

 GANs in Action: Deep learning with Generative Adversarial Networks

 Jakub Langr and Vladimir Bok

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Acquisitions editor: Brian Sawyer
Development editor: Christina Taylor
Technical development editors: John Hyaduck and Kostas Passadis
Review editor Aleks Dragosavljević
Production editor: Anthony Calcara
Copy editor: Sharon Wilkey
Proofreader Tiffany Taylor
Technical proofreader: Karsten Strøbæk
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617295560

 Printed in the United States of America

Dedication

 To those who will consider the jokes more of a pun-ishment than the math.

 Jakub Langr

 To Michael Reitano, for helping me become a better writer; to Simone Reitano, for helping me become a better person.

 Vladimir Bok

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the cover illustration

 Part 1. Introduction to GANs and generative modeling

 Chapter 1. Introduction to GANs

 Chapter 2. Intro to generative modeling with autoencoders

 Chapter 3. Your first GAN: Generating handwritten digits

 Chapter 4. Deep Convolutional GAN

 Part 2. Advanced topics in GANs

 Chapter 5. Training and common challenges: GANing for success

 Chapter 6. Progressing with GANs

 Chapter 7. Semi-Supervised GAN

 Chapter 8. Conditional GAN

 Chapter 9. CycleGAN

 Part 3. Where to go from here

 Chapter 10. Adversarial examples

 Chapter 11. Practical applications of GANs

 Chapter 12. Looking ahead

 inside cover Training Generative Adversarial Networks (GANs)

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the cover illustration

 1. Introduction to GANs and generative modeling

 Chapter 1. Introduction to GANs

 1.1. What are Generative Adversarial Networks?

 1.2. How do GANs work?

 1.3. GANs in action

 1.3.1. GAN training

 1.3.2. Reaching equilibrium

 1.4. Why study GANs?

 Summary

 Chapter 2. Intro to generative modeling with autoencoders

 2.1. Introduction to generative modeling

 2.2. How do autoencoders function on a high level?

 2.3. What are autoencoders to GANs?

 2.4. What is an autoencoder made of?

 2.5. Usage of autoencoders

 2.6. Unsupervised learning

 2.6.1. New take on an old idea

 2.6.2. Generation using an autoencoder

 2.6.3. Variational autoencoder

 2.7. Code is life

 2.8. Why did we try aGAN?

 Summary

 Chapter 3. Your first GAN: Generating handwritten digits

 3.1. Foundations of GANs: Adversarial training

 3.1.1. Cost functions

 3.1.2. Training process

 3.2. The Generator and the Discriminator

 3.2.1. Conflicting objectives

 3.2.2. Confusion matrix

 3.3. GAN training algorithm

 3.4. Tutorial: Generating handwritten digits

 3.4.1. Importing modules and specifying model input dimensions

 3.4.2. Implementing the Generator

 3.4.3. Implementing the Discriminator

 3.4.4. Building the model

 3.4.5. Training

 3.4.6. Outputting sample images

 3.4.7. Running the model

 3.4.8. Inspecting the results

 3.5. Conclusion

 Summary

 Chapter 4. Deep Convolutional GAN

 4.1. Convolutional neural networks

 4.1.1. Convolutional filters

 4.1.2. Parameter sharing

 4.1.3. ConvNets visualized

 4.2. Brief history of the DCGAN

 4.3. Batch normalization

 4.3.1. Understanding normalization

 4.3.2. Computing batch normalization

 4.4. Tutorial: Generating handwritten digits with DCGAN

 4.4.1. Importing modules and specifying model input dimensions

 4.4.2. Implementing the Generator

 4.4.3. Implementing the Discriminator

 4.4.4. Building and running the DCGAN

 4.4.5. Model output

 4.5. Conclusion

 Summary

 2. Advanced topics in GANs

 Chapter 5. Training and common challenges: GANing for success

 5.1. Evaluation

 5.1.1. Evaluation framework

 5.1.2. Inception score

 5.1.3. Fréchet inception distance

 5.2. Training challenges

 5.2.1. Adding network depth

 5.2.2. Game setups

 5.2.3. Min-Max GAN

 5.2.4. Non-Saturating GAN

 5.2.5. When to stop training

 5.2.6. Wasserstein GAN

 5.3. Summary of game setups

 5.4. Training hacks

 5.4.1. Normalizations of inputs

 5.4.2. Batch normalization

 5.4.3. Gradient penalties

 5.4.4. Train the Discriminator more

 5.4.5. Avoid sparse gradients

 5.4.6. Soft and noisy labels

 Summary

 Chapter 6. Progressing with GANs

 6.1. Latent space interpolation

 6.2. They grow up so fast

 6.2.1. Progressive growing and smoothing of higher-resolution layers

 6.2.2. Example implementation

 6.2.3. Mini-batch standard deviation

 6.2.4. Equalized learning rate

 6.2.5. Pixel-wise feature normalization in the generator

 6.3. Summary of key innovations

 6.4. TensorFlow Hub and hands-on

 6.5. Practical applications

 Summary

 Chapter 7. Semi-Supervised GAN

 7.1. Introducing the Semi-Supervised GAN

 7.1.1. What is a Semi-Supervised GAN?

 7.1.2. Architecture

 7.1.3. Training process

 7.1.4. Training objective

 7.2. Tutorial: Implementing a Semi-Supervised GAN

 7.2.1. Architecture diagram

 7.2.2. Implementation

 7.2.3. Setup

 7.2.4. The dataset

 7.2.5. The Generator

 7.2.6. The Discriminator

 7.2.7. Building the model

 7.2.8. Training

 7.3. Comparison to a fully supervised classifier

 7.4. Conclusion

 Summary

 Chapter 8. Conditional GAN

 8.1. Motivation

 8.2. What is Conditional GAN?

 8.2.1. CGAN Generator

 8.2.2. CGAN Discriminator

 8.2.3. Summary table

 8.2.4. Architecture diagram

 8.3. Tutorial: Implementing a Conditional GAN

 8.3.1. Implementation

 8.3.2. Setup

 8.3.3. CGAN Generator

 8.3.4. CGAN Discriminator

 8.3.5. Building the model

 8.3.6. Training

 8.3.7. Outputting sample images

 8.3.8. Training the model

 8.3.9. Inspecting the output: Targeted data generation

 8.4. Conclusion

 Summary

 Chapter 9. CycleGAN

 9.1. Image-to-image translation

 9.2. Cycle-consistency loss: There and back aGAN

 9.3. Adversarial loss

 9.4. Identity loss

 9.5. Architecture

 9.5.1. CycleGAN architecture: building the network

 9.5.2. Generator architecture

 9.5.3. Discriminator architecture

 9.6. Object-oriented design of GANs

 9.7. Tutorial: CycleGAN

 9.7.1. Building the network

 9.7.2. Building the Generator

 9.7.3. Building the Discriminator

 9.7.4. Training the CycleGAN

 9.7.5. Running CycleGAN

 9.8. Expansions, augmentations, and applications

 9.8.1. Augmented CycleGAN

 9.8.2. Applications

 Summary

 3. Where to go from here

 Chapter 10. Adversarial examples

 10.1. Context of adversarial examples

 10.2. Lies, damned lies, and distributions

 10.3. Use and abuse of training

 10.4. Signal and the noise

 10.5. Not all hope is lost

 10.6. Adversaries to GANs

 10.7. Conclusion

 Summary

 Chapter 11. Practical applications of GANs

 11.1. GANs in medicine

 11.1.1. Using GANs to improve diagnostic accuracy

 11.1.2. Methodology

 11.1.3. Results

 11.2. GANs in fashion

 11.2.1. Using GANs to design fashion

 11.2.2. Methodology

 11.2.3. Creating new items matching individual preferences

 11.2.4. Adjusting existing items to better match individual preferences

 11.3. Conclusion

 Summary

 Chapter 12. Looking ahead

 12.1. Ethics

 12.2. GAN innovations

 12.2.1. Relativistic GAN

 12.2.2. Self-Attention GAN

 12.2.3. BigGAN

 12.3. Further reading

 12.4. Looking back and closing thoughts

 Summary

 Training Generative Adversarial Networks (GANs)

 Index

 List of Figures

 List of Tables

 List of Listings

front matter

Preface

Jakub Langr

 When I first discovered GANs in 2015, I instantly fell in love with the idea. It was the kind of self-criticizing machine learning (ML) system that I always missed in other parts of ML. Even as humans, we constantly generate possible plans and then discriminate that just naively running into a door is not the best idea. GANs really made sense to me—to get to the next level of AI, we should take advantage of automatically learned representations and a machine learning feedback loop. After all, data was expensive, and compute was getting cheap.

 The other thing I loved about GANs—though this realization came later—was its growth curve. No other part of ML is so “new.” Most of computer vision was invented before 1998, whereas GANs were not working before 2014. Since that moment, we have had uninterrupted exponential growth until the time of this writing.

 To date, we have achieved a great deal, cat meme vectors included. The first GAN paper has more than 2.5 times the number of citations the original TensorFlow paper got. GANs are frequently discussed by, for example, McKinsey & Company and most mainstream media outlets. In other words, GANs have an impact far beyond just tech.

 It is a fascinating new world of possibilities, and I am honored and excited to be sharing this world with you. This book was close to two years in the making, and we hope it will be as exciting to you as it is to us. We can’t wait to see what amazing inventions you bring to the community.

Vladimir Bok

 In the words of science fiction writer Arthur C. Clarke, “Technology advanced enough is indistinguishable from magic.” These words inspired me in my early years of exploring the impossible in computer science. However, after years of studying and working in machine learning, I found I had become desensitized to the advances in machine intelligence. When, in 2011, IBM’s Watson triumphed over its flesh-and-bone rivals in Jeopardy, I was impressed; yet five years later, in 2016, when Google’s AlphaGo did the same in the board game Go (computationally, an even more impressive achievement), I was hardly moved. The accomplishment felt somewhat underwhelming—even expected. The magic was gone.

 Then, GANs came along.

 I was first exposed to GANs during a research project at Microsoft Research. It was 2017 and, tired of hearing “Despacito” over and over again, my teammates and I set out to experiment with generative modeling for music using spectrograms (visual encodings of sound data). It quickly became apparent that GANs are vastly superior to other techniques in their ability to synthesize data. Spectrograms produced by other algorithms amounted to little more than white noise; those our GAN outputted were, quite literally, music to our ears. It is one thing to see machines triumph in areas where the objective is clear (as with Jeopardy and Go), and another to witness an algorithm create something novel and authentic independently.

 I hope that, as you read our book, you will share my enthusiasm for GANs and rediscover the magic in AI. Jakub and I worked tirelessly to make this cutting-edge field accessible and comprehensive. We hope you will find our book enjoyable and informative—and our humor bearable.

Acknowledgments

 This book would not be possible without the support and guidance from the editorial team at Manning Publications. We are grateful to Christina Taylor for her hard work and dedication; we could not have hoped for a better development editor. We were also fortunate to work with John Hyaduck and Kostas Passadis, whose insightful feedback helped make this book the best it can be.

 We also want to thank the Manning staff who worked behind the scenes on MEAP, promotion, and other essential aspects of making this publication a reality: Brian Sawyer, Christopher Kaufmann, Aleksandar Dragosavljević, Rebecca Rinehart, Melissa Ice, Candace Gillhoolley, and many others.

 Above all, we are grateful to all our readers who provided invaluable feedback on the early drafts of the manuscript.

 Jakub Langr

 If this book is a success, I am forever grateful to my former team at Pearson, who have been great mentors and friends to this day—Andy, Kostas, Andreas, Dario, Marek, and Hubert. In 2013, they offered me my first data science internship, thus irrevocably changing the course of my life and career.

 Words cannot express my gratitude to all the amazing people of Entrepreneur First, and especially to Dr. Pavan Kumar for being a wonderful friend, flatmate, and colleague.

 I would also like to thank my friends and colleagues from Filtered.com, University of Oxford, ICP, and the R&D team at Mudano, who are all amazing people.

 There are many more people I would like to thank who have been positive influences, but alas, word limit is a cruel lord. So, thank you to my friends and family for sticking by me through thick and thin.

 If this book is not a success, I would like to dedicate the book to the foxes of Carminia Road because, first, what makes that kind of hellish noise at 2 a.m.? And second, I never have to wonder, what does the fox say?

 Vladimir Bok

 I am grateful to James McCaffrey, Roland Fernandez, Sayan Pathak, and the rest of the AI-611 staff at Microsoft Research for the opportunity and privilege to receive mentor-ship and instruction from some of the greatest minds in machine learning and AI. My gratitude also goes to my AI-611 teammates, Tim Balbekov and Rishav Mukherji, for joining me on the journey, and to our mentors, Nebojsa Jojic and Po-Sen Huang, for their guidance.

 I would also like to thank my college advisor, Prof. Krzysztof Gajos, for allowing me to enroll in his graduate research seminar even though I had not fulfilled the course prerequisites; it was an invaluable first exposure to the world of hands-on computer science research.

 Special thanks to my colleagues at Intent for their support and encouragement—and for bearing with my late-night email responses as many of my evenings were spent writing and doing research.

 I am deeply grateful to Kimberly Pope for believing in the young Czech high school student all those years ago and selecting me for a scholarship that changed my life. It is a debt I can never repay.

 Lastly, thank you to my family and friends for being there for me. Always.

About this book

 The goal of this book is to provide the definitive guide for anyone interested in learning about Generative Adversarial Networks (GANs) from the ground up. Starting from the simplest examples, we advance to some of the most innovative GAN implementations and techniques. We make cutting-edge research accessible by providing the intuition behind these advances while sparing you all but the essential math and theory.

 Ultimately, our goal is to give you the knowledge and tools necessary not only to understand what has been accomplished in GANs to date, but also to empower you to find new applications of your choosing. The generative adversarial paradigm is full of potential to be unraveled by enterprising individuals like you who can make an impact through academic and real-world applications alike. We are thrilled to have you join us on this journey.

Who should read this book

 This book is intended for readers who already have some experience with machine learning and neural networks. The following list indicates what you should ideally know. Although we try our best to explain most things as we go, you should be confident about at least 70% of this list:

 	We expect you to be able to run intermediate Python programs. You do not need to be a Python master, but you should have at least two years of Python experience (ideally as a full-time data scientist or software engineer).

 	You should understand object-oriented programming, how to work with objects, and how to figure out their attributes and methods. You need to be able to understand reasonably typical Python objects (for example, Pandas Data-Frames) as well as atypical ones (for example, Keras layers).

 	You should understand the basics of machine learning theory, such as train/test split, overfitting, weights, and hyperparameters, as well as the basics of supervised, unsupervised, and reinforcement learning. You should also be familiar with metrics such as accuracy and mean squared error.

 	You should understand basic statistics and calculus, such as probability, density functions, probability distributions, differentiation, and simple optimization.

 	You should understand elementary linear algebra, such as matrices, high-dimensional spaces, and, ideally, principal component analysis.

 	You should understand the basics of deep learning—things such as feed-forward networks, weights and biases, activation functions, regularization, stochastic gradient descent, and backpropagation.

 	You should also have elementary familiarity with, or willingness to independently learn, the Python-based machine learning library Keras.

 We are not trying to scare you, but rather ensure that you will get the most out of this book. You may try to take a stab at it anyway, but the less you know, the more you should expect to search online on your own. However, if this list does not seem scary to you, you should be good to go.

About the code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, the source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes the code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts. The code for the examples in this book is available for download from the Manning website at www.manning.com/books/gans-in-action and from GitHub at https://github.com/GANs-in-Action/gans-in-action.

 Throughout this book, we will be using Jupyter notebooks, as it the standard for data science education. Using Jupyter is also a prerequisite, but for intermediate Pythonistas, this should be easy to pick up. We are aware that sometimes it may be difficult to access GPUs or get everything working, especially on Windows. So for some chapters, we also provide Google Colaboratory notebooks (Colab for short), which are Google’s free platform (available at https://colab.research.google.com) and come prepackaged with all the essential data science tools as well as a free GPU for a limited time. You can run all of these lessons straight from your browser! For the other chapters, feel free to upload them to Colab, as the two formats are made to be compatible.

liveBook discussion forum

 Purchase of GANs in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum, go to https://livebook.manning.com/#!/book/gans-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 GANs are an active field with excellent (albeit fragmented) resources only a Google search away. Those with an academic bent can find the latest papers in arXiv (https://arxiv.org), an online repository of academic e-prints owned and operated by Cornell University. We hope that this book will equip you with all that is needed to keep up-to-date on the latest developments in this ever-changing field.

 Both Jakub and Vladimir are active contributors to Medium (particularly the tech-focused publications Towards Data Science and Hacker Noon), where you can find the most recent content from the authors.

How this book is organized: a roadmap

 GANs in Action strives to provide a balance of theory and practice. The book is organized into three parts:

 Part 1, “Introduction to GANs and generative modeling”

 Here, we introduce the foundational concepts behind generative learning and GANs and implement the most canonical GAN variants:

 	
Chapter 1, “Introduction to GANs”—We introduce Generative Adversarial Networks (GANs) and provide a high-level explanation of how they work. You will learn that GANs consist of two separate neural networks (the Generator and the Discriminator), and the networks are trained through a competitive dynamic. The knowledge you will acquire in this chapter will provide the foundation for the remainder of this book.

 	
Chapter 2, “Intro to generative modeling with autoencoders”—We discuss autoencoders, which can be seen as precursors to GANs in many ways. Given the relative novelty of generative learning, we decided to include a chapter that helps set GANs in a broader context. This chapter also contains the first code tutorial, where we will build a variational autoencoder to generate handwritten digits—the same task we will be exploring in our GAN tutorials in later chapters. However, if you are already familiar with autoencoders or want to dive straight into GANs, feel free to skip this chapter.

 	
Chapter 3, “Your first GAN: Generating handwritten digits”—We dive deeper into the theory behind GANs and adversarial learning. We explore the key differences between GANs and traditional neural networks: namely, we discuss the differences in their cost functions and training processes. In a coding tutorial at the end of the chapter, you will apply what you’ve learned to implement a GAN in Keras and train it to generate handwritten digits.

 	
Chapter 4, “Deep Convolutional GAN”—We introduce convolutional neural networks and batch normalization. We then implement Deep Convolutional GAN (DCGAN), an advanced GAN architecture that uses convolutional networks as its Generator and Discriminator and takes advantage of batch normalization to stabilize the training process.

 Part 2, “Advanced topics in GANs”

 Building on the foundations, we dive deeper into the theory underlying GANs and implement a selection of advanced GAN architectures:

 	
Chapter 5, “Training and common challenges: GANing for success”—We discuss many of the theoretical and practical hurdles to training GANs and how to overcome them. We provide a comprehensive overview of the best practices for training a GAN based on relevant academic papers and presentations. We also cover options for evaluating GAN performance and why we need to worry about that.

 	
Chapter 6, “Progressive growing of GANs”—We explore the Progressive GAN (PGGAN, or ProGAN), a cutting-edge training methodology for the Generator and Discriminator. By adding new layers during the training process, the PGGAN achieves superior image quality and resolution. We explain how it all works in theory as well as in practice through hands-on code samples and by using the TensorFlow Hub (TFHub).

 	
Chapter 7, “Semi-Supervised GAN”—We continue to explore innovations based on the core GAN model. You will learn about the enormous practical importance of improving classification accuracy with only a small subset of labeled training examples through semi-supervised learning. Then, we implement the Semi-Supervised GAN (SGAN) and explain how it uses labels to turn the Discriminator into a robust multiclass classifier.

 	
Chapter 8, “Conditional GAN”—We present another GAN architecture that uses labels in training: Conditional GAN (CGAN). Conditional GAN addresses one of the main shortcomings of generative modeling—the inability to specify explicitly what example to synthesize—by using labels or other conditioning information while training its Generator and Discriminator. At the end of the chapter, we implement a CGAN to see targeted data generation firsthand.

 	
Chapter 9, “CycleGAN”—We discuss one of the most interesting GAN architectures: Cycle-Consistent Adversarial Networks (CycleGANs). This technique can be used to translate one image into another, such as turning a photo of a horse into a photo of a zebra. We walk through the CycleGAN architecture and explain its main components and innovations. As a coding tutorial, we then implement a CycleGAN to convert apples into oranges, and vice versa.

 Part 3, “Where to go from here”

 We discuss how and where we can apply our knowledge of GANs and adversarial learning:

 	
Chapter 10, “Adversarial examples”—We look at adversarial examples, a set of techniques to intentionally deceive a machine learning model into making a mistake. We discuss their significance through theory and practical examples and explore their connection to GANs.

 	
Chapter 11, “Practical applications of GANs”—We cover practical applications of GANs. We explore how to use techniques covered in earlier chapters for real-world use cases in medicine and fashion. In medicine, we look at how GANs can be used to augment a small dataset to improve classification accuracy. In fashion, we show how GANs can drive personalization.

 	
Chapter 12, “Looking ahead”—We wrap up our learning journey by summarizing the key takeaways and discussing the ethical considerations of GANs. We also mention emerging GAN techniques for those interested in continuing to explore this field beyond this book.

About the authors

 Jakub Langr is a cofounder of a startup that uses GANs for creative and advertising applications. Jakub has worked in data science since 2013, most recently as a data science tech lead at Filtered.com and as an R&D data scientist at Mudano. He also designed and teaches data science courses at the University of Birmingham (UK) and at numerous private companies, and is a guest lecturer at the University of Oxford. He was an Entrepreneur in Residence at the seventh cohort of deep technology talent investor Entrepreneur First. Jakub is also a fellow at the Royal Statistical Society and an invited speaker at various international conferences. He graduated from the University of Oxford. Jakub is donating all of his proceeds from this publication to the nonprofit British Heart Foundation.

 Vladimir Bok recognized the immense potential of GANs while pursuing an independent research project in musical style transfer at Microsoft Research. His work experience ranges from applied data science at a Y Combinator-backed startup to leading cross-functional initiatives at Microsoft. Most recently, Vladimir has been managing data science projects at a New York-based startup that provides machine learning services to online travel and e-commerce brands, including Fortune 500 companies. Vladimir graduated cum laude with a bachelor’s degree in computer science from Harvard University. He is donating all of his proceeds from this book to the nonprofit organization Girls Who Code.

About the cover illustration

Saint-Sauveur

 The figure on the cover of GANs in Action is captioned “Bourgeoise de Londre,” or a bourgeoise woman from London. The illustration was originally issued in 1787 and is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810). Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection vividly reminds us of how culturally distinct the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the regional diversity, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

 Part 1. Introduction to GANs and generative modeling

 Part 1 introduces the world of Generative Adversarial Networks (GANs) and walks through implementations of the most canonical GAN variants:

 	In chapter 1, you will learn the basics of GANs and develop an intuitive understanding of how they work.

 	In chapter 2, we will switch gears a little and look at autoencoders, so you can get a more holistic understanding of generative modeling. Autoencoders are some of the most important theoretical and practical precursors to GANs and continue to be widely used to this day.

 	
Chapter 3 starts where chapter 1 left off and dives deeper into the theory underlying GANs and adversarial learning. In this chapter, you will also implement and train your first, fully functional GAN.

 	
Chapter 4 continues your learning journey by exploring the Deep Convolutional GAN (DCGAN). This innovation on top of the original GAN uses convolutional neural networks to improve the quality of the generated images.

 Chapter 1. Introduction to GANs

 This chapter covers

 	An overview of Generative Adversarial Networks

 	What makes this class of machine learning algorithms special

 	Some of the exciting GAN applications that this book covers

 The notion of whether machines can think is older than the computer itself. In 1950, the famed mathematician, logician, and computer scientist Alan Turing—perhaps best known for his role in decoding the Nazi wartime enciphering machine, Enigma—penned a paper that would immortalize his name for generations to come, “Computing Machinery and Intelligence.”

 In the paper, Turing proposed a test he called the imitation game, better known today as the Turing test. In this hypothetical scenario, an unknowing observer talks with two counterparts behind a closed door: one, a fellow human; the other, a computer. Turing reasons that if the observer is unable to tell which is the person and which is the machine, the computer passed the test and must be deemed intelligent.

 Anyone who has attempted to engage in a dialogue with an automated chatbot or a voice-powered intelligent assistant knows that computers have a long way to go to pass this deceptively simple test. However, in other tasks, computers have not only matched human performance but also surpassed it—even in areas that were until recently considered out of reach for even the smartest algorithms, such as superhumanly accurate face recognition or mastering the game of Go.[1]

 1 See “Surpassing Human-Level Face Verification Performance on LFW with GaussianFace,” by Chaochao Lu and Xiaoou Tang, 2014, https://arXiv.org/abs/1404.3840. See also the New York Times article “Google’s AlphaGo Defeats Chinese Go Master in Win for A.I.,” by Paul Mozur, 2017, http://mng.bz/07WJ.

 Machine learning algorithms are great at recognizing patterns in existing data and using that insight for tasks such as classification (assigning the correct category to an example) and regression (estimating a numerical value based on a variety of inputs). When asked to generate new data, however, computers have struggled. An algorithm can defeat a chess grandmaster, estimate stock price movements, and classify whether a credit card transaction is likely to be fraudulent. In contrast, any attempt at making small talk with Amazon’s Alexa or Apple’s Siri is doomed. Indeed, humanity’s most basic and essential capacities—including a convivial conversation or the crafting of an original creation—can leave even the most sophisticated supercomputers in digital spasms.

 This all changed in 2014 when Ian Goodfellow, then a PhD student at the University of Montreal, invented Generative Adversarial Networks (GANs). This technique has enabled computers to generate realistic data by using not one, but two, separate neural networks. GANs were not the first computer program used to generate data, but their results and versatility set them apart from all the rest. GANs have achieved remarkable results that had long been considered virtually impossible for artificial systems, such as the ability to generate fake images with real-world-like quality, turn a scribble into a photograph-like image, or turn video footage of a horse into a running zebra—all without the need for vast troves of painstakingly labeled training data.

 A telling example of how far machine data generation has been able to advance thanks to GANs is the synthesis of human faces, illustrated in figure 1.1. As recently as 2014, when GANs were invented, the best that machines could produce was a blurred countenance—and even that was celebrated as a groundbreaking success. By 2017, just three years later, advances in GANs enabled computers to synthesize fake faces whose quality rivals high-resolution portrait photographs. In this book, we look under the hood of the algorithm that made all this possible.

 Figure 1.1. Progress in human face generation

 [image:]

 (Source: “The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation,” by Miles Brundage et al., 2018, https://arxiv.org/abs/1802.07228.)

1.1. What are Generative Adversarial Networks?

 Generative Adversarial Networks (GANs) are a class of machine learning techniques that consist of two simultaneously trained models: one (the Generator) trained to generate fake data, and the other (the Discriminator) trained to discern the fake data from real examples.

 The word generative indicates the overall purpose of the model: creating new data. The data that a GAN will learn to generate depends on the choice of the training set. For example, if we want a GAN to synthesize images that look like Leonardo da Vinci’s, we would use a training dataset of da Vinci’s artwork.

 The term adversarial points to the game-like, competitive dynamic between the two models that constitute the GAN framework: the Generator and the Discriminator. The Generator’s goal is to create examples that are indistinguishable from the real data in the training set. In our example, this means producing paintings that look just like da Vinci’s. The Discriminator’s objective is to distinguish the fake examples produced by the Generator from the real examples coming from the training dataset. In our example, the Discriminator plays the role of an art expert assessing the authenticity of paintings believed to be da Vinci’s. The two networks are continually trying to outwit each other: the better the Generator gets at creating convincing data, the better the Discriminator needs to be at distinguishing real examples from the fake ones.

 Finally, the word networks indicates the class of machine learning models most commonly used to represent the Generator and the Discriminator: neural networks. Depending on the complexity of the GAN implementation, these can range from simple feed-forward neural networks (as you’ll see in chapter 3) to convolutional neural networks (as you’ll see in chapter 4) or even more complex variants, such as the U-Net (as you’ll see in chapter 9).

1.2. How do GANs work?

 The mathematics underpinning GANs are complex (as you’ll explore in later chapters, especially chapters 3 and 5); fortunately, many real-world analogies can make GANs easier to understand. Previously, we discussed the example of an art forger (the Generator) trying to fool an art expert (the Discriminator). The more convincing the fake paintings the forger makes, the better the art expert must be at determining their authenticity. This is true in the reverse situation as well: the better the art expert is at telling whether a particular painting is genuine, the more the forger must improve to avoid being caught red-handed.

 Another metaphor often used to describe GANs—one that Ian Goodfellow himself likes to use—is that of a criminal (the Generator) who forges money, and a detective (the Discriminator) who tries to catch him. The more authentic-looking the counterfeit bills become, the better the detective must be at detecting them, and vice versa.

 In more technical terms, the Generator’s goal is to produce examples that capture the characteristics of the training dataset, so much so that the samples it generates look indistinguishable from the training data. The Generator can be thought of as an object recognition model in reverse. Object recognition algorithms learn the patterns in images to discern an image’s content. Instead of recognizing the patterns, the Generator learns to create them essentially from scratch; indeed, the input into the Generator is often no more than a vector of random numbers.

 The Generator learns through the feedback it receives from the Discriminator’s classifications. The Discriminator’s goal is to determine whether a particular example is real (coming from the training dataset) or fake (created by the Generator). Accordingly, each time the Discriminator is fooled into classifying a fake image as real, the Generator knows it did something well. Conversely, each time the Discriminator correctly rejects a Generator-produced image as fake, the Generator receives the feedback that it needs to improve.

 The Discriminator continues to improve as well. Like any classifier, it learns from how far its predictions are from the true labels (real or fake). So, as the Generator gets better at producing realistic-looking data, the Discriminator gets better at telling fake data from the real, and both networks continue to improve simultaneously.

 Table 1.1 summarizes the key takeaways about the two GAN subnetworks.

 Table 1.1. Generator and Discriminator subnetworks

 	

 	
 Generator

 	
 Discriminator

 	Input

 	A vector of random numbers

 	
 The Discriminator receives input from two sources:

 	Real examples coming from the training dataset

 	Fake examples coming from the Generator

 	Output

 	Fake examples that strive to be as convincing as possible

 	Predicted probability that the input example is real

 	Goal

 	Generate fake data that is indistinguishable from members of the training dataset

 	Distinguish between the fake examples coming from the Generator and the real examples coming from the training dataset

1.3. GANs in action

 Now that you have a high-level understanding of GANs and their constituent networks, let’s take a closer look at the system in action. Imagine that our goal is to teach a GAN to produce realistic-looking handwritten digits. (You’ll learn to implement such a model in chapter 3 and expand on it in chapter 4.) Figure 1.2 illustrates the core GAN architecture.

 Figure 1.2. The two GAN subnetworks, their inputs and outputs, and their interactions

 [image:]

 Let’s walk through the details of the diagram:

 	
Training dataset— The dataset of real examples that we want the Generator to learn to emulate with near-perfect quality. In this case, the dataset consists of images of handwritten digits. This dataset serves as input (x) to the Discriminator network.

 	
Random noise vector— The raw input (z) to the Generator network. This input is a vector of random numbers that the Generator uses as a starting point for synthesizing fake examples.

 	
Generator network— The Generator takes in a vector of random numbers (z) as input and outputs fake examples (x*). Its goal is to make the fake examples it produces indistinguishable from the real examples in the training dataset.

 	
Discriminator network— The Discriminator takes as input either a real example (x) coming from the training set or a fake example (x*) produced by the Generator. For each example, the Discriminator determines and outputs the probability of whether the example is real.

OEBPS/OEBPS/Images/01fig01_alt.jpg

OEBPS/OEBPS/Images/01fig02_alt.jpg

OEBPS/OEBPS/Images/pub.jpg

OEBPS/OEBPS/Images/enter.jpg

OEBPS/OEBPS/Images/logo.jpg

OEBPS/OEBPS/Images/common1.jpg

OEBPS/cover.jpeg

