Summary

 9 Complex and legacy schemas

 9.1 Improving the database schema

 9.1.1 Adding auxiliary database objects

 9.1.2 SQL constraints

 9.1.3 Creating indexes

 9.2 Handling legacy keys

 9.2.1 Mapping a natural primary key

 9.2.2 Mapping a composite primary key

 9.2.3 Foreign keys in composite primary keys

 9.2.4 Foreign keys to composite primary keys

 9.2.5 Foreign key referencing non-primary keys

 9.3 Mapping properties to secondary tables

 9.4 Summary

 Part 3. Transactional data processing

 10 Managing data

 10.1 The persistence life cycle

 10.1.1 Entity instance states

 10.1.2 The persistence context

 10.2 The EntityManager interface

 10.2.1 The canonical unit of work

 10.2.2 Making data persistent

 10.2.3 Retrieving and modifying persistent data

 10.2.4 Getting a reference

 10.2.5 Making data transient

 10.2.6 Refreshing data

 10.2.7 Replicating data

 10.2.8 Caching in the persistence context

 10.2.9 Flushing the persistence context

 10.3 Working with detached state

 10.3.1 The identity of detached instances

 10.3.2 Implementing equality methods

 10.3.3 Detaching entity instances

 10.3.4 Merging entity instances

 10.4 Summary

 11 Transactions and concurrency

 11.1 Transaction essentials

 11.1.1 ACID attributes

 11.1.2 Database and system transactions

 11.1.3 Programmatic transactions with JTA

 11.1.4 Handling exceptions

 11.1.5 Declarative transaction demarcation

 11.2 Controlling concurrent access

 11.2.1 Understanding database-level concurrency

 11.2.2 Optimistic concurrency control

 11.2.3 Explicit pessimistic locking

 11.2.4 Avoiding deadlocks

 11.3 Nontransactional data access

 11.3.1 Reading data in auto-commit mode

 11.3.2 Queueing modifications

 11.4 Summary

 12 Fetch plans, strategies, and profiles

 12.1 Lazy and eager loading

 12.1.1 Understanding entity proxies

 12.1.2 Lazy persistent collections

 12.1.3 Lazy loading with interception

 12.1.4 Eager loading of associations and collections

 12.2 Selecting a fetch strategy

 12.2.1 The n+1 selects problem

 12.2.2 The Cartesian product problem

 12.2.3 Prefetching data in batches

 12.2.4 Prefetching collections with subselects

 12.2.5 Eager fetching with multiple SELECTs

 12.2.6 Dynamic eager fetching

 12.3 Using fetch profiles

 12.3.1 Declaring Hibernate fetch profiles

 12.3.2 Working with entity graphs

 12.4 Summary

 13 Filtering data

 13.1 Cascading state transitions

 13.1.1 Available cascading options

 13.1.2 Transitive detachment and merging

 13.1.3 Cascading refresh

 13.1.4 Cascading replication

 13.1.5 Enabling global transitive persistence

 13.2 Listening to and intercepting events

 13.2.1 JPA event listeners and callbacks

 13.2.2 Implementing Hibernate interceptors

 13.2.3 The core event system

 13.3 Auditing and versioning with Hibernate Envers

 13.3.1 Enabling audit logging

 13.3.2 Creating an audit trail

 13.3.3 Finding revisions

 13.3.4 Accessing historical data

 13.4 Dynamic data filters

 13.4.1 Defining dynamic filters

 13.4.2 Applying the filter

 13.4.3 Enabling the filter

 13.4.4 Filtering collection access

 13.5 Summary

 Part 4. Writing queries

 14 Creating and executing queries

 14.1 Creating queries

 14.1.1 The JPA query interfaces

 14.1.2 Typed query results

 14.1.3 Hibernate’s query interfaces

 14.2 Preparing queries

 14.2.1 Protecting against SQL injection attacks

 14.2.2 Binding named parameters

 14.2.3 Using positional parameters

 14.2.4 Paging through large result sets

 14.3 Executing queries

 14.3.1 Listing all results

 14.3.2 Getting a single result

 14.3.3 Scrolling with database cursors

 14.3.4 Iterating through a result

 14.4 Naming and externalizing queries

 14.4.1 Calling a named query

 14.4.2 Defining queries in XML metadata

 14.4.3 Defining queries with annotations

 14.4.4 Defining named queries programmatically

 14.5 Query hints

 14.5.1 Setting a timeout

 14.5.2 Setting the flush mode

 14.5.3 Setting read-only mode

 14.5.4 Setting a fetch size

 14.5.5 Setting an SQL comment

 14.5.6 Named query hints

 14.6 Summary

 15 The query languages

 15.1 Selection

 15.1.1 Assigning aliases and query roots

 15.1.2 Polymorphic queries

 15.2 Restriction

 15.2.1 Comparison expressions

 15.2.2 Expressions with collections

 15.2.3 Calling functions

 15.2.4 Ordering query results

 15.3 Projection

 15.3.1 Projection of entities and scalar values

 15.3.2 Using dynamic instantiation

 15.3.3 Getting distinct results

 15.3.4 Calling functions in projections

 15.3.5 Aggregation functions

 15.3.6 Grouping

 15.4 Joins

 15.4.1 Joins with SQL

 15.4.2 Join options in JPA

 15.4.3 Implicit association joins

 15.4.4 Explicit joins

 15.4.5 Dynamic fetching with joins

 15.4.6 Theta-style joins

 15.4.7 Comparing identifiers

 15.5 Subselects

 15.5.1 Correlated and uncorrelated nesting

 15.5.2 Quantification

 15.6 Summary

 16 Advanced query options

 16.1 Transforming query results

 16.1.1 Returning a list of lists

 16.1.2 Returning a list of maps

 16.1.3 Mapping aliases to bean properties

 16.1.4 Writing a ResultTransformer

 16.2 Filtering collections

 16.3 The Hibernate criteria query API

 16.3.1 Selection and ordering

 16.3.2 Restriction

 16.3.3 Projection and aggregation

 16.3.4 Joins

 16.3.5 Subselects

 16.3.6 Example queries

 16.4 Summary

 17 Customizing SQL

 17.1 Falling back to JDBC

 17.2 Mapping SQL query results

 17.2.1 Projection with SQL queries

 17.2.2 Mapping to an entity class

 17.2.3 Customizing result mappings

 17.2.4 Externalizing native queries

 17.3 Customizing CRUD operations

 17.3.1 Enabling custom loaders

 17.3.2 Customizing creation, updates, and deletion

 17.3.3 Customizing collection operations

 17.3.4 Eager fetching in custom loaders

 17.4 Calling stored procedures

 17.4.1 Returning a result set

 17.4.2 Returning multiple results and update counts

 17.4.3 Setting input and output parameters

 17.4.4 Returning a cursor

 17.5 Using stored procedures for CRUD

 17.5.1 Custom loader with a procedure

 17.5.2 Procedures for CUD

 17.6 Summary

 Part 5. Building applications

 18 Designing client/server applications

 18.1 Creating a persistence layer

 18.1.1 A generic data access object pattern

 18.1.2 Implementing the generic interface

 18.1.3 Implementing entity DAOs

 18.1.4 Testing the persistence layer

 18.2 Building a stateless server

 18.2.1 Editing an auction item

 18.2.2 Placing a bid

 18.2.3 Analyzing the stateless application

 18.3 Building a stateful server

 18.3.1 Editing an auction item

 18.3.2 Analyzing the stateful application

 18.4 Summary

 19 Building web applications

 19.1 Integrating JPA with CDI

 19.1.1 Producing an EntityManager

 19.1.2 Joining the EntityManager with transactions

 19.1.3 Injecting an EntityManager

 19.2 Paging and sorting data

 19.2.1 Offset paging vs seeking

 19.2.2 Paging in the persistence layer

 19.2.3 Querying page-by-page

 19.3 Building JSF applications

 19.3.1 Request-scoped services

 19.3.2 Conversation-scoped services

 19.4 Serializing domain model data

 19.4.1 Writing a JAX-RS service

 19.4.2 Applying JAXB mappings

 19.4.3 Serializing Hibernate proxies

 19.5 Summary

 20 Scaling Hibernate

 20.1 Bulk and batch processing

 20.1.1 Bulk statements in JPQL and criteria

 20.1.2 Bulk statements in SQL

 20.1.3 Processing in batches

 20.1.4 The Hibernate StatelessSession interface

 20.2 Caching data

 20.2.1 The Hibernate shared cache architecture

 20.2.2 Configuring the shared cache

 20.2.3 Enabling entity and collection caching

 20.2.4 Testing the shared cache

 20.2.5 Setting cache modes

 20.2.6 Controlling the shared cache

 20.2.7 The query result cache

 20.3 Summary

 Appendix. References

 Index

 List of Figures

 List of Tables

 List of Listings

 front matter

Foreword to the First Edition

 Relational databases are indisputably at the core of the modern enterprise. While modern programming languages, including Java, provide an intuitive, object-oriented view of application-level business entities, the enterprise data underlying these entities is heavily relational in nature. Further, the main strength of the relational model—over earlier navigational models as well as over later OODB models—is that by design it is intrinsically agnostic to the programmatic manipulation and application-level view of the data that it serves up. Many attempts have been made to bridge relational and object-oriented technologies, or to replace one with the other, but the gap between the two is one of the hard facts of enterprise computing today. It is this challenge—to provide a bridge between relational data and Java objects—that Hibernate takes on through its object/relational mapping (ORM) approach. Hibernate meets this challenge in a very pragmatic, direct, and realistic way.

 As Christian Bauer and Gavin King demonstrate in this book, the effective use of ORM technology in all but the simplest of enterprise environments requires understanding and configuring how the mediation between relational data and objects is performed. This demands that the developer be aware and knowledgeable both of the application and its data requirements, and of the SQL query language, relational storage structures, and the potential for optimization that relational technology offers. Not only does Hibernate provide a full-function solution that meets these requirements head-on, it is also a flexible and configurable architecture. Hibernate’s developers designed it with modularity, pluggability, extensibility, and user customization in mind. As a result, in the few years since its initial release, Hibernate has rapidly become one of the leading ORM technologies for enterprise developers—and deservedly so.

 This book provides a comprehensive overview of Hibernate. It covers how to use its type-mapping capabilities and facilities for modeling associations and inheritance; how to retrieve objects efficiently using the Hibernate query language; how to configure Hibernate for use in both managed and unmanaged environments; and how to use its tools. In addition, throughout the book the authors provide insight into the underlying issues of ORM and into the design choices behind Hibernate. These insights give the reader a deep understanding of the effective use of ORM as an enterprise technology. Hibernate in Action is the definitive guide to using Hibernate and to object/relational mapping in enterprise computing today.

 Linda Demichiel

 Lead Architect, Enterprise Javabeans

 Sun Microsystems

 November 2012

Preface

 This is our third book about Hibernate, an open source project that is almost 15 years old. In a recent poll, Hibernate was among the top five tools used by many Java developers every day. This shows that SQL databases are still the preferred technology for reliable data storage and management, especially in the Java enterprise software development space. It’s also a testament to the quality of specifications and tools available, which today make it easy to start a project and to estimate and reduce risk when building large, complex applications.

 The fifth major Hibernate release is now available, as well as the second major version of the Java Persistence API specification (JPA) implemented by Hibernate. The core of Hibernate, or what is now called object/relational mapping (ORM), has been mature for a long time, and many small improvements have been made over the years. Other related projects such as Hibernate Search, Hibernate Bean Validation, and more recently Hibernate object/grid mapping (OGM) are delivering new and innovative solutions that make Hibernate a complete tool kit for a diverse range of data-management tasks.

 When we wrote the previous edition of this book, Hibernate was undergoing some significant changes: grown organically and driven by an open source community and the daily requirements of Java developers, Hibernate had to become more formal and implement the first version of the JPA specification. The last edition was therefore a large book, because many examples had to be shown in the old form and the new, standardized form.

 Today this gap has almost completely disappeared, and we can now first and foremost rely on the standardized API and architecture of Java Persistence. There are of course also many excellent Hibernate features, which we discuss in this edition. Although the number of pages has been reduced compared with the previous edition, we used this space for numerous new examples. We also cover how JPA fits into the larger picture of Java EE, and how your application architecture can integrate Bean Validation, EJB, CDI, and JSF.

 Let this new edition be a guide through your first Hibernate project. We hope it will replace the last edition as the Hibernate reference documentation you keep on your desk.

Acknowledgments

 We couldn’t have created this book without the help of many people. Palak Mathur and Christian Alfano did an excellent job as the technical reviewers of our book; thank you for the many hours you spent editing our broken code examples.

 We’d also like to thank our peer reviewers for taking the time and providing invaluable feedback during the development phase: Chris Bakar, Gaurav Bhardwaj, Jacob Bosma, José Diaz, Marco Gambini, Sergio Fernandez Gonzalez, Jerry Goodnough, John Griffin, Stephan Heffner, Chad Johnston, Christophe Martini, Robby O’Connor, Anthony Patricio, and Denis Wang.

 Manning’s publisher Marjan Bace again assembled a great production team at Manning: Christina Taylor edited our crude manuscript and turned it into a real book. Tiffany Taylor found all our typos and made the book readable. Dottie Marsico was responsible for typesetting and gave the book its great look. Mary Piergies coordinated and organized the production process. We’d like to thank you all for working with us.

 Finally, special thanks to Linda DeMichiel for writing the foreword to the first edition.

 Gary Gregory

 I’d like to thank my parents for getting me started on my journey, providing me with the opportunity for a great education, and giving me the freedom to choose my path. I’m eternally grateful to my wife Lori and my son Alexander for giving me the time to pursue yet another project like this one, my third book.

 Along the way, I’ve studied and worked with truly exceptional individuals like George Bosworth, Lee Breisacher, Christoper Hansen, Deborah Lewis, and many others. My father-in-law, Buddy Martin, deserves a special mention for providing wisdom and insights through great conversations and storytelling born of decades spent writing about sports (go Gators!). I always find inspiration in music, especially that of Wilco (Impossible Germany), Tom Waits (Blue Valentine), Donald Fagen (The Nightfly, A just machine to make big decisions/Programmed by fellows with compassion and vision), David Lindley, and Bach. Finally, I thank my coauthor Christian Bauer for sharing his knowledge, and all of the people at Manning for their support, professionalism, and great feedback.

 A special “thank you” goes out to Tiffany Taylor at Manning for a giving the book a great polish. Don Wanner, thank you, period.

About this Book

 This book is both a tutorial and a reference for Hibernate and Java Persistence. If you’re new to Hibernate, we suggest that you start reading the book with chapter 1 and begin coding with the “Hello World” tutorial in chapter 2. If you’ve used an older version of Hibernate, you should read the first two chapters quickly to get an overview and then jump into the middle with chapter 3. We will, whenever appropriate, tell you if a particular section or subject is optional or reference material that you can safely skip during your first read.

Roadmap

 This book is divided into five major parts.

 In part 1, “Getting started with ORM,” we discuss the fundamentals behind object/relational mapping. We walk through a hands-on tutorial to get you started with your first Hibernate project. We look at Java application design for domain models and at the options for creating object/relational mapping metadata.

 Part 2, “Mapping strategies,” focuses on Java classes and their properties, and how they map to SQL tables and columns. We explore all basic and advanced mapping options in Hibernate and Java Persistence. We show you how to deal with inheritance, collections, and complex class associations. Finally, we discuss integration with legacy database schemas and some mapping strategies that are especially tricky.

 Part 3, “Transactional data processing,” is all about loading and storing data with Hibernate and Java Persistence. We introduce the programming interfaces, how to write transactional applications, and how Hibernate can load data from the database most efficiently.

 With part 4, “Writing queries,” we introduce the data query features and cover query languages and APIs in detail. Not all chapters in this part are written in a tutorial style; we expect you’ll browse this part of the book frequently when building an application and looking up a solution for a particular query problem.

 In part 5, “Building applications,” we discuss the design and implementation of layered and conversation-aware Java database applications. We discuss the most common design patterns that are used with Hibernate, such as the Data Access Object (DAO). You see how you can test your Hibernate application easily and learn what other best practices are relevant if you work with an object/relational mapping software in web and client/server applications in general.

Who should read this book?

 Readers of this book should have basic knowledge of object-oriented software development and should have used this knowledge in practice. To understand the application examples, you should be familiar with the Java programming language and the Unified Modeling Language.

 Our primary target audience consists of Java developers who work with SQL-based database systems. We’ll show you how to substantially increase your productivity by using ORM. If you’re a database developer, the book can be part of your introduction to object-oriented software development.

 If you’re a database administrator, you’ll be interested in how ORM affects performance and how you can tune the performance of the SQL database-management system and persistence layer to achieve performance targets. Because data access is the bottleneck in most Java applications, this book pays close attention to performance issues. Many DBAs are understandably nervous about entrusting performance to tool-generated SQL code; we seek to allay those fears and also to highlight cases where applications shouldn’t use tool-managed data access. You may be relieved to discover that we don’t claim that ORM is the best solution to every problem.

Code conventions

 This book provides copious examples, which include all the Hibernate application artifacts: Java code, Hibernate configuration files, and XML mapping metadata files. Source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Additionally, Java method names, component parameters, object properties, and XML elements and attributes in text are also presented using fixed-width font.

 Java, HTML, and XML can all be verbose. In many cases, the original source code (available online) has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany some of the source code listings, highlighting important concepts. In some cases, numbered bullets link to explanations that follow the listing.

Source code downloads

 Hibernate is an open source project released under the Lesser GNU Public License. Directions for downloading Hibernate packages, in source or binary form, are available from the Hibernate website: www.hibernate.org. The source code for all examples in this book is available from http://jpwh.org/. You can also download the code for the examples in this book from the publisher’s website at www.manning.com/books/java-persistence-with-hibernate-second-edition.

Author Online

 The purchase of Java Persistence with Hibernate, Second Edition includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/books/java-persistence-with-hibernate-second-edition. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the authors

 Christian Bauer is a member of the Hibernate developer team; he works as a trainer and consultant.

 Gavin King is the founder of the Hibernate project and a member of the original Java Persistence expert group (JSR 220). He also led the standardization effort of CDI (JSR 299). Gavin is currently creating a new programming language called Ceylon.

 Gary Gregory is a principal software engineer at Rocket Software working on application servers and legacy integration. He is the coauthor of Manning’s JUnit in Action and Spring Batch in Action and a member of the Project Management Committees for the Apache Software Foundation projects: Commons, HttpComponents, Logging Services, and Xalan.

About the Cover Illustration

 The illustration on the cover of Java Persistence with Hibernate, Second Edition is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection and we have been unable to track it down to date. The book’s table of contents identifies the figures in both English and French, and each illustration bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer programming book ... 200 years later.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every other historic period except our own hyperkinetic present. Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

 Part 1. Getting started with ORM

 In part 1, we’ll show you why object persistence is such a complex topic and what solutions you can apply in practice. Chapter 1 introduces the object/relational paradigm mismatch and several strategies to deal with it, foremost object/relational mapping (ORM). In chapter 2, we’ll guide you step by step through a tutorial with Hibernate and Java Persistence—you’ll implement and test a “Hello World” example. Thus prepared, in chapter 3 you’ll be ready to learn how to design and implement complex business domain models in Java, and which mapping metadata options you have available.

 After reading this part of the book, you’ll understand why you need ORM and how Hibernate and Java Persistence work in practice. You’ll have written your first small project, and you’ll be ready to take on more complex problems. You’ll also understand how real-world business entities can be implemented as a Java domain model and in what format you prefer to work with ORM metadata.

 Chapter 1. Understanding object/relational persistence

 In this chapter

 	
 Persistence with SQL databases in Java applications

 	
 The object/relational paradigm mismatch

 	
 Introducing ORM, JPA, and Hibernate

 This book is about Hibernate; our focus is on using Hibernate as a provider of the Java Persistence API. We cover basic and advanced features and describe some ways to develop new applications using Java Persistence. Often, these recommendations aren’t specific to Hibernate. Sometimes they’re our own ideas about the best ways to do things when working with persistent data, explained in the context of Hibernate.

 The approach to managing persistent data has been a key design decision in every software project we’ve worked on. Given that persistent data isn’t a new or unusual requirement for Java applications, you’d expect to be able to make a simple choice among similar, well-established persistence solutions. Think of web application frameworks (JavaServer Faces versus Struts versus GWT), GUI component frameworks (Swing versus SWT), or template engines (JSP versus Thymeleaf). Each of the competing solutions has various advantages and disadvantages, but they all share the same scope and overall approach. Unfortunately, this isn’t yet the case with persistence technologies, where we see some wildly differing solutions to the same problem.

 Persistence has always been a hot topic of debate in the Java community. Is persistence a problem that is already solved by SQL and extensions such as stored procedures, or is it a more pervasive problem that must be addressed by special Java component models, such as EJBs? Should we hand-code even the most primitive CRUD (create, read, update, delete) operations in SQL and JDBC, or should this work be automated? How do we achieve portability if every database management system has its own SQL dialect? Should we abandon SQL completely and adopt a different database technology, such as object database systems or NoSQL systems? The debate may never end, but a solution called object/relational mapping (ORM) now has wide acceptance, thanks in large part to the innovations of Hibernate, an open source ORM service implementation.

 Before we can get started with Hibernate, you need to understand the core problems of object persistence and ORM. This chapter explains why you need tools like Hibernate and specifications such as the Java Persistence API (JPA).

 First we define persistent data management in the context of object-oriented applications and discuss the relationship of SQL, JDBC, and Java, the underlying technologies and standards that Hibernate builds on. We then discuss the so-called object/relational paradigm mismatch and the generic problems we encounter in object-oriented software development with SQL databases. These problems make it clear that we need tools and patterns to minimize the time we have to spend on the persistence-related code in our applications.

 The best way to learn Hibernate isn’t necessarily linear. We understand that you may want to try Hibernate right away. If this is how you’d like to proceed, skip to the next chapter and set up a project with the “Hello World” example. We recommend that you return here at some point as you go through this book; that way, you’ll be prepared and have all the background concepts you need for the rest of the material.

1.1. What is persistence?

 Almost all applications require persistent data. Persistence is one of the fundamental concepts in application development. If an information system didn’t preserve data when it was powered off, the system would be of little practical use. Object persistence means individual objects can outlive the application process; they can be saved to a data store and be re-created at a later point in time. When we talk about persistence in Java, we’re normally talking about mapping and storing object instances in a database using SQL. We start by taking a brief look at the technology and how it’s used in Java. Armed with this information, we then continue our discussion of persistence and how it’s implemented in object-oriented applications.

 1.1.1. Relational databases

 You, like most other software engineers, have probably worked with SQL and relational databases; many of us handle such systems every day. Relational database management systems have SQL-based application programming interfaces; hence, we call today’s relational database products SQL database management systems (DBMS) or, when we’re talking about particular systems, SQL databases.

 Relational technology is a known quantity, and this alone is sufficient reason for many organizations to choose it. But to say only this is to pay less respect than is due. Relational databases are entrenched because they’re an incredibly flexible and robust approach to data management. Due to the well-researched theoretical foundation of the relational data model, relational databases can guarantee and protect the integrity of the stored data, among other desirable characteristics. You may be familiar with E.F. Codd’s four-decades-old introduction of the relational model, A Relational Model of Data for Large Shared Data Banks (Codd, 1970). A more recent compendium worth reading, with a focus on SQL, is C. J. Date’s SQL and Relational Theory (Date, 2009).

 Relational DBMSs aren’t specific to Java, nor is an SQL database specific to a particular application. This important principle is known as data independence. In other words, and we can’t stress this important fact enough, data lives longer than any application does. Relational technology provides a way of sharing data among different applications, or among different parts of the same overall system (the data entry application and the reporting application, for example). Relational technology is a common denominator of many disparate systems and technology platforms. Hence, the relational data model is often the foundation for the common enterprise-wide representation of business entities.

 Before we go into more detail about the practical aspects of SQL databases, we have to mention an important issue: although marketed as relational, a database system providing only an SQL data language interface isn’t really relational and in many ways isn’t even close to the original concept. Naturally, this has led to confusion. SQL practitioners blame the relational data model for shortcomings in the SQL language, and relational data management experts blame the SQL standard for being a weak implementation of the relational model and ideals. Application engineers are stuck somewhere in the middle, with the burden of delivering something that works. We highlight some important and significant aspects of this issue throughout this book, but generally we focus on the practical aspects. If you’re interested in more background material, we highly recommend Practical Issues in Database Management: A Reference for the Thinking Practitioner by Fabian Pascal (Pascal, 2000) and An Introduction to Database Systems by Chris Date (Date, 2003) for the theory, concepts, and ideals of (relational) database systems. The latter book is an excellent reference (it’s big) for all questions you may possibly have about databases and data management.

 1.1.2. Understanding SQL

 To use Hibernate effectively, you must start with a solid understanding of the relational model and SQL. You need to understand the relational model and topics such as normalization to guarantee the integrity of your data, and you’ll need to use your knowledge of SQL to tune the performance of your Hibernate application. Hibernate automates many repetitive coding tasks, but your knowledge of persistence technology must extend beyond Hibernate itself if you want to take advantage of the full power of modern SQL databases. To dig deeper, consult the bibliography at the end of this book.

 You’ve probably used SQL for many years and are familiar with the basic operations and statements written in this language. Still, we know from our own experience that SQL is sometimes hard to remember, and some terms vary in usage.

 Let’s review some of the SQL terms used in this book. You use SQL as a data definition language (DDL) when creating, altering, and dropping artifacts such as tables and constraints in the catalog of the DBMS. When this schema is ready, you use SQL as a data manipulation language (DML) to perform operations on data, including insertions, updates, and deletions. You retrieve data by executing queries with restrictions, projections, and Cartesian products. For efficient reporting, you use SQL to join, aggregate, and group data as necessary. You can even nest SQL statements inside each other—a technique that uses subselects. When your business requirements change, you’ll have to modify the database schema again with DDL statements after data has been stored; this is known as schema evolution.

 If you’re an SQL veteran and you want to know more about optimization and how SQL is executed, get a copy of the excellent book SQL Tuning, by Dan Tow (Tow, 2003). For a look at the practical side of SQL through the lens of how not to use SQL, SQL Antipatterns: Avoiding the Pitfalls of Database Programming (Karwin, 2010) is a good resource.

 Although the SQL database is one part of ORM, the other part, of course, consists of the data in your Java application that needs to be persisted to and loaded from the database.

 1.1.3. Using SQL in Java

 When you work with an SQL database in a Java application, you issue SQL statements to the database via the Java Database Connectivity (JDBC) API. Whether the SQL was written by hand and embedded in the Java code or generated on the fly by Java code, you use the JDBC API to bind arguments when preparing query parameters, executing the query, scrolling through the query result, retrieving values from the result set, and so on. These are low-level data access tasks; as application engineers, we’re more interested in the business problem that requires this data access. What we’d really like to write is code that saves and retrieves instances of our classes, relieving us of this low-level drudgery.

 Because these data access tasks are often so tedious, we have to ask, are the relational data model and (especially) SQL the right choices for persistence in object-oriented applications? We answer this question unequivocally: yes! There are many reasons why SQL databases dominate the computing industry—relational database management systems are the only proven generic data management technology, and they’re almost always a requirement in Java projects.

 Note that we aren’t claiming that relational technology is always the best solution. There are many data management requirements that warrant a completely different approach. For example, internet-scale distributed systems (web search engines, content distribution networks, peer-to-peer sharing, instant messaging) have to deal with exceptional transaction volumes. Many of these systems don’t require that after a data update completes, all processes see the same updated data (strong transactional consistency). Users might be happy with weak consistency; after an update, there might be a window of inconsistency before all processes see the updated data. Some scientific applications work with enormous but very specialized datasets. Such systems and their unique challenges typically require equally unique and often custom-made persistence solutions. Generic data management tools such as ACID-compliant transactional SQL databases, JDBC, and Hibernate would play only a minor role.

 Relational systems at internet scale

 To understand why relational systems, and the data-integrity guarantees associated with them, are difficult to scale, we recommend that you first familiarize yourself with the CAP theorem. According to this rule, a distributed system can’t be consistent, available, and tolerant against partition failures all at the same time.

 A system may guarantee that all nodes will see the same data at the same time and that data read and write requests are always answered. But when a part of the system fails due to a host, network, or data center problem, you must either give up strong consistency (linearizability) or 100% availability. In practice, this means you need a strategy that detects partition failures and restores either consistency or availability to a certain degree (for example, by making some part of the system temporarily unavailable for data synchronization to occur in the background). Often it depends on the data, the user, or the operation whether strong consistency is necessary.

 For relational DBMSs designed to scale easily, have a look at VoltDB (www.voltdb.com) and NuoDB (www.nuodb.com). Another interesting read is how Google scales its most important database, for the advertising business, and why it’s relational/SQL, in “F1 - The Fault-Tolerant Distributed RDBMS Supporting Google’s Ad Business” (Shute, 2012).

 In this book, we’ll think of the problems of data storage and sharing in the context of an object-oriented application that uses a domain model. Instead of directly working with the rows and columns of a java.sql.ResultSet, the business logic of an application interacts with the application-specific object-oriented domain model. If the SQL database schema of an online auction system has ITEM and BID tables, for example, the Java application defines Item and Bid classes. Instead of reading and writing the value of a particular row and column with the ResultSet API, the application loads and stores instances of Item and Bid classes.

 At runtime, the application therefore operates with instances of these classes. Each instance of a Bid has a reference to an auction Item, and each Item may have a collection of references to Bid instances. The business logic isn’t executed in the database (as an SQL stored procedure); it’s implemented in Java and executed in the application tier. This allows business logic to use sophisticated object-oriented concepts such as inheritance and polymorphism. For example, we could use well-known design patterns such as Strategy, Mediator, and Composite (see Design Patterns: Elements of Reusable Object-Oriented Software [Gamma, 1995]), all of which depend on polymorphic method calls.

 Now a caveat: not all Java applications are designed this way, nor should they be. Simple applications may be much better off without a domain model. Use the JDBC ResultSet if that’s all you need. Call existing stored procedures, and read their SQL result sets, too. Many applications need to execute procedures that modify large sets of data, close to the data. You might implement some reporting functionality with plain SQL queries and render the result directly onscreen. SQL and the JDBC API are perfectly serviceable for dealing with tabular data representations, and the JDBC RowSet makes CRUD operations even easier. Working with such a representation of persistent data is straightforward and well understood.

 But in the case of applications with nontrivial business logic, the domain model approach helps to improve code reuse and maintainability significantly. In practice, both strategies are common and needed.

 For several decades, developers have spoken of a paradigm mismatch. This mismatch explains why every enterprise project expends so much effort on persistence-related concerns. The paradigms referred to are object modeling and relational modeling, or, more practically, object-oriented programming and SQL.

 With this realization, you can begin to see the problems—some well understood and some less well understood—that an application that combines both data representations must solve: an object-oriented domain model and a persistent relational model. Let’s take a closer look at this so-called paradigm mismatch.

1.2. The paradigm mismatch

 The object/relational paradigm mismatch can be broken into several parts, which we examine one at a time. Let’s start our exploration with a simple example that is problem free. As we build on it, you’ll see the mismatch begin to appear.

 Suppose you have to design and implement an online e-commerce application. In this application, you need a class to represent information about a user of the system, and you need another class to represent information about the user’s billing details, as shown in figure 1.1.

 Figure 1.1. A simple UML diagram of the User and BillingDetails entities

 [image:]

 In this diagram, you can see that a User has many BillingDetails. You can navigate the relationship between the classes in both directions; this means you can iterate through collections or call methods to get to the “other” side of the relationship. The classes representing these entities may be extremely simple:

 public class User {
<enter/>
 String username;
 String address;
 Set billingDetails;
<enter/>
 // Accessor methods (getter/setter), business methods, etc.
}
<enter/>
public class BillingDetails {
<enter/>
 String account;
 String bankname;
 User user;
<enter/>
 // Accessor methods (getter/setter), business methods, etc.
}

 Note that you’re only interested in the state of the entities with regard to persistence, so we’ve omitted the implementation of property accessors and business methods, such as getUsername() or billAuction().

 It’s easy to come up with an SQL schema design for this case:

 create table USERS (
 USERNAME varchar(15) not null primary key,
 ADDRESS varchar(255) not null
);
<enter/>
create table BILLINGDETAILS (
 ACCOUNT varchar(15) not null primary key,
 BANKNAME varchar(255) not null,
 USERNAME varchar(15) not null,
 foreign key (USERNAME) references USERS
);

 The foreign key–constrained column USERNAME in BILLINGDETAILS represents the relationship between the two entities. For this simple domain model, the object/relational mismatch is barely in evidence; it’s straightforward to write JDBC code to insert, update, and delete information about users and billing details.

 Now let’s see what happens when you consider something a little more realistic. The paradigm mismatch will be visible when you add more entities and entity relationships to your application.

 1.2.1. The problem of granularity

 The most glaringly obvious problem with the current implementation is that you’ve designed an address as a simple String value. In most systems, it’s necessary to store street, city, state, country, and ZIP code information separately. Of course, you could add these properties directly to the User class, but because it’s highly likely that other classes in the system will also carry address information, it makes more sense to create an Address class. Figure 1.2 shows the updated model.

 Figure 1.2. The User has an Address.

 [image:]

 Should you also add an ADDRESS table? Not necessarily; it’s common to keep address information in the USERS table, in individual columns. This design is likely to perform better, because a table join isn’t needed if you want to retrieve the user and address in a single query. The nicest solution may be to create a new SQL data type to represent addresses, and to add a single column of that new type in the USERS table instead of several new columns.

 You have the choice of adding either several columns or a single column (of a new SQL data type). This is clearly a problem of granularity. Broadly speaking, granularity refers to the relative size of the types you’re working with.

 Let’s return to the example. Adding a new data type to the database catalog, to store Address Java instances in a single column, sounds like the best approach:

 create table USERS (
 USERNAME varchar(15) not null primary key,
 ADDRESS address not null
);

 A new Address type (class) in Java and a new ADDRESS SQL data type should guarantee interoperability. But you’ll find various problems if you check the support for user-defined data types (UDTs) in today’s SQL database management systems.

 UDT support is one of a number of so-called object-relational extensions to traditional SQL. This term alone is confusing, because it means the database management system has (or is supposed to support) a sophisticated data type system—something you take for granted if somebody sells you a system that can handle data in a relational fashion. Unfortunately, UDT support is a somewhat obscure feature of most SQL DBMSs and certainly isn’t portable between different products. Furthermore, the SQL standard supports user-defined data types, but poorly.

 This limitation isn’t the fault of the relational data model. You can consider the failure to standardize such an important piece of functionality as fallout from the object-relational database wars between vendors in the mid-1990s. Today, most engineers accept that SQL products have limited type systems—no questions asked. Even with a sophisticated UDT system in your SQL DBMS, you would still likely duplicate the type declarations, writing the new type in Java and again in SQL. Attempts to find a better solution for the Java space, such as SQLJ, unfortunately, have not had much success. DBMS products rarely support deploying and executing Java classes directly on the database, and if support is available, it’s typically limited to very basic functionality and complex in everyday usage.

 For these and whatever other reasons, use of UDTs or Java types in an SQL database isn’t common practice in the industry at this time, and it’s unlikely that you’ll encounter a legacy schema that makes extensive use of UDTs. You therefore can’t and won’t store instances of your new Address class in a single new column that has the same data type as the Java layer.

 The pragmatic solution for this problem has several columns of built-in vendor-defined SQL types (such as Boolean, numeric, and string data types). You usually define the USERS table as follows:

 create table USERS (
 USERNAME varchar(15) not null primary key,
 ADDRESS_STREET varchar(255) not null,
 ADDRESS_ZIPCODE varchar(5) not null,
 ADDRESS_CITY varchar(255) not null
);

 Classes in the Java domain model come in a range of different levels of granularity: from coarse-grained entity classes like User, to finer-grained classes like Address, down to simple SwissZipCode extending AbstractNumericZipCode (or whatever your desired level of abstraction is). In contrast, just two levels of type granularity are visible in the SQL database: relation types created by you, like USERS and BILLINGDETAILS, and built-in data types such as VARCHAR, BIGINT, or TIMESTAMP.

 Many simple persistence mechanisms fail to recognize this mismatch and so end up forcing the less flexible representation of SQL products on the object-oriented model, effectively flattening it.

 It turns out that the granularity problem isn’t especially difficult to solve. We probably wouldn’t even discuss it, were it not for the fact that it’s visible in so many existing systems. We describe the solution to this problem in section 4.1.

 A much more difficult and interesting problem arises when we consider domain models that rely on inheritance, a feature of object-oriented design you may use to bill the users of your e-commerce application in new and interesting ways.

 1.2.2. The problem of subtypes

 In Java, you implement type inheritance using superclasses and subclasses. To illustrate why this can present a mismatch problem, let’s add to your e-commerce application so that you now can accept not only bank account billing, but also credit and debit cards. The most natural way to reflect this change in the model is to use inheritance for the BillingDetails superclass, along with several concrete subclasses: CreditCard, BankAccount, and so on. Each of these subclasses defines slightly different data (and completely different functionality that acts on that data). The UML class diagram in figure 1.3 illustrates this model.

 Figure 1.3. Using inheritance for different billing strategies

 [image:]

 What changes must you make to support this updated Java class structure? Can you create a table CREDITCARD that extends BILLINGDETAILS? SQL database products don’t generally implement table inheritance (or even data type inheritance), and if they do implement it, they don’t follow a standard syntax and might expose us to data integrity problems (limited integrity rules for updatable views).

 We aren’t finished with inheritance. As soon as we introduce inheritance into the model, we have the possibility of polymorphism.

 The User class has an association to the BillingDetails superclass. This is a polymorphic association. At runtime, a User instance may reference an instance of any of the subclasses of BillingDetails. Similarly, you want to be able to write polymorphic queries that refer to the BillingDetails class, and have the query return instances of its subclasses.

 SQL databases also lack an obvious way (or at least a standardized way) to represent a polymorphic association. A foreign key constraint refers to exactly one target table; it isn’t straightforward to define a foreign key that refers to multiple tables. You’d have to write a procedural constraint to enforce this kind of integrity rule.

 The result of this mismatch of subtypes is that the inheritance structure in a model must be persisted in an SQL database that doesn’t offer an inheritance mechanism. In chapter 6, we discuss how ORM solutions such as Hibernate solve the problem of persisting a class hierarchy to an SQL database table or tables, and how polymorphic behavior can be implemented. Fortunately, this problem is now well understood in the community, and most solutions support approximately the same functionality.

 The next aspect of the object/relational mismatch problem is the issue of object identity. You probably noticed that the example defined USERNAME as the primary key of the USERS table. Was that a good choice? How do you handle identical objects in Java?

 1.2.3. The problem of identity

 Although the problem of identity may not be obvious at first, you’ll encounter it often in your growing and expanding e-commerce system, such as when you need to check whether two instances are identical. There are three ways to tackle this problem: two in the Java world and one in your SQL database. As expected, they work together only with some help.

 Java defines two different notions of sameness:

 	
 Instance identity (roughly equivalent to memory location, checked with a == b)

 	
 Instance equality, as determined by the implementation of the equals() method (also called equality by value)

 On the other hand, the identity of a database row is expressed as a comparison of primary key values. As you’ll see in section 10.1.2, neither equals() nor == is always equivalent to a comparison of primary key values. It’s common for several non-identical instances in Java to simultaneously represent the same row of the database—for example, in concurrently running application threads. Furthermore, some subtle difficulties are involved in implementing equals() correctly for a persistent class and understanding when this might be necessary.

 Let’s use an example to discuss another problem related to database identity. In the table definition for USERS, USERNAME is the primary key. Unfortunately, this decision makes it difficult to change a user’s name; you need to update not only the row in USERS, but also the foreign key values in (many) rows of BILLINGDETAILS. To solve this problem, later in this book we recommend that you use surrogate keys whenever you can’t find a good natural key. We also discuss what makes a good primary key. A surrogate key column is a primary key column with no meaning to the application user—in other words, a key that isn’t presented to the application user. Its only purpose is identifying data inside the application.

 For example, you may change your table definitions to look like this:

 create table USERS (
 ID bigint not null primary key,
 USERNAME varchar(15) not null unique,
 ...

);
<enter/>
create table BILLINGDETAILS (
 ID bigint not null primary key,
 ACCOUNT varchar(15) not null,
 BANKNAME varchar(255) not null,
 USER_ID bigint not null,
 foreign key (USER_ID) references USERS
);

 The ID columns contain system-generated values. These columns were introduced purely for the benefit of the data model, so how (if at all) should they be represented in the Java domain model? We discuss this question in section 4.2, and we find a solution with ORM.

 In the context of persistence, identity is closely related to how the system handles caching and transactions. Different persistence solutions have chosen different strategies, and this has been an area of confusion. We cover all these interesting topics—and show how they’re related—in section 10.1.

 So far, the skeleton e-commerce application you’ve designed has exposed the paradigm mismatch problems with mapping granularity, subtypes, and identity. You’re almost ready to move on to other parts of the application, but first we need to discuss the important concept of associations: how the relationships between entities are mapped and handled. Is the foreign key constraint in the database all you need?

 1.2.4. Problems relating to associations

 In your domain model, associations represent the relationships between entities. The User, Address, and BillingDetails classes are all associated; but unlike Address, BillingDetails stands on its own. BillingDetails instances are stored in their own table. Association mapping and the management of entity associations are central concepts in any object persistence solution.

 Object-oriented languages represent associations using object references; but in the relational world, a foreign key–constrained column represents an association, with copies of key values. The constraint is a rule that guarantees integrity of the association. There are substantial differences between the two mechanisms.

 Object references are inherently directional; the association is from one instance to the other. They’re pointers. If an association between instances should be navigable in both directions, you must define the association twice, once in each of the associated classes. You’ve already seen this in the domain model classes:

 public class User {
 Set billingDetails;
}
<enter/>
public class BillingDetails {
 User user;
}

 Navigation in a particular direction has no meaning for a relational data model because you can create arbitrary data associations with join and projection operators. The challenge is to map a completely open data model, which is independent of the application that works with the data, to an application-dependent navigational model—a constrained view of the associations needed by this particular application.

 Java associations can have many-to-many multiplicity. For example, the classes could look like this:

 public class User {
 Set billingDetails;
}
<enter/>
public class BillingDetails {
 Set users;
}

 But the foreign key declaration on the BILLINGDETAILS table is a many-to-one association: each bank account is linked to a particular user. Each user may have multiple linked bank accounts.

 If you wish to represent a many-to-many association in an SQL database, you must introduce a new table, usually called a link table. In most cases, this table doesn’t appear anywhere in the domain model. For this example, if you consider the relationship between the user and the billing information to be many-to-many, you define the link table as follows:

 create table USER_BILLINGDETAILS (
 USER_ID bigint,
 BILLINGDETAILS_ID bigint,
 primary key (USER_ID, BILLINGDETAILS_ID),
 foreign key (USER_ID) references USERS,
 foreign key (BILLINGDETAILS_ID) references BILLINGDETAILS
);

 You no longer need the USER_ID foreign key column and constraint on the BILLINGDETAILS table; this additional table now manages the links between the two entities. We discuss association and collection mappings in detail in chapter 7.

 So far, the issues we’ve considered are mainly structural: you can see them by considering a purely static view of the system. Perhaps the most difficult problem in object persistence is a dynamic problem: how data is accessed at runtime.

 1.2.5. The problem of data navigation

 There is a fundamental difference in how you access data in Java and in a relational database. In Java, when you access a user’s billing information, you call someUser.getBillingDetails().iterator().next() or something similar. This is the most natural way to access object-oriented data, and it’s often described as walking the object network. You navigate from one instance to another, even iterating collections, following prepared pointers between classes. Unfortunately, this isn’t an efficient way to retrieve data from an SQL database.

 The single most important thing you can do to improve the performance of data access code is to minimize the number of requests to the database. The most obvious way to do this is to minimize the number of SQL queries. (Of course, other, more sophisticated, ways—such as extensive caching—follow as a second step.)

 Therefore, efficient access to relational data with SQL usually requires joins between the tables of interest. The number of tables included in the join when retrieving data determines the depth of the object network you can navigate in memory. For example, if you need to retrieve a User and aren’t interested in the user’s billing information, you can write this simple query:

 select * from USERS u where u.ID = 123

 On the other hand, if you need to retrieve a User and then subsequently visit each of the associated BillingDetails instances (let’s say, to list all the user’s bank accounts), you write a different query:

 select * from USERS u
 left outer join BILLINGDETAILS bd
 on bd.USER_ID = u.ID
where u.ID = 123

 As you can see, to use joins efficiently you need to know what portion of the object network you plan to access when you retrieve the initial instance before you start navigating the object network! Careful, though: if you retrieve too much data (probably more than you might need), you’re wasting memory in the application tier. You may also overwhelm the SQL database with huge Cartesian product result sets. Imagine retrieving not only users and bank accounts in one query, but also all orders paid from each bank account, the products in each order, and so on.

 Any object persistence solution worth its salt provides functionality for fetching the data of associated instances only when the association is first accessed in Java code. This is known as lazy loading: retrieving data on demand only. This piecemeal style of data access is fundamentally inefficient in the context of an SQL database, because it requires executing one statement for each node or collection of the object network that is accessed. This is the dreaded n+1 selects problem.

 This mismatch in the way you access data in Java and in a relational database is perhaps the single most common source of performance problems in Java information systems. Yet although we’ve been blessed with innumerable books and articles advising us to use StringBuffer for string concatenation, avoiding the Cartesian product and n+1 selects problems is still a mystery for many Java programmers. (Admit it: you just thought StringBuilder would be much better than StringBuffer.)

 Hibernate provides sophisticated features for efficiently and transparently fetching networks of objects from the database to the application accessing them. We discuss these features in chapter 12.

 We now have quite a list of object/relational mismatch problems, and it can be costly (in time and effort) to find solutions, as you may know from experience. It will take us most of this book to provide a complete answer to these questions and to demonstrate ORM as a viable solution. Let’s get started with an overview of ORM, the Java Persistence standard, and the Hibernate project.

1.3. ORM and JPA

 In a nutshell, object/relational mapping is the automated (and transparent) persistence of objects in a Java application to the tables in an SQL database, using metadata that describes the mapping between the classes of the application and the schema of the SQL database. In essence, ORM works by transforming (reversibly) data from one representation to another. Before we move on, you need to understand what Hibernate can’t do for you.

 A supposed advantage of ORM is that it shields developers from messy SQL. This view holds that object-oriented developers can’t be expected to understand SQL or relational databases well and that they find SQL somehow offensive. On the contrary, we believe that Java developers must have a sufficient level of familiarity with—and appreciation of—relational modeling and SQL in order to work with Hibernate. ORM is an advanced technique used by developers who have already done it the hard way. To use Hibernate effectively, you must be able to view and interpret the SQL statements it issues and understand their performance implications.

 Let’s look at some of the benefits of Hibernate:

 	
 Productivity—Hibernate eliminates much of the grunt work (more than you’d expect) and lets you concentrate on the business problem. No matter which application-development strategy you prefer—top-down, starting with a domain model, or bottom-up, starting with an existing database schema—Hibernate, used together with the appropriate tools, will significantly reduce development time.

 	
 Maintainability—Automated ORM with Hibernate reduces lines of code (LOC), making the system more understandable and easier to refactor. Hibernate provides a buffer between the domain model and the SQL schema, insulating each model from minor changes to the other.

 	
 Performance—Although hand-coded persistence might be faster in the same sense that assembly code can be faster than Java code, automated solutions like Hibernate allow the use of many optimizations at all times. One example of this is efficient and easily tunable caching in the application tier. This means developers can spend more energy hand-optimizing the few remaining real bottlenecks instead of prematurely optimizing everything.

 	
 Vendor independence—Hibernate can help mitigate some of the risks associated with vendor lock-in. Even if you plan never to change your DBMS product, ORM tools that support a number of different DBMSs enable a certain level of portability. In addition, DBMS independence helps in development scenarios where engineers use a lightweight local database but deploy for testing and production on a different system.

 The Hibernate approach to persistence was well received by Java developers, and the standard Java Persistence API was designed along similar lines.

 JPA became a key part of the simplifications introduced in recent EJB and Java EE specifications. We should be clear up front that neither Java Persistence nor Hibernate are limited to the Java EE environment; they’re general-purpose solutions to the persistence problem that any type of Java (or Groovy, or Scala) application can use.

 The JPA specification defines the following:

 	
 A facility for specifying mapping metadata—how persistent classes and their properties relate to the database schema. JPA relies heavily on Java annotations in domain model classes, but you can also write mappings in XML files.

 	
 APIs for performing basic CRUD operations on instances of persistent classes, most prominently javax.persistence.EntityManager to store and load data.

 	
 A language and APIs for specifying queries that refer to classes and properties of classes. This language is the Java Persistence Query Language (JPQL) and looks similar to SQL. The standardized API allows for programmatic creation of criteria queries without string manipulation.

 	
 How the persistence engine interacts with transactional instances to perform dirty checking, association fetching, and other optimization functions. The latest JPA specification covers some basic caching strategies.

 Hibernate implements JPA and supports all the standardized mappings, queries, and programming interfaces.

1.4. Summary

 	
 With object persistence, individual objects can outlive their application process, be saved to a data store, and be re-created later. The object/relational mismatch comes into play when the data store is an SQL-based relational database management system. For instance, a network of objects can’t be saved to a database table; it must be disassembled and persisted to columns of portable SQL data types. A good solution for this problem is object/relational mapping (ORM).

 	
 ORM isn’t a silver bullet for all persistence tasks; its job is to relieve the developer of 95% of object persistence work, such as writing complex SQL statements with many table joins and copying values from JDBC result sets to objects or graphs of objects.

 	
 A full-featured ORM middleware solution may provide database portability, certain optimization techniques like caching, and other viable functions that aren’t easy to hand-code in a limited time with SQL and JDBC.

 	
 Better solutions than ORM might exist someday. We (and many others) may have to rethink everything we know about data management systems and their languages, persistence API standards, and application integration. But the evolution of today’s systems into true relational database systems with seamless object-oriented integration remains pure speculation. We can’t wait, and there is no sign that any of these issues will improve soon (a multibillion-dollar industry isn’t very agile). ORM is the best solution currently available, and it’s a timesaver for developers facing the object/relational mismatch every day.

 Chapter 2. Starting a project

 In this chapter

 	
 Overview of Hibernate projects

 	
 “Hello World” with Hibernate and Java Persistence

 	
 Configuration and integration options

 In this chapter, you’ll start with Hibernate and Java Persistence using a step-by-step example. You’ll see both persistence APIs and how to benefit from using either native Hibernate or standardized JPA. We first offer you a tour through Hibernate with a straightforward “Hello World” application. Before you start coding, you must decide which Hibernate modules to use in your project.

2.1. Introducing Hibernate

 Hibernate is an ambitious project that aims to provide a complete solution to the problem of managing persistent data in Java. Today, Hibernate is not only an ORM service, but also a collection of data management tools extending well beyond ORM.

 The Hibernate project suite includes the following:

 	
 Hibernate ORM—Hibernate ORM consists of a core, a base service for persistence with SQL databases, and a native proprietary API. Hibernate ORM is the foundation for several of the other projects and is the oldest Hibernate project. You can use Hibernate ORM on its own, independent of any framework or any particular runtime environment with all JDKs. It works in every Java EE/J2EE application server, in Swing applications, in a simple servlet container, and so on. As long as you can configure a data source for Hibernate, it works.

 	
 Hibernate EntityManager—This is Hibernate’s implementation of the standard Java Persistence APIs, an optional module you can stack on top of Hibernate ORM. You can fall back to Hibernate when a plain Hibernate interface or even a JDBC Connection is needed. Hibernate’s native features are a superset of the JPA persistence features in every respect.

 	
 Hibernate Validator—Hibernate provides the reference implementation of the Bean Validation (JSR 303) specification. Independent of other Hibernate projects, it provides declarative validation for your domain model (or any other) classes.

 	
 Hibernate Envers—Envers is dedicated to audit logging and keeping multiple versions of data in your SQL database. This helps you add data history and audit trails to your application, similar to version control systems you might already be familiar with such as Subversion and Git.

 	
 Hibernate Search—Hibernate Search keeps an index of your domain model data up to date in an Apache Lucene database. It lets you query this database with a powerful and naturally integrated API. Many projects use Hibernate Search in addition to Hibernate ORM, adding full-text search capabilities. If you have a free text search form in your application’s user interface, and you want happy users, work with Hibernate Search. Hibernate Search isn’t covered in this book; you can find more information in Hibernate Search in Action by Emmanuel Bernard (Bernard, 2008).

 	
 Hibernate OGM—The most recent Hibernate project is the object/grid mapper. It provides JPA support for NoSQL solutions, reusing the Hibernate core engine but persisting mapped entities into a key/value-, document-, or graph-oriented data store. Hibernate OGM isn’t covered in this book.

 Let’s get started with your first Hibernate and JPA project.

2.2. “Hello World” with JPA

 In this section, you’ll write your first Hibernate application, which stores a “Hello World” message in the database and then retrieves it. Let’s start by installing and configuring Hibernate.

 We use Apache Maven as the project build tool, as we do for all the examples in this book. Declare the dependency on Hibernate:

 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>5.0.0.Final</version>
</dependency>

 The hibernate-entitymanager module includes transitive dependencies on other modules you’ll need, such as hibernate-core and the Java Persistence interface stubs.

 Your starting point in JPA is the persistence unit. A persistence unit is a pairing of your domain model class mappings with a database connection, plus some other configuration settings. Every application has at least one persistence unit; some applications have several if they’re talking to several (logical or physical) databases. Hence, your first step is setting up a persistence unit in your application’s configuration.

 2.2.1. Configuring a persistence unit

 The standard configuration file for persistence units is located on the classpath in META-INF/persistence.xml. Create the following configuration file for the “Hello World” application:

 [image:]

 [image:]

 Path: /model/src/main/resources/META-INF/persistence.xml

 [image:]

 	
 The persistence.xml file configures at least one persistence unit; each unit must have a unique name.

 	
 Each persistence unit must have a database connection. Here you delegate to an existing java.sql.DataSource. Hibernate will find the data source by name with a JNDI lookup on startup.

 	
 A persistent unit has persistent (mapped) classes. You list them here.

 	
 Hibernate can scan your classpath for mapped classes and add them automatically to your persistence unit. This setting disables that feature.

 	
 Standard or vendor-specific options can be set as properties on a persistence unit. Any standard properties have the javax.persistence name prefix; Hibernate’s settings use hibernate.

 	
 The JPA engine should drop and re-create the SQL schema in the database automatically when it boots. This is ideal for automated testing, when you want to work with a clean database for every test run.

 When printing SQL in logs, let Hibernate format the SQL nicely and generate comments into the SQL string so you know why Hibernate executed the SQL statement.

 Most applications need a pool of database connections, with a certain size and optimized thresholds for the environment. You also want to provide the DBMS host and credentials for your database connections.

 Logging SQL

 All SQL statements executed by Hibernate can be logged—an invaluable tool during optimization. To log SQL, in persistence.xml, set the properties hibernate.format_sql and hibernate.use_sql_comments to true. This will cause Hibernate to format SQL statements with causation comments. Then, in your logging configuration (which depends on your chosen logging implementation), set the categories org.hibernate.SQL and org.hibernate.type.descriptor.sql.BasicBinder to the finest debug level. You’ll then see all SQL statements executed by Hibernate in your log output, including the bound parameter values of prepared statements.

 For the “Hello World” application, you delegate database connection handling to a Java Transaction API (JTA) provider, the open source Bitronix project. Bitronix offers connection pooling with a managed java.sql.DataSource and the standard javax.transaction.UserTransaction API in any Java SE environment. Bitronix binds these objects into JNDI, and Hibernate interfaces automatically with Bitronix through JNDI lookups. Setting up Bitronix in detail is outside of the scope of this book; you can find the configuration for our examples in org.jpwh.env.TransactionManagerSetup.

 In the “Hello World” application, you want to store messages in the database and load them from the database. Hibernate applications define persistent classes that are mapped to database tables. You define these classes based on your analysis of the business domain; hence, they’re a model of the domain. This example consists of one class and its mapping.

 Let’s see what a simple persistent class looks like, how the mapping is created, and some of the things you can do with instances of the persistent class in Hibernate.

 2.2.2. Writing a persistent class

 The objective of this example is to store messages in a database and retrieve them for display. The application has a simple persistent class, Message:

 Path: /model/src/main/java/org/jpwh/model/helloworld/Message.java

 [image:]

 	
 Every persistent entity class must have at least the @Entity annotation. Hibernate maps this class to a table called MESSAGE.

 	
 Every persistent entity class must have an identifier attribute annotated with @Id. Hibernate maps this attribute to a column named ID.

 	
 Someone must generate identifier values; this annotation enables automatic generation of IDs.

 	
 You usually implement regular attributes of a persistent class with private or protected fields and public getter/setter method pairs. Hibernate maps this attribute to a column called TEXT.

 The identifier attribute of a persistent class allows the application to access the database identity—the primary key value—of a persistent instance. If two instances of Message have the same identifier value, they represent the same row in the database.

 This example uses Long for the type of the identifier attribute, but this isn’t a requirement. Hibernate allows virtually anything for the identifier type, as you’ll see later.

 You may have noticed that the text attribute of the Message class has JavaBeans-style property accessor methods. The class also has a (default) constructor with no parameters. The persistent classes we show in the examples will usually look something like this. Note that you don’t need to implement any particular interface or extend any special superclass.

 Instances of the Message class can be managed (made persistent) by Hibernate, but they don’t have to be. Because the Message object doesn’t implement any persistence-specific classes or interfaces, you can use it just like any other Java class:

 Message msg = new Message();
msg.setText("Hello!");
System.out.println(msg.getText());

 It may look like we’re trying to be cute here; in fact, we’re demonstrating an important feature that distinguishes Hibernate from some other persistence solutions. You can use the persistent class in any execution context—no special container is needed.

 You don’t have to use annotations to map a persistent class. Later we’ll show you other mapping options, such as the JPA orm.xml mapping file, and native hbm.xml mapping files, and when they’re a better solution than source annotations.

 The Message class is now ready. You can store instances in your database and write queries to load them again into application memory.

 2.2.3. Storing and loading messages

 What you really came here to see is Hibernate, so let’s save a new Message to the database. First you need an EntityManagerFactory to talk to your database. This API represents your persistence unit; most applications have one EntityManagerFactory for one configured persistence unit:

 Path: /examples/src/est/java/org/jpwh/helloworld/HelloWorldJPA.java

 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("HelloWorldPU");

 Once it starts, your application should create the EntityManagerFactory; the factory is thread-safe, and all code in your application that accesses the database should share it.

 You can now work with the database in a demarcated unit—a transaction—and store a Message:

 Path: /examples/src/test/java/org/jpwh/helloworld/HelloWorldJPA.java

 [image:]

 	
 Get access to the standard transaction API UserTransaction, and begin a transaction on this thread of execution.

 	
 Begin a new session with the database by creating an EntityManager. This is your context for all persistence operations.

 	
 Create a new instance of the mapped domain model class Message, and set its text property.

 	
 Enlist the transient instance with your persistence context; you make it persistent. Hibernate now knows that you wish to store that data, but it doesn’t necessarily call the database immediately.

 	
 Commit the transaction. Hibernate automatically checks the persistence context and executes the necessary SQL INSERT statement.

 	
 If you create an EntityManager, you must close it.

 To help you understand how Hibernate works, we show the automatically generated and executed SQL statements in source code comments when they occur. Hibernate inserts a row in the MESSAGE table, with an automatically generated value for the ID primary key column, and the TEXT value.

 You can later load this data with a database query:

 Path: /examples/src/test/java/org/jpwh/helloworld/HelloWorldJPA.java

 [image:]

 	
 Every interaction with your database should occur within explicit transaction boundaries, even if you’re only reading data.

 	
 Execute a query to retrieve all instances of Message from the database.

 	
 You can change the value of a property. Hibernate detects this automatically because the loaded Message is still attached to the persistence context it was loaded in.

 	
 On commit, Hibernate checks the persistence context for dirty state and executes the SQL UPDATE automatically to synchronize in-memory with the database state.

 The query language you’ve seen in this example isn’t SQL, it’s the Java Persistence Query Language (JPQL). Although there is syntactically no difference in this trivial example, the Message in the query string doesn’t refer to the database table name, but to the persistent class name. If you map the class to a different table, the query will still work.

 Also, notice how Hibernate detects the modification to the text property of the message and automatically updates the database. This is the automatic dirty-checking feature of JPA in action. It saves you the effort of explicitly asking your persistence manager to update the database when you modify the state of an instance inside a transaction.

 You’ve now completed your first Hibernate and JPA application. Maybe you’ve already noticed that we prefer to write examples as executable tests, with assertions that verify the correct outcome of each operation. We’ve taken all the examples in this book from test code, so you (and we) can be sure they work properly. Unfortunately, this also means you need more than one line of code to create the EntityManagerFactory when starting the test environment. We’ve tried to keep the setup of the tests as simple as possible. You can find the code in org.jpwh.env.JPASetup and org.jpwh.env.JPATest; use it as a starting point for writing your own test harness.

 Before we work on more-realistic application examples, let’s have a quick look at the native Hibernate bootstrap and configuration API.

2.3. Native Hibernate configuration

 Although basic (and extensive) configuration is standardized in JPA, you can’t access all the configuration features of Hibernate with properties in persistence.xml. Note that most applications, even quite sophisticated ones, don’t need such special configuration options and hence don’t have to access the bootstrap API we show in this section. If you aren’t sure, you can skip this section and come back to it later, when you need to extend Hibernate type adapters, add custom SQL functions, and so on.

 The native equivalent of the standard JPA EntityManagerFactory is the org.hibernate.SessionFactory. You have usually one per application, and it’s the same pairing of class mappings with database connection configuration.

 Hibernate’s native bootstrap API is split into several stages, each giving you access to certain configuration aspects. In its most compact form, building a Session-Factory looks like this:

 Path: /examples/src/test/java/org/jpwh/helloworld/HelloWorldHibernate.java

 SessionFactory sessionFactory = new MetadataSources(
 new StandardServiceRegistryBuilder()
 .configure("hibernate.cfg.xml").build()
).buildMetadata().buildSessionFactory();

 This loads all settings from a Hibernate configuration file. If you have an existing Hibernate project, you most likely have this file on your classpath. Similar to persistence.xml, this configuration file contains database connection details, as well as a list of persistent classes and other configuration properties.

 Let’s deconstruct this bootstrap snippet and look at the API in more detail. First, create a ServiceRegistry:

 Path: /examples/src/test/java/org/jpwh/helloworld/HelloWorldHibernate.java

 [image:]

 	
 This builder helps you create the immutable service registry with chained method calls.

 	
 Configure the services registry by applying settings.

 If you want to externalize your service registry configuration, you can load settings from a properties file on the classpath with StandardServiceRegistryBuilder#load-Properties(file).

 With the ServiceRegistry built and immutable, you can move on to the next stage: telling Hibernate which persistent classes are part of your mapping metadata. Configure the metadata sources as follows:

 Path: /examples/src/test/java/org/jpwh/helloworld/HelloWorldHibernate.java

 [image:]

 	
 This builder helps you create the immutable service registry with chained method calls.

 	
 Configure the services registry by applying settings.

 The MetadataSources API has many methods for adding mapping sources; check the Javadoc for more information. The next stage of the boot procedure is building all the metadata needed by Hibernate, with the MetadataBuilder you obtained from the metadata sources.

 You can then query the metadata to interact with Hibernate’s completed configuration programmatically, or continue and build the final SessionFactory:

 Path: /examples/src/test/java/org/jpwh/helloworld/HelloWorldHibernate.java

 Metadata metadata = metadataBuilder.build();
assertEquals(metadata.getEntityBindings().size(), 1);
SessionFactory sessionFactory = metadata.buildSessionFactory();

 Creating an EntityManagerFactory from a SessionFactory

 At the time of writing, Hibernate has no convenient API to build an EntityManager-Factory programmatically. You can use an internal API for this purpose: the org.hibernate.jpa.internal.EntityManagerFactoryImpl has a constructor that accepts a SessionFactory.

 Let’s see if this configuration works by storing and loading a message with Hibernate’s native equivalent of EntityManager, org.hibernate.Session. You can create a Session with the SessionFactory, and you must close it just as you have to close your own EntityManager.

 Or, using another Hibernate feature, you can let Hibernate take care of creating and closing the Session with SessionFactory#getCurrentSession():

 Path: /examples/src/ test/java/org/jpwh/helloworld/HelloWorldHibernate.java

 [image:]

 	
 Get access to the standard transaction API UserTransaction, and begin a transaction on this thread of execution.

 	
 Whenever you call getCurrentSession() in the same thread, you get the same org.hibernate.Session. It’s bound automatically to the ongoing transaction and is closed for you automatically when that transaction commits or rolls back.

 	
 The native Hibernate API is very similar to the standard Java Persistence API, and most methods have the same names.

 	
 Hibernate synchronizes the session with the database and automatically closes the “current” session on commit of the bound transaction.

 Accessing the current Session results in compact code:

 Path: /examples/src/test/java/org/jpwh/helloworld/HelloWorldHibernate.java

 [image:]

 	
 A Hibernate criteria query is a type-safe programmatic way to express queries, automatically translated into SQL.

 Most of the examples in this book don’t use the SessionFactory or Session API. From time to time, when a particular feature is only available in Hibernate, we show you how to unwrap() the native interface given a standard API.

2.4. Summary

 	
 You’ve completed your first JPA project.

 	
 You wrote a persistent class and its mapping with annotations.

 	
 You’ve seen how to configure and bootstrap a persistence unit, and how to create the EntityManagerFactory entry point. Then you called the Entity-Manager to interact with the database, storing and loading instances of your persistent domain model class.

 	
 We discussed some of the more advanced native Hibernate bootstrap and configuration options, as well as the equivalent basic Hibernate APIs, Session-Factory and Session.

 Chapter 3. Domain models and metadata

 In this chapter

 	
 Discovering the CaveatEmptor example application

 	
 Implementing the domain model

 	
 Object/relational mapping metadata options

 The “Hello World” example in the previous chapter introduced you to Hibernate; certainly, it isn’t useful for understanding the requirements of real-world applications with complex data models. For the rest of the book, we use a much more sophisticated example application—CaveatEmptor, an online auction system—to demonstrate Hibernate and Java Persistence. (Caveat emptor means “Let the buyer beware”.)

 Major new features in JPA 2

 	
 A JPA persistence provider now integrates automatically with a Bean Validation provider. When data is stored, the provider automatically validates constraints on persistent classes.

 	
 The Metamodel API has been added. You can obtain (unfortunately not change) the names, properties, and mapping metadata of the classes in a persistence unit.

 We’ll start our discussion of the application by introducing a layered application architecture. Then, you’ll learn how to identify the business entities of a problem domain. You’ll create a conceptual model of these entities and their attributes, called a domain model, and you’ll implement it in Java by creating persistent classes. We’ll spend some time exploring exactly what these Java classes should look like and where they fit within a typical layered application architecture. We’ll also look at the persistence capabilities of the classes and how this aspect influences the design and implementation. We’ll add Bean Validation, which helps to automatically verify the integrity of the domain model data not only for persistent information but all business logic.

 We’ll then explore mapping metadata options—the ways you tell Hibernate how your persistent classes and their properties relate to database tables and columns. This can be as simple as adding annotations directly in the Java source code of the classes or writing XML documents that you eventually deploy along with the compiled Java classes that Hibernate accesses at runtime. After reading this chapter, you’ll know how to design the persistent parts of your domain model in complex real-world projects, and what mapping metadata option you’ll primarily prefer and use. Let’s start with the example application.

3.1. The example CaveatEmptor application

 The CaveatEmptor example is an online auction application that demonstrates ORM techniques and Hibernate functionality. You can download the source code for the application from www.jpwh.org. We won’t pay much attention to the user interface in this book (it could be web based or a rich client); we’ll concentrate instead on the data access code. When a design decision about data access code that has consequences for the user interface has to be made, we’ll naturally consider both.

 In order to understand the design issues involved in ORM, let’s pretend the Caveat-Emptor application doesn’t yet exist and that you’re building it from scratch. Let’s start by looking at the architecture.

 3.1.1. A layered architecture

 With any nontrivial application, it usually makes sense to organize classes by concern. Persistence is one concern; others include presentation, workflow, and business logic. A typical object-oriented architecture includes layers of code that represent the concerns.

 Cross-cutting concerns

 There are also so-called cross-cutting concerns, which may be implemented generically—by framework code, for example. Typical cross-cutting concerns include logging, authorization, and transaction demarcation.

 A layered architecture defines interfaces between code that implements the various concerns, allowing changes to be made to the way one concern is implemented without significant disruption to code in the other layers. Layering determines the kinds of inter-layer dependencies that occur. The rules are as follows:

 	
 Layers communicate from top to bottom. A layer is dependent only on the interface of the layer directly below it.

 	
 Each layer is unaware of any other layers except for the layer just below it.

 Different systems group concerns differently, so they define different layers. The typical, proven, high-level application architecture uses three layers: one each for presentation, business logic, and persistence, as shown in figure 3.1.

 Figure 3.1. A persistence layer is the basis in a layered architecture.

 [image:]

 	
 Presentation layer—The user interface logic is topmost. Code responsible for the presentation and control of page and screen navigation is in the presentation layer. The user interface code may directly access business entities of the shared domain model and render them on the screen, along with controls to execute actions. In some architectures, business entity instances might not be directly accessible by user interface code: for example, if the presentation layer isn’t running on the same machine as the rest of the system. In such cases, the presentation layer may require its own special data-transfer model, representing only a transmittable subset of the domain model.

 	
 Business layer—The exact form of the next layer varies widely between applications. It’s generally agreed that the business layer is responsible for implementing any business rules or system requirements that would be understood by users as part of the problem domain. This layer usually includes some kind of controlling component—code that knows when to invoke which business rule. In some systems, this layer has its own internal representation of the business domain entities. Alternatively, it relies on a domain model implementation, shared with the other layers of the application.

 	
 Persistence layer—The persistence layer is a group of classes and components responsible for storing data to, and retrieving it from, one or more data stores. This layer needs a model of the business domain entities for which you’d like to keep persistent state. The persistence layer is where the bulk of JPA and Hibernate use takes place.

 	
 Database—The database is usually external, shared by many applications. It’s the actual, persistent representation of the system state. If an SQL database is used, the database includes a schema and possibly stored procedures for execution of business logic close to the data.

 	
 Helper and utility classes—Every application has a set of infrastructural helper or utility classes that are used in every layer of the application (such as Exception classes for error handling). These shared infrastructural elements don’t form a layer because they don’t obey the rules for inter-layer dependency in a layered architecture.

 Now that you have a high-level architecture, you can focus on the business problem.

 3.1.2. Analyzing the business domain

 At this stage, you, with the help of domain experts, analyze the business problems your software system needs to solve, identifying the relevant main entities and their interactions. The motivating goal behind the analysis and design of a domain model is to capture the essence of the business information for the application’s purpose.

 Entities are usually notions understood by users of the system: payment, customer, order, item, bid, and so forth. Some entities may be abstractions of less concrete things the user thinks about, such as a pricing algorithm, but even these are usually understandable to the user. You can find all these entities in the conceptual view of the business, sometimes called a business model.

 From this business model, engineers and architects of object-oriented software create an object-oriented model, still at the conceptual level (no Java code). This model may be as simple as a mental image existing only in the mind of the developer, or it may be as elaborate as a UML class diagram. Figure 3.2 shows a simple model expressed in UML.

 Figure 3.2. A class diagram of a typical online auction model

 [image:]

 This model contains entities that you’re bound to find in any typical e-commerce system: category, item, and user. This model of the problem domain represents all the entities and their relationships (and perhaps their attributes). We call this kind of object-oriented model of entities from the problem domain, encompassing only those entities that are of interest to the user, a domain model. It’s an abstract view of the real world.

 Instead of an object-oriented model, engineers and architects may start the application design with a data model (possibly expressed with an entity-relationship diagram). We usually say that, with regard to persistence, there is little difference between the two; they’re merely different starting points. In the end, what modeling language you use is secondary; we’re most interested in the structure and relationships of the business entities. We care about the rules that have to be applied to guarantee the integrity of data (for example, the multiplicity of relationships) and the code procedures used to manipulate the data.

 In the next section, we complete our analysis of the CaveatEmptor problem domain. The resulting domain model will be the central theme of this book.

 3.1.3. The CaveatEmptor domain model

 The CaveatEmptor site auctions many different kinds of items, from electronic equipment to airline tickets. Auctions proceed according to the English auction strategy: users continue to place bids on an item until the bid period for that item expires, and the highest bidder wins.

 In any store, goods are categorized by type and grouped with similar goods into sections and onto shelves. The auction catalog requires some kind of hierarchy of item categories so that a buyer can browse these categories or arbitrarily search by category and item attributes. Lists of items appear in the category browser and search result screens. Selecting an item from a list takes the buyer to an item-detail view where an item may have images attached to it.

 An auction consists of a sequence of bids, and one is the winning bid. User details include name, address, and billing information.

 The result of this analysis, the high-level overview of the domain model, is shown in figure 3.3. Let’s briefly discuss some interesting features of this model.

 Figure 3.3. Persistent classes of the CaveatEmptor domain model and their relationships

 [image:]

 Each item can be auctioned only once, so you don’t need to make Item distinct from any auction entities. Instead, you have a single auction item entity named Item. Thus, Bid is associated directly with Item. You model the Address information of a User as a separate class, a User may have three addresses, for home, billing, and shipping. You do allow the user to have many BillingDetails. Subclasses of an abstract class represent the various billing strategies (allowing future extension).

 The application may nest a Category inside another Category, and so on. A recursive association, from the Category entity to itself, expresses this relationship. Note that a single Category may have multiple child categories but at most one parent. Each Item belongs to at least one Category.

 This representation isn’t the complete domain model but only classes for which you need persistence capabilities. You’d like to store and load instances of Category, Item, User, and so on. We have simplified this high-level overview a little; we may introduce additional classes later or make minor modifications to them when needed for more complex examples.

 Certainly, the entities in a domain model should encapsulate state and behavior. For example, the User entity should define the name and address of a customer and the logic required to calculate the shipping costs for items (to this particular customer).

 There might be other classes in the domain model that have only transient runtime instances. Consider a WinningBidStrategy class encapsulating the fact that the highest bidder wins an auction. This might be called by the business layer (controller) code when checking the state of an auction. At some point, you might have to figure out how tax for sold items is calculated or how the system may approve a new user account. We don’t consider such business rules or domain model behavior to be unimportant; rather, this concern is mostly orthogonal to the problem of persistence.

 Now that you have a (rudimentary) application design with a domain model, the next step is to implement it in Java.

 ORM without a domain model

 Object persistence with full ORM is most suitable for applications based on a rich domain model. If your application doesn’t implement complex business rules or complex interactions between entities (or if you have few entities), you may not need a domain model. Many simple and some not-so-simple problems are perfectly suited to table-oriented solutions, where the application is designed around the database data model instead of around an object-oriented domain model, often with logic executed in the database (stored procedures). Another aspect to consider is the learning curve: once you’re proficient with Hibernate, you’ll use it for all applications, even as a simple SQL query generator and result mapper. If you’re just learning ORM, a trivial use case may not justify your invested time and overhead.

3.2. Implementing the domain model

 You’ll start with an issue that any implementation must deal with: the separation of concerns. The domain model implementation is usually a central, organizing component; it’s reused heavily whenever you implement new application functionality. For this reason, you should be prepared to go to some lengths to ensure that concerns other than business aspects don’t leak into the domain model implementation.

 3.2.1. Addressing leakage of concerns

 When concerns such as persistence, transaction management, or authorization start to appear in the domain model classes, this is an example of leakage of concerns. The domain model implementation is such an important piece of code that it shouldn’t depend on orthogonal Java APIs. For example, code in the domain model shouldn’t perform JNDI lookups or call the database via the JDBC API, not directly and not through an intermediate abstraction. This allows you to reuse the domain model classes virtually anywhere:

 	
 The presentation layer can access instances and attributes of domain model entities when rendering views.

 	
 The controller components in the business layer can also access the state of domain model entities and call methods of the entities to execute business logic.

 	
 The persistence layer can load and store instances of domain model entities from and to the database, preserving their state.

 Most important, preventing leakage of concerns makes it easy to unit-test the domain model without the need for a particular runtime environment or container, or the need for mocking any service dependencies. You can write unit tests that verify the correct behavior of your domain model classes without any special test harness. (We aren’t talking about testing “load from the database” and “store in the database” aspects, but “calculate the shipping cost and tax” behavior.)

 The Java EE standard solves the problem of leaky concerns with metadata, as annotations within your code or externalized as XML descriptors. This approach allows the runtime container to implement some predefined cross-cutting concerns—security, concurrency, persistence, transactions, and remoteness—in a generic way, by intercepting calls to application components.

 Hibernate isn’t a Java EE runtime environment, and it’s not an application server. It’s an implementation of just one specification under the Java EE umbrella—JPA—and a solution for just one of these concerns: persistence.

 JPA defines the entity class as the primary programming artifact. This programming model enables transparent persistence, and a JPA provider such as Hibernate also offers automated persistence.

 3.2.2. Transparent and automated persistence

 We use transparent to mean a complete separation of concerns between the persistent classes of the domain model and the persistence layer. The persistent classes are unaware of—and have no dependency on—the persistence mechanism. We use automatic to refer to a persistence solution (your annotated domain, the layer, and mechanism) that relieves you of handling low-level mechanical details, such as writing most SQL statements and working with the JDBC API.

 The Item class of the CaveatEmptor domain model, for example, shouldn’t have any runtime dependency on any Java Persistence or Hibernate API. Furthermore:

 	
 JPA doesn’t require that any special superclasses or interfaces be inherited or implemented by persistent classes. Nor are any special classes used to implement attributes and associations. (Of course, the option to use both techniques is always there.)

 	
 You can reuse persistent classes outside the context of persistence, in unit tests or in the presentation layer, for example. You can create instances in any runtime environment with the regular Java new operator, preserving testability and reusability.

 	
 In a system with transparent persistence, instances of entities aren’t aware of the underlying data store; they need not even be aware that they’re being persisted or retrieved. JPA externalizes persistence concerns to a generic persistence manager API.

 	
 Hence, most of your code, and certainly your complex business logic, doesn’t have to concern itself with the current state of a domain model entity instance in a single thread of execution.

 We regard transparency as a requirement because it makes an application easier to build and maintain. Transparent persistence should be one of the primary goals of any ORM solution. Clearly, no automated persistence solution is completely transparent: Every automated persistence layer, including JPA and Hibernate, imposes some requirements on the persistent classes. For example, JPA requires that collection-valued attributes be typed to an interface such as java.util.Set or java.util.List and not to an actual implementation such as java.util.HashSet (this is a good practice anyway). Or, a JPA entity class has to have a special attribute, called the database identifier (which is also less of a restriction but usually convenient).

 You now know why the persistence mechanism should have minimal impact on how you implement a domain model, and that transparent and automated persistence are required. Our preferred programming model to archive this is POJO.

 Around 10 years ago, many developers started talking about POJO, a back-to-basics approach that essentially revives JavaBeans, a component model for UI development, and reapplies it to the other layers of a system. Several revisions of the EJB and JPA specifications brought us new lightweight entities, and it would be appropriate to call them persistence-capable JavaBeans. Java engineers often use all these terms as synonyms for the same basic design approach.

 POJO

 POJO is the acronym for Plain Old Java Objects. Martin Fowler, Rebecca Parsons, and Josh Mackenzie coined this term in 2000.

 You shouldn’t be too concerned about what terms we use in this book; the ultimate goal is to apply the persistence aspect as transparently as possible to Java classes. Almost any Java class can be persistence-capable if you follow some simple practices. Let’s see how this looks in code.

 3.2.3. Writing persistence-capable classes

 Working with fine-grained and rich domain models is a major Hibernate objective. This is a reason we work with POJOs. In general, using fine-grained objects means more classes than tables.

 A persistence-capable plain-old Java class declares attributes, which represent state, and business methods, which define behavior. Some attributes represent associations to other persistence-capable classes.

 A POJO implementation of the User entity of the domain model is shown in the following listing. Let’s walk through the code.

 Listing 3.1. POJO implementation of the User class

 Path: /model/src/main/java/org/jpwh/model/simple/User.java

 public class User implements Serializable {
<enter/>
 protected String username;
<enter/>
 public User() {
 }
<enter/>
 public String getUsername() {
 return username;
 }
<enter/>
 public void setUsername(String username) {
 this.username = username;
 }
<enter/>
 public BigDecimal calcShippingCosts(Address fromLocation) {
 // Empty implementation of business method
 return null;
 }
<enter/>
 // ...
}
<enter/>

 JPA doesn’t require that persistent classes implement java.io.Serializable. But when instances are stored in an HttpSession or passed by value using RMI, serialization is necessary. Although this might not occur in your application, the class will be serializable without any additional work, and there are no downsides to declaring that. (We aren’t going to declare it on every example, assuming that you know when it will be necessary.)

 The class can be abstract and, if needed, extend a non-persistent class or implement an interface. It must be a top-level class, not nested within another class. The persistence-capable class and any of its methods can’t be final (a requirement of the JPA specification).

 Unlike the JavaBeans specification, which requires no specific constructor, Hibernate (and JPA) require a constructor with no arguments for every persistent class. Alternatively, you might not write a constructor at all; Hibernate will then use the Java default constructor. Hibernate calls classes using the Java reflection API on such a no-argument constructor to create instances. The constructor may not be public, but it has to be at least package-visible if Hibernate will use runtime-generated proxies for performance optimization. Also, consider the requirements of other specifications: the EJB standard requires public visibility on session bean constructors, just like the JavaServer Faces (JSF) specification requires for its managed beans. There are other situations when you’d want a public constructor to create an “empty” state: for example, query-by-example building.

 The properties of the POJO implement the attributes of the business entities—for example, the username of User. You usually implement properties as private or protected member fields, together with public or protected property accessor methods: for each field a method for retrieving its value and a method for setting the value. These methods are known as the getter and setter, respectively. The example POJO in listing 3.1 declares getter and setter methods for the username property.

 The JavaBean specification defines the guidelines for naming accessor methods; this allows generic tools like Hibernate to easily discover and manipulate property values. A getter method name begins with get, followed by the name of the property (the first letter in uppercase); a setter method name begins with set and similarly is followed by the name of the property. You may begin getter methods for Boolean properties with is instead of get.

 Hibernate doesn’t require accessor methods. You can choose how the state of an instance of your persistent classes should be persisted. Hibernate will either directly access fields or call accessor methods. Your class design isn’t disturbed much by these considerations. You can make some accessor methods non-public or completely remove them—then configure Hibernate to rely on field access for these properties.

 Should property fields and accessor methods be private, protected, or package visible?

 Typically, you want to discourage direct access to the internal state of your class, so you don’t make attribute fields public. If you make fields or methods private, you’re effectively declaring that nobody should ever access them; only you’re allowed to do that (or a service like Hibernate). This is a definitive statement. There are often good reasons for someone to access your “private” internals—usually to fix one of your bugs—and you only make people angry if they have to fall back to reflection access in an emergency. Instead, you might assume or know that the engineer who comes after you has access to your code and knows what they’re doing.

 The protected visibility then is a more reasonable default. You’re forbidding direct public access, indicating that this particular member detail is internal, but allowing access by subclasses if need be. You trust the engineer who creates the subclass. Package visibility is rude: you’re forcing someone to create code in the same package to access member fields and methods; this is extra work for no good reason. Most important, these recommendations for visibility are relevant for environments without security policies and a runtime SecurityManager. If you have to keep your internal code private, make it private.

 Although trivial accessor methods are common, one of the reasons we like to use Java-Beans-style accessor methods is that they provide encapsulation: you can change the hidden internal implementation of an attribute without any changes to the public interface. If you configure Hibernate to access attributes through methods, you abstract the internal data structure of the class—the instance variables—from the design of the database.

 For example, if your database stores the name of a user as a single NAME column, but your User class has firstname and lastname fields, you can add the following persistent name property to the class.

 Listing 3.2. POJO implementation of the User class with logic in accessor methods

 public class User {
<enter/>
 protected String firstname;
 protected String lastname;
<enter/>
 public String getName() {
 return firstname + ' ' + lastname;
 }
<enter/>
 public void setName(String name) {
 StringTokenizer t = new StringTokenizer(name);
 firstname = t.nextToken();
 lastname = t.nextToken();
 }
}

 Later, you’ll see that a custom type converter in the persistence service is a better way to handle many of these kinds of situations. It helps to have several options.

 Another issue to consider is dirty checking. Hibernate automatically detects state changes in order to synchronize the updated state with the database. It’s usually safe to return a different instance from the getter method than the instance passed by Hibernate to the setter. Hibernate compares them by value—not by object identity—to determine whether the attribute’s persistent state needs to be updated. For example, the following getter method doesn’t result in unnecessary SQL UPDATEs:

 [image:]

 There is one important exception to this: collections are compared by identity! For a property mapped as a persistent collection, you should return exactly the same collection instance from the getter method that Hibernate passed to the setter method. If you don’t, Hibernate will update the database, even if no update is necessary, every time the state held in memory is synchronized with the database. You should usually avoid this kind of code in accessor methods:

 [image:]

 Of course, this won’t be a problem if Hibernate is accessing the names field directly, ignoring your getter and setter methods.

 How does Hibernate handle exceptions when your accessor methods throw them? If Hibernate uses accessor methods when loading and storing instances and a RuntimeException (unchecked) is thrown, the current transaction is rolled back, and the exception is yours to handle in the code that called the Java Persistence (or Hibernate native) API. If you throw a checked application exception, Hibernate wraps the exception into a RuntimeException.

 The example in listing 3.2 also defines a business method that calculates the cost of shipping an item to a particular user (we left out the implementation of this method).

 Next, we’ll focus on the relationships between entities and associations between persistent classes.

 3.2.4. Implementing POJO associations

 You’ll now see how to associate and create different kinds of relationships between objects: one-to-many, many-to-one, and bidirectional relationships. We’ll look at the scaffolding code needed to create these associations, how to simplify relationship management, and how to enforce the integrity of these relationships.

 You create properties to express associations between classes, and you (typically) call accessor methods to navigate from instance to instance at runtime. Let’s consider the associations defined by the Item and Bid persistent classes, as shown in figure 3.4.

 Figure 3.4. Associations between the Item and Bid classes

 [image:]

 As with all of our UML class diagrams, we left out the association-related attributes, Item#bids and Bid#item. These properties and the methods that manipulate their values are called scaffolding code. This is what the scaffolding code for the Bid class looks like:

 Path: /model/src/main/java/org/jpwh/model/simple/Bid.java

 public class Bid {
<enter/>
 protected Item item;
<enter/>
 public Item getItem() {
 return item;
 }
<enter/>
 public void setItem(Item item) {
 this.item = item;
 }
}

 The item property allows navigation from a Bid to the related Item. This is an association with many-to-one multiplicity; users can make many bids for each item. Here is the Item class’s scaffolding code:

 Path: /model/src/main/java/org/jpwh/model/simple/Item.java

