

 [image: cover]

Windows Phone 8 in Action

 Tim Binkley-Jones, Adam Benoit, Massimo Perga, Michael Sync

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Susan Conant
Copyeditor: Corbin Collins
Proofreader: Melody Dolab
Typesetter: Marija Tudor
Cover designer: Marija Tudor

 ISBN: 9781617291371

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Introducing Windows Phone

 Chapter 1. A new phone, a new operating system

 Chapter 2. Creating your first Windows Phone application

 2. Core Windows Phone

 Chapter 3. Fast application switching and resume

 Chapter 4. Scheduled actions

 Chapter 5. Launching tasks and choosers

 Chapter 6. Contacts and calendars

 Chapter 7. Storing data

 Chapter 8. Working with the camera

 Chapter 9. Integrating with the Photos and Music + Videos Hubs

 Chapter 10. Using sensors

 Chapter 11. Network communication with push notifications

 Chapter 12. Using the Speech API

 3. XAML for Windows Phone

 Chapter 13. ApplicationBar and context menus

 Chapter 14. Panorama and pivot controls

 Chapter 15. Building a media player

 Chapter 16. Using Maps

 Chapter 17. Building HTML applications

 Chapter 18. Releasing and monetizing apps

 Appendix A. XAML, the Extensible Application Markup Language

 Appendix B. Model-View-ViewModel (MVVM)

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Introducing Windows Phone

 Chapter 1. A new phone, a new operating system

 1.1. Rebooting the Windows Phone platform

 1.2. Windows Phone foundations

 1.2.1. Hardware specs

 1.2.2. A new user interface

 1.2.3. User experience

 1.2.4. Platform APIs and frameworks

 1.2.5. The Dev Center and the Windows Phone Store

 1.3. Comparing Windows Phone to other mobile platforms

 1.3.1. Windows 8

 1.3.2. Apple iOS

 1.3.3. Android

 1.4. The Windows Phone Developer Tools

 1.4.1. Visual Studio for Windows Phone

 1.4.2. Blend for Visual Studio

 1.4.3. Windows Phone emulator

 1.4.4. Windows Phone Developer Registration tool

 1.4.5. XAP Deployment tool

 1.4.6. Isolated Storage Explorer tool

 1.4.7. The Simulation Dashboard

 1.5. Declaring capabilities and requirements

 1.6. Summary

 Chapter 2. Creating your first Windows Phone application

 2.1. Generating the project

 WMAppManifest.xml and the Windows Phone Store

 2.1.1. Debugging phone projects

 2.1.2. Application startup

 2.2. Implementing Hello World

 2.2.1. Customizing the Startup page

 2.2.2. Adding application content

 2.2.3. Adding the Greeting page

 2.3. Interacting with the user

 2.3.1. Touch typing

 2.3.2. Touch gestures

 2.3.3. Adding a toolbar button

 2.4. Page navigation

 2.4.1. Navigating to another page

 2.4.2. Passing parameters between pages

 2.4.3. Changing the Back key behavior

 2.4.4. Navigating with tiles

 2.5. Summary

 2. Core Windows Phone

 Chapter 3. Fast application switching and resume

 3.1. Fast application switching

 3.1.1. Understanding lifetime events

 3.1.2. Creating the Lifetime sample application

 3.1.3. Updating the user interface

 3.2. Launching the application

 3.2.1. Construction

 3.2.2. First-time initialization

 3.3. Switching applications

 3.3.1. Going dormant

 3.3.2. Returning to action

 3.3.3. Tombstoning

 3.4. Out of sight

 3.4.1. Obscuration

 3.4.2. Running behind the Lock Screen

 3.5. Fast application resume

 Enabling fast application resume

 3.5.1. Navigation modes

 3.5.2. Resuming with an alternative URI

 3.5.3. Customizing the resume experience

 3.6. Summary

 Chapter 4. Scheduled actions

 4.1. Working on a schedule

 4.1.1. Adding the Reminder page

 4.1.2. DatePicker and TimePicker

 4.1.3. Making choices with the ListPicker

 4.2. Introducing the Scheduled Action Service

 4.2.1. Scheduling a reminder

 4.2.2. Editing a notification

 4.2.3. Deleting a notification

 4.3. Creating a background agent

 4.3.1. Background agent projects

 4.3.2. Executing work from the background agent

 4.3.3. Scheduling a PeriodicTask

 4.3.4. Scheduled tasks expire after two weeks

 4.3.5. User-disabled tasks

 4.3.6. When things go awry

 4.3.7. Testing background agents

 4.4. Updating the Lock Screen

 4.5. Summary

 Chapter 5. Launching tasks and choosers

 5.1. The Tasks API

 5.2. Launchers

 5.2.1. Placing a phone call

 5.2.2. Writing an email

 5.2.3. Texting with SMS

 5.2.4. Working with the Windows Phone Store

 5.2.5. Searching with Bing

 5.3. Choosers

 5.3.1. Completed events

 5.3.2. Saving a phone number

 5.3.3. Saving an email address

 5.3.4. Saving a ringtone

 5.3.5. Choosing a phone number

 5.3.6. Choosing an email address

 5.3.7. Choosing a street address

 5.4. Summary

 Chapter 6. Contacts and calendars

 6.1. UserData APIs

 6.1.1. Searching for contacts

 6.1.2. Reviewing appointments

 6.2. Providing Custom Contacts

 6.2.1. Navigating to the Add Contact page

 6.2.2. Creating a contact store

 6.2.3. Adding a contact to the contact store

 6.2.4. Updating an existing contact

 6.2.5. Deleting a contact

 6.3. Summary

 Chapter 7. Storing data

 7.1. Creating the High Scores sample application

 7.1.1. Displaying the high scores list

 7.1.2. Managing the high scores list

 7.1.3. Defining a high scores repository

 7.2. Storing data with application settings

 7.3. Serializing data to local storage files

 7.3.1. Serializing high scores with the XmlSerializer

 7.3.2. Deleting files and folders

 7.4. Working with a database

 7.4.1. Attributing your domain model

 7.4.2. Defining the data context

 7.4.3. Creating the database

 7.4.4. CRUD operations

 7.4.5. Searching for data

 7.4.6. Compiling queries

 7.4.7. Upgrading

 7.4.8. Adding a read-only database to your project

 7.5. Summary

 Chapter 8. Working with the camera

 8.1. Starting the PhotoEditor project

 8.2. Working with the camera tasks

 8.2.1. Choosing a photo with PhotoChooserTask

 8.2.2. Taking photos with CameraCaptureTask

 8.3. Controlling the camera

 8.3.1. Painting with the VideoBrush

 8.3.2. Snapping a photo

 8.3.3. Handling picture orientation

 8.3.4. Supporting fast application switching

 8.4. Image editing

 8.4.1. Rendering XAML elements

 8.4.2. Saving an image to local storage

 8.4.3. Loading an image from local storage

 8.5. Summary

 Chapter 9. Integrating with the Photos and Music + Videos Hubs

 9.1. Working with pictures in the media library

 9.1.1. Exposing pictures

 9.1.2. Saving pictures to the media library

 9.1.3. Retrieving a picture from the media library

 9.2. Editing and sharing from the Photos Hub

 9.2.1. Extending the Photos Hub

 9.2.2. Extending the photo viewer

 9.2.3. Sharing pictures from your Photos Hub extension

 9.3. Playing and recording with the Music + Videos Hub

 9.3.1. Enabling XNA Framework events

 9.3.2. Building the user interface

 9.3.3. Recording audio

 9.3.4. Playing audio

 9.4. Playing recorded audio in the Music + Videos Hub

 9.4.1. Fulfilling Music + Videos Hub requirements

 9.4.2. Launching from the Music + Videos Hub

 9.5. Playing recorded audio with a background agent

 9.6. Summary

 Chapter 10. Using sensors

 10.1. Understanding the Sensor APIs

 10.1.1. Data in three dimensions

 10.1.2. Reading data with events

 10.1.3. Polling for data

 10.2. Creating the sample application

 10.2.1. Creating a reusable Bar control

 10.2.2. Designing the main page

 10.2.3. Polling sensor data with a timer

 10.3. Measuring acceleration with the accelerometer

 10.3.1. Hooking up the sensor

 10.3.2. Acceleration in the emulator

 10.3.3. Interpreting the numbers

 10.4. Finding direction with the compass

 10.4.1. Hooking up the sensor

 10.4.2. Interpreting the numbers

 10.5. Pivoting with the gyrometer

 10.5.1. Hooking up the sensor

 10.6. Wrapping up with motion

 10.6.1. Hooking up the sensors

 10.6.2. Interpreting the numbers

 10.7. Summary

 Chapter 11. Network communication with push notifications

 11.1. Detecting network connectivity

 11.1.1. Reading device settings

 11.1.2. Using the NetworkInterface class

 11.1.3. Listing all network connections

 11.2. Pushing notifications to a phone

 11.2.1. Three types of notifications

 11.2.2. Push notification workflow

 11.2.3. Creating a push notification client

 11.2.4. Opening a notification channel

 11.2.5. Looking for navigation parameters

 11.2.6. In-app notifications

 11.3. Launching applications with the Installation Manager

 11.3.1. Using the same publisher ID

 11.3.2. Sharing the channel URI

 11.4. Simulating a Push Notification Service

 11.4.1. Issuing HTTP web requests

 11.4.2. Sending toast notifications

 11.4.3. Using notifications to update a tile

 11.5. Summary

 Chapter 12. Using the Speech API

 12.1. Text-to-speech

 12.2. Available speaking voices

 Getting installed languages

 Setting the selected voice

 12.3. Speech Synthesis Markup Language

 SSML elements

 Additional SSML elements

 12.4. Voice commands

 12.4.1. The Voice Command Definition file

 12.4.2. Enabling voice commands

 12.4.3. Phrase lists

 12.4.4. Localization

 12.4.5. Voice UI screens

 12.5. Speech recognition

 12.5.1. Grammars

 12.5.2. Speech recognizers

 12.5.3. Prompts, confirmation, and choice screens

 12.5.4. Handling recognition results

 12.5.5. Handling errors

 12.6. Summary

 3. XAML for Windows Phone

 Chapter 13. ApplicationBar and context menus

 13.1. Working with the ApplicationBar

 13.1.1. Building an application bar

 13.1.2. Tooling support

 13.1.3. Changing the application bar appearance

 13.1.4. Dynamically updating buttons and menu items

 13.1.5. Designing button icons

 13.2. ContextMenu

 13.3. Summary

 Chapter 14. Panorama and pivot controls

 14.1. Improving the scenery with the Panorama control

 14.1.1. Building a panorama application

 14.1.2. Widen the view

 14.1.3. Remembering where you are

 14.1.4. Adding a background

 14.1.5. Customize the title

 14.2. Pivoting around an application

 14.2.1. Building the sample application

 14.2.2. Remembering the current selection

 14.2.3. Generating sample data

 14.2.4. Dynamically loading pages

 14.3. Summary

 Chapter 15. Building a media player

 15.1. Playing media with the MediaPlayerLauncher

 15.1.1. Creating the media player project

 15.1.2. Adding a video file to the project

 15.1.3. Copying an installed file to local storage

 15.1.4. Launching the video

 15.2. Building a media player with MediaElement

 15.2.1. Adding the MediaElement

 15.2.2. Loading media files

 15.2.3. MediaElement states

 15.2.4. Controlling volume

 15.3. Summary

 Chapter 16. Using Maps

 16.1. Introducing Maps

 16.1.1. Preparing the application

 16.1.2. Launching the Maps application

 16.1.3. Finding directions

 16.2. Embedding a Map control

 16.2.1. Building the LocationAndMaps sample application

 16.2.2. Centering on your current location with the Geolocator

 16.2.3. Marking the current location on the map

 16.3. Reverse geocoding—looking up an address

 Formatting reverse geocoding query results

 16.4. Continuous tracking with Geolocator

 16.4.1. Working with high accuracy location data

 16.4.2. Reporting changes in position

 16.4.3. Displaying a route on the map

 16.4.4. Stopping continuous tracking

 16.5. Summary

 Chapter 17. Building HTML applications

 17.1. Introducing Windows Phone HTML5 App projects

 Comparing an HTML5 app with a standard application

 Loading a web page

 Handling navigation failures

 17.2. Launching Internet Explorer

 17.3. Using HTML5

 17.3.1. Marking up index.html with HTML5

 17.3.2. Setting the browser viewport

 17.4. Matching the Windows Phone style

 17.5. Using Scalable Vector Graphics

 17.6. Executing JavaScript

 17.6.1. Installing jQuery

 17.6.2. Adding a Click event handler.

 17.7. Bridging C# and JavaScript

 17.7.1. Wiring up the ScriptNotify event

 17.8. Summary

 Chapter 18. Releasing and monetizing apps

 18.1. Ad-supported apps

 18.1.1. Microsoft Advertising pubCenter

 18.1.2. Implementing ads

 18.1.3. Best practices

 18.2. Paid and trial apps

 18.2.1. Registration

 18.2.2. Subscriptions

 18.2.3. Markets

 18.2.4. Trial apps

 18.2.5. Getting paid

 18.2.6. Windows Phone Store Test Kit

 18.2.7. App submission and certification

 18.2.8. Reports

 18.3. In-app purchases

 18.3.1. Why in-app purchases?

 18.3.2. Who provides what piece?

 18.3.3. Types of IAP items you can sell

 18.3.4. Getting products from the Store

 18.3.5. Implementing consumables

 18.3.6. Implementing durables

 18.4. Testing

 Local testing

 Beta testing

 18.4.1. Submitting your in-app items

 18.5. Summary

 Appendix A. XAML, the Extensible Application Markup Language

 A.1. Layout controls

 A.2. Interacting with XAML controls

 A.3. Styles and resources

 A.4. Binding controls to model objects

 A.5. Property change notifications

 A.6. Element-to-element binding

 A.7. Converting data during data binding

 A.8. Using templates to build data model UI

 A.9. Summary

 Appendix B. Model-View-ViewModel (MVVM)

 B.1. The Model class

 B.2. The View class

 B.3. The ViewModel class

 B.4. Interaction between the Model, View, and ViewModel

 B.4.1. Adding the Model class

 B.4.2. Adding the ViewModel class

 B.4.3. Adding the View class

 B.5. Patterns as solutions to common problems

 B.6. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 We authors come from different backgrounds and locations, but we came together to write this book. Michael is a Silverlight
 MVP who lives in Singapore; Massimo lives in Europe and worked at Microsoft on the Windows Phone team; Adam lives in Canada
 and has published several applications in the Windows Phone store; and Timothy lives in the United States and has worked as
 technical proofreader for other Manning books on WPF and Silverlight. Amid this diversity, our shared passion for XAML and
 mobile applications brought us together to produce this book.

 In 2012, nearly 700 million smartphones were sold across the globe. The world is quickly moving to a fully connected society,
 and smartphones like the Windows Phone are already playing a major role in how we access data, connect with our family and
 friends, and interact with the world around us. Smartphones are almost always with us, know where they are located, and are
 connected to the internet.

 Your job as application developers is to create applications that can interact with our environment, sift through the data,
 and present a simplified view of the world to users overwhelmed with the complexities of the fast-paced, high-tech digital
 world. We hope our book gives you the knowledge you need to determine location, process sensor input, capture audio and video,
 and scrutinize data to build killer Windows Phone applications that integrate nicely with the operating system and native
 applications.

Acknowledgments

 We’d like to thank our family, friends, and coworkers for their support and advice, for being there when we needed someone
 to listen to half-formed ideas, and for understanding when we said, “I’d love to, but I have to work on the book.” And none
 of this would have been possible without Microsoft and the support it provides to the development community.

 We’d like to thank the following reviewers, who read the manuscript at various stages during development and provided invaluable
 feedback: Alex Lucas, Alex Tcherniakhovski, Avijit Das, Berndt Hamboeck, Dave Campbell, Fulvio Gabana, Gary Ewan Park, Jan
 Vinterberg, Michael Williams, Sebastian Aguilar, and Sergio Romero.

 Thanks also to our technical proofreaders Tom McKearney and Gary Park, copyeditor Corbin Collins, and proofreader Melody Dolab
 for their careful editing of our work, which resulted in a much better book.

 Finally, thanks to everyone at Manning, especially Marjan Bace, Michael Stephens, and our development editor Susan Conant,
 as well as our production team of Mary Piergies, Kevin Sullivan, Marija Tudor, and Janet Vail. Your guidance and support during
 the writing and production process were much appreciated.

About this Book

 This book is a hands-on guide to building mobile applications for Windows Phone 8 using XAML, C#, and HTML5. The Windows Phone
 8 operating system is Microsoft’s latest entry into the fiercely competitive mobile market. In this book we show how to build
 user interfaces that adhere to the Windows Phone design and how to use the Windows Phone Runtime and .NET APIs to access the
 sensors and integrate with built-in applications.

 Windows Phone 8 is both a brand-new operating system built upon the Windows 8 kernel and an upgrade of Windows Phone 7. Microsoft
 replaced the Windows CE kernel that powered Windows Phone 7 with the same Windows 8 kernel that runs Windows 8 PCs and tablets.
 The Windows Runtime was adapted and modified for the phone. Microsoft migrated core features and APIs from Windows Phone 7,
 such as the XAML user interface framework, .NET APIs, fast application switching, launchers and choosers, and platform extensibility.
 This hybridization of Windows 8 and Windows Phone 7 means that two different APIs exist for some features, and in this book
 we cover the newer Windows Phone Runtime APIs instead of the Windows Phone 7 APIs.

Who should read this book

 This book is written for C# and .NET developers who are familiar with XAML, Silverlight, or WPF development. This book doesn’t
 teach you the subtleties of C# or XAML development. It avoids many of the more powerful features of XAML and the Model-View-ViewModel
 pattern used by many XAML developers. Instead, we keep the focus on the features and APIs that are unique to the phone and
 endeavor to make the content accessible to readers who aren’t very familiar with Microsoft technologies.

Roadmap

 This book has 3 parts, 18 chapters, and 2 appendixes. The three parts introduce Windows Phone 8, cover the core concepts of
 the phone, and discuss enhancements to XAML.

 Part 1 is an introduction to Windows Phone, the development environment, and the SDK. This part walks you through creating your
 first application.

 In chapter 1 you discover why Microsoft scrapped the Windows Mobile operating system in favor of a completely new smartphone platform.
 We compare Windows Phone 8 to Android and iOS development and introduce you to Visual Studio and the SDK tools you’ll use
 when building applications.

 In chapter 2 you build your first Windows Phone 8 project, which is a traditional Hello World application. We use the Hello World application
 to introduce you to touch events, application tiles, the application bar, several XAML controls, and the Windows Phone navigation
 model.

 Part 2 examines the core Windows Phone platform and what makes developing for the phone different from developing for the desktop
 or the browser. We introduce concepts that are brand new to Windows Phone, as well as concepts that have been adapted to operate
 within the phone’s limitations.

 In chapter 3 you learn about fast application switching and fast application resume, Microsoft’s names for the battery-saving technologies
 that allow a dormant application to be quickly restored when a user switches from a foreground application to a background
 application.

 In chapter 4 you learn how to create background agents that run periodically. You also discover how to use alarms and reminders to interact
 with users even when your application isn’t running.

 In chapter 5 you read about how to use launchers and choosers to interact with built-in applications such as the Phone Dialer, Email,
 and the People Hub.

 In chapter 6 you work with the phone’s built-in contacts database and calendar.

 In chapter 7 you store application data using local storage and a SQL database.

 In chapter 8 you build an application that captures images from the phone’s camera and allows a user to make simple modifications to the
 photos.

 In chapter 9 you integrate an application with the built-in Pictures and Music + Video Hubs.

 In chapter 10 you learn how to obtain data from the phone’s hardware, including the accelerometer, compass, gyrometer, inclinometer, and
 orientation sensor.

 In chapter 11 we cover networking topics such as determining connection status and subscribing to Push Notifications. Push Notifications
 provide the ability for an external application or web service to send messages and updates to a particular Windows Phone
 device.

 In chapter 12 we examine three Speech APIs: text-to-speech, voice commands, and speech recognition.

 Part 3 presents XAML features and controls used to build applications that match the look and feel of Windows Phone.

 In chapter 13 you take a deep dive into the application bar, a new toolbar control for the Windows Phone 8 platform. You also learn how
 to use the ContextMenu control from the Windows Phone Toolkit, a Codeplex project from Microsoft.

 In chapter 14 you learn the ins and outs of the Pivot and Panorama controls. The controls, unique to the Windows Phone, form the foundation of the Windows Phone user experience.

 In chapter 15 you work with the MediaElement to play audio and video.

 In chapter 16 you build a location-aware application using location services and the Maps API.

 In chapter 17 you learn how to use the WebBrowser control to build an HTML5 and JavaScript application.

 In chapter 18 you discover how to make money from your applications and publish them to the Windows Phone Store. You also learn how to
 work with the AdControl.

Code conventions and downloads

 All source code and many programming elements in the book are in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts, and
 numbered bullets are used in the text to provide additional information about the code. We’ve tried to format the code so
 that it fits within the available page space in the book by adding line breaks and using indentation carefully. Sometimes,
 however, very long lines include line-continuation markers.

 The source code presented in the book can be downloaded from the publisher’s website at www.manning.com/WindowsPhone8inAction. The source code is organized into folders for each chapter, with subfolders for each project. The source code contains the
 completed sample projects for each chapter. Many of the samples make use of third-party libraries added via the NuGet package
 manager.

Software or hardware requirements

 The Windows Phone Developer Tools, which Microsoft provides as a free download, are required to compile and execute the sample
 projects presented in this book. The Windows Phone Developer Tools install an express edition of Visual Studio 2012 configured
 with the phone development tools. If you already have a retail edition of Visual Studio 2012 installed on your computer, the
 phone development tools will be installed as a plug-in to the IDE. Windows Phone projects can be written in both C# and Visual
 Basic.

 We use the express edition throughout the book for the screenshots and sample code. Code and user interface design features
 will work the same in the retail editions of Visual Studio 2012. You can download the Windows Phone Developer Tools from http://developer.windowsphone.com.

 A physical Windows Phone isn’t required. The Windows Phone Developer Tools include Windows Phone 8 emulators. With a few exceptions,
 the samples in this book will run in the emulator exactly as they would on a physical phone. The samples that make use of
 the compass and gyroscope do require a physical device. If you want to use a physical device, a Windows Store Developer Account
 is required to unlock your phone. Developer Accounts can be purchased for as little as $19.

 The system requirements for the Windows Phone tools are as follows:

 	Supported operating systems: Windows 8 64-bit client versions

 	6.5 GB of free disk space on the system drive

 	4 GB RAM

 	64-bit CPU

 The Windows Phone 8 emulators should work on most recent computers. The emulators are Hyper-V virtual machines and require
 a computer capable of running Hyper-V. The Windows Phone emulators require the following:

 	Supported operating systems: Windows 8 Pro edition

 	A 64-bit CPU with Second Level Address Translation (SLAT)

Author Online

 Your purchase of Windows Phone 8 in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/WindowsPhone8inAction. That page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions,
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of Windows Phone 8 in Action is captioned “L’Usurier,” which means a money lender, or, perhaps more accurately, in 21st-century parlance, a banker. The
 dapper young man exudes confidence, no doubt stemming from his profession. The illustration is taken from a 19th-century edition
 of Sylvain Maréchal’s four-volume compendium of regional dress customs and uniforms, published in France. Each illustration
 is finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart
 the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages.
 In the streets or in the countryside, it was easy to identify where people lived and what their trade, station in life, or
 rank in the army was just by their dress.

 Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It’s now hard to tell
 the inhabitants of different continents apart, let alone different towns or regions. Perhaps we’ve traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it’s hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought to life by Maréchal’s
 pictures.

Part 1. Introducing Windows Phone

 Welcome to Windows Phone 8 in Action, where you’ll learn all about building applications for Microsoft’s newest mobile operating system. This book is divided
 into three parts; part 1 introduces you to the Windows Phone and the Windows Phone SDK and walks you through creating your first application.

 In chapter 1 you’ll discover why Microsoft scrapped the Windows Mobile operating system in favor of a completely new smartphone platform.
 We compare Windows Phone to Android and iOS development and introduce you to Visual Studio and the other tools in the Windows
 Phone SDK you’ll use when building applications.

 In chapter 2 you’ll build your first Windows Phone project, which is a traditional Hello World application. We use the Hello World application
 to introduce you to touch events, application tiles, the application bar, and the Windows Phone navigation model. You’ll also
 learn tricks to style common controls to match the Windows Phone design and how to control the software keyboard. Finally,
 we introduce you to the Windows Phone Toolkit, a CodePlex project from Microsoft that includes additional user interface controls.

Chapter 1. A new phone, a new operating system

 This chapter covers

 	Introducing Windows Phone 8

 	Understanding the hardware platform

 	Porting applications from other mobile operating systems

 	Developing for Windows Phone

 Windows Phone 8 is more than a new operating system. It’s an operating system, powerful hardware platform, and collection
 of web services combined into one great experience for the busy individual, as shown in figure 1.1. Phone consumers demand the most from their phones as they balance work and life and use their phones to manage their busy
 lifestyles. Windows Phone 8 was designed to let users tailor the phone experience to their individual needs so that they can
 get tasks done faster and get back to the important aspects of their lives.

 Figure 1.1. A variety of screen shots from Windows Phone 8: Starting with the Start Screen at bottom center and moving clockwise, you
 can see the Application List, Office Hub, People Hub, Email application, and Lock Screen.

 [image:]

 The Windows Phone 8 operating system is Microsoft’s latest entry into the fiercely competitive mobile market. Windows Phone
 8 is both an upgrade of the Windows Phone 7 operating system and a slimmed-down version of Windows 8, Microsoft’s latest desktop
 and tablet operating system. With the release of Windows Phone 7 in October 2010, Microsoft re-imagined what a mobile operating system should be and completely changed the rules on
 how to build mobile applications. With the release of Windows 8, Microsoft has redefined how to build and market applications
 for touch-enabled desktop, laptop, and tablet computers. By bringing together Windows Phone 7 and Windows 8 into a single
 phone platform, Microsoft is ensuring a consistent foundation for touch-enabled application development, regardless of form
 factor.

 In this chapter we present the motivation behind this revolution in the Microsoft OS for mobile devices. We detail how Windows
 Phone 8 differs from other mobile operating systems so that you can assess the capabilities of the new platform and understand
 how existing designs and code can be ported. We describe the various hardware specifications common to the different Windows
 Phone 8 devices so that developers can confidently target equipment that will always be available. And we introduce the developer
 tools that you’ll use throughout the book to build applications targeted at the Windows Phone.

1.1. Rebooting the Windows Phone platform

 Microsoft has been building operating systems for mobile devices and phones for more than a decade. One of the earliest versions
 was Pocket PC 2000, running on palm-sized devices such as the Hewlett-Packard Jornada and the Compaq iPAQ. These early devices
 weren’t smartphones but were portable computers or PDAs targeted for business users and didn’t initially include phone hardware
 or network connectivity. Users interacted with these devices using a stylus on a single-point touch screen and an awkward
 hardware input panel. Pocket PC 2000 was initially built on Windows CE 3.0 and later added the first version of the .NET Compact
 Framework. Device manufacturers often created custom builds of the operating system tightly coupled to specific hardware on
 a single device—making operating system upgrades impossible for most users.

 Until Windows Phone 8, the most recent versions of Microsoft’s operating system for mobile devices were Windows Mobile 6,
 Windows Phone 6.5, and Windows Phone 7.x. Windows Mobile 6 was built on Windows CE 5 and includes the .NET Compact Framework
 2.0 SP1. Windows Mobile 6 came in three editions: Standard, Professional, and Classic. Windows Phone 7.x was built on Windows
 CE, the .NET Compact Framework, and Silverlight. Prior to Windows Phone 8, there were two releases of Windows Phone 7: 7.0
 and 7.1/7.5. A third release of Windows Phone 7, version 7.8, was released shortly after the release of Windows Phone 8 and
 includes a few Windows Phone 8 features back-ported to the older operating system.

 	

 Note

 For the remainder of the book, when we use the term Windows Phone without a version number, we’re referring to Windows Phone 8. We’ll use Windows Mobile, Windows Phone 6.5, or Windows Phone 7.x to refer to older versions of the phone operating system.

 	

 Mobile phones have evolved rapidly and incredibly in the past several years. Once intended solely for business users, mobile
 phones are now predominately consumer devices and in many cases have replaced land-line services to become the user’s only
 phone. Smartphones now include music players, cameras, global positioning systems, compasses, and accelerometers. Single-point
 touch screens that required a stylus have been replaced with multipoint touch screens that work with your fingertips. Awkward
 hardware input panels have been replaced with software input panels and optional hardware keypads (although at the time of
 this writing, none of the available Windows Phone 8 devices includes a hardware keypad).

 Apple led the smartphone revolution with the release of the iPhone in June 2007 and the introduction of the App Store in July
 2008. Google followed with the introduction of the Android OS and Android Market, since renamed Google Play, in October 2008.
 Since then, Microsoft has seen declines in Windows-powered device market share as consumers and manufacturers turned to smartphones
 running new mobile operating systems.

 But phone hardware and mobile operating systems aren’t all that have changed in the last decade. It’s now an online world
 where users are in nearly constant contact with friends, coworkers, family, high school buddies they haven’t seen in 20 years,
 and random followers they’ve never met. Applications that once worked only with local copies of documents and data are now
 interacting with services running in the cloud. And with all this online presence and exposure, security has become extremely
 important. It’s no longer acceptable to give software full access to hardware or to data stored in the file system.

 Application development platforms and paradigms have changed as well. With the rise of web applications, a whole new style
 of application development came into power. Rich interactive applications are the norm, complete with animations, dynamic
 transitions, and cool graphics. User interfaces are no longer built by developers but are created by designers who use a whole
 different set of tools.

 Microsoft set out to build a new Windows Phone operating system designed to meet the demands of the altered smartphone market.
 The company realized it would need a new operating system, backed by a reliable hardware platform, to compete with Apple and
 Android.

1.2. Windows Phone foundations

 Every application developer must understand the hardware and software platforms on which their code will run. This is true
 whether you’re building desktop applications, web services, or mobile applications. When building Windows Phone applications,
 you should understand the hardware specifications and know how much memory you can expect to be installed as well as the supported
 screen resolutions. Windows Phone provides a unique look and feel that developers should respect when designing user interfaces.
 You should also know how to use or extend the features of built-in applications and services. In this section we talk about
 the Windows Phone hardware specifications, user interface look and feel, native applications, and the platform APIs you’ll
 use to build your own applications.

 1.2.1. Hardware specs

 With the redesign of the operating system, Microsoft has taken the opportunity to define clear hardware specifications for
 Windows Phone 8 devices. All devices must meet the minimum hardware requirements.

 Windows Phone 8 devices come in one of three screen resolutions: 800 * 480 (WVGA), 1280 * 768 (WXGA), and 1280 * 720 (720p).
 For the most part, you don’t have to worry about the different screen resolutions because XAML applications are automatically
 scaled to fit the screen. WXGA screens are scaled by a factor of 1.5, and 720p screens are scaled by a factor of 1.6. A common
 scaled resolution allows the same user interface to be reused across different Windows Phone devices. But you do need to know
 that even at the scaled resolution, a 720p screen is slightly taller than the WVGA/WXGA screens, as shown in figure 1.2.

 Figure 1.2. The three screen resolutions of Windows Phone 8: 800 * 480 (WVGA) on the left, 1280 * 768 (WXGA) in the center, and 1280 *
 720 (720p) on the right. All three images are running the sample application you’ll build in chapter 5. Notice how the 720p image has extra space at the bottom of the screen due to the different scale factor.

 [image:]

 All Windows Phone devices provide the user with at least a four-point multitouch experience. The operating system provides
 a software-based input panel (SIP) to enable text input for devices without a physical keyboard. Phone manufacturers can add additional user input mechanisms,
 such as a landscape or portrait physical keyboard, but extra hardware can’t add extra features to standard typing. The touch
 screen is capacitive to give the best experience possible on a mobile device.

 Windows Phone devices come with an accelerometer, a proximity sensor, a light sensor, an optional compass, and an optional
 gyrometer. Developers access the raw data from each sensor or use wrapper APIs such as Motion, Inclinometer, or OrientationSensor, which wrap up multiple sensors into a simple-to-use interface. The operating system detects when a device has been rotated
 from portrait to landscape orientation. The sensors can also be used as an input mechanism for controlling an application
 or game. The sensors are covered in more detail in chapters 10 and 16.

 The Windows Phone hardware specifications also include the following:

 	GPS receiver to enable location-aware applications

 	Rear-facing camera having a minimal resolution of 5 megapixels

 	Optional low-resolution, front-facing camera

 	GPU supporting DirectX 9 acceleration

 	Dual-core Snapdragon S4 processor

 	Minimum of 512 MB of RAM and 4 GB of Flash storage

 	Optional expandable memory in the form of a microSD slot

 The Windows Phone hardware specifications require certain hardware buttons to be present. Many of these keys aren’t exposed
 to developers, and applications can’t detect when they’re pressed (you’ll learn how to access the camera button in chapter 8). The physical buttons that are mandatory for all Windows Phone devices are the following:

 	Volume Up

 	Volume Down

 	
Back

 	Start

 	Search

 	Camera

 	Power On/Off

 Minimum hardware specifications have simplified the task of developing a Windows Phone application. These common hardware
 specifications have allowed Microsoft to create several different emulator images that cover most of the possible user interactions
 with the device so that you can test most experiences in your emulator.

 Microsoft defined clear hardware specifications to ensure that users and developers have the same experience on every device.
 Microsoft also designed a new user interface to provide a clean look and feel.

 1.2.2. A new user interface

 Windows Phone has completely redesigned the user interface, moving from an icon-centric style to the new graphical interface
 previously developed for the Zune HD media player. Microsoft designers spent some time looking for a proper way to present
 content and realized an intuitive style already existed. Signage and typography in railway and metro stations, shown in figure 1.3, are concise ways to present information to people coming from different cultures. Why not port this concept to Windows Phone?

 Figure 1.3. Common signs in railways and airports. On the left are icons integrated with text, whereas on the right only icons are used.

 [image:]

 The second pillar of the user interface is full-touch support. The success of devices implementing a full-touch user interface
 is due to the immediacy provided by this natural way of interacting with applications. Concise indications and full-touch
 support play an important role in developing applications because you must align with these concepts when you design your
 user interface.

 One well-known defect of the applications written for Windows Mobile was the lack of a common user experience. We’ve seen
 applications aligned with the template generated by Visual Studio but implemented with a user interface built to match the
 iPhone user experience. This is confusing to the user, and you should make every effort to match your creations to the Microsoft
 design language adopted by the native Windows Phone applications.

 Last but not least, when developing your application you want to target as many users or customers as possible. Globalizing
 an application means making it right not only in terms of functionality but also in terms of its contents. We strongly recommend
 avoiding expressions or icons that don’t have a global meaning. Also remember that your application will be inspected by Microsoft
 prior to publishing it to the Store. Store guidelines specify what content can and can’t be presented through a Windows Phone application. You can find the Windows Phone Store guidelines at http://mng.bz/Fefo.

 1.2.3. User experience

 Understanding the user experience of the Windows Phone is important for building an application that feels like it belongs
 on the phone. The built-in applications, called hubs, establish the look and feel of the device and provide integration and extensibility points for third-party applications.

 	

 Note

 All the standard applications and hubs that ship on a real Windows Phone are available in the Windows Phone emulators that
 are installed with the developer tools.

 	

 The hubs are built with two new UI controls named Panorama and Pivot. You can read more about using the XAML versions of Panorama and Pivot in chapter 14.

Start Screen

 The Start Screen is the home screen for Windows Phone. It’s the screen displayed when the phone is started. When the user presses the Windows
 button, they’re brought back to the Start Screen. A user can pin their favorite applications, games, and contacts to the Start
 Screen so they can launch them quickly.

 The images displayed on the Start Screen (shown in figure 1.4) are called tiles. Tiles can be dynamic, displaying information relevant to an application. The tile for the Weather Channel application updates
 with the latest weather conditions. Other tiles are badged when notifications are ready to be viewed. The tiles for Email
 display a count of new mail messages. Tile images, text, and format are provided by the developer.

 Figure 1.4. The Start Screen from the emulator containing several tiles of various formats and sizes

 [image:]

 Applications can pin multiple tiles to the Start Screen, each launching to a different spot within the application. Tiles
 can be updated from code running on the phone or remotely using the Microsoft Push Notification Service. Tiles are displayed
 in one of three formats: Flip, Iconic, or Cycle. Each of the tile formats can be one-quarter size, normal size, or double-wide
 size.

 Flip tiles display a title, a count, and a background image on the front of the tile. The count is shown as a small badge in the upper-right
 corner. The back displays a message, as well as a title and image, but doesn’t display the count. The operating system periodically
 animates the tile by flipping from front to back, then back to front, showing the user both sides of the tile. If the application
 hasn’t assigned any properties for the back of the tile, the tile is never flipped over. The small version of the tile doesn’t
 display a title and doesn’t flip. You can see the different-sized Flip tiles in figure 1.5. If a Flip tile doesn’t specify a background image, the background of the tile is filled with the accent color from the system-wide
 theme chosen by the user.

 Figure 1.5. The three different sizes of a Flip tile. At the top of the image is the small-sized Flip tile showing only the background
 image and count badge. The front and back of both the normal-sized and double-wide-sized tiles are also shown—displaying the
 tile title, background image, count badge, and back-of-tile message.

 [image:]

 Iconic tiles have only a single side, which displays a title, icon, and count. Small and normal-sized tiles display the icon on the left
 side, with the count occupying the right side, as shown in figure 1.6. Small versions of the tile don’t display the title. The icon and count are shown in the lower-right corner of double-wide
 tiles. Double-wide iconic tiles also display a message. The message shown on the large tile is specified in three parts, comprising
 a header and two rows of text. Iconic tiles can specify the background fill color, and if a color isn’t specified, the accent
 color from the system-wide theme is used.

 Figure 1.6. Three different sizes of an iconic tile. Both the small and normal-sized tiles display the icon and the count centered in
 the tile. The double-wide tile moves the icon and count to the corner to make room for three rows of text.

 [image:]

 Cycle tiles cycle through a number of different background images. Up to nine different images can be specified. The current image runs
 in a panning animation that slowly moves the image from the bottom of the tile to the top. The transition between images,
 shown in figure 1.7, is also animated, quickly scrolling the next image into view. Cycle tiles display both a title and a count, with the count
 shown as a badge in the upper-right corner of the tile. The small Cycle tile doesn’t cycle but rather shows a static image.
 The small tile also doesn’t display a title.

 Figure 1.7. A Cycle tile caught in transition from one image to another

 [image:]

 Tiles are designed for WXGA resolution and are scaled by the operating system for WVGA and 720p displays. Tile sizes are 159
 * 159 for one-quarter-sized tiles, 336 * 336 for normal tiles, and 691 * 336 for double-wide tiles.

Application List

 The Application List (figure 1.8) is where all native and third-party applications appear. It doesn’t matter whether the application is built using XAML or
 Direct3D, or if it’s a native application built by Microsoft, a device vendor, or a mobile carrier. The developer determines
 the application title and icon that are shown in the Application List.

 Figure 1.8. The Application List showing the tap-and-hold menu through which the user can uninstall an application or pin it to the Start
 Screen

 [image:]

 Unlike Start Screen tiles, Application List images are static and don’t animate or display counts. The image is determined
 at compile time and can’t be dynamically updated by the application. Application list icons are 100 * 100 pixels. The system
 theme accent color will show through any transparent pixels in the application’s icon. The user can pin an application to
 the Start Screen or uninstall it from the context menu shown when the user taps and holds the application’s tile or icon.

Games Hub

 If your project is declared to be a game, it’ll be listed in the Games Hub instead of the Application List. The Games Hub is divided into three areas:

 	The Collection view lists the games installed on the device.

 	The Spotlight view displays news from Xbox Live.

 	The Xbox view provides access to the user’s Xbox gamer profile and Xbox Friends.

 The game developer declares the title and icons displayed in the Collection view in the same manner that Application List
 images and titles are declared.

Music + Videos Hub

 The Music + Videos Hub is the central place where you can find all music, video, and podcast activity on the device. The Music
 + Videos Hub is divided into five areas, as shown in figure 1.9:

 	The Collection view is the central point for playing music, videos, and podcasts, as well as a link to the Windows Phone and
 Xbox Music Stores.

 	The History view contains the list of music, videos, playlists, artists, and podcasts that you recently played. This includes
 media played by third-party applications that integrate with the Hub.

 	The New view contains the list of new music, videos, or podcasts that you synced to the phone or downloaded from the Windows
 Phone or Xbox Music Stores. Third-party applications can add items to the New view.

 	The Apps view contains the list of Music + Videos Hub applications that are installed on the device. Third-party media applications
 are listed here.

 	The Xbox view displays artists and other content offered by the Xbox Music Store.

 Figure 1.9. The Music + Videos Hub showing the Collection, History, New, Apps, and Xbox views

 [image:]

 The Music + Videos Hub provides a few integration points to third-party applications. You can read more about the Music +
 Videos Hub in chapter 9.

Photos Hub

 The Photos Hub, shown in figure 1.10, is where you can see all of your photos from different sources. All photos you take with the phone, sync from the computer,
 download from the internet, or open in email are included in the Photos Hub. The Photos Hub is integrated with Outlook.com
 and Facebook, and all photos you upload to those websites are displayed in the Photos Hub as well. It also shows the latest
 photos of your friends on Facebook.

 Figure 1.10. The Photos Hub showing the Collections, Favorites, What’s New, and Apps views

 [image:]

 The Photos Hub can be extended by third-party applications that implement photo editing or sharing features. Extending the
 Photos Hub is described in chapter 9.

People Hub

 The People Hub is the contacts application for Windows Phone. Here’s where you find your contacts, along with their phone
 numbers and addresses. The People Hub also displays the latest status and activity obtained from Outlook.com, Facebook, Twitter,
 and other social networks. Third-party applications can read data directly from the contacts database and can read and write
 contacts data with launchers and choosers, which are introduced in the next section. Third-party applications can also create their own contact stores that are integrated
 into the People Hub. You’ll learn more about working with built-in and custom contact stores in chapter 6.

 Understanding Windows Phone’s hubs and how they can be extended is key for building applications that enhance user productivity
 and that are integrated with the operating system. Third-party integrated applications and extensions are built on top of
 the features exposed in the platform APIs and frameworks.

 1.2.4. Platform APIs and frameworks

 At its core the Windows Phone 8 operating system is Windows 8—not the full-blown Windows 8 you run on your desktop, but pieces
 of the Windows 8 kernel and the Windows Runtime designed to run on mobile devices and tablets equipped with ARM processors.
 Because of this shared lineage, Windows Phone 8 includes a subset of the Windows Runtime, Win32, and .NET APIs found in Windows
 8.

 In addition to being built on top of the Windows 8 kernel, Windows Phone 8 inherits the features and APIs introduced in Windows
 Phone 7. This hybridization of Windows 8 and Windows Phone 7 means that in some places two different APIs exist for the same
 set of features. One example is the Isolated Storage APIs from Windows Phone 7 and the Local Storage APIs from the Windows
 Runtime. Other examples include the Networking and Sockets API and the APIs for the accelerometer, gyroscope, and other sensors.
 Throughout the book we try to indicate where we use APIs that have alternate implementations.

 Like Windows Store applications on Windows 8, Windows Phone applications run in a sandbox and can’t communicate with other
 processes or read from the file system. These security measures limit the ability to integrate with native applications and
 databases. To ease these limitations, native applications also expose various integration points. These integration points
 come in the form of launchers, choosers, and extensions. The platform also provides access to network APIs so that applications can use web services external to the device. Finally,
 facilities such as location and notification services are available to third-party developers.

Launchers

 Launchers allow your code to activate a native or built-in application. Data can be passed to the launched application. When
 the native application is launched, your application is deactivated. Launchers are provided to activate the phone dialer,
 media player, web browser, and other native applications. Launchers are the only way to initiate a phone call or send an SMS
 message; see figure 1.11. Launchers are covered in depth in chapter 5.

 Figure 1.11. The sample application you’ll build in chapter 5 uses a launcher to send an SMS text message.

 [image:]

Choosers

 Choosers return data to an application. Choosers are provided to retrieve email addresses, phone numbers, physical addresses,
 and photographs. Choosers also launch a native application, resulting in the deactivation and/or termination of your application.
 Choosers are also covered in chapter 5.

Extensions

 Extensions allow an application to integrate their features seamlessly into a native application. For example, the Photos
 Hub allows photo-editing applications to be launched from its Apps list and from the Share and Apps menus, as shown in figure 1.12. The Music + Videos Hub allows applications to appear in its Apps list.

 Figure 1.12. The Photo Editor application you’ll build in chapter 9 extends the Photos Hub.

 [image:]

Associations

 Associations allow one application to open another application, even if the second application is built and distributed by
 another third party. Associations come in two forms: file associations and URI associations. File associations are used so that your application is opened when the user opens a file with an extension you’ve registered with the operating system. The file might have come from an email attachment,
 been downloaded from the internet, or located on an external SD card. URI associations allow your application to launch, or be launched by, another application using a registered URI protocol. You’ll learn more
 about URI associations in chapter 11.

Networking

 Windows Phone provides HTTP and sockets network communication. HTTP communication is implemented in the WebClient, HttpWebRequest, and HttpWebResponse classes found in the System.Net namespace. TCP and UDP communications are implemented with the Socket class in the System.Net.Sockets namespace in the .NET API or with the StreamSocket and DataGramSocket classes in the Windows.Networking .Sockets namespace in the Windows Phone Runtime API.

Notifications

 The Microsoft Push Notification Service provides an API where a phone user can subscribe to a set of custom events. The notification
 events are defined by third-party applications and must be sent from a dedicated web service implemented by the application
 developer. Notifications are displayed to the phone user either on the application’s tile in the Start Screen, at the top
 of the screen as a toast notification (figure 1.13), or within the running application.

 Figure 1.13. A toast notification appears at the top of the screen and displays a title and a message.

 [image:]

 A toast notification is made up of a title and short message. The user can dismiss the notification by flicking to the right.
 The user can tap the toast to launch the application. The application developer can define a custom launch URI as part of
 the toast. We show how to build a notification application in chapter 11.

Location

 The Location service uses data from the wireless and cellular networks and GPS to allow you to create location-aware applications.
 Calls to the location cloud service are abstracted behind the Geolocator class in the Windows.Devices.Geolocation namespace found in the Windows Phone Runtime API. In chapter 16 we show how to use Geolocator in an application that uses location and maps.

Custom web services

 Beyond providing access to business application data or social networks, custom web services can be used to overcome some
 of the limitations of phones. If you have a suite of applications that share data, you can use a web service to share the
 data among them.

 1.2.5. The Dev Center and the Windows Phone Store

 The Dev Center is the portal where Windows Phone developers can find the tools and resources for building and selling applications
 and games. The Dev Center is where you can download the developer tools. You can also find sample code, tutorials, and documentation. If you need advice on a tricky problem, you can submit a question to the developer forums in the Dev Center.
 The Dev Center is located at http://developer.windowsphone.com.

 Before you can deploy and debug your application on a real phone or publish your application to the Windows Phone Store, you
 must purchase a $99 yearly subscription to the Dev Center. Depending on what you’re building, you may consider waiting to
 purchase a Dev Center subscription until your application is nearly complete, using the emulator to build and test your application.
 MSDN subscribers receive a Dev Center subscription as part of their MSDN subscription.

 	

 Tip

 College students receive free Dev Center subscriptions through the DreamSpark program. DreamSpark is a Microsoft program providing students with free copies of retail development tools and servers. You
 can learn more about DreamSpark at http://dreamspark.com.

 	

 Once the application has been developed, it must go through an approval process run by Microsoft before it can be published
 to the Windows Phone Store. This ensures that the application conforms to Microsoft requirements for a Windows Phone application.
 Microsoft’s requirements are detailed in the document App Certification Requirements for Windows Phone available from the
 Dev Center and MSDN at http://mng.bz/Fefo. More details about the Dev Center and submitting an application to the Windows Phone Store are provided in chapter 18.

1.3. Comparing Windows Phone to other mobile platforms

 This book is written primarily for developers who have some experience working with C# and XAML. We focus on the features
 and APIs that have been introduced specifically for the phone or have been modified to fit the phone’s unique characteristics.

 If you already use WPF, Silverlight, or XAML to develop applications, you know they’ve matured rapidly over the last few years.
 Silverlight’s success as a lightweight application framework demonstrates how XAML is ideal to use as the application framework
 on the mobile device. XAML is rich in features and has been proven with browser and desktop applications. You’ll find many
 familiar features and tools in Windows Phone.

 If you’ve used Direct3D to build games for the Windows Desktop, then Windows Phone is one more platform. Developers can easily
 build and port games for the new devices. Windows Phone introduces a new game development model by integrating XAML with Direct3D,
 which is beyond the scope of this book.

 If you’re not already a XAML developer, don’t despair. The appendixes include a quick primer for XAML and an introduction
 to the Model-View-ViewModel (MVVM) pattern used by many XAML developers. And Manning has published several books on C# and
 Silverlight, which you can find in their catalogue at http://mng.bz/44nv.

 	

 Note

 You can develop games for the Windows Phone 8 operating system with XNA Game Studio, but XNA Game Studio can only build Windows
 Phone 7.1 projects. The Windows Phone 8 operating system will run both Windows Phone 7.1 and Windows Phone 8 applications. Windows Phone 7.1–style applications and games aren’t covered in this book.

 	

 But what if you’re coming to Windows Phone from some other background? How does the Windows Phone differ from Windows Store
 applications on Windows 8, for example? Where do you begin when porting your iOS or Android application? In this section we
 get you started with Windows Phone development by identifying similarities with and differences from other application platforms.

 1.3.1. Windows 8

 Although Windows 8 Store applications have a great deal in common with Windows Phone 8 applications, there are also differences
 in the two platforms. Significant portions of the .NET and Windows Runtime APIs have been implemented for Windows Phone, enabling
 sharing of concepts and code across both platforms.

 One area where the two platforms differ is that of building user interfaces. You can build user interfaces for Windows 8 Store
 applications using C# with XAML, C++ with XAML, C++ with Direct3D, or JavaScript with HTML. Windows Phone applications are
 limited to C# with XAML or C++ with Direct3D.

 On Windows 8, XAML controls exist in Windows.UI.Xaml and related namespaces, which are new to Windows 8. On Windows Phone 8, XAML controls exist in the same System.Windows and related namespaces used by WPF and Silverlight. That being said, the names of the classes and controls that exist in
 Windows 8 XAML also exist in Windows Phone 8 XAML—such as Grid, TextBox, UserControl, and so on. The similarities may allow you to share code. The differences—in the XAML markup, for example—may be problematic.

 Problems with sharing XAML aren’t quite as severe as you may think. The screen sizes and interaction models available to a
 Windows 8 Store application are significantly different from those available to a Windows Phone application. If you adhere
 to the UI design principles established for each platform, you should end up with different user interfaces.

 1.3.2. Apple iOS

 At first glance, you might think there’s little in common between developing applications for an iOS device and the Windows
 Phone. On the iOS platform you use Xcode and Objective-C to write native applications; on the Windows Phone you use Visual Studio and C# (or Visual Basic) to write managed applications. It’s our opinion that programming languages and frameworks are tools
 in a developer’s tool belt, and good developers make use of several languages and frameworks. If you look beyond the languages
 and development environments, many of the same fundamental concepts exist on both platforms.

 Apple and Microsoft both provide free development tools, complete with device simulators. Each platform has a set of style
 guides that applications should adhere to, and each also requires a fee-based subscription in order to deploy an application
 to a device. Each platform has a certification process and application store.

Building your interface

 One thing to keep in mind when porting an iOS application is the differences in the user interface guidelines. You shouldn’t
 build an application with an iOS look and feel for the Windows Phone. An iOS application ported to Windows Phone will have
 a different look and feel, user-interaction model, and workflow. Don’t use chrome and icons from iOS.

 Is your application built with controls from UIKit or does it use OpenGL ES? The XAML framework offers many of the controls and widgets provided by UIKit. On the other hand, OpenGL developers will
 use Direct3D to build applications. You can also mix application-style widgets from XAML with Direct3D-type graphics.

 You’ll build your XAML applications using Visual Studio and Blend. Your views will be built using XAML, an XML-based markup
 language. XAML can be coded by hand in Visual Studio’s text editor or with the visual editors in Visual Studio and Blend.
 The core XAML Framework along with the Windows Phone Toolkit provide most of the controls you’ll need when building an application.

 If your iOS application uses Core Animation, you’ll use the animation and storyboard classes from the System.Windows.Media.Animation namespace. Learn to use Blend’s storyboard editor if you’re doing anything beyond simple animations.

 XAML applications are navigation-style applications, driven by the Navigation-Service. The NavigationService is similar to the UINavigationController provided by the iOS framework and is used to move between different pages or views. The difference is that all XAML applications
 use the NavigationService, even the simplest one-page applications.

Interacting with native applications

 Like the iOS SDK, Windows Phone provides limited access to the phone dialer, SMS text application, and email. On iOS, the
 phone dialer is accessed via the tel URL; on Windows Phone you use the PhoneCallTask. MFMessageComposeViewController and MFMailComposeViewController are replaced by SmsComposeTask and EmailComposeTask.

 The iOS SDK provides access to the address book with several classes in the Address Book and Address Book UI frameworks. On
 Windows Phone, read-only access to the address book is exposed via classes in the Microsoft.Phone.UserData namespace. Developers can also interact with the contacts database via a few launchers and choosers. You can prompt the user
 to choose a phone number, email address, or physical address with PhoneNumberChooserTask, EmailAddressChooserTask, and AddressChooserTask. You can prompt the user to save a phone number, email address, or contact with SavePhoneNumberTask, SaveEmailAddressTask, and SaveContactTask. You can read more about launchers and choosers in chapter 5 and access to the contacts database in chapter 6.

Using the sensors

 Like the iPhone, the Windows Phone has an accelerometer, compass, and camera. Some Windows Phones also have a gyroscope, compass,
 and/or proximity sensor. The Windows Phone APIs provide access to all these sensors. Using the Camera-CaptureTask, you can launch the camera UI and manipulate a photo taken by the user. You can take direct control of the camera by using
 the PhotoCamera, Photo-CaptureDevice, or WebCamera APIs. Working with the camera is covered in chapter 8.

 The Windows Phone complement to UIAccelerometer is either the Microsoft.Devices.Accelerometer class or the Windows.Devices.Sensors.Accelerometer class. The Compass class is the Windows Phone equivalent to CL-Heading. Motion-detection features available by the Core Motion framework are provided by the Gyroscope and Motion classes in the .NET API or the Gyrometer, OrientationSensor, and Inclinometer classes in the Windows Phone Runtime API. We show how to use the accelerometer, compass, and gyroscope, shown in figure 1.14, in chapter 10.

 Figure 1.14. In chapter 10 you’ll build applications that use the accelerometer, compass, and gyroscope.

 [image:]

Storing data

 An iOS application can store its data in user defaults, on the file system, or in a database. The iOS SDK makes use of SQLite
 for local database management.

 Windows Phone does provide limited access to the file system. An application can only write files to local storage and has
 no access to any other part of the file system. Local storage is similar to an iOS application’s Documents folder.

 Another way to store data is with the IsolatedStorageSettings class. This class is similar to the NSUserDefaults class in the iOS framework. It’s intended to be used to store lightweight data objects and is ideal for storing user preferences.
 One difference between NSUserDefaults and IsolatedStorageSettings is that IsolatedStorageSettings isn’t global, and settings can’t be shared between different applications.

 Applications can store data in a Microsoft SQL Server Compact Edition (SQL CE) database using the LINQ to SQL framework. SQL
 CE is a lightweight database engine designed to run on mobile devices. The database files are written to a special folder
 in local storage and can’t be shared with other applications. Chapter 7 demonstrates how to use each of the data storage options in your applications.

Media

 The iPhone uses the iPod software to play audio and video files. The iOS SDK’s Media Player framework allows developers to
 access the library of music and videos and play them inside their applications. The Windows Phone uses Xbox Music for its
 media library, shown to users in the Music + Videos Hub. Applications can play audio and video files with the MediaPlayerLauncher class. Developers can also access the media library using the classes in the Microsoft.Xna.Framework.Media namespace. The MediaPlayer class can be used to play songs, whereas the videos are played with the VideoPlayer class.

 XAML applications can use the XNA Media framework, but XAML also has its own media controls in the System .Windows.Media namespace. The MediaElement control supports audio and video playback. The MediaStreamSource class can be used to manipulate audio and video playback or implement custom media containers.

 The Windows Phone equivalent to iOS’s AVAudio-Recorder class is the Microsoft.Xna.Framework.Audio .Microphone class.

 Your application can integrate into the Music + Videos Hub on the phone. Your application can be listed in the hub’s Apps
 list, as shown in figure 1.15, and media played by your application can be shown in the hub’s History page.

 Figure 1.15. In chapter 9 you’ll build VoiceRecorder, an application that integrates with the Music + Videos Hub.

 [image:]

 You can read about working with media, the microphone, and the Music + Videos Hub in chapters 9 and 15.

Networking

 The iOS SDK offers several classes to enable network programming. A developer can choose to program using raw sockets or higher-level
 protocols such as HTTP and FTP. Windows Phone offers sockets and HTTP support. You perform HTTP communication using the HttpWebRequest, HttpWebResponse, and WebClient classes in the System.Net namespace. Sockets programming is performed using classes in the Windows.Networking.Sockets namespace.

 Microsoft has also built a notification service to allow web services to push notifications to a phone. Developers host their
 own web service or other application. The application service sends notifications to Microsoft’s Push Notification web service,
 which forwards notifications to a user’s phone. Interaction with the notification service is covered in chapter 11.

 As you can see, there are many differences between the iOS and the Windows Phone. There are also a number of similarities,
 and developers should be able to port most applications to the Windows Phone.

 1.3.3. Android

 Android is another mobile operating system that’s capturing the hearts and minds of consumers and developers. Like the iPhone,
 there are many differences and many similarities between Android and Windows Phone. Like Windows Phone, Android runs on a
 number of different devices from a number of different manufacturers. Unlike Microsoft, Google hasn’t dictated the hardware
 specifications to the manufacturers, and developers must design and test on several hardware configurations.

 Android and Microsoft both provide free development tools complete with device emulators. But Microsoft requires a fee-based
 subscription in order to deploy an application to a device and certifies each application before making the application available
 in the application store.

Runtime environment

 Windows Phone applications run in the .NET Common Language Runtime (CLR). The CLR is a virtual machine much like the Dalvik
 virtual machine that runs on Android. Applications are packaged in XAP files, which is a ZIP archive of the assemblies and
 resources in the application bundle.

 Windows Phone places restrictions on the types of applications that can run on the phone. Android allows for background services
 and UI-less broadcast receivers to run on the phone. Though Windows Phone offers limited support for background operations
 with background agents, there’s no counterpart to broadcast receivers. Windows Phone doesn’t have system alarms or triggers
 that can directly start an idle application. Windows Phone applications can be started when the user responds to alarms, reminders,
 or notifications.

 The Android runtime does limit access to certain features with manifest permissions. Windows Phone uses a similar security
 model by requiring capabilities to be declared in the application manifest.

Building your interface

 Android activities are loosely related to pages in a XAML application. Each page of an application has a unique address, and
 the operating system will use a page’s URL to navigate to the page when restarting an application. Developers can use a page’s
 URL when creating tiles. Android programmers declare user interfaces with layout XML files. Windows Phone user interfaces
 are declared using XAML, which are also XML files. If your application makes use of the Android MapView, you’ll want to read about using the Maps control in chapter 16.

Interactions with other applications

 Android applications interact with built-in and third-party applications by dispatching Intents. Windows Phone applications interact with native applications via launchers, choosers, and URL associations. Windows Phone
 allows third-party applications to interact with other third-party applications only via URL associations, and developers
 can’t create new launchers or choosers.

 Android applications can replace, enhance, or eavesdrop on another application by handling the same Intents. Windows Phone
 doesn’t allow third-party applications to replace any launchers or choosers. You can enhance the Pictures Hub and the Music
 + Videos Hub by implementing the required extensibility points.

 Android applications share data by exposing and using content providers. On Windows Phone, there’s no way to expose your data
 to other applications, and other applications can’t use your data. The only exception to this rule is if your application
 implements a custom contact store.

 You can read about the available launchers and choosers in chapter 5 and custom contact stores in chapter 6.

Storing data

 An Android application can store its data in shared preferences, in the file system, or in a database. Android uses SQLite
 for local database management.

 Windows Phone does provide limited access to the file system. An application can only write files to local storage and has
 no access to any other part of the file system. You can’t read another application’s files, and other applications can’t read
 your application’s files.

 Another way to store data is with the IsolatedStorageSettings class. This class is similar to SharedPreferences in the Android framework. It’s intended to be used to store lightweight data objects and is ideal for storing user preferences.
 One difference between SharedPreferences and IsolatedStorageSettings is that Isolated-Storage-Settings isn’t global, and settings can’t be shared between different applications.

 Window Phone applications can store data in a Microsoft SQL CE database using the LINQ to SQL framework. SQL CE is a lightweight
 database engine designed to run on mobile devices. The database files are written to a special folder in local storage and
 can’t be shared with other applications. Chapter 7 demonstrates how to use each of the data storage options in your applications.

Media

 Android uses the OpenCORE library to play and record audio files and to play video files. OpenCORE’s MediaPlayer class is used to play audio, whereas the VideoView widget is used to play video. Windows Phone applications use the MediaPlayerLauncher class to play audio and video files. Developers can also access the media library using the classes in the Microsoft.Xna.Framework.Media namespace. The MediaPlayer class can be used to play songs, whereas videos are played with the Video-Player class.

 Windows Phone applications can use the XNA Media framework, but XAML also has its own media controls in the System.Windows.Media namespace. The MediaElement control supports audio and video playback. The MediaStreamSource class can be used to manipulate audio and video playback or implement custom media containers.

 The Windows Phone equivalent to Android’s MediaRecorder class is the Microsoft.Xna.Framework.Audio.Microphone class. You can read about working with media, the microphone, and the Music + Videos Hub in chapters 9 and 15.

Networking

 Android provides a variety of networking options, starting with raw sockets and extending through HTTP. Windows Phone offers
 sockets and HTTP support. You perform HTTP communication using the HttpWebRequest, HttpWebResponse, and WebClient classes in the System.Net namespace. Sockets programming is performed using classes in the Windows.Networking.Sockets namespace from the Windows Phone Runtime API.

 Android networking applications can use the ConnectivityManager class to determine the status of the device’s network connection. To check the network status of a Windows Phone, you use
 the NetworkInterface class in the Microsoft.Net.Network-Information namespace.

 In many ways, the Android platform is more like the Windows Mobile platform. Applications have fewer restrictions and can
 replace core features of the operating system. Manufacturers can change the look and feel of the operating system. Developers must build for a wider range of hardware
 configurations. A certain set of Android applications can’t be ported to Windows Phone because of the limitations enforced
 by the operating system.

1.4. The Windows Phone Developer Tools

 To build great applications, you need great development tools. Microsoft’s Visual Studio and Expression Blend fit the description.
 Visual Studio 2012 Express for Windows Phone joins the list of no-cost Express developer tools provided by Microsoft, and
 a no-cost version of Expression Blend 4 is available. All these tools have been packaged together and are distributed as the
 Windows Phone SDK, which can be freely downloaded from the Dev Center at http://developer.windowsphone.com.

 1.4.1. Visual Studio for Windows Phone

 The Windows Phone Developer Tools install an Express Edition of Visual Studio 2012 configured with the phone development tools.
 If you already have a retail edition of Visual Studio 2012 installed on your computer, the phone development tools will be
 installed as a plug-in to the IDE. Windows Phone projects can be written in C# and Visual Basic. Direct3D applications, Windows
 Phone Runtime Components, and native libraries can be written in C++.

 We use the Express Edition throughout the book for the screen shots and sample code. Code and user interface design features
 will work the same in the retail editions of Visual Studio 2012.

 You can launch the IDE by opening the Start menu and clicking Microsoft Visual Studio Express 2012 for Windows Phone in the
 Microsoft Visual Studio Express folder. Figure 1.16 shows the Visual Studio IDE.

 Figure 1.16. Visual Studio Express 2012 for Windows Phone

 [image:]

 1.4.2. Blend for Visual Studio

 Visual Studio has cool features, but it’s not so friendly for the user interface designers on your team. Microsoft has created
 a tool for designers called Blend for Visual Studio. Originally part of the Expression Studio suite, a no-cost edition of Blend has been provided for creating Windows Phone
 applications. Blend allows the designer to create user interfaces without writing a single line of code.

 Blend for Visual Studio can create the same XAML projects as Visual Studio. A designer can edit the same solution, project,
 and code files that a developer edits in Visual Studio. We occasionally cover Blend features in the book, but our focus is
 on using Visual Studio.

 1.4.3. Windows Phone emulator

 The Windows Phone 8 emulator is a Hyper-V virtual machine and has the same system requirements as Hyper-V. Hyper-V runs only
 on the 64-bit version of the Windows 8 Pro operating system. Hyper-V requires 4 GB or more of RAM. Hyper-V requires a CPU
 with virtualization extensions and BIOS that supports (and has enabled) hardware-assisted virtualization, Second Level Address
 Translation, and hardware-based Data Execution Prevention. System requirements are listed in the MSDN documentation at http://mng.bz/yyUx.

 Four different Windows Phone 8 emulator configurations are installed with the Windows Phone Tools—one for each of the three
 possible screen resolutions (WVGA, WXGA, and 720p) and a second WVGA emulator constrained to 512 MB to enable testing low-memory
 scenarios.

 	

 Note

 The Windows Phone Tools also install an emulator for Windows Phone 7.1. The Windows Phone 7.1 emulator isn’t a Hyper-V virtual
 machine and has a different set of requirements.

 	

 The emulators are launched from inside Visual Studio when you run or deploy an application. The emulator can be resized to
 better fit your development environment. You can also use the buttons on the emulator’s command toolbar to change the orientation
 of the phone and verify orientation changes in your application.

 You can use the Settings application found in the Application List to change the emulator’s default configuration. But the
 settings revert to their defaults when the emulator is stopped and restarted. You’ll need to change the settings to verify
 that your application behaves appropriately with different configurations and locales.

 If your computer uses a true multitouch monitor, the emulator will register touches to the computer monitor. Otherwise, the
 emulator simulates touches with the mouse. The emulator can also switch between using the SIP and treating your computer’s
 keyboard as a hardware keyboard.

 1.4.4. Windows Phone Developer Registration tool

 Applications can only be installed on a phone by the Windows Phone Store or a Company Hub. Limited exceptions are made for
 phones registered to developers who have subscriptions to the Dev Center. Dev Center subscriptions aren’t free. You can purchase one from the developer portal at http://developer.windowsphone.com. Windows Phone applications can’t be distributed as standalone packages. To develop your own application, you need to enable
 your device to allow the deployment of XAP files.

 Once your account has been verified by the Dev Center, you can launch the Windows Phone Developer Registration tool from the
 Windows Phone Developer Tools folder in your Start menu. This tool, shown in figure 1.17, will prompt you to enter your Dev Center credentials and select a connected phone. You need to plug the device into your
 PC and have your PC connected to the internet in order to connect to Microsoft’s registration servers.

 Figure 1.17. Windows Phone Developer Registration tool

 [image:]

 A maximum of three phones can be registered to a single account, and a maximum of 10 developer applications can be installed
 on a phone at the same time. If you reach the installed application limit, you must uninstall one or more developer applications
 before you can deploy a new application from Visual Studio. Occasionally your phone registration will expire, and you’ll receive
 an error when attempting to deploy an application to a device. You’ll then need to reregister the phone with the registration
 tool.

