

 inside front cover

 Benefits of automated SQL Server installs

 	
 Benefit

 	
 Example

 	
 Standardization

 	
 Established, time-tested processes. Increasing predictability, consistency, and best practice implementations.

 	
 Compliance

 	
 Can make it easy to comply to operational standards required by various organizations, such as DISA and PCI.

 	
 Faster to deploy

 	
 Just a couple minutes to install! Being able to deliver systems faster can even ease disaster recovery.

 	
 Fewer mistakes

 	
 Avoid installing into Logs when you meant to choose Log.

 	
 Fewer one-offs

 	
 Automation makes it so easy that no one is tempted to go around the process.

 	
 Time-saver

 	
 No need to retroubleshoot issues. Those problematic firewall settings are addressed right within your code.

 	
 Requires up-front consideration

 	
 Design it once and you’re set. Then installs are performed in a predefined, optimized way.

 	
 Source control

 	
 You can even keep your install configs in source control, leading to greater accountability and understanding of point-in-time decisions because the commit holds the documentation.

 	
 Higher-quality installs

 	
 Less temptation to do it poorly. It’ll be a thorough install instead of a minimum effort that works just for a single group.

 	
 Increased opportunities

 	
 When things are easier, there are more possibilities. Perhaps you want to create an environment where you throw away temporary virtual machines, similar to Docker.

 	
 Flexibility

 	
 Important if changes are required at short notice.

 	
 Less downtime

 	
 The process was thought out, so no SQL files ended up on the C drive. This means the drive is far less likely to fill up and go offline, leaving your customers happier with your work.

 	
 Higher satisfaction

 	
 Point-and-click installs are boring. Automated installs are thrilling.

 	
 On-demand installs

 	
 Because the process is automated, you can set up something like Jenkins or even a scheduled task to deploy instead of using the DBA’s time.

 	
 More secure

 	
 When systems and processes are standardized, updating becomes easier and more likely to occur.

 	
 Easier maintenance

 	
 Got something to change really quickly? Because systems are standardized and predictable, changing all of them at once is easy.

 [image:]

 Learn dbatools in a Month of Lunches

 Automating SQL server tasks with PowerShell commands

 Chrissy LeMaire, Rob Sewell, Jess Pomfret, and Cláudio Silva

 Foreword by Anna Hoffman

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Frances Lefkowitz

 	
 Technical development editor:

 	
 Mike Shepard

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Pamela Hunt

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Karsten Strøbæk

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Leslie Haimes

 ISBN: 9781617296703

 dedication

 We dedicate this book to our loving and supportive wives.

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 1 Before you begin

 1.1 Why data professionals can’t afford to ignore PowerShell

 A SQL Server DBA first win with PowerShell

 1.2 Automate it

 1.3 What is dbatools?

 1.4 Is this book for you?

 1.5 How to use this book

 The main chapters

 Hands-on labs

 Supplementary materials

 Further exploration

 1.6 Contacting us

 1.7 Being immediately effective with dbatools

 2 Installing dbatools

 2.1 Minimum requirements

 Server

 Workstation

 Ports

 Execution policy

 2.2 Signed software

 2.3 Understanding installation paths

 2.4 Installation methods

 The PowerShell Gallery

 Trusting the PowerShell Gallery

 Installing dbatools using the PowerShell Gallery, all users

 PowerShell Gallery, local user

 PowerShell Gallery, offline install

 2.5 PowerShell Gallery alternatives

 Downloading a zipped archive

 Additional methods

 2.6 How to find and use commands, the help system, and docs.dbatools.io

 Get-Command

 Find-DbaCommand

 Get-Help

 docs.dbatools.io

 2.7 Updating

 PowerShell Gallery

 Alternative methods

 2.8 Hands-on lab

 3 The dbatools lab

 3.1 Why is a lab included in this book?

 3.2 Two options for building a dbatools lab environment

 3.3 Option 1: Windows lab

 Installation media for our lab

 Building the lab

 Configuration scripts

 Windows lab is ready for action

 3.4 Option 2: Quick demo environments using containers

 Running SQL Server in a container

 4 A gentle introduction to dbatools commands

 4.1 Getting started

 4.2 Checking the SQL connection

 4.3 First, getting help

 4.4 Running your first dbatools command

 4.5 The -SqlInstance parameter

 Single instances

 Multiple instances

 4.6 The -SqlCredential parameter

 Connecting to instances with SQL Server Authentication

 Saving the credential to use SQL Server Authentication with multiple commands

 Other methods of using credentials for SQL Server Authentication

 Connecting to instances with a different Windows account

 4.7 The ComputerName parameter

 Methods of listing the SQL services on multiple servers

 4.8 The -Credential parameter

 Listing services on a server using a different account at the command line

 Listing services on a server using a different account with a credential variable

 Listing SQL services by type

 4.9 Bonus parameter: EnableException

 4.10 Hands-on lab

 5 Writing to SQL Server

 5.1 Piping commands

 5.2 Writing to a database

 Importing from a CSV file to a database table

 Importing to a database table from a dbatools command

 Creating the database table first and then importing from a CSV file

 Writing the results of other commands to a table

 Writing the results of other commands to an Azure SQL Database

 5.3 Copying tables, including their data

 PowerShell splatting

 5.4 Hands-on lab

 6 Finding SQL Server instances on your network

 6.1 Background

 Finding an instance

 Finding instances using a list of targets

 Finding SQL Servers in an Active Directory domain

 Finding SQL Servers in your surrounding network

 6.2 Working with detailed results

 6.3 OS support

 6.4 Hands-on lab

 7 Inventorying your SQL estate

 7.1 SQL features

 7.2 Build

 7.3 Host information

 7.4 Databases

 Filtering databases returned from Get-DbaDatabase

 Filtering databases returned from Get-DbaDatabase by last backup time

 7.5 Putting it all together into a database

 7.6 Hands-on lab

 8 Registered Servers

 8.1 Local Server Groups

 Version-specific RegSrvr.xml files

 8.2 Azure Data Studio

 8.3 Central Management Server

 8.4 Inventory organization

 Importing advanced environment folder structures

 8.5 Further integration

 Adding new Registered Servers

 Copy, Export, Import

 Moving Registered Servers

 Removing Registered Servers

 8.6 Registered Server groups

 8.7 Hands-on lab

 9 Logins and users

 9.1 Failed logins

 9.2 Preventing login issues

 9.3 Logins, users, and permissions source control

 9.4 How was access gained?

 Finding nested Active Directory group access

 9.5 Hands-on lab

 10 Backups

 10.1 Creating backups

 Azure

 Docker

 10.2 Reading backup files

 10.3 Backup history

 10.4 Pruning old backup files

 10.5 Testing your backups

 10.6 Hands-on lab

 11 Restore

 11.1 Limitations and considerations

 11.2 Restore scenarios

 File

 Directory

 Output T-SQL restore scripts

 11.3 Restoring to custom data and log directories

 No recovery

 Renaming a database

 Point-in-time restores

 Restoring to a marked transaction

 Recovering a corrupt database

 11.4 Azure

 Shared access signatures

 Access keys

 11.5 Hands-on lab

 12 Snapshots

 12.1 Snapshots and SSMS

 12.2 Application upgrade

 12.3 When to use snapshots

 12.4 Creating a snapshot

 12.5 Upgrading

 12.6 Rolling back the entire database from a snapshot

 12.7 Restoring certain objects or data from a snapshot

 12.8 Cleaning up

 12.9 Reporting

 12.10 Hands-on lab

 13 Install and update SQL Server

 13.1 Installing

 Benefits of automated installs

 Local installs

 Remote installs

 Customizing installation options

 ConfigurationFile and Configuration

 Built-in parameters

 13.2 Updating

 13.3 The importance of patching

 Fear of breaking everything

 Burdensome process leads to procrastination

 13.4 How we make it easier

 13.5 Hands-on lab

 14 Preparing for disaster

 14.1 Exporting an entire instance

 Scripting options

 Setting scripting options

 Excluding objects

 14.2 Granular exports

 Using Export-DbaScript

 14.3 Special commands

 14.4 Exporting server configurations (sp_configure)

 14.5 Hands-on lab

 15 Performing your first advanced SQL Server instance migration, part 1

 15.1 Databases

 Backup and restore

 Detach and attach

 Staging large databases for migration

 Other database migration options

 15.2 Hands-on lab

 16 Performing your first advanced SQL Server instance migration, part 2

 16.1 Logins and groups

 Which logins/groups are still needed?

 16.2 SQL Agent objects: Jobs, operators, and more!

 16.3 Linked servers

 16.4 More migration fun

 16.5 Hands-on lab

 17 High availability and disaster recovery

 17.1 Log shipping

 Configuring log shipping with dbatools

 When log shipping goes bad: Gathering errors with dbatools

 Cutting over to a log shipped secondary database

 17.2 Windows Server Failover Cluster (WSFC)

 17.3 Availability groups

 Creating an availability group with dbatools

 Explore existing availability groups

 Managing existing AGs

 17.4 Hands-on lab

 18 PowerShell and SQL Server Agent

 18.1 Which to choose, CmdExec or PowerShell job steps?

 18.2 Creating Agent jobs to run PowerShell and dbatools

 Creating a SQL Server credential

 Creating a SQL Server Agent proxy

 The PowerShell file

 18.3 Creating the SQL Server Agent job with a CmdExec job step

 18.4 Tips

 Using default parameter values

 Ensuring that the Agent job fails when the PowerShell fails

 Logging

 Execution policies

 18.5 Hands-on lab

 19 SQL Server Agent administration

 19.1 Listing SQL Server Agent information

 SQL Server Agent jobs

 SQL Server Agent alerts

 Finding specific Agent jobs

 19.2 Agent job results and history

 Agent job results

 Time line

 19.3 Hands-on lab

 20 Creating and working with SQL Server Agent objects

 20.1 SQL Server Agent job creation

 Creating categories

 New schedule

 New proxy

 Create a new operator

 Create a new Agent job

 The job step

 20.2 Bonus Agent job commands

 Start-DbaAgentJob

 Get-DbaRunningJob

 Get-DbaAgentJobHistory

 20.3 Hands-on lab

 21 Data masking

 21.1 Getting started

 21.2 A common approach

 21.3 The better approach

 Generating random data

 21.4 The process

 Finding potential PII data

 Generating a configuration file for masking

 Applying static data masking

 Validating a data masking configuration file

 21.5 Hands-on lab

 22 DevOps automation

 22.1 When should you use dbatools in DevOps?

 22.2 DACPAC

 Exporting a DACPAC from an existing database

 Publishing a DACPAC

 DACPAC options

 22.3 Running dbatools (and PowerShell) on a CI/CD system

 Creating a task

 Ensuring the dbatools module is available

 Understanding how to add parameters to the script

 22.4 Hands-on lab

 23 Tracing SQL Server activity

 23.1 SQL Server Trace and SQL Profiler

 Converting traces to Extended Events

 23.2 Extended Events

 SSMS support

 dbatools support

 Finding Extended Events

 Using templates

 Starting and stopping Extended Event sessions

 Reading data

 Replicating Extended Event sessions to multiple instances

 Cleanup

 23.3 Hands-on lab

 24 Security and encryption

 24.1 Encrypting network connections

 Certificate

 Forcing encryption

 24.2 Extended protection for authentication

 24.3 Hide an instance

 24.4 Transparent data encryption (TDE)

 Encrypting databases

 Decrypting databases

 24.5 Database backup encryption

 Prerequisites

 Backing up the database with a certificate

 Checking encryption information from the backup

 24.6 Multilayered security

 24.7 Hands-on lab

 25 Data compression

 25.1 Types of compression

 25.2 How does rowstore data compression work?

 25.3 Why use data compression?

 25.4 It can’t all be rainbows and unicorns: Compression drawbacks

 25.5 What’s compressed?

 25.6 What should we compress?

 25.7 What makes a good candidate for compression?

 25.8 dbatools, what should I compress?

 25.9 Compressing objects the old-fashioned way

 25.10 dbatools to the rescue!

 25.11 Specifying the compression level

 25.12 Advanced settings

 25.13 Hands-on lab

 26 Validating your estate with dbachecks

 26.1 What dbachecks and dbatools have in common

 26.2 Our first check

 26.3 Viewing all available checks

 26.4 Configuring the check parameters

 26.5 Storing the output data in a database

 Storing data

 Power BI dashboard

 Configuring the connection

 26.6 Hands-on lab

 27 Working in the cloud

 27.1 Connecting to Azure

 27.2 Service principals and access tokens

 Using Az.Accounts

 27.3 Supported commands

 27.4 The future

 27.5 Hands-on lab

 28 dbatools configurations and logging

 28.1 Working with the configuration system

 Checking existing configurations

 Getting a specific configuration

 Getting just the value

 Changing a configuration value

 Resetting to default configuration values

 28.2 Taking the configs with you

 28.3 Using the logging system

 28.4 Exploring logged activity

 Ongoing logging

 28.5 Hands-on lab

 29 Never the end

 29.1 Use dbatools

 29.2 More PowerShell

 29.3 Contribute to dbatools

 29.4 Farewell

 index

 front matter

foreword

 There are over 20 million active installs of Microsoft SQL Server, with continued growth month after month. The SQL Server/Azure Data Community also continues to grow, currently with over 77,000 members across more than 40 countries. The authors Chrissy LeMaire, Rob Sewell, Jess Pomfret, and Cláudio Silva have spent many years being very active in this community—teaching, sharing, and empowering. They have been part of the charge that turned a technology into a community.

 A couple of years ago, one of the authors and the creator of dbatools, Chrissy LeMaire, came on my show, Data Exposed, to show data professionals how to automate disaster recovery in SQL Server with dbatools. I was immediately struck by Chrissy’s charisma and ability to take complex topics and make them simple. She also made it clear that dbatools was built by and for the community and is free: “Instance migrations and best practice implementations have never been safer, faster, or freer.” dbatools enables data professionals to automate SQL Server tasks with PowerShell. Not only that, but dbatools also has a rich ecosystem of contributors, tests, and resources to make sure you can learn, report bugs, and contribute.

 dbatools is something that all SQL Server professionals should consider learning, and this book is the perfect way to learn, with its combination of knowledge transfer, anecdotes, and hands-on labs. Microsoft is so confident in dbatools’ value that it has sponsored the project through Microsoft’s Free and Open Source Software Fund. dbatools empowers you to leverage automation, so you can stop doing repetitive tasks and sleep easily knowing you have the best practices implemented. In the process of learning dbatools, you’ll also become comfortable with PowerShell, which will help you more generally as a technical professional whether you’re looking to work across databases, data engineering, and applications, or across operating systems, or even across on-premises and public cloud providers, like Microsoft Azure, which is covered in a later chapter.

 In this book, you’ll first get oriented with dbatools and PowerShell, and you’ll set up a lab environment where you can get hands-on for free with these tools and SQL Server. I recommend following Chrissy, Rob, Jess, and Cláudio’s guidance of doing one chapter a day (and practicing). With each chapter, you’ll not only become more proficient in automation with dbatools and PowerShell, but you’ll also learn how to manage SQL Server in a secure and scalable manner from some of the top SQL Server experts in the world. I hope you enjoy this book.

 —Anna Hoffman

 Databases Product Management, Microsoft

preface

 In 2014, I was tasked with migrating a SQL Server instance that held a ton of SharePoint databases. I dreaded the thought of performing such an involved process over and over and figured a PowerShell solution must exist for this tedious task. After discovering that there was no automated solution for migrating one SQL Server instance to another, I set out on a journey that would change everything: creating the PowerShell scripts that would eventually become the dbatools module.

 Since then, an entire community has grown around dbatools. The dbatools module has changed the way that database professionals work with SQL Server by not only making their processes more efficient but also making their day-to-day work more enjoyable and fun. It’s even recommended by PowerShell’s creator and Microsoft Technical Fellow, Jeffrey Snover!

 For years, users asked if any dbatools books were available, and for years, the answer was “not yet but that sounds like a great idea!” I knew I wanted to write for Manning because they’re my favorite publisher, and initially, I thought the book would be a Manning Deep Dive. I worked with the whole dbatools team to create a table of contents and even asked Anna Hoffman if she’d write the foreword (she agreed!).

 After a Twitter user suggested writing Learn dbatools in a Month of Lunches instead, we realized that the Month of Lunches series was the perfect format; we all love the series and recommend Learn PowerShell in a Month of Lunches to anyone who asks where to begin with PowerShell.

 Learn dbatools in a Month of Lunches is a great first book to read about dbatools, and we hope that you enjoy learning more about our toolkit. As a community, we’ve worked hard to make PowerShell user friendly, approachable, and fun. As authors, Rob, Jess, Cláudio, and I aimed to do the same with this book—you don’t even need programming or scripting experience to get started.

 We also worked to ensure that the code in this book will work for years to come; each commit to the dbatools repository will extract code from the book and run Pester tests against live SQL Server instances to ensure exactly this happens.

 All code in this book has been tested against dbatools version 1.1.77 and later. Chapter 2 will show you how to install the newest version. If you’ve got any questions, feel free to get in touch with us at dbatools.io/bookforum.

 —Chrissy

acknowledgments

 Chrissy LeMaire: Even before I was married, I knew that I wanted to write a tech book and dreamed of writing an acknowledgment thanking my wife. What I never imagined was just how incredibly impactful the person I’d marry would be in my journey. Without my wife, Lu, it’s unlikely that I would have had enough personal stability or shoulder health to write dbatools, much less a book.

 Throughout the years, she has created space for me to flourish and build a great life. She also helped keep the book on track, often sending me to my office to write a chapter. Lu always cheerfully brings me whatever I need, whether it’s another blanket, a Belgian beer, or a beautiful vegetable plate, thoughtfully arranged. So, thank you, Lu, for helping me write this book and making my long-held dreams come true. C'est toi pour moi, moi pour toi dans la vie.

 I’d also like to thank my best friend, Brandon Abshire, who has been with me on my SQL Server journey since the beginning. Brandon taught me PowerShell and was the first person ever to show me the power of SQL Management Objects (SMO). My only regret is that we don’t still live in the same town, but I’m thankful that at least we got the chance to grow up together.

 Working through the pandemic was near impossible, and any bit of productivity was directly the result of my buddies in the Brain Trust. Thank you all for not only sharing your lives with me but listening and providing support as I shared mine.

 Frances, your guidance has helped me become a better writer, perhaps even more so than my formal schooling. Thank you so much; I will use all that I’ve learned for years to come. A gigantic thank-you also goes out to my three amazing coauthors, Rob Sewell, Cláudio Silva, and Jess Pomfret.

 Rob, you’re my perfect presentation partner, and I always enjoy the calm and confidence you bring to our sessions. Thank you for being such an integral part of my career growth.

 Cláudio, thank you for your pivotal role in starting the dbatools community and being the first person who offered to add your own code to dbatools. And thank you for fixing all of my terrible T-SQL throughout the years, ha!

 Jess, I’m still floored that dbatools was your first foray into PowerShell; we’re so lucky! Thank you for rallying through all the sprints that got us through to 1.0 and accepting the role as co-maintainer. I look forward to seeing your career’s continued meteoric rise.

 Rob Sewell: I never believed that I would ever be someone who would have their name as an author for a book. Traci, my wonderful wife, was of a different opinion. Her encouragement, support, unwavering belief in me, and everything that she does to make my life have the space to be able to focus, as well as her never-ending acceptance of the time I spend in “my box,” have enabled me to be able to complete this. Thank you, Traci. I love you.

 Chrissy, thank you so much for thinking of me all those years ago, reaching out to me and asking me if I wanted to be involved in dbatools. Without doubt, dbatools has changed my life, and you have changed my life also. My best presentations have been given with you alongside me on the stage, and I cannot wait to walk off the stage into the crowd or get everyone to applaud you again to see the look on your face. Your knowledge and your willingness to share it is incomparable. Without you, dbatools and this book would not be what they are today. You are amazing. I cannot wait to stand on stage again and say, “We are not a couple, we each have our own wife!”

 Cláudio and Jess deserve special thanks, too: Cláudio for spotting all of the punctuation that I miss! For your calm consideration and your wonderful caring, generous nature, I thank you. Jess, you are so cool and collected, so clever and so willing to take things on. Thank you for all of the times you have answered when I have reached out with questions.

 Most thanks especially go to all of the contributors—far too many to name and always willing and able to step in and give their own time, knowledge, and experience. I salute you, I worship you, I thank you.

 William, Gianluca, and André, you three wonderful, gorgeous gentleman have had such an impact on my life and on this book: thank you for all of the support and friendship, for the times shooting the breeze, and for creating great solutions and ideas that can be used. The next beer by the fire in Slovenia is on me.

 Jess Pomfret: Writing these acknowledgments has probably been the hardest bit of this book for me. I’m a strong believer that everything happens for a reason. However, there have been many people along the way who have helped me get to this point! English was my worst subject at school; I was even sent to lunchtime handwriting club because no one could even read what I was writing. Who would have thought I’d become an author!

 First, thanks must go to the rest of the authors for making this such a fun project to be involved with. Chrissy, thank you for creating not only an amazingly useful tool but such a welcoming community as well. I’ve learned and grown so much from being involved in dbatools. Rob, I can’t thank you enough for all the support with dbatools, dbachecks, and especially with my speaking endeavors. Cláudio, we joined this project at the same time, and I’ve thoroughly enjoyed working with you on it. Thanks to all of you for making this such a great adventure.

 Next up, my wife, Kelcie. Thanks for always having my back, putting up with my terrible jokes, my inability to find things that are right in front of my nose, and my impromptu dance parties—which always seem to happen when you’re in the middle of doing something. Without your support, I definitely wouldn’t have had the energy or focus required to get my chapters written.

 Finally, my thanks go to my parents for always supporting my dreams, however crazy they were (like moving across the Atlantic at 19), and all the other people who have helped me along the way. There are too many people to name, but so many have had an impact: thank you all!

 Cláudio Silva: Who knew that what started as a side project would lead to me being one of the authors of a book?! What a ride! However, this would not have been possible, at all, without the support of my wife, Diana, and my daughter, Matilde. The time that I was not available but you were always by my side; your unconditional support to always go after my dreams and accept the challenges that I wasn’t always sure about, but you always believed I would thrive—I love you!

 A tremendous shout-out needs to go out to all my teammates and authors with whom I shared this wonderful chapter of my life!

 Chrissy, a huge thank-you goes to you! Who knew that back in 2015, a casual conversation about some lines of code at a TUGA IT conference would lead us to this point of this wonderful project? Thanks for putting this project up, listening, and being so supportive, welcoming, and inspirational! You rock!

 Rob, thank you for always being available to share your knowledge and vision about so many things! I learned—and I’m sure I will continue learning—a lot from you, sometimes just by reading/watching you.

 Jess, thank you for your fellowship and support. It’s always a pleasure to work with you.

 Finally, a big thank-you, really, goes to everyone who was or is part of the dbatools project: you people who keep feeding it, from the ones who take the time to open an issue/feature request to the ones who keep sharing their knowledge and spreading the dbatools word, and obviously everyone who wrote thousands of lines of documentation and code!

 All authors: dbatools wouldn’t be the amazing project that it is today without the SQL Server and PowerShell communities. Together, we’ve changed the world of SQL Server and brought joy and ease to countless people’s lives. From the bottom of our hearts, thank you, every single person who has contributed to dbatools, whether it be through code, documentation, tech support, code reviews, filing an issue, and even buying this book. And an extra-special thanks goes to Shawn Melton for helping to maintain dbatools while we were writing this book—without you, we’d be drowning in unmerged PRs.

 Also, without the generous monetary contributions from Data Masterminds, we’d be certless and testless. Your support helps us sleep easy at night knowing we’re delivering a secure and well-tested module with every release. You have been big believers in dbatools from the beginning, and we can’t thank you enough for your ongoing support.

 Thank you, all the staff at Manning who helped guide us as we were writing this book, and whose hard work produced this text.

 Thank you, Anna Hoffman, who wrote the foreword.

 And last but not least, thank you, all the reviewers: Amanda Debler, Arav Agarwal, Arthur Zubarev, Ben McNamara, Cristian Antonioli, Danilo Zekovic, Darrin Bishop, Foster Haines, Ian Stirk, Jan Vinterberg, Joseph Houghes, Luis Moux-Dominguez, Marcus Brown, Odalia Zubarev, Paul Broadwith, Peter Bishop, Ranjit Sahai, Raushan Kumar Jha, Ruben Vandeginste, Satej Kumar Sahu, Stanley Anozie, Stephen Goodman, Steve Atchue, and Wayne Mather—your suggestions helped make this a better book.

about this book

Who should read this book

 This book is for SQL Server data professionals who want to learn more about dbatools and PowerShell. It’s also helpful for automation engineers who are familiar with PowerShell but want a better understanding of SQL Server.

How this book is organized: A road map

 In the first few chapters of this book, you’ll be introduced to dbatools as a whole, then we’ll begin following the path of taking the steps DBAs may take when they inherit their environment. From finding SQL Servers to inventorying, performing backups, preparing for disaster, then on to securing, optimization, and more. Here’s the rundown:

 	
 Chapter 1 introduces readers to the book, as well as to dbatools and automation.

 	
 Chapter 2 delves deeper into dbatools, including OS compatibility, installation, updating, and getting help.

 	
 Chapter 3 will help you set up a lab where you can safely test dbatools commands.

 	
 Chapter 4 outlines the framework for executing dbatools commands with the most commonly used parameters.

 	
 Chapter 5 walks you through writing data to SQL Server using dbatools, including importing data from CSV files.

 	
 Chapter 6 details how to discover undocumented SQL Server instances throughout your network.

 	
 Chapter 7 discusses how dbatools can help inventory your SQL Server estate, including features, builds, databases, and more.

 	
 Chapter 8 details using Registered Servers and dbatools to easily organize your SQL Server estate.

 	
 Chapter 9 tells you all about managing SQL Server logins using dbatools.

 	
 Chapter 10 covers backup management, including easy, automated testing.

 	
 Chapter 11 will help you with restores, including restoring databases to a specific point in time and even marked transactions.

 	
 Chapter 12 discusses snapshots and how much more accessible they are when using dbatools.

 	
 Chapter 13 walks you through installing and updating SQL Server on remote systems, easily and all through the command line.

 	
 Chapter 14 describes how to effectively prepare for a disaster by using dbatools to export logins, Agent jobs, and more.

 	
 Chapter 15, which provides the first part of performing advanced SQL Server migrations, focuses primarily on databases.

 	
 Chapter 16, which provides the second part of performing advanced SQL Server migrations, focuses on other migratable SQL Server features.

 	
 Chapter 17 gives an overview of dbatools support for high availability and disaster recovery features including log shipping, Windows Server Failover Cluster, and availability groups.

 	
 Chapter 18 begins a three-chapter series on SQL Server Agent by providing an overall framework for working with SQL Server Agent and PowerShell.

 	
 Chapter 19 continues the Agent series by focusing on the administration of SQL Server Agent using dbatools.

 	
 Chapter 20 finishes the Agent series by detailing how to create new Agent objects at scale.

 	
 Chapter 21 discusses data masking in depth.

 	
 Chapter 22 describes how dbatools can help enable DevOps within your organization.

 	
 Chapter 23 will help you better understand and manage Trace events and Extended Events within SQL Server.

 	
 Chapter 24 covers security and encryption, which includes network and database encryption.

 	
 Chapter 25 will walk you through compressing your data, saving space, and reducing resource bottlenecks.

 	
 Chapter 26 gives an introduction to dbachecks, which helps you easily validate your SQL Server estate using crowd-sourced checks.

 	
 Chapter 27 provides an overview of how dbatools can help when working in the cloud.

 	
 Chapter 28 describes dbatools configuration and logging in depth.

 	
 Chapter 29 wraps up the book by providing additional resources for working with PowerShell.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/learn-dbatools-in-a-month-of-lunches. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/learn-dbatools-in-a-month-of-lunches, and from GitHub at https://dbatools.io/bookcode.

liveBook discussion forum

 Purchase of Learn dbatools in a Month of Lunches includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/learn-dbatools-in-a-month-of-lunches/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 [image:]

 Chrissy LeMaire (she/her) is a dual Microsoft MVP and GitHub Star. She is a well-known speaker and the creator of several PowerShell modules, including dbatools. Chrissy also holds an M.Sc. in systems engineering and currently works as an automation engineer in Europe.

 [image:]

 Rob Sewell (he/him) is a passionate automator who has been recognized as a dual MVP by Microsoft. He is a keen community supporter and has organized, spoken at, and volunteered at many data and PowerShell events all over the world.

 [image:]

 Jess Pomfret (she/her) is a data platform architect and a Microsoft MVP. She started working with SQL Server in 2011 and loves automating processes with PowerShell. She also enjoys contributing to dbatools and dbachecks, two open source PowerShell modules that aid DBAs with automating the management of SQL Server instances.

 [image:]

 Cláudio Silva (he/him) is a data platform architect, Microsoft MVP, and contributor to open source projects such as dbatools and dbachecks.

1 Before you begin

1.1 Why data professionals can’t afford to ignore PowerShell

 Data is now one of the most valuable assets in the world, so data professionals need a broad set of skills and are expected to be able to accomplish a wide number of tasks, including the following and many more:

 	
 Build SQL Server instances

 	
 Develop extract, transform, and load (ETL) solutions

 	
 Ensure SQL Server instances are correctly configured

 	
 Monitor and respond to alerts

 	
 Troubleshoot performance and access issues

 	
 Perform OS and SQL upgrades

 	
 Deploy changes to schemas

 	
 Evaluate index usage and settings

 In the process of performing our role, we interact with a ton of technologies: SQL Server, virtualization (Hyper-V or VMware), operating systems (Windows or Linux), containers, clusters (including Kubernetes clusters), networking, storage, Active Directory, certificates, and the cloud, to name a few.

 In the majority of cases, we will be working with more than one SQL Server instance—sometimes two, sometimes 10,000 or more.

 Although we can achieve pretty much everything via GUI consoles for any of those technologies, the following two problems come immediately to mind with this approach:

 	
 The amount of time wasted

 	
 The inconsistency of humans compared with machines

 This is best explained with a story.

1.1.1 A SQL Server DBA first win with PowerShell

 When Rob became a SQL Server DBA, his first responsibility every morning was to check that Agent jobs, numbering a little over 100 instances, had run successfully across the SQL Server estate. He would start by connecting to the first instance in SQL Server Management Studio (SSMS), clicking the SQL Server Agent, double-clicking the Job Activity Monitor, and checking the Last Run column for the jobs, as shown in figure 1.1.

 [image:]

 Figure 1.1 The Job Activity Monitor

 This task would take him a minimum of 90 minutes. He had heard about PowerShell and used it at home to reorder his digital photos into year and month folders, so he asked his boss if he could use PowerShell to make this job easier. His boss said, “No, this is the way we do it and have done it for many years,” and that wasn’t going to change.

 Rob went on holiday, and, in his absence, his boss took responsibility for checking the jobs. One particular job ran on the first of every month. When checking that instance, his boss saw that all jobs had completed successfully on their last run; unfortunately, it was the first of November, and that particular job had last run on the first of October! It took a number of days before this discrepancy was noticed, and it caused some disruption. When Rob came back from holiday, he was given the time to write a PowerShell script to connect to all of the instances, fill a color-coded Excel file (shown in figure 1.2), and save it to a shared drive.

 [image:]

 Figure 1.2 The color-coded Excel output from PowerShell

 By automating the task, the time he spent performing his daily tasks went from at least 90 minutes each day to the time it takes to open the correct Excel sheet and scroll through, looking for the red cells.

1.2 Automate it

 There’s a popular saying in the automation community: “If you’re doing something more than once, automate it!” Others argue that automation should occur the very first time a task is completed, and we agree; automating a task requires time and thought, which generally results in a greater chance the task will be done properly and thoroughly. As a bonus, the script will be available the next time the task must be completed. PowerShell, a scripting language that can interact with many technologies, is an excellent tool for such automation.

 Humans are fallible; they get tired, distracted, or bored with repetitive tasks, but this is where a computer excels. A script, like Rob’s PowerShell script, runs monotonous tasks over and over, all day, without distraction and can also be scheduled to run at antisocial times. A script also would not mistake 11/01/2018 with 10/01/2018, but a human can!

 Another task in which computers thrive: dealing with repeatability—running that script again and again, and performing the exact same task over and over. Humans, unfortunately, are not so good at that.

 Another well-known saying is relevant at this point: “Use the right tool for the job.”

 We believe that it is better to write a script with good comments and headers that will set up a particular scenario than to add a set of screenshots to a document for a human to follow. Documentation with too many assumptions can lead to mistakes, whereas overdocumenting all of the steps will lead to large, unwieldy, hard-to-follow documentation, which is difficult to maintain.

 Ultimately, learning PowerShell will prepare you for our inevitable (and fun!) automation-rich future. PowerShell is everywhere—it’s now available on Windows, Linux, macOS, Raspberry Pi—and it even helps power the cloud. Once you learn how to use an automation tool like PowerShell, you can easily transition your skills to automate everything from Azure and SQL Managed Instances to Spotify and Slack. PowerShell will help empower you to become the automator and not the automated.

1.3 What is dbatools?

 dbatools is an open source, cross-platform PowerShell toolkit for SQL Server DBAs, originally created by PowerShell and SQL Server MVP Chrissy LeMaire. With more than 215 contributors from the SQL Server, PowerShell, and C# communities, dbatools is designed and written by the people who use it in their everyday work. dbatools includes solutions for common tasks like performing backups and restores, migrations (see figure 1.3), and setting up availability groups. dbatools is designed to enable SQL DBAs to reliably and repeatedly automate the usual daily tasks.

 [image:]

 Figure 1.3 A sample dbatools command, Start-DbaMigration

 Often based on solutions found on popular blog posts, Stack Overflow, and Reddit, dbatools commands automate and simplify so many of the tasks we’ve all had to do multiple times. This means that you don’t need to remember the formula for calculating maximum memory settings or where you saved the T-SQL for converting a trace to extended events (thank you, Jonathan Kehayias). dbatools also interacts with many popular SQL Community tools created by data professionals like Ola Hallengren (The Maintenance Solution we love), Glenn Berry (awesome diagnostic queries), Adam Machanic (sp_whoisactive), Brent Ozar (First Responder Kit), and Marcin Gminski (SQLWATCH).

 Where is Microsoft in all of this? Although the SQL tools team has its own module, SqlServer (formerly SQLPS), Microsoft has been incredibly supportive of dbatools. Not only do premier field engineers use and blog about dbatools, the SQL tools team also allows us to include many of the bits that power SSMS.

1.4 Is this book for you?

 dbatools helps make PowerShell easy for the data platform community because its primary audience is end users instead of developers. Now you no longer have to know how to program PowerShell to work with SQL Server at scale; you can just run a few commands that we built for you.

 Our focus in this book will be on PowerShell. However, it is less about showing you how to write and develop PowerShell scripts and more about showing you how to accomplish tasks, as shown in figure 1.4. We expect that you have some knowledge of SQL Server and its administrative tasks, because we won’t be teaching SQL Server concepts other than what is required to understand the PowerShell code.

 [image:]

 Figure 1.4 Learning PowerShell

 If you don’t know how to use PowerShell just yet, we aim to help you not by teaching PowerShell but by teaching you how to do your current job using PowerShell. If you use the GUI and are hesitant about a future filled with automation and command-line tools, our goal is to transform that hesitation into eagerness, confidence, and excitement.

 This book will serve as a learning guide, taking you from gathering information about your estate to performing complex migrations with just a couple lines of code. We will also give you the confidence to explore PowerShell and develop your own solutions for administering SQL Server in your own estate and to use your increased understanding of PowerShell with other technologies.

1.5 How to use this book

 The idea here is that you will read one chapter each day. Each chapter should take about 40 minutes to read, giving you time to practice what you just learned. We recommend reading just one chapter a day, rather than reading extra chapters. We think you will benefit more spending that time practicing what you have learned and cementing your knowledge and comfort with using dbatools and PowerShell.

1.5.1 The main chapters

 Chapters 1 through 3 will help you become oriented with dbatools, PowerShell, and to a lesser extent, SQL Server. Chapters 4 through 24 represent the primary content of the book, so you can expect to finish in about a month. The chapters build upon one another, so we recommend that you complete them in the order in which they’re provided, even if you’re excited about a particular topic (like disaster recovery, woo!).

1.5.2 Hands-on labs

 Many chapters provide a hands-on lab that will help you apply the commands you learned about. These labs are not quizzes, so everything you need will be contained within the book. If you find yourself stuck, however, you can visit the book’s forum at dbatools.io/molforum, and we’ll be there to help you out.

1.5.3 Supplementary materials

 The dbatools.io website is rich with content, including blog posts, videos, tutorials, and more. You can also find the answers to all of the labs at dbatools.io/answers.

1.5.4 Further exploration

 This book covers several areas within PowerShell and SQL Server but still touches just the tip of the iceberg of Microsoft’s data platform. We personally spend a lot of our time exploring fun, related technologies like Kubernetes and Power BI and think that you may enjoy some of the same exploration as well.

 If this sounds appealing to you, we share a lot of our own technical adventures on Twitter and suggest you follow us there: Chrissy is @cl, Rob is @sqldbawithbeard, Jess is @jpomfret, and Cláudio is @ClaudioESSilva. For dbatools-only content, you can also follow @psdbatools.

1.6 Contacting us

 We love when people are excited about PowerShell, and we’re eager to help with your questions. We hang out a lot in the SQL Community Slack in the #dbatools channel. You can join over 17,000 SQL Server community members for a live chat at dbatools.io/slack.

 In addition to Slack and Twitter, you’ll likely find us at PowerShell, SQL Server, and DevOps conferences around the world as well. If you’re into code livestreaming, you can find us live coding at dbatools.io/live when the mood strikes.

1.7 Being immediately effective with dbatools

 The great thing about dbatools is that most of the development work has been done for you. A bunch of community members collectively invested thousands of hours to build a standardized toolset that helps us manage our daily tasks. This also means you can manage these same tasks by executing just a few commands.

 Like the authors of Learn PowerShell in a Month of Lunches, Travis Plunk, James Petty, Tyler Leonhardt, Don Jones, and Jeffery Hicks, our primary goal in this book is for you to be “immediately effective.” This means that a section may be initially light on the details so that you can jump right in and accomplish some tasks. If necessary, we will provide additional depth, theory, and nuances later in the chapter and in online articles, or highlight it in a livestream.

2 Installing dbatools

 In this chapter, we’ll cover minimum requirements, various installation methods, and gotchas. Understanding how to install dbatools will not only enable you to use our toolset, it will also enable you to install any other PowerShell module in the PowerShell Gallery.

 The old saying, “Before you do anything, you have to do something first,” holds true for installing dbatools and other PowerShell modules. Specifically, you may have to execute the following two commands first:

 	
 Set-ExecutionPolicy

 	
 Set-PSRepository

 If you have not yet modified your default execution policy, or trusted Microsoft’s PowerShell Gallery using Set-PSRepository, we’ll help guide you through these steps. If you are already familiar with the PowerShell Gallery and installing dbatools, feel free to skip to the next chapter.

2.1 Minimum requirements

 We’re going to start with minimum requirements because not everyone can be on the latest and greatest setup at work. It’s useful to know whether the old workstation we inherited can support dbatools. The good news is that the answer is most likely yes!

 dbatools originally started as a migration module, so it was created with requirements that are as low as possible. This allows us to use dbatools in the older environments that are most in need of migrations. Because of PowerShell’s flexibility, dbatools also works in newer environments such as Azure, SQL Server on Linux, and PowerShell on macOS.

2.1.1 Server

 Like SSMS, dbatools can connect to super-old versions of SQL Server. When creating dbatools, we actually tried to make it work with SQL Server 7, but an environment that supports SQL Server 7 is not an environment that supports PowerShell. Table 2.1 outlines the versions of SQL Server that we support.

 Table 2.1 SQL Server instance support

 	
 Version

 	
 Commands supported

 	
 SQL Server 7

 	
 0%

 	
 SQL Server 2000

 	
 75%

 	
 SQL Server 2005

 	
 90%

 	
 SQL Server 2008, 2008 R2

 	
 93%

 	
 SQL Server 2012+

 	
 100%

 	
 Azure SQL VM

 	
 As per version above

 	
 Containers and Kubernetes

 	
 75%1

 You may notice that Azure SQL DB, Azure SQL Edge, and Azure Managed Instances are not mentioned on this list. That’s because, at the time of writing, the extent of support for Azure within dbatools has not been evaluated and catalogued. We do build in some support for Azure, which you can read more about in chapter 27.

 When it comes to PowerShell requirements on the target server, PowerShell is not even needed for 75% of our commands. If you do use commands that connect to the OS, such as Get-DbaDiskSpace, PowerShell remoting will need to be enabled. You can read more about remoting at dbatools.io/secure.

2.1.2 Workstation

 It’s important to note that, like SSMS and Azure Data Studio, we do not have to install dbatools on every server. It is best to centralize administration to the DBA workstations and minimal servers that run scheduled tasks and Agent jobs.

 dbatools supports a wide variety of environments, but not every environment is supported for every command. An approximate breakdown of command support by operating system as of dbatools v1.0 is shown in table 2.2.

 Table 2.2 OS support

 	
 OS

 	
 Commands supported

 	
 Vista

 	
 0%

 	
 Windows Server 2008

 	
 0%

 	
 macOS (Intel)

 	
 78%

 	
 macOS (ARM64)

 	
 78%

 	
 Linux (Intel)

 	
 78%

 	
 Linux (ARM64)

 	
 78%

 	
 Windows 7, 8, 10, 11

 	
 100%

 	
 Windows Server 2008 R2+

 	
 100%

 	
 Azure VM

 	
 Dependent on OS above

 Although dbatools can run on older versions of PowerShell, we recommend version 5.1 and higher. Newer versions of PowerShell are faster and offer a number of security features that are beneficial to enterprise environments. PowerShell Core is ultra fast but has limitations that prevent some commands from working. As such, about 75% of the commands in dbatools will work on PowerShell Core.

 Note Throughout the book, we’ll try our best to highlight which commands will not work on Linux and macOS. If there is no notation, then you can assume the command should work on Windows, macOS, and Linux. A general rule of thumb is that if a command uses SQL WMI (SQL Configuration Manager) or has a -ComputerName parameter, it likely does not work on Linux or macOS.

 Installing newer versions of PowerShell is as simple as installing an update, specifically, the Windows Management Framework from https://dbatools.io/wmf for v5.1 and aka.ms/pscore6 for PowerShell Core. These shortlinks link to the installer packages for Windows, Linux, and macOS.

2.1.3 Ports

 As previously mentioned, we recommend running dbatools against remote servers from a centralized workstation. This means that various network ports between the machine running dbatools and the remote servers must be open and accessible.

 Table 2.3 lists the default ports required to support all commands within dbatools. These are common ports that are generally approved to be used on enterprise networks.

 Table 2.3 Required ports

 	
 Protocol

 	
 Default port

 	
 Sample command

 	
 Percentage of commands

 	
 SQL Database Engine

 	
 1433

 	
 Get-DbaDatabase

 	
 62%

 	
 WS-Management

 	
 5985 or 5986

 	
 New-DbaClientAlias

 	
 25%

 	
 SQL WMI

 	
 135

 	
 Enable-DbaAgHadr

 	
 4%

 	
 SMB

 	
 139

 	
 Invoke-DbaDbLogShipping

 	
 4%

 	
 SMB over IP

 	
 445

 	
 Get-DbaPfDataCollectorCounterSample

 	
 <1%

 Note that if you change the default port for SQL, we support that, too.

 You probably recognize SQL Database Engine and SMB, but what about SQL WMI and WS-Management?

 SQL WMI

 If you’re curious about SQL WMI, this is the protocol used by the SQL Server Configuration Manager. SQL Server Configuration Manager—and SQL WMI by extension—is still available, even if the SQL services are not running. This means that the commands that use SQL WMI can access and modify specific SQL Server properties, even if the instance is offline.

 Figure 2.1 shows us updating the service account name and password for the default SQL Server instance on the server SQL2014. If you’re curious, the equivalent dbatools command for the functionality seen in this screenshot is Update- DbaServiceAccount.

 [image:]

 Figure 2.1 Configuration Manager. Note the instance is offline but can still be modified.

 WS-Management

 Of all of the listed ports, WS-Management is probably the least recognizable to SQL Server pros. WS-Management is the protocol used by PowerShell remoting. PowerShell remoting allows commands to be executed against remote computers and is implemented in commands such as Invoke-Command and Enter-PSSession, as highlighted in the next listing.

 Listing 2.1 PowerShell remoting—note the connection to the remote machine, spsql01

 PS> Invoke-Command -ComputerName spsql01 -ScriptBlock { $Env:COMPUTERNAME }
SPSQL01

 This protocol is exceptionally secure (see dbatools.io/secure) for the following reasons:

 	
 By default, it allows connections only from members of the Administrators group.

 	
 It uses a single port: 5985 (HTTP) or 5986 (HTTPS).

 	
 Regardless of the transport protocol used (HTTP or HTTPS), PowerShell remoting always encrypts all communication after initial authentication with a per-session AES-256 symmetric key.

 	
 Initial authentication is NTLM, Kerberos, and Certificates, so no credentials are ever exposed.

 Check out our blog post at dbatools.io/secure to see why remoting is even safer than logging in to a Windows server using the GUI.

2.1.4 Execution policy

 Initially, we found execution policies (see sqlps.io/abexecpolicies) hard to understand, and explaining them is a bit tricky. Most people believe execution policies are a security mechanism, when they are really there for safety. But aren’t safety and security the same thing? No.

 Execution policies are safety mechanisms that confirm your intention to run a command or script. So, although they can’t prevent a hacker from hacking your computer, they can prevent you from running a script by accident. That’s the difference between safety and security.

 PowerShell’s default execution policy varies by operating system (OS), as shown in table 2.4.

 You may find that when creating your own scripts, you are blocked by your execution policy. The most common suggestion is to set your policy to RemoteSigned. This is the first command you must run if you have not yet modified your default execution policy.

 Table 2.4 Default execution policy

 	
 Operating system

 	
 Default

 	
 Summary

 	
 Windows 7, 8, 10

 	
 Restricted (sqlps.io/abexecpolrestricted)

 	
 Prevents PowerShell from running scripts such as .ps1 files, but not commands like Get-ChildItem.

 	
 Windows Server

 	
 RemoteSigned (sqlps.io/abexecpolresigned)

 	
 Prevents PowerShell from running downloaded, unsigned scripts without first using Unblock-File. You can still run all of the scripts you created.

 	
 Linux and macOS

 	
 Unrestricted (sqlps.io/abexecpolunres)

 	
 All unsigned scripts can run. Downloaded unsigned scripts will prompt before running.

 Try it now 2.1

 Set your execution policy to RemoteSigned:

 Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

 Note that this setting will be effective only if your organization does not set the execution policy as a group policy.

 Execution policy precedence order determines which execution policy will be used in a given session. Execution policy is processed in the following order:

 	
 Group Policy: MachinePolicy

 	
 Group Policy: UserPolicy

 	
 Execution Policy: Process (powershell.exe -ExecutionPolicy)

 	
 Execution Policy: CurrentUser

 	
 Execution Policy: LocalMachine

 Later in your scripting career, you may do what we do and set your execution policy to Bypass. This is convenient and no less secure than RemoteSigned, because it keeps the lowered permissions isolated (sqlps.io/bypassvsunres) to just the current running process.

2.2 Signed software

 Like most enterprise software, dbatools is digitally signed. This means that you can trust that the module came from us and that the PowerShell code has not been modified after publication. As of this writing, Chrissy, Rob, Jess, and Shawn Melton are the only members with access to the code signing certificate and, therefore, the only four members who make this guarantee.

 Earlier, you set your execution policy to RemoteSigned, but what exactly does this mean? Let’s break it down:

 	
 Remote —A script originating from a remote computer such as a website

 	
 Signed —A script that has been signed by a trusted publisher

 Basically, scripts that you create on your local machine do not have to be signed, but scripts that originate from other machines must be digitally signed unless they are in Trusted sites, as shown in figure 2.2 (sqlps.io/ietrustedsites).

 [image:]

 Figure 2.2 Trusted sites

 The whole system behind signing, public key infrastructure, or PKI, is a bit out of scope for this book, but it essentially breaks down as follows:

 	
 We submitted multiple proofs of identity to a globally recognized certificate authority.

 	
 They performed various validations and granted us a globally recognized code signing certificate.

 	
 Microsoft requires that you explicitly trust our code signing certificate anyway, and you will be prompted when installing our module from the PowerShell Gallery.

2.3 Understanding installation paths

 Before proceeding to the installation methods, it is important to understand how PowerShell auto-imports modules. Back in the early days, PowerShell would autoload a ton of things when it started up. This gave the impression that PowerShell was slow, especially when compared to the speediness of opening cmd.exe.

 One of the ways the PowerShell team addressed this issue was to add support for module autoloading and $Env:PSModulePath. In the next listing, you can see common results for $Env:PSModulePath.

 Listing 2.2 Example results

 PS> $Env:PSModulePath -Split ";"
C:\Program Files\WindowsPowerShell\Modules\
C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules\
C:\Users\dbatools\Documents\WindowsPowerShell\Modules\
C:\Program Files\Microsoft SQL Server\130\Tools\PowerShell\Modules\
C:\Program Files (x86)\Microsoft SQL Server\130\Tools\PowerShell\Modules\

 You may be familiar with MS-DOS or Linux’s PATH variables, and $Env:PSModulePath is similar. This environment variable tells PowerShell where to look for available commands.

 Command names within modules contained in this path will autocomplete when tabbed, but the module will not actually load until the command is executed or parameter autocompletion is attempted. This allows PowerShell to launch quickly while still providing an autocompleting index of commands.

 Tip You may have heard the term Cmdlet, which is PowerShell-specific terminology. As PowerShell in a Month of Lunches explains, PowerShell supports various types of executable commands. This includes Cmdlets, which are written in C#, and functions, which are written in pure PowerShell. Although the dbatools module provides a mix of both Cmdlets and functions, they are all essentially commands. Throughout the book, we’ll refer to all types of executable commands simply as commands.

 On a freshly installed Windows machine, modules will generally be loaded from the following:

 	
 C:\Windows\System32\WindowsPowerShell\v1.0\Modules

 	
 C:\Program Files\WindowsPowerShell\Modules

 	
 $home\Documents\WindowsPowerShell\Modules—user profile Documents folder

 Paths can vary by computer. Use the following code to evaluate your own $Env:PSModulePath, noting how -Split splits the path at each semicolon, making the output easier to read.

 Try it now 2.2

 Evaluate your own $Env:PSModulePath:

 $Env:PSModulePath -Split ';'

 This auto-import is one of the primary reasons we don’t see explicit mentions of Import-Module referenced as often anymore.

2.4 Installation methods

 Because we want to ensure dbatools is available in as many environments as possible, we offer several ways to install it. Our preferred method is the PowerShell Gallery, for reasons we’ll outline shortly.

 The PowerShell Gallery is not only useful for online installs and updates, but it also provides options for offline installs (dbatools.io/offline) as well.

2.4.1 The PowerShell Gallery

 dbatools is a PowerShell module, which is basically a package full of code, DLLs, configuration files, and more. In 2015, Microsoft introduced the PowerShell Gallery to centralize the distribution of such PowerShell packages.

 Installing and updating PowerShell modules is a bit of an inception because you do so using another PowerShell module, PowerShellGet. PowerShellGet is included in Windows 10. PowerShellGet can also be installed manually on any machine using PowerShell 3.0 and later. If you find yourself in need of a manual install of PowerShellGet, visit mng.bz/8lxg.

 The PowerShell Gallery is not only a centralized repository accessed via PowerShell commands, but it is also an attractive and easy-to-use website that you can access at powershellgallery.com, as shown in figure 2.3.

 [image:]

 Figure 2.3 Microsoft’s PowerShell Gallery

 If your workstation environment supports the PowerShell Gallery, that should be your default for all PowerShell module installs. The Gallery provides a few basic security checks and is the most convenient way to keep modules updated.

 In addition, modules delivered by PowerShell Gallery are streamlined for end users. Unlike our GitHub repository, extra development-related files (such as hundreds of unit and integration test files) are not included in the package. This means that installs of dbatools from the PowerShell Gallery will be smaller both in size and the number of files when compared to other installation methods.

2.4.2 Trusting the PowerShell Gallery

 Earlier we mentioned that you’ll need to execute two commands before installing dbatools. We’ve already covered Set-ExecutionPolicy, and now we’ll address Set-PSRepository.

 Because of its focus on security and trust, Microsoft does not trust its own repository by default; they leave you to be explicit about who you and your organization will trust. If you trust Microsoft’s PowerShell Gallery like we do, you can avoid being repeatedly prompted to approve PowerShell module installations by changing the installation policy with the Set-PSRepository command shown in the next sidebar.

 Try it now 2.3

 Set the PowerShell Gallery to be trusted for installations:

 Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

OEBPS/OEBPS/Images/FM_chrissy.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/CH01_F02_LeMaire.png

OEBPS/OEBPS/Images/CH01_F04_LeMaire.png

OEBPS/OEBPS/Images/FM_claudio.png

OEBPS/OEBPS/Images/CH01_F03_LeMaire.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F01_LeMaire.png

OEBPS/OEBPS/Images/FM_rob.png

OEBPS/OEBPS/Images/CH02_F02_LeMaire.png

OEBPS/OEBPS/Images/CH02_F03_LeMaire.png

OEBPS/OEBPS/Images/FM_jess.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH02_F01_LeMaire.png

