

 [image: cover]

jQuery in Action, Third Edition

 Bear Bibeault, Yehuda Katz, and Aurelio De Rosa

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editors: Jeff Bleiel, Sean Dennis
Technical development editor: Al Scherer
Copyeditor: Linda Recktenwald
Proofreader: Melody Dolab
Technical proofreader: Richard Scott-Robinson
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617292071

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Dedication

 To Annarita, because you give balance to my life

 Aurelio

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for Earlier Editions of jQuery in Action

 Foreword to the Third Edition

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Authors

 1. Starting with jQuery

 Chapter 1. Introducing jQuery

 2. Core jQuery

 Chapter 2. Selecting elements

 Chapter 3. Operating on a jQuery collection

 Chapter 4. Working with properties, attributes, and data

 Chapter 5. Bringing pages to life with jQuery

 Chapter 6. Events are where it happens!

 Chapter 7. Demo: DVD discs locator

 Chapter 8. Energizing pages with animations and effects

 Chapter 9. Beyond the DOM with jQuery utility functions

 Chapter 10. Talk to the server with Ajax

 Chapter 11. Demo: an Ajax-powered contact form

 3. Advanced topics

 Chapter 12. When jQuery is not enough... plugins to the rescue!

 Chapter 13. Avoiding the callback hell with Deferred

 Chapter 14. Unit testing with QUnit

 Chapter 15. How jQuery fits into large projects

 JavaScript that you need to know but might not!

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for Earlier Editions of jQuery in Action

 Foreword to the Third Edition

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Authors

 1. Starting with jQuery

 Chapter 1. Introducing jQuery

 1.1. Write less, do more

 1.2. Unobtrusive JavaScript

 1.2.1. Separating behavior from structure

 1.2.2. Segregating the script

 1.3. Installing jQuery

 1.3.1. Choosing the right version

 1.3.2. Improving performances using a CDN

 1.4. How jQuery is structured

 1.4.1. Save space creating your own custom build

 1.5. jQuery fundamentals

 1.5.1. Properties, utilities, and methods

 1.5.2. The jQuery object

 1.5.3. The document ready handler

 1.6. Summary

 2. Core jQuery

 Chapter 2. Selecting elements

 2.1. Selecting elements for manipulation

 2.2. Basic selectors

 2.2.1. The All (or Universal) selector

 2.2.2. The ID selector

 2.2.3. The Class selector

 2.2.4. The Element selector

 2.3. Retrieving elements by their hierarchy

 2.4. Selecting elements using attributes

 2.5. Introducing filters

 2.5.1. Position filters

 2.5.2. Child filters

 2.5.3. Form filters

 2.5.4. Content filters

 2.5.5. Other filters

 2.5.6. How to create custom filters

 2.6. Enhancing performances using context

 2.7. Testing your skills with some exercises

 2.7.1. Exercises

 2.7.2. Solutions

 2.8. Summary

 Chapter 3. Operating on a jQuery collection

 3.1. Generating new HTML

 3.2. Managing the jQuery collection

 3.2.1. Determining the size of a set

 3.2.2. Obtaining elements from a set

 3.2.3. Getting sets using relationships

 3.2.4. Slicing and dicing a set

 3.2.5. Even more ways to use a set

 3.3. Summary

 Chapter 4. Working with properties, attributes, and data

 4.1. Defining element properties and attributes

 4.2. Working with attributes

 4.2.1. Fetching attribute values

 4.2.2. Setting attribute values

 4.2.3. Removing attributes

 4.2.4. Fun with attributes

 4.3. Manipulating element properties

 4.4. Storing custom data on elements

 4.5. Summary

 Chapter 5. Bringing pages to life with jQuery

 5.1. Changing element styling

 5.1.1. Adding and removing class names

 5.1.2. Getting and setting styles

 5.2. Setting element content

 5.2.1. Replacing HTML or text content

 5.2.2. Moving elements

 5.2.3. Wrapping and unwrapping elements

 5.2.4. Removing elements

 5.2.5. Cloning elements

 5.2.6. Replacing elements

 5.3. Dealing with form element values

 5.4. Summary

 Chapter 6. Events are where it happens!

 6.1. Understanding the browser event models

 6.1.1. The DOM Level 0 Event Model

 6.1.2. The DOM Level 2 Event Model

 6.1.3. The Internet Explorer Model

 6.2. The jQuery Event Model

 6.2.1. Attaching event handlers with jQuery

 6.2.2. Removing event handlers

 6.2.3. Inspecting the Event instance

 6.2.4. Triggering event handlers

 6.2.5. Shortcut methods

 6.2.6. How to create custom events

 6.2.7. Namespacing events

 6.3. Summary

 Chapter 7. Demo: DVD discs locator

 7.1. Putting events (and more) to work

 7.1.1. Filtering large data sets

 7.1.2. Element creation by template replication

 7.1.3. Setting up the mainline markup

 7.1.4. Adding new filters

 7.1.5. Adding the controls templates

 7.1.6. Removing unwanted filters and other tasks

 7.1.7. Showing the results

 7.1.8. There’s always room for improvement

 7.2. Summary

 Chapter 8. Energizing pages with animations and effects

 8.1. Showing and hiding elements

 8.1.1. Implementing a collapsible “module”

 8.1.2. Toggling the display state of elements

 8.2. Animating the display state of elements

 8.2.1. Showing and hiding elements gradually

 8.2.2. Introducing the jQuery Effects Lab Page

 8.2.3. Fading elements into and out of existence

 8.2.4. Sliding elements up and down

 8.2.5. Stopping animations

 8.3. Adding more easing functions to jQuery

 8.4. Creating custom animations

 8.4.1. A custom scale animation

 8.4.2. A custom drop animation

 8.4.3. A custom puff animation

 8.5. Animations and queuing

 8.5.1. Simultaneous animations

 8.5.2. Queuing functions for execution

 8.5.3. Inserting functions into the effects queue

 8.6. Summary

 Chapter 9. Beyond the DOM with jQuery utility functions

 9.1. Using the jQuery properties

 9.1.1. Disabling animations

 9.1.2. Changing the animations rate

 9.1.3. The $.support property

 9.2. Using other libraries with jQuery

 9.3. Manipulating JavaScript objects and collections

 9.3.1. Trimming strings

 9.3.2. Iterating through properties and collections

 9.3.3. Filtering arrays

 9.3.4. Translating arrays

 9.3.5. More fun with JavaScript arrays

 9.3.6. Extending objects

 9.3.7. Serializing parameter values

 9.3.8. Testing objects

 9.3.9. Parsing functions

 9.4. Miscellaneous utility functions

 9.4.1. Doing nothing

 9.4.2. Testing for containment

 9.4.3. Prebinding function contexts

 9.4.4. Evaluating expressions

 9.4.5. Throwing exceptions

 9.5. Summary

 Chapter 10. Talk to the server with Ajax

 10.1. Brushing up on Ajax

 10.1.1. Creating an XHR instance

 10.1.2. Initiating the request

 10.1.3. Keeping track of progress

 10.1.4. Getting the response

 10.2. Loading content into elements

 10.2.1. Loading content with jQuery

 10.2.2. Loading dynamic HTML fragments

 10.3. Making GET and POST requests

 10.3.1. Getting data with GET

 10.3.2. Getting JSON data

 10.3.3. Dynamically loading script

 10.3.4. Making POST requests

 10.3.5. Implementing cascading dropdowns

 10.4. Taking full control of an Ajax request

 10.4.1. Making Ajax requests with all the trimmings

 10.4.2. Setting request defaults

 10.4.3. Handling Ajax events

 10.4.4. Advanced Ajax utility functions

 10.5. Summary

 Chapter 11. Demo: an Ajax-powered contact form

 11.1. The features of the project

 11.2. Creating the markup

 11.3. Implementing the PHP backend

 11.4. Field validation using Ajax

 11.5. Even more fun with Ajax

 11.5.1. Hiding the dialog box

 11.6. Improving the user experience using effects

 11.6.1. Toggling the effects

 11.7. A note on accessibility

 11.8. Summary

 3. Advanced topics

 Chapter 12. When jQuery is not enough... plugins to the rescue!

 12.1. Why extend jQuery?

 12.2. Where to find plugins

 12.2.1. How to use a (well-written) plugin

 12.2.2. Great plugins for your projects

 12.3. The jQuery plugin authoring guidelines

 12.3.1. File- and function-naming conventions

 12.3.2. Beware the $

 12.3.3. Taming complex parameter lists

 12.3.4. Keep one namespace

 12.3.5. Namespacing events and data

 12.3.6. Maintaining chainability

 12.3.7. Provide public access to default settings

 12.4. Demo: creating a slideshow as a jQuery plugin

 12.4.1. Setting up the markup

 12.4.2. Developing Jqia Photomatic

 12.5. Writing custom utility functions

 12.5.1. Writing a date formatter

 12.6. Summary

 Chapter 13. Avoiding the callback hell with Deferred

 13.1. Introduction to promises

 Promises/A+ specifications

 Promises/A specifications

 13.2. The Deferred and Promise objects

 13.3. The Deferred methods

 13.3.1. Resolving or rejecting a Deferred

 13.3.2. Execute functions upon resolution or rejection

 13.3.3. The when() method

 13.3.4. Notifying about the progress of a Deferred

 13.3.5. Follow the progress

 13.3.6. Using the Promise object

 13.3.7. Take it short with then()

 13.3.8. Always execute a handler

 13.3.9. Determine the state of a Deferred

 13.4. Promisifying all the things

 13.5. Summary

 Chapter 14. Unit testing with QUnit

 14.1. Why is testing important?

 14.1.1. Why unit testing?

 14.1.2. Frameworks for unit testing JavaScript

 14.2. Getting started with QUnit

 14.3. Creating tests for synchronous code

 14.4. Testing your code using assertions

 14.4.1. equal(), strictEqual(), notEqual(), and notStrictEqual()

 14.4.2. The other assertion methods

 14.4.3. The throws() assertion method

 14.5. How to test asynchronous tasks

 14.6. noglobals and notrycatch

 14.7. Group your tests in modules

 14.8. Configuring QUnit

 14.9. An example test suite

 14.10. Summary

 Chapter 15. How jQuery fits into large projects

 15.1. Improving the performance of your selectors

 15.1.1. Avoiding the Universal selector

 15.1.2. Improving the Class selector

 15.1.3. Don’t abuse the context parameter

 15.1.4. Optimizing filters

 15.1.5. Don’t overspecify selectors

 15.2. Organizing your code into modules

 15.2.1. The object literals pattern

 15.2.2. The Module pattern

 15.3. Loading modules with RequireJS

 15.3.1. Getting started with RequireJS

 15.3.2. Using RequireJS with jQuery

 15.4. Managing dependencies with Bower

 15.4.1. Getting started with Bower

 15.4.2. Searching a package

 15.4.3. Installing, updating, and deleting packages

 15.5. Creating single-page applications with Backbone.js

 15.5.1. Why use an MV* framework?

 15.5.2. Starting with Backbone.js

 15.5.3. Creating a Todos manager application using Backbone.js

 15.6. Summary

 15.7. The end

 JavaScript that you need to know but might not!

 1. JavaScript Object fundamentals

 1.1. How objects come to be

 1.2. Properties of objects

 1.3. Object literals

 1.4. Objects as window properties

 2. Functions as first-class citizens

 2.1. Function expressions and function declarations

 2.2. Functions as callbacks

 2.3. What this is all about

 2.4. Closures

 2.5. Immediately-Invoked Function Expression

 3. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for Earlier Editions of jQuery in Action

 Every technical book should be like this one...concise but clear, humorous but not silly, and one that answers all the questions
 it raises, quickly. The reader is never left wondering “But what about...” for more than a sentence or two.

 JRoller Online Book Reviews

 Thanks to the authors and their exemplary style, this comprehensive book, or operating manual as it might be called, can be
 taken in a front-to-back approach to learn from scratch, or as a reference for those already dabbling in jQuery and needing
 verification of best practices.

 Matthew McCullough Denver Open Source Users Group

 With its capable technical coverage, extensive use of sample code, and approachable style, this book is a valuable resource
 for any web developer seeking to maximize the power of JavaScript, and a must-have for anyone interested in learning jQuery.

 Michael J. Ross Web Developer and Slashdot Contributor

 An excellent work, a worthy successor to others in Manning’s In Action series. It is highly readable and chock-full of working
 code. The Lab Pages are a marvelous way to explore the library, which should become an important part of every web developer’s
 arsenal. Five stars all ‘round!

 David Sills JavaLobby, DZone

 I highly recommend the book for learning the fundamentals of jQuery and then serving as a good reference book as you leverage
 the power of jQuery more and more in your daily development.

 David Hayden MVP C#, Codebetter.com

 I highly recommend this book to any novice or advanced JavaScript developers who want to get serious about JavaScript and
 start writing optimized and elegant code without all the hassle of traditional JavaScript code authoring.

 Val’s Blog

 The Elements of Style for JavaScript.

 Joshua Heyer Trane Inc.

Foreword to the Third Edition

 A decade ago, John Resig imagined a JavaScript library that would simplify the way people built web sites. Today, that library,
 jQuery, is used by more than 80% of all web sites that use JavaScript, according to BuiltWith.com. It would be hard to call yourself a web developer today without knowing jQuery.

 On the technical side, jQuery simplifies the long-winded native method calls that browsers use and shrinks the number of lines
 of code that it takes to get things done. That’s why jQuery’s motto is “Write less, do more.” jQuery also paves over the differences in behavior—and even some outright bugs—that exist in browsers. That simplifies
 both development and testing.

 From the start, jQuery was designed so that it could be extended by others. The jQuery plugin model lets anyone build specialized
 functionality on top of what jQuery already offers. There are thousands of jQuery plugins that do everything from lightboxes
 to form validation. The result is that many people with only a modest amount of programming skill are able to create beautiful
 and functional web sites by building on the work that others have done.

 Still, code alone is not what made jQuery popular. From the beginning, a strong community of helpful developers filled online
 forums and mailing lists to answer questions for newcomers. The insight gained from those discussions led to better documentation,
 training classes, and books like this one.

 This book is a great way to learn jQuery. Early on, it covers a central tenet of jQuery’s API, which is to select some elements
 on a web page and do something with them. That same pattern applies whether you are hiding, showing, animating, removing,
 or changing an element’s appearance. The selection process uses the standard CSS selector syntax, with some jQuery enhancements
 that give selection even more power.

 I must confess that the chapter on events is my favorite because my first major code contribution to jQuery was the rewrite
 of the event module in jQuery 1.7. This chapter does a great job of explaining the purpose and usefulness of events on a web
 page, which are the main way that you can be notified of how the user is interacting with the web page. Nearly every jQuery
 operation you do is started through an event of some kind.

 I’m also glad this book covers some topics often ignored, such as unit testing and organization of large projects. Many small
 projects eventually turn into large ones, and the advice in these chapters can help you to manage that growth in a way that
 reduces maintenance headaches.

 The chapters building demo applications do a great job of showing how all the parts of jQuery fit together and demonstrate
 important concepts like templating that are central to all modern JavaScript frameworks and applications. Even today, I feel
 a bit amazed by demos like this showing it’s possible to build something useful with very little code.

 Aurelio De Rosa has been a contributor to the jQuery community for several years and is a member of jQuery’s content team
 that ensures jQuery’s online documentation is up-to-date. His work on this latest edition of jQuery in Action gives you timely information that reflects the most recent version of the library. Aurelio has also made jQuery’s online
 documentation better in the process of writing this book by uncovering inconsistencies and missing information. You, as a
 reader of this book and soon-to-be jQuery developer, are the lucky beneficiary. Go forward and, “Write less, do more!”

 DAVE METHVIN PRESIDENT, JQUERY FOUNDATION

Foreword to the First Edition

 It’s all about simplicity. Why should web developers be forced to write long, complex, book-length pieces of code when they
 want to create simple pieces of interaction? There’s nothing that says that complexity has to be a requirement for developing
 web applications.

 When I first set out to create jQuery, I decided that I wanted an emphasis on small, simple code that served all the practical
 applications that web developers deal with day to day. I was greatly pleased as I read through jQuery in Action to see in
 it an excellent manifestation of the principles of the jQuery library.

 With an overwhelming emphasis on practical, real-world code presented in a terse, to-the-point format, jQuery in Action will
 serve as an ideal resource for those looking to familiarize themselves with the library.

 What’s pleased me the most about this book is the significant attention to detail that Bear and Yehuda have paid to the inner
 workings of the library. They were thorough in their investigation and dissemination of the jQuery API. It felt like nary
 a day went by when I wasn’t graced with an email or instant message from them asking for clarification, reporting newly discovered
 bugs, or recommending improvements to the library. You can be safe knowing that the resource that you have before you is one
 of the best thought-out and researched pieces of literature on the jQuery library.

 One thing that surprised me about the contents of this book is the explicit inclusion of jQuery plugins and the tactics and
 theory behind jQuery plugin development. The reason why jQuery is able to stay so simple is through the use of its plugin
 architecture. It provides a number of documented extension points upon which plug-ins can add functionality. Often that functionality,
 while useful, is not generic enough for inclusion in jQuery itself—which is what makes the plugin architecture necessary.
 A few of the plugins discussed in this book, like the Forms, Dimension, and Live-Query plugins, have seen widespread adoption
 and the reason is obvious: they’re expertly constructed, documented, and maintained. Be sure to pay special attention to how
 plugins are utilized and constructed as their use is fundamental to the jQuery experience.

 With resources like this book, the jQuery project is sure to continue to grow and succeed. I hope the book will end up serving
 you well as you begin your exploration and use of jQuery.

 JOHN RESIG CREATOR OF JQUERY

Preface

 It always astonishes me when I think about the amount of work and effort I put into this book. When the people at Manning
 approached me to write the third edition of jQuery in Action, I knew that it wasn’t going to be a walk in the park, but I definitely underestimated the task. I thought, “This is going
 to be a piece of cake. A few months of work and I’ll be done.” Two years and many nights of work later, I don’t regret my
 choice. Writing this book has been an incredible journey, one that has let me improve my skills in many different ways. I’ve
 become a better developer and a better writer, and I’ve improved my jQuery skills.

 Two years ago, I was a web developer with a strong passion for jQuery, and I was grateful that this library solved so many
 problems for me for free. Before I started this project, my knowledge of jQuery was good, but without a doubt, writing and
 revising the chapters that you’re about to read forced me to dive much deeper and, as a result, I was able to take my skills
 to the next level. I also had the opportunity to discover new issues regarding the library and its documentation. Revising
 this book allowed me to contribute to jQuery on a regular basis—so much that I’ve been invited to join the jQuery team. Needless
 to say, this has been an unexpected and very welcome achievement, and I’m proud to be part of such an amazing project.

 Now that you know how I came to embark on this journey, let’s tackle a crucial question: was this third edition really needed?
 I think it was, and this can be summed up with two basic facts. The previous edition of the book covers jQuery up to version
 1.4, while the last version is 1.11, with jQuery 3 (also covered in this book) just around the corner. The second reason is
 that jQuery is definitely the most used JavaScript library out there. It’s employed by 63% of the top one million sites in
 the world, and by 17% of the internet. These two facts should lead you to understand that much has changed since the second
 edition of jQuery in Action was published, and that jQuery is not only still relevant, but isn’t going to disappear any time soon.

 In this third edition of the book, you’ll see quite a few changes. First of all, I deleted the chapters about the jQuery UI
 because both jQuery and the jQuery UI have grown so much that they deserve a book of their own. In addition, as you’ll see
 by turning the pages of this edition, I decided to add some advanced topics that weren’t covered in the previous edition.
 Finally, I’ve introduced many new examples, lab pages, snippets of code, live demos, and much more to make this edition even
 better.

 Turn this page, delve into the book, and start learning about the most-used JavaScript library in the world. Have fun!

 AURELIO DE ROSA

Acknowledgments

 As with the previous editions of this book, and presumably with every successful book published, the number of people involved
 in getting the job done is impressive. It not only takes a lot of time to write a (good) book, but it also takes the contributions
 of many people with a variety of skills and roles in order to produce and publish it. The staff at Manning worked tirelessly
 to make sure that this book attained the level of quality expected, and I thank them for their efforts. Without them, this
 book would not have been possible. The “end credits” for this book include not only the publisher, Marjan Bace, but also the
 following people: Al Scherer, Ana Romac, Candace Gillhoolley, Cynthia Kane, Dottie Marsico, Jeff Bleiel, Kevin Sullivan, Linda
 Recktenwald, Mary Piergies, Melody Dolab, Ozren Harlovic, Robin de Jongh, Scott Meyers, and Sean Dennis. I thank them all,
 as well as the many others who worked behind the scenes.

 Another big thank you goes to the peer reviewers who helped in spotting errors, from simple typos to errors in terminology
 and code. The number of people who reviewed this book will probably surprise you, but they have been really helpful. For their
 contributions and insights, I’d like to thank Chris Maki, Christopher Haupt, Chuck Durfee, Francesco Bianchi, Gary A. Stafford,
 Gregor Zurowski, Jan Goyvaerts, Jean-François Morin, John D. Lewis, John Stemper, Karen Christenson, Keith Webster, Matt Forsythe,
 Ricardo Mano, Ryan Meeks, Suraj Kumar, William E. Wheeler, and Willie Roberts.

 Special thanks to Richard Scott-Robinson, who worked as the book’s technical proofreader. He took the time and effort (and
 I’m sure this wasn’t fast or easy) to check each and every code example in the book in multiple environments. He also offered
 invaluable contributions to the technical accuracy of the text and insightful comments, most of which are included in the
 volume you’re holding in your hands (or the digital copy you’re reading).

 Sincere thanks to Dave Methvin for penning the foreword to this edition and endorsing my work, and to Bear Bibeault and Yehuda
 Katz for writing the two best-selling editions that preceded this one.

 On a personal level, the most important person I’d like to thank is my soon-to-be-wife Annarita. Your love, patience, and
 sweetness have been crucial throughout this journey and not only this one. You complained not once during the two years I
 spent working on this project instead of doing something with you. Your support and understanding have been stunning and that’s
 why I’m dedicating this book to you. You, my dear Annarita, give balance to my life. Thank you for all the lovely moments
 spent together and those yet to come. I love you.

 Big thanks also go to my family: Raffaele, Eufemia, Giusy, Viola, my grandmothers Giuseppina and Anna, and my grandfather
 Aurelio. Thank you for all your love. You’re partly responsible for who I am and what I’ve done. You have supported me as
 much as you could, and I owe you a lot.

 I also want to thank Francesco Palladino. You’re the best friend a person could have. You have always been there for me when
 I needed it. I wish you all the best life has to offer and may all your dreams come true.

 And while I’m speaking about dreams, I also want to dedicate this book to all the people who have a burning passion and believe
 in their dreams. Don’t stop believing in them because others tell you to, even if it’s tough to keep going. One day, you’ll
 achieve them. To all the dreamers out there, I wish you good luck.

 I want to thank all the people who have contributed to form me and to shape the person that I have become, in one way or another:
 Albert Einstein, Ludwig van Beethoven, Lucius Annaeus Seneca, Roberto De Rosa, Leonardo Grisolia, and the anonymous umbrella
 seller.

 Finally, I want to thank all the people on the jQuery team. If I’ve written a good book, it’s because of the marvelous work
 you’ve been doing all these years. You rock!

 AURELIO DE ROSA

About this Book

 This book is for web developers who want to delve into jQuery, the most popular and adopted JavaScript library on the internet.
 The goal is to guide you, the reader, through the path of becoming a pro of jQuery regardless of your starting level, beginner
 or advanced. This tome covers the whole library in depth, including some additional tools and frameworks such as Bower and
 QUnit, without forgetting to advocate best practices. Each API method is presented in an easy-to-digest syntax block that
 describes the parameters and the return value of the method.

 jQuery in Action, Third Edition covers topics from the simple, such as what’s jQuery and how to include it in a web page, to the advanced, such as the way
 the library implements Promises and how to create jQuery plugins. To help you in this journey, the content features many examples,
 three plugins, and three sample projects. It also includes what we called Lab Pages. These comprehensive and fun pages are
 an excellent way for you to see the nuances of the jQuery methods in action, without the need to write a slew of code yourself.

 The book assumes a fundamental knowledge of HTML, CSS, and JavaScript. A previous knowledge of jQuery is not required but
 might come in handy to help you absorb the concepts faster.

Roadmap

 We’ve divided the book into three parts: an introduction to jQuery and what it brings to the table, the jQuery core, where
 we cover all of its features, and a section on advanced topics.

 Chapter 1 is about the philosophy behind jQuery and how it adheres to a principle called unobtrusive JavaScript. It discusses what
 jQuery is, what problems it tries to solve, and why you might want to employ it in your web projects.

 Chapter 2 covers the selection of DOM elements via the use of selectors and how to create your own custom selectors. We’ll also introduce
 you to the term jQuery collection (or jQuery object), which is used to refer to the JavaScript object returned by jQuery’s methods. It contains the set of elements selected
 on which you can operate with the library.

 Chapter 3 expands on chapter 2 by teaching how to refine or create a new selection of elements starting with a previous selection. You’ll also learn how
 to create new DOM elements with jQuery.

 Chapter 4 focuses on the many methods jQuery offers for working with attributes and properties, and what their differences are. Moreover,
 it explains how to store custom data on one or more DOM elements.

 Chapter 5 is all about manipulating element class names, cloning and setting the content of DOM elements, and modifying the DOM tree
 by adding, moving, or replacing elements.

 Chapter 6 introduces you to the various event models and how browsers allow you to establish handlers to control what happens when
 an event occurs. Then, we’ll cover how jQuery allows developers to do the same thing while avoiding dealing with browser incompatibilities.
 In addition, the chapter describes important notions like event delegation and event bubbling.

 Chapter 7 is different from the previous ones because its aim is to walk you through the development of a project, a DVD discs locator,
 where you can apply the lessons learned up to this point.

 Chapter 8 examines the methods used to show and hide elements, and how you can create animations. Function queuing for serially running
 effects, as well as general functions, are also covered.

 Chapter 9 is dedicated to utility functions, functions that are namespaced by jQuery that usually don’t operate on DOM elements.

 Chapter 10 covers one of the most important concepts of recent years: Ajax. We’ll see how jQuery makes it almost brain-dead simple to
 use Ajax on web pages, shielding us from all the usual pitfalls, while vastly simplifying the most common types of Ajax interactions
 (such as returning JSON objects).

 We set up a new challenge for you in chapter 11. Here, we’ll tackle a real-world problem that many developers face: creating a contact form. The project consists of building
 a working contact form that doesn’t require a complete reload of the page to inform the user about the failure or success
 in sending the message.

 Chapter 12 is the first of part 3 where we move onto advanced topics, most of which are not strictly related to the core of the library. In this chapter, we’ll
 discuss how to extend the functionality of jQuery by creating plugins for it. These plugins come in two flavors: methods and
 utility functions. In this chapter we’ll examine both of them.

 Chapter 13 explains how to avoid what’s known as the callback hell by describing jQuery’s implementation of Promises. As you’ll learn, this is a delicate and controversial topic that has been
 the subject of discussions for years.

 In chapter 14 we introduce you to testing, what it is, and why it’s important. We’ll focus our attention on one particular kind of testing:
 unit testing. Then, we’ll cover QUnit, a JavaScript testing framework employed by some of the jQuery projects (jQuery, jQuery
 UI, and jQuery Mobile) to unit test the code.

 Chapter 15, the last chapter of the book, starts with tips and tricks to improve the performance of code that uses jQuery by selecting
 elements the right way. Then, we’ll broaden our focus to several tools, frameworks, and patterns not strictly related to jQuery
 but that can be used to craft fast, solid, and beautiful code. In particular, this chapter explains how to organize your code
 in modules, how to load modules with RequireJS, and how to manage front-end dependencies with Bower. Finally, we’ll give you
 a taste of how jQuery fits into single-page applications by skimming the surface of Backbone.js.

 To top it all off, we have provided an appendix highlighting key JavaScript concepts such as function contexts and closures—essential
 to make the most effective use of jQuery on our pages—for readers who are unfamiliar with, or would like a refresher on, these
 concepts.

Source code conventions and downloads

 The source code in the book, whether in code listings or snippets, is in a fixed-width font like this, which sets it off from the surrounding text. In some listings, the code is annotated to point out key concepts, and numbered
 bullets are sometimes used in the text to provide additional information about the code. The code is formatted so that it
 fits within the available page space in the book by adding line breaks and using indentation carefully.

 All of the source code for the examples in the book can be found at this GitHub link: https://github.com/AurelioDeRosa/jquery-in-action. The source code is also available for download from the publisher’s website at www.manning.com/derosa/ or www.manning.com/jquery-in-action-third-edition.

Software requirements

 The code examples for this book are organized in folders, one for each chapter, ready to be easily served by a local web server
 such as the Apache HTTP Server. With the exception of the projects built in chapters 7 and 10 and a few other ones, the examples don’t require the presence of a web server and can be loaded directly into a browser for
 execution, if you so desire. The project in chapter 10 requires more backend interaction than Apache can deliver, so running it locally requires setting up PHP for Apache.

 All examples were tested in a variety of browsers, including Internet Explorer, Firefox, Safari, Opera, and Chrome.

Author Online

 Purchase of jQuery in Action, Third Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. To access the forum and subscribe to it, point your web browser
 to www.manning.com/derosa. This Author Online (AO) page provides information on how to get on the forum once you’re registered, what kind of help is
 available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog among individual readers and between readers
 and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose
 contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions, lest
 their interest stray!

 The AO forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book
 is in print.

About the cover illustration

 The figure on the cover of jQuery in Action, Third Edition is captioned “The Watchman.” The illustration is taken from a French travel book, Encyclopédie des Voyages by J. G. St. Saveur, published almost 200 years ago. Travel for pleasure was a relatively new phenomenon at the time, and
 travel guides such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants
 of other regions of the world, as well as to the regional costumes and uniforms of French soldiers, civil servants, tradesmen,
 merchants, and peasants.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. Isolated from each
 other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
 they lived and what their trade or station in life was just by how they were speaking or what they were wearing.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life two centuries ago, brought back to life by the pictures from collections such as this
 one.

About the Authors

 [image:]

 BEAR BIBEAULT has been writing software for over three decades, starting with a Tic-Tac-Toe program written on a Control Data Cyber supercomputer
 via a 100-baud teletype. Because he has two degrees in Electrical Engineering, Bear should be designing antennas or something;
 but, since his first job with Digital Equipment Corporation, he has always been much more fascinated with programming.

 Bear has also served stints with companies such as Lightbridge Inc., BMC Software, Dragon Systems, Works.com, and a handful
 of other companies. Bear even served in the U.S. Military teaching infantry soldiers how to blow up tanks; skills that come
 in handy during those daily scrum meetings. Bear is currently a senior web developer for a leading provider of object storage
 software.

 In addition to his day job, Bear also writes books (duh!), runs a small business that creates web applications and offers
 other media services (but not wedding videography—never, ever wedding videography), and helps to moderate JavaRanch.com as
 a “sheriff” (senior moderator). When not planted in front of a computer, Bear likes to cook big food (which accounts for his
 jeans size), dabble in photography and video, ride his Yamaha V-Star, and wear tropical-print shirts.

 He works and resides in Austin, Texas, a city he dearly loves, except for the completely insane drivers.

 [image:]

 YEHUDA KATZ has been involved in a number of open source projects over the past several years. In addition to being a core team member
 of the jQuery project, he is also a contributor to Merb, an alternative to Ruby on Rails (also written in Ruby).

 Yehuda was born in Minnesota, grew up in New York, and now lives in sunny Santa Barbara, California. He has worked on websites
 for the New York Times, Allure Magazine, Architectural Digest, Yoga Journal, and other similarly high-profile clients. He has programmed professionally in a number of languages including Java, Ruby,
 PHP, and JavaScript.

 In his copious spare time, he maintains VisualjQuery.com and helps answer questions from new jQuery users in the IRC channel and on the official jQuery mailing list.

 [image:]

 AURELIO DE ROSA is a (full-stack) senior web developer with more than 5 years’ professional experience programming for the web using the
 WAMP stack and HTML5, CSS3, Sass, JavaScript, and PHP. He’s a member of the jQuery team and the JoindIn team, and an expert
 on JavaScript and HTML5 APIs. His interests also include web security, accessibility, performance, and SEO.

 When not busy writing code, he’s a regular writer, speaker, author of books, and coauthor of some academic papers.

Part 1. Starting with jQuery

 If you’re reading this page, it’s because you’ve heard of jQuery from a fellow developer or read about it in a website or
 forum, and you’re eager to understand what this library is all about. Maybe you’re employing this library at work and you
 want to improve your skills to impress your boss. Or perhaps you’ve never heard about this jQuery thing and you were just
 captured by the very nice illustration on the cover of this book. Whatever the reason that brought you to open this book and
 read this page, the next chapter will (hopefully) give you all the explanations you need.

 In the only chapter belonging to part 1, you’ll learn more about what jQuery is, what problems it tries to solve, and why you might want to employ it in your web
 projects. In chapter 1 we’ll teach you how to extricate yourself from the different versions of jQuery available and decide which one best fits
 your needs. If you’re into web development and want to become a professional of the most used library in the world, proceed
 to chapter 1 and start the amazing journey that this book will be.

Chapter 1. Introducing jQuery

 This chapter covers

 	What exactly jQuery is and why you should use it

 	The unobtrusive JavaScript strategy

 	Choosing the right version of jQuery

 	Fundamental elements and concepts of jQuery

 “There are only two kinds of languages: the ones people complain about and the ones nobody uses.” How well this sentence from
 Bjarne Stroustrup, who designed and implemented C++, summarizes the sentiments about JavaScript. It, as well as several other
 languages (most notably PHP), was bemoaned as a “bad” language for several years. Then, something magical happened. Thanks
 to the rise of Ajax, the release of several libraries such as Prototype, Moo Tools, and jQuery, and the new, highly interactive
 web applications (which you might also have heard referred to as single-page applications), developers started understanding JavaScript’s potential. Today JavaScript is also one of the most ubiquitous languages
 thanks to Node.js, a platform that allows you to use it as a server-side language, and PhoneGap, a framework for creating
 hybrid mobile applications.

 jQuery is a free (licensed under the MIT License), popular JavaScript library, created by John Resig in 2006, that’s designed
 to simplify the client-side scripting of HTML. As stated on the jQuery website,

 jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML document traversal and manipulation,
 event handling, animation, and Ajax much simpler with an easy-to-use API that works across a multitude of browsers. With a
 combination of versatility and extensibility, jQuery has changed the way that millions of people write JavaScript.

 Although you might find this claim a bit self-promotional or presumptuous, it asserts nothing but the truth. jQuery has really changed the way millions of developers and designers write their code. Its use is so widespread that, according to the latest
 BuiltWith statistics (as of April 2015), jQuery is used by 63% of the top million websites (http://trends.builtwith.com/javascript/jQuery). The previously cited Moo Tools library, its nearest competitor, has a usage of just 3% (http://trends.builtwith.com/javascript/MooTools), while Prototype has a mere 2.5% (http://trends.builtwith.com/javascript/Prototype).

 jQuery is used by some of the most important companies and websites in the world, such as Microsoft, Amazon, Dell, Etsy, Netflix,
 Best Buy, Instagram, Fox News, GoDaddy, and many more. If you had any doubts about jQuery, this data should convince you that
 it’s a stable and reliable library that you can use in your projects.

 This book covers many aspects of the library starting from basic concepts, like selectors and the methods to traverse the
 Document Object Model (DOM), to more advanced ones, like extending the functionalities (creating plugins), improving the performances
 of your code, and testing. It assumes you have a minimal knowledge of JavaScript. If you need a refresher, take a look at
 the appendix. If you’re unfamiliar with the language, you may find this text too tough, so we encourage you to study it and
 then come back. We’ll wait here.

 Are you back? Glad to see you again! Let’s start from the beginning—that is, discussing what jQuery has to offer you and how
 it can help you in your web development process.

1.1. Write less, do more

 jQuery’s motto is “Write less, do more.” If you’ve spent any time at all trying to add dynamic functionality to your pages, you’ve found that performing simple
 tasks using raw JavaScript can result in dozens of lines of code (LoC). The creator of jQuery specifically created this library
 to make common tasks trivial and easy to learn, solving issues caused by browser incompatibilities.

 For example, anyone who has dealt with radio groups in JavaScript knows that it’s a lesson in tedium to discover which radio
 element of a radio group is currently checked and to obtain its value attribute. The radio group needs to be located, and the resulting set of radio elements must be inspected, one by one, to
 find out which element has its checked attribute set. This element’s value attribute can then be obtained.

 To be compatible with Internet Explorer 6 and above (if you ignore some older browsers, a better approach exists), such code
 might be implemented as follows:

 var checkedValue;
var elements = document.getElementsByTagName('input');
for (var i = 0; i < elements.length; i++) {
 if (elements[i].type === 'radio' &&
 elements[i].name === 'some-radio-group' &&
 elements[i].checked) {
 checkedValue = elements[i].value;
 break;
 }
}

 Contrast that with how it can be done using jQuery:

 var checkedValue =
 jQuery('input:radio[name="some-radio-group"]:checked').val();

 Don’t worry if that looks a bit cryptic right now. In short order, you’ll understand how it works, and you’ll be whipping
 up your own terse—but powerful—jQuery statements to make your pages come alive. The point we want to show here is how the
 library can turn a lot of lines of code into just one.

 What makes the previous jQuery statement so short is the power of the selector, an expression used to identify target elements on a page. It allows you to easily locate and grab the elements that you
 need; in this case, the checked element in the radio group. If you haven’t downloaded the example code yet, now would be a
 great time to do so. It can be obtained from a link on this book’s web page at http://www.manning.com/derosa. Unpack the code and load into your browser the HTML page that you find in the file chapter-1/radio.group.html. This page,
 shown in figure 1.1, uses the jQuery statement that we just examined to determine which radio button has been checked.

 Figure 1.1. Determining which radio button is checked is easy to accomplish in one statement with jQuery!

 [image:]

 This example shows you how simple and concise code written using jQuery can be. This isn’t the only real power of jQuery;
 otherwise we could have thrown it out the window a long time ago. Nonetheless, one of its great strengths is the ability to
 retrieve elements using complex selectors without worrying about cross-browser compatibility, especially in older browsers.

 When you perform a selection, you’re relying on two things: a method and a selector. Today the latest versions of all major
 browsers support native methods for element selection like document.querySelector() and document.querySelectorAll(). They allow you to use more complex selectors instead of the usual selection by ID or class. In addition, the new CSS3 selectors are widely supported among modern browsers. If you aimed to support only modern browsers,
 and the capabilities of jQuery lay only in selecting elements, you would have enough power to avoid the overhead introduced
 by the library in your website. The fact that a lot of people still rely on older browsers, which you may have to support,
 can be a real pain because you have to deal with all the inconsistencies. This is one of the main reasons to employ jQuery.
 It allows you to reliably use its selectors without the worry of code not working in browsers that don’t support them natively.

 	

 Note

 If you’re wondering what browsers are considered modern today, they are Internet Explorer 10 and above and the latest versions
 of Chrome, Opera, Firefox, and Safari.

 	

 Still not convinced? Here’s a list of issues that you’ll have to tackle on your own if you don’t use jQuery: http://goo.gl/eULyPT. In addition, as we outlined, the library is much more than that, as you’ll discover in the rest of the book.

 Let’s now examine how JavaScript should be used on your pages.

1.2. Unobtrusive JavaScript

 You may recall the bad-old days before CSS, when you were forced to mix stylistic markup with the document structure markup
 in your HTML pages. Anyone who’s been authoring pages for any amount of time surely does, most likely with less than fondness.

 The addition of CSS to your web development toolkits allows you to separate stylistic information from the document structure
 and gives travesties like the tag the well-deserved boot. Not only does the separation of style from structure make your documents easier to manage, but
 it also gives you the versatility to completely change the stylistic rendering of a page by swapping out different style sheets.

 Few of you would voluntarily regress to the days of applying styles with HTML elements, yet markup such as the following is
 still all too common:

 <button onclick="document.getElementById('xyz').style.color='red';">
 Click Me
</button>

 You can easily see that the style of this button element isn’t applied via the use of the tag and other deprecated style-oriented markup. It’s determined by whatever, if any, CSS rules (not shown here) that are
 in effect on the page. Although this declaration doesn’t mix style markup with structure, it does mix behavior with structure. It includes the JavaScript to be executed when the button is clicked as part of the markup of the button element via the onclick attribute (which, in this case, changes the color of a DOM element with the ID value of xyz into red). Let’s examine how you might improve this situation.

 1.2.1. Separating behavior from structure

 For all the same reasons that it’s desirable to segregate style from structure within an HTML document, it’s just as beneficial
 (if not more so) to separate the behavior from the structure. Ideally, an HTML page should be structured as shown in figure 1.2, with structure, style, and behavior each partitioned nicely in its own niche.

 Figure 1.2. With structure, style, and behavior each neatly tucked away within a page, readability and maintainability are maximized.

 [image:]

 This strategy, known as unobtrusive JavaScript, is now embraced by every major JavaScript library, helping page authors achieve this useful separation on their pages. As
 the library that popularized this movement, jQuery’s core is well optimized for producing unobtrusive JavaScript easily. Unobtrusive
 JavaScript considers any JavaScript expressions or statements placed within or among HTML tags in the <body> of HTML pages, either as attributes of HTML elements (such as onclick) or in script blocks placed anywhere other than the very end of the body of the page, to be incorrect.

 “But how can I instrument the button without the onclick attribute?” you might ask. Consider the following change to the button element:

 <button id="test-button">Click Me</button>

 Much simpler! But now, you’ll note, the button doesn’t do anything. You can click it all day long, and no behavior will result.
 Let’s fix that.

 1.2.2. Segregating the script

 Rather than embedding the button’s behavior in its markup, you’ll segregate the script by moving it to a script block. Following the current best practices, you should place it at the bottom of the page before the closing body tag (</body>):

 <script>
 document.getElementById('test-button').addEventListener(
 'click',
 function() {
 document.getElementById('xyz').style.color = 'red';
 },
 false
);
</script>

 Because you’re placing the script at the bottom of the page, you don’t need to use a handler attached to the onload event of the window object, like developers (erroneously) use to do in the past, or wait for the DOMContentLoaded event, which is only available in modern browsers. The DOMContentLoaded event is fired when the HTML document has been completely loaded and parsed, without waiting for stylesheets, images, and
 so on to finish loading. The load event is fired when an HTML page and its dependent resources have finished loading (we’ll return to this topic in section 1.5.3). By placing the script at the bottom of the page, when the browser parses the statement, the button element exists because its markup has been parsed, so you can safely augment it.

 	

 Note

 For performance reasons, script elements should always be placed at the bottom of the document body. The first reason is to allow progressive rendering,
 and the second is to have greater download parallelization. The motivation behind the first is that rendering is blocked for
 all content below a script element. The reason behind the second is that the browser won’t start any other downloads, even on a different hostname,
 if a script element is being downloaded.

 	

 The previous snippet is another example of code that isn’t 100% compatible with the browsers your project might be targeting.
 It uses a JavaScript method, addEvent-Listener(), that’s not supported by Internet Explorer 6–8. As you’ll learn later on in this book, jQuery helps you in solving this problem,
 too.

 Unobtrusive JavaScript, though a powerful technique to add to the clear separation of responsibilities within a web application,
 doesn’t come without a price. You might already have noticed that it took a few more lines of script to accomplish your goal
 than when you placed it into the button markup. Unobtrusive JavaScript may increase the line count of the script that needs
 to be written, and it requires some discipline and the application of good coding patterns to the client-side script.

 But none of that is bad; anything that persuades you to write your client-side code with the same level of care and respect
 usually allotted to server-side code is a good thing! But it is extra work—without jQuery, that is.

 jQuery is specifically focused on the task of making it easy and delightful for you to code your pages using unobtrusive JavaScript
 techniques, without paying a hefty price in terms of effort or code bulk. You’ll find that making effective use of jQuery
 will enable you to accomplish much more on your pages while writing less code. The motto is still “Write less, do more,” isn’t it? Without further ado, let’s start looking at how jQuery makes it so easy for you to add rich functionality to
 your pages without the expected pain.

1.3. Installing jQuery

 Now that you know what jQuery is and what it can do for you, you need to download the library to start getting your hands
 dirty. To download it, please visit the page http://jquery.com/download/. Once there, you’ll probably be overwhelmed by the plethora of options available. Branch 1.x, 2.x, or 3.x? Compressed or
 uncompressed? Download it or use a content delivery network (CDN)? Which one to choose depends on several factors. To make
 a conscious choice, let’s uncover the differences.

 1.3.1. Choosing the right version

 In April 2013, the jQuery team introduced version 2.0 with the intention of looking at the future of the web instead of its
 past, especially from the browser’s perspective. Until that point, jQuery supported all of the latest versions of Chrome,
 Firefox, Safari, Opera, and Internet Explorer starting from version 6. With the introduction of version 2.0, the team decided
 to leave behind the older Internet Explorer 6, 7, and 8 browsers to focus on the web as it will be, not as it was.

 This decision caused the deletion of a bunch of code created to solve browser incompatibilities and missing features in those
 prehistoric browsers. The fulfillment of this task resulted in a smaller (-12%) and faster code base. Although 1.x and 2.x
 are two different branches, they have a strict relation. There’s feature parity between jQuery version 1.10 and 2.0, version
 1.11 and 2.1, and so on.

 In October 2014, Dave Methvin, the president of the jQuery Foundation (the foundation that takes care of jQuery and other
 projects—https://jquery.org/), published a blog post (http://blog.jquery.com/2014/10/29/jquery-3-0-the-next-generations/) where he publicly announced the plan to release a new major version of jQuery: jQuery 3. In the same way version 1.x supports
 old browsers while 2.x targets modern browsers, jQuery 3 is split into two versions. jQuery Compat 3 is the successor of 1.x,
 whereas jQuery 3 is the successor of 2.x. He further explained:

 We’ll also be re-aligning our policy for browser support starting with these releases. The main jQuery package remains small
 and tight by supporting the evergreen browsers (the current and previous versions of a specific browser) that are common at
 the time of its release. We may support additional browsers in this package based on market share. The jQuery Compat package
 offers much wider browser support, but at the expense of a larger file size and potentially lower performance.

 With the new version, the team also took the opportunity to drop the support for some browsers, fix many bugs, and improve
 several features.

 The first factor to consider when deciding which version to use is which browsers your project must support. Table 1.1 describes the browsers supported by each major version of jQuery.

 Table 1.1. An overview of the browsers supported by the major versions of jQuery

 	
 Browsers

 	
 jQuery 1

 	
 jQuery 2

 	
 jQuery Compat 3

 	
 jQuery 3

 	Internet Explorer
 	6+
 	9+
 	8+
 	9+

 	Chrome
 	Current and previous
 	Current and previous
 	Current and previous
 	Current and previous

 	Firefox
 	Current and previous
 	Current and previous
 	Current and previous
 	Current and previous

 	Safari
 	5.1+
 	5.1+
 	7.0+
 	7.0+

 	Opera
 	12.1x
 Current and previous

 	12.1x
 Current and previous

 	Current and previous
 	Current and previous

 	iOS
 	6.1+
 	6.1+
 	7.0+
 	7.0+

 	Android
 	2.3
 4.0+

 	2.3
 4.0+

 	2.3
 4.0+

 	2.3
 4.0+

 As you can see from the table, there’s a certain degree of overlap in regard to the browser versions supported. But keep in
 mind that what’s referred to as “Current and previous” (meaning the current and preceding version of a browser at the time
 a new version of jQuery is released) changes based on the release date of the new version of jQuery.

 Another important factor to base your decision on is where you’ll use jQuery. Here are some use cases that can help you in
 your choice:

 	Websites that don’t need to support older versions of Internet Explorer, Opera, and other browsers can use branch 3.x. This
 is the case for websites running in a controlled environment such as a company local network.

 	Websites that need to target an audience as wide as possible, such as a government website, should use branch 1.x.

 	If you’re developing a website that needs to be compatible with a wider audience but you don’t have to support Internet Explorer
 6–7 and old versions of Opera and Safari, you should use jQuery Compat 3.x.

 	If you don’t need to support Internet Explorer 8 and below, but you have to support old versions of Opera and Safari, you
 should use jQuery 2.x.

 	Mobile apps developed using PhoneGap or similar frameworks can use jQuery 3.x.

 	Firefox OS or Chrome OS apps can use jQuery 3.x.

 	Websites that rely on very old plugins, depending on the actual code of the plugins, may be forced to use jQuery 1.x.

 In summary, two of the factors are where you’re going to use the library and which browsers you intend to support.

 Another source of confusion could be the choice between the compressed (also referred to as minified) version, intended for the production stage, or the uncompressed version, intended for the development stage (see the comparison
 in figure 1.3). The advantage of the minified library is the reduction in size that leads to bandwidth savings for the end users. This
 reduction is achieved by removing the useless spaces (indentation), removing the code’s comments that are useful for developers but ignored by the JavaScript engines, and shrinking the names
 of the variables (obfuscation). These changes produce code that’s harder to read and debug—which is why you shouldn’t use this version in development—but
 smaller in size.

 Figure 1.3. At the top, a snippet taken from the jQuery’s source code that shows you the uncompressed version format. At the bottom, the
 same snippet minified to be used in production.

 [image:]

 In this book we’ll use jQuery 1.x as a base to let you test your code in the widest range of possible browsers, but we’ll
 highlight all the differences introduced by jQuery 3 so that your knowledge will be as up to date as possible.

 Choosing the right version of jQuery is important, but we also cited the difference between hosting jQuery locally or using
 a CDN.

 1.3.2. Improving performances using a CDN

 Today it’s common practice to serve files like images and libraries through a content delivery network to improve the performance of a website. A CDN is a distributed system of servers created to offer content with high availability
 and performance. You might be aware that browsers can download a fixed set of contents, usually from four to eight files,
 from a host at the same time. Because the files served using a CDN are provided from a different host, you can speed up the
 whole loading process, increasing the number of files downloaded at a time. Besides, a lot of today’s websites use CDNs, so
 there’s a higher probability that the required library is already in the user’s browser cache. Employing a CDN to load jQuery
 doesn’t guarantee better performance in every situation because there are many factors that come into play. Our advice is
 to test which configuration best suits your specific case.

 Nowadays there are several CDNs you can rely on to include jQuery, but the most reliable are the jQuery CDN (http://code.jquery.com), the Google CDN (https://developers.google.com/speed/libraries/devguide), and the Microsoft CDN (http://www.asp.net/ajaxlibrary/cdn.ashx).

 Let’s say you want to include the compressed version of jQuery 1.11.3 using the jQuery CDN. You can do that by writing the
 following code:

 <script src="//code.jquery.com/jquery-1.11.3.min.js"></script>

 As you may have noticed, this code doesn’t specify the protocol to use (either HTTP or HTTPS). Instead, you’re specifying
 the same protocol used in your website. But keep in mind that using this technique in a page that doesn’t run on a web server
 will cause an error.

 Using a CDN isn’t all wine and roses, though. No server or network has 100% uptime on the internet, and CDNs are no exception.
 If you rely on a CDN to load jQuery, in the rare situations where it’s down or not accessible and the visitor’s browser doesn’t
 have a cached copy, your website’s code will stop working. For critical applications this can be a real problem. To avoid
 it, there’s a simple and smart solution you can adopt, employed by a lot of developers. Once again, you want to include the
 minified version of jQuery 1.11.3, but now you’ll use this smart solution:

 <script src="//code.jquery.com/jquery-1.11.3.min.js"></script>
<script>window.jQuery || document.write('<script src="javascript/jquery-
 1.11.3.min.js"><\/script>');</script>

 The idea behind this code is to request a copy of the library from a CDN and check if it has been loaded, testing whether
 the jQuery property of the window object is defined. If the test fails, you inject a code that will load a local hosted copy that, in this specific example,
 is stored in a folder called javascript. If the jQuery property is present, you can use jQuery’s methods safely without the need to load the local hosted copy.

 You test for the presence of the jQuery property because, once loaded, the library adds this property. In it you can find all the methods and properties of the library.
 During the development process, we suggest that you use a local copy of jQuery to avoid any connectivity problems.

 In addition to the jQuery property, you’ll also find a shortcut called $ that you’ll see a lot in the wild and in this book. Although it may seems odd, in JavaScript a variable or a property called
 $ is allowed. We called $ a shortcut because it’s actually the same object of jQuery as proved by this statement taken from the source code:

 window.jQuery = window.$ = jQuery;

 So far, you’ve learned how to include jQuery in your web pages but you know nothing about how it’s structured. We’ll look
 at this topic in the next section.

1.4. How jQuery is structured

 The jQuery repository (https://github.com/jquery/jquery), hosted on GitHub, is a perfect example of how front-end development has changed over the past years. Although not strictly
 related to the use of the library itself, it’s always important to know how expert developers organize their workflow and
 the tools they employ.

 If you’re an experienced front-end developer, chances are you’re already aware of some, if not all, of these tools, but a
 refresher is always worthwhile. The development team adopted the latest and coolest technologies in today’s front-end panorama
 for the development of jQuery, specifically these:

 	
Node.js (http://nodejs.org) —A platform built on Chrome’s JavaScript runtime that enables you to run JavaScript as a server-side language.

 	
npm (https://npmjs.org) —The official package manager for Node.js used to install packages like Grunt and its tasks.

 	
Grunt (http://gruntjs.com) —A task runner to automate common and repetitive tasks such as building, testing, and minification.

 	
Git (http://git-scm.com) —A free, distributed version control system to keep track of changes in the code. It allows easy collaboration between developers.

 On the other hand, jQuery’s source code follows the asynchronous module definition (AMD) format. The AMD format is a proposal
 for defining modules where both the module and its dependencies can be asynchronously loaded. In practice, this means that
 although you use jQuery as a unique, single block, its source is split into several files (modules), as shown in figure 1.4. The dependencies relative to these files are managed through the use of a dependencies manager—in this case, RequireJS.

 Figure 1.4. A schema representing jQuery’s modules: ajax, ajax/xhr, ajax/script, ajax/jsonp, css, deprecated, dimensions, effects, event, event/alias, offset, wrap, core/ready,
 deferred, exports/global, exports/amd, and Sizzle

 [image:]

 To give you an idea of what’s inside the modules, here are some examples:

 	
ajax —Contains all the Ajax functions like ajax(), get(), and post().

 	
deprecated —Contains all the currently deprecated methods that haven’t been removed. What’s inside this module depends on the jQuery
 version.

 	
effects —Contains the methods that allow animations like animate() and slideUp().

 	
event —Contains the methods to attach event handlers to browser events like on() and off().

 The organization into modules of the source leads to another advantage: the possibility of building a custom version of jQuery
 containing only the modules you need.

 1.4.1. Save space creating your own custom build

 jQuery offers you the possibility of building your own custom version of the library, containing only the functionalities
 you need. This allows you to reduce the weight of your library, which will lead to a performance improvement because the end
 user has fewer KBs to download.

 The ability to eliminate the modules you don’t need is important. Although you might think that you’ll need all the power
 that jQuery brings to the table, it’s doubtful that you’ll use all of its functions in the same website. Why not remove those
 useless lines of code to improve the performance of your website?

 You can use Grunt to create a custom version. Imagine that you need a minified version of jQuery 1.11.3 with all the functionalities
 (except the deprecated methods and properties) and the effects. To perform this task, you need to install Node.js, Git, and
 Grunt on your local machine. After installing them, you have to clone jQuery’s repository by running the following command
 using the command-line interface (CLI):

 git clone git://github.com/jquery/jquery.git

 Once the cloning process is complete, enter these last two commands:

 npm install
grunt custom:-deprecated,-effects

 You’re finished! Inside the folder named dist you’ll find your custom jQuery build in both minified and non-minified versions.

 This approach doesn’t come without drawbacks, though. The first issue arises when a new version of jQuery is released. The
 second arises when a new functionality of your website requires a feature contained in a module that wasn’t previously included.
 In these cases, you need to again perform the steps described previously (usually only the commands) to create a new custom
 version that includes the new methods, bug fixes, or the missing module.

 Now that you know how to put the library in place and how to create a custom build, it’s time to delve into jQuery’s fundamentals.

1.5. jQuery fundamentals

 At its core, jQuery focuses on retrieving elements from HTML pages and performing operations on them. If you’re familiar with
 CSS, you’re already well aware of the power of selectors, which describe groups of elements by their type, attributes, placement
 within the document, and much more. With jQuery, you can employ that knowledge and that degree of power to vastly simplify
 your JavaScript.

 jQuery places a high priority on ensuring that code will work consistently across all major browsers; many of the harder JavaScript
 problems have been silently solved for you. Should you find that the library needs a bit more juice, jQuery has a simple but
 powerful way for extending its functionality via plugins, which we’ll discuss in detail in chapter 12.

 Let’s start by taking a look at the jQuery object itself and how you can use your CSS knowledge to produce powerful yet terse code.

 1.5.1. Properties, utilities, and methods

 As we said before, the jQuery library is exposed through a property called jQuery and a shortcut called $. Using them gives you access to the properties, methods, and functions that jQuery provides.

 One of the properties exposed by the jQuery property is fx.off. It allows enabling or disabling effects executed using jQuery’s methods. We’ll discuss this and other properties in detail
 in chapter 9.

 Much more exciting are the utilities, also referred to as utility functions. You can think of them as a handful of commonly used, general-purpose functions that are included in the library. You could
 say that jQuery acts as a namespace for them.

 To give you a basic idea of what they are, let’s look at an example. One of the utilities available is the function for trimming
 strings. Its aim is to remove whitespaces from the beginning and the end of a string. A call to it could look like this:

 var trimmed = $.trim(someString);

 If the value of someString is “ hello ”, the result of the $.trim() call will be “hello”. As you can see, in this example we used the jQuery shortcut ($). Remember that it’s an identifier like any other in JavaScript. Writing a call to the same function using the jQuery identifier, rather than its alias, will result in this code:

 var trimmed = jQuery.trim(someString);

 Another example of a utility function is $.isArray(), which, as you may guess, tests if a given argument is an array.

 In addition to properties and functions, the library also exposes methods that are available once you call the jQuery() function. Let’s learn more.

 1.5.2. The jQuery object

 The first function you’ll use in your path to learn jQuery is jQuery(). It accepts up to two arguments, and, depending on their number and type, performs different tasks. Like many other (almost all) methods in the library, it allows for chaining. Chaining is a programming technique used to call several methods in a single statement. Instead of writing

 var obj = new Obj();
obj.method();
obj.anotherMethod();
obj.yetAnotherMethod();

 you can write

 var obj = new Obj();
obj.method().anotherMethod().yetAnotherMethod();

 The most common use of jQuery() is to select elements from the DOM so you can apply some changes to them. In this case, it accepts two parameters: a selector
 and (optionally) a context. This function returns an object containing a collection of DOM elements that match the given criteria.
 But what’s a selector?

 When CSS was introduced to web technologies in order to separate design from content, a way was needed to refer to groups
 of page elements from external style sheets. The method developed was to use selectors, which concisely represent elements
 based on their type, attributes, or position within the HTML document. Those familiar with XML might be familiar with XPath
 (more on this here: http://www.w3.org/TR/xpath20/) as a means to select elements within an XML document. CSS selectors represent an equally powerful concept but are tuned
 for use within HTML pages, are a bit more concise, and are generally considered easier to understand.

 jQuery makes use of the same selectors as CSS. It supports not only the widely implemented ones belonging to CSS2.1 but also
 the more powerful selectors defined in CSS3. This is important because some of them may not be fully implemented by all browsers
 or may never make their appearance (for example, in older versions of Internet Explorer). As if this were not enough, jQuery
 also has its own selectors and allows you to create your own custom selectors.

 In this book you’ll be able to use your existing knowledge of CSS to get up and running fast, and then you’ll learn about
 the more advanced selectors that jQuery supports. If you have little knowledge of them, don’t worry. We’ll cover jQuery selectors
 in great detail in chapter 2, and you can find a full list of them on the jQuery site at http://api.jquery.com/category/selectors/.

 Let’s say you want to select all the <p>s in the page using jQuery(). To do this, you can write

 var paragraphs = jQuery('p');

 The library searches for matching elements within the DOM starting from the document root, so for a huge number of elements
 the process can be slow.

 In most cases, you can speed up the search using the context parameter. It’s used to restrict the process to one or more subtrees, depending on the selector used. To understand it, you’ll
 modify the previous example.

 Let’s say that you want to find all the <p>s contained in a <div>. Contained doesn’t mean the <div> must be the parent of the <p>; it can also be a generic ancestor. You can achieve this task as shown below:

 var paragraphsInDiv = jQuery('p', 'div');

 Using the jQuery alias, the same statement will look like this:

 var paragraphsInDiv = $('p', 'div');

 When you use the second argument, jQuery first collects elements based on this selector called context and then retrieves the descendants that match the first parameter, selector. We’ll discuss this topic in more detail in chapter 2.

 As we said, the jQuery() function (and its alias $()) returns a JavaScript object containing a set of DOM elements that match the selector, in the order in which they’re defined
 within the document. This object possesses a large number of useful predefined methods that can act on the collected group
 of elements. We’ll use the term jQuery collection, jQuery object, or jQuery set (or other similar expressions) to refer to this returned JavaScript object that contains the set of matched elements that
 can be operated on with the methods defined by jQuery. Based on this definition, the previous paragraphsInDiv variable is a jQuery object containing all the paragraphs that are descendants of a div element. You’ll use jQuery objects extensively when you need to perform operations, like running a certain animation or applying
 a style, on several elements in the page.

 As mentioned earlier, one important feature of a large number of these methods, which we often refer to as jQuery methods, is that they allow for chaining. After a method has completed its work, it returns the same group of elements it acted on,
 ready for another action. As things get progressively more complicated, making use of jQuery’s chainability will continue
 to reduce the lines of code necessary to produce the results you want.

 In the previous section, we highlighted the advantages of placing the JavaScript code at the bottom of the page. For many
 years now, developers have placed the scripts elements in the <head> of the page, relying on a jQuery method called ready(). This approach is now discouraged, but many developers still use it. In the next section you’ll learn more about it and also
 discover what the suggested approach is today.

 1.5.3. The document ready handler

 When embracing unobtrusive JavaScript, behavior is separated from structure. Applying this principle, you perform operations
 on the page elements outside the document markup that creates them. In order to achieve this, you need a way to wait until
 the DOM elements of the page are fully realized before those operations execute.

 In the radio group example, the entire body has to be loaded before the behavior can be applied. Traditionally, the onload handler for the window instance is used for this purpose, executing statements after the entire page is fully loaded. The syntax is typically something
 like this:

 window.onload = function() {
 // do stuff here
};

 This causes the defined code to execute after the document has fully loaded. Unfortunately, the browser not only delays executing the onload code until after the DOM tree is created but also waits until all external resources are fully loaded and the page is displayed
 in the browser window. This includes resources like images as well as QuickTime and Flash videos embedded in web pages. As
 a result, visitors can experience a serious delay between the time that they first see the page and the time that the onload script is executed.

 Even worse, if an image or other resource takes significant time to load, visitors will have to wait for the image loading
 to complete before the rich behaviors become available. This could make the whole unobtrusive JavaScript proposition a nonstarter
 for many real-life cases.

 A much better approach would be to wait only until the document structure is fully parsed and the browser has converted the
 HTML into its resulting DOM tree before executing the script to apply the rich behaviors. Accomplishing this in a cross-browser
 manner that takes into account older browsers is somewhat difficult, but jQuery provides a simple means to trigger the execution
 of code once the DOM tree has loaded (without waiting for external resources).

 The formal syntax to define such code is as follows:

 jQuery(document).ready(function() {
 // Your code goes here...
});

 First, you wrap the document object using the jQuery() function, and then you call the ready() method, passing a function to be executed when the document is ready to be manipulated. This means that inside the function
 passed to ready() you can safely access all of the elements of your page. A schema of the mechanism described is shown in figure 1.5.

 Figure 1.5. A representation of the steps performed by browsers before the document-ready handler is executed

 [image:]

 We called that the formal syntax for a reason; a shorthand form is as follows:

 jQuery(function() {
 // your code hoes here...
});

 By passing a function to jQuery() or its alias $(), you instruct the browser to wait until the DOM has fully loaded (but only the DOM) before executing the code. Even better,
 you can use this technique multiple times within the same HTML document, and the browser will execute all of the functions
 you specify in the order in which they’re declared within the page.

 In contrast, the window’s onload technique allows for only a single function. This limitation can also result in hard-to-find bugs if any included third-party
 code uses the onload mechanism for its own purpose (not a best-practice approach).

 Using the document-ready handler is a good way to embrace the unobtrusive JavaScript technique, but its use isn’t mandatory
 and can be avoided.

 Because ready() takes care to execute the code after the DOM is loaded, developers used to place the script elements in the <head> of the page. As we discussed in section 1.2.2, “Segregating the script,” you can place them just before the closing body tag (</body>). By doing so, you can completely avoid the use of $(document).ready() because at that point all of the other elements are already in the DOM. Therefore, you can retrieve and use them safely.
 If you want to see an example of how $(document).ready() can be avoided, take a look at the source code of the file chapter-1/radio.group.html.

 In the remainder of this book we’ll stick with the current best practices, so you won’t use ready().

1.6. Summary

 We’ve covered a great deal of material in this whirlwind introduction to jQuery. To summarize, it’s generally useful for any
 page that needs to perform anything but the most trivial of JavaScript operations. It’s also strongly focused on enabling
 page authors to employ the concept of unobtrusive JavaScript within their pages. With this approach, behavior is separated
 from structure in the same way that CSS separates style from structure, achieving better page organization and increased code
 versatility.

 Despite the fact that jQuery introduces only two new names in the JavaScript namespace—the self-named jQuery function and its $ alias—the library provides a great deal of functionality by making that function highly versatile, adjusting the operation
 that it performs based on the parameters passed to it.

 We mentioned how well the repository of the library and the code in general are organized. We also paid great attention to
 the several available versions of the library and their differences in order to be able to make a conscious choice. Performance
 is an important factor to consider, so we described the possibilities you have to reduce the added overhead to a minimum by
 including a library in your pages. Using CDNs and customizing the modules that you want are an amazing way to speed up the
 download of jQuery.

 In the chapters that follow, we’ll explore all the features that jQuery has to offer you as a web developer. We’ll begin our
 tour in the next chapter as you learn how to use jQuery selectors to quickly and easily identify the elements that you wish
 to act on.

Part 2. Core jQuery

 Many years have passed since John Resig presented jQuery to the world. Fewer but still quite a few years are behind us since
 jQuery was only a library to manipulate the DOM. During this time jQuery has created an entire ecosystem around itself consisting
 of companion libraries and other projects such as these:

 	
jQuery UI —A library consisting of a set of user interface interactions, effects, widgets, and themes to help you create amazing user
 interfaces

 	
jQuery Mobile —An HTML5-based user interface system for all popular mobile device platforms, to help you create beautiful designs for mobile
 devices

 	
QUnit —A JavaScript unit-testing framework used by all the other jQuery projects

 	
Plugins —The plugins published on npm (https://www.npmjs.com/) and the myriad of other plugins spread across the web that people have created to cover those use cases not covered by jQuery
 or to improve its functionalities

 In part 2 of this book, we’ll cover the core library from stem to stern. When you finish these chapters, you’ll thoroughly know the
 jQuery library and be ready to tackle any web project armed with one of the most powerful client-side tools available. So
 turn the page, dig in, and get ready to learn how to breathe life into your web applications in a way that’s not only easy
 but fun!

Chapter 2. Selecting elements

 This chapter covers

 	Selecting elements with jQuery by using CSS selectors

 	Discovering the unique jQuery-only filters

 	Developing custom filters

 	Learning the context parameter of the jQuery() function

 In this chapter, we’ll examine in great detail how the DOM elements to be acted upon are identified by looking at one of the
 most powerful and frequently used capabilities of jQuery’s $() function: the selection of DOM elements via selectors. Throughout the pages of this chapter, you’ll become familiar with the plethora of selectors available. jQuery not only provides
 full support for all the CSS selectors but also introduces other ones. We’ll also introduce you to filters, many of which are special jQuery-only selectors that usually work with other types of selectors to further reduce a set
 of matched elements. As if this weren’t enough, you’ll learn how to create custom filters (also referred to as custom selectors or custom pseudo-selectors) in case your pages need one the library doesn’t support. We’ll also discuss context, the second parameter of the $() function, and describe the implications of its use.

 A good number of the capabilities required by interactive web applications are achieved by manipulating the DOM elements that
 make up the pages. But before they can be manipulated, they need to be identified and selected. This and the next chapter
 provide you with the concepts to select elements. In the previous edition of this book, they were a unique chapter because
 their contents are highly related, but we decided to split them to help you digest the huge number of concepts described.
 Note that, despite the split, this chapter is still pretty long and terse. You may expect to go through it several times before
 mastering all its concepts. With this last note in mind, let’s begin our detailed tour of the many ways that jQuery lets you
 specify which elements are to be targeted for manipulation.

2.1. Selecting elements for manipulation

 The first thing you need to do when using virtually any jQuery method is to select some document elements to act upon. As
 you learned in chapter 1, to select elements in a page using jQuery, you need to pass the selector to the jQuery() function (or its alias $()). The jQuery() function and its alias return a jQuery object containing a set of DOM elements that match the given criteria and also expose
 many of jQuery’s methods and properties.

 Sometimes the set of elements you want to select will be easy to describe, such as “all paragraph elements on the page.” Other
 times they’ll require a more complex description like “all list elements that have the class list-element, contain a link, and are first in the list.” Fortunately, jQuery provides a robust selector syntax you can use to easily
 specify sets of elements elegantly and concisely. You probably already know a big chunk of the syntax. jQuery uses the CSS
 syntax you already know and love and extends it with some custom means to perform both common and complex selections.

 To help you learn about element selection, we’ve put together a jQuery Selectors Lab Page that’s available in the downloadable
 code examples for this book (in the file chapter-2/lab.selectors.html). The Selectors Lab allows you to enter a jQuery selector
 string and see (in real time!) which DOM elements get selected. When displayed, the lab should look as shown in figure 2.1.

 Figure 2.1. The jQuery Selectors Lab Page allows you to observe the behavior of any selector you choose in real time.

 [image:]

 [image:]

 	

 Tip

 If you haven’t yet downloaded the example code, you really ought to do so now—the information in this chapter will be much
 easier to absorb if you follow along with the lab exercises. Visit this book’s web page at http://www.manning.com/derosa to find the download link, or go to https://github.com/AurelioDeRosa/jquery-in-action.

 	

 The Selector Panel at the top left contains a text box and a button. To run a lab “experiment,” type a selector into the text
 box and click the Apply button. Go ahead and type the string li into the box and click Apply.

 The selector that you type (in this case li) is applied to the HTML fragment loaded into the DOM Sample pane at the upper right. The lab code that executes when you
 click Apply adds a class named found-element to all the matching elements. A CSS declaration defined for the page causes all elements with that class to be highlighted
 with a black border and gray background. After clicking Apply, you should see the display shown in figure 2.2, in which all li elements in the DOM sample are highlighted. In addition, the executed jQuery statement, as well as the tag names of the selected
 elements, is displayed below the Selector text box. The HTML markup used to render the DOM sample fragment is displayed in
 the lower pane, labeled “DOM Sample Code.” This should help you experiment with writing selectors targeted at the elements
 in this sample.

 Figure 2.2. A selector value of li matches all li elements when applied, as shown by the displayed results.

 [image:]

 We’ll talk more about using this lab as we progress through the chapter. For the moment, let’s take a look at how jQuery deals
 with the basic CSS selectors.

2.2. Basic selectors

 For applying styles to page elements, web developers have become familiar with a small but useful group of selection expressions
 that work across all browsers. Those expressions can select by an element’s ID, by CSS class names, and by tag names. A special
 case of selecting elements by tag name is the Universal selector, which allows you to select all the page elements within
 the DOM. The selection expressions enable you to perform basic searches in the DOM, and we’ll provide the details in the following
 sections. When combined, these selectors allow you to achieve slightly more complicated selections. Table 2.1 provides a quick refresher of these selectors and how you can combine them.

 Table 2.1. Some simple CSS selector examples

 	
 Example

 	
 Description

 	
 In CSS?

 	*
 	Matches all the elements in the page
 	✓

 	#special-id
 	Matches the element with the ID value of special-id
 	✓

 	.special-class
 	Matches all elements with the class special-class
 	✓

 	a
 	Matches all anchor (a) elements
 	✓

 	a.special-class
 	Matches all anchor (a) elements that have the class special-class
 	✓

 	.class.special-class
 	Matches all elements with the class class and class special-class
 	✓

 In JavaScript, you have a set of functions, such as getElementById() and get-ElementsByClassName(), that are designed to work with a specific type of selector to retrieve DOM elements to act upon. Unfortunately, you might
 have some problems using even such simple functions. For example, getElementsByClassName() isn’t supported in versions of Internet Explorer prior to 9. If you want to use only native methods, you should pay attention
 to cross-browser compatibilities.

 jQuery to the rescue! If the browser supports the selector or the function natively, jQuery will rely on it to be more efficient;
 otherwise it’ll use its methods to return the expected result. The good news is that you don’t have to worry about this difference.
 jQuery will do its work for you behind the scenes, so you can focus on other aspects of your code.

 The jQuery library is fully CSS3 compliant, so selecting elements will present no surprises; the same elements that would
 be selected in a style sheet by a standards-compliant browser will be selected by jQuery’s selector engine. The library does
 not depend on the CSS implementation of the browser it’s running within. Even if the browser doesn’t implement a standard CSS
 selector correctly, jQuery will correctly select elements according to the rules of the World Wide Web Consortium (W3C) standard.

 For some practice, play with the Selectors Lab and run some experiments with some basic CSS selectors until you feel comfortable
 with them.

 [image:]

 Happy to know that jQuery will solve all the cross-browser compatibilities (for the supported browsers) for us, we can now
 delve into the plethora of selectors available.

 2.2.1. The All (or Universal) selector

 The first selector available is the All (or Universal) selector, which is represented by an asterisk (*). As the name suggests,
 it allows you to retrieve all of the DOM elements of a web page, even the head element and its children. To reinforce this concept, let’s say you have the following HTML page:

 <!DOCTYPE html>
<html>
 <head>
 <title>jQuery in Action, 3rd edition</title>
 </head>
 <body>

 <p>I'm a paragraph</p>
 </body>
</html>

 To retrieve all the elements of the page you need to use the Universal selector and pass it to the jQuery() function (or its alias $()) in a statement like the following:

 var allElements = $('*');

 Before moving on, there’s an established convention we want to mention. When saving the result of a selection made with jQuery
 in a variable, a widely adopted convention is to prepend or (less commonly) append a dollar sign to the name of the variable.
 It doesn’t have a special meaning; it’s used as a reminder of what the variable is storing. Another reason to adopt one of
 these conventions is to be sure not to invoke $() on a set of DOM elements on which we’ve already called this method. For example, you may erroneously write the following:

 var allElements = $('*');
// Other code here...
$(allElements);

 Using the aforementioned conventions, you can rewrite the previous statement prepending the dollar sign to the variable name,
 as shown here:

 var $allElements = $('*');

 Alternatively, you also can write it this way:

 var allElements$ = $('*');

 We recommend adopting one of these conventions and sticking with it. Throughout the rest of the book, we’ll use the first
 one: the dollar sign prepended.

 Let’s now see the first complete example of using jQuery in a web page. In this example, shown in listing 2.1, we’ll use a CDN to include jQuery using the fallback technique learned in chapter 1, and the Universal selector to select all the elements of the page. You can find the code for this listing in the file chapter-2/listing-2.1.html
 in the source provided with the book. In the remainder of the book, the examples will only include a reference to a local
 version of the jQuery library, avoiding the use of any CDN. There are two main reasons for this choice: brevity (that is,
 writing less code) and avoiding an additional HTTP request (that fails if you’re running the examples while offline).

 Listing 2.1. Using the Universal selector with jQuery

 [image:]

 We told you that the previous listing was created to select all the elements of the page, but what are these elements? If
 you inspect the variable using a debugger or with the help of the console (where available), you’ll see that they are html, head, title, body, p, script (the first in the page), and script (the second in the page).

 	

 Warning

 We want to point out that the console.log() method is not supported by old versions of Internet Explorer (IE 6–7). In the examples in this book we’ll ignore this issue
 and we’ll use this method heavily to avoid resorting to the very annoying window.alert() method. But you should keep in mind this lack of support in case your code needs to work in these browsers.

 	

 Remember, the elements are retrieved and stored in the same order in which they appear on the page.

 	

 Developer tools

 Trying to develop a DOM-scripted application without the aid of a debugging tool is like trying to play concert piano while
 wearing welding gloves. Why would you do that to yourself?

 Depending on the browser you’re using, there are different options you can choose to inspect your code. All major modern browsers
 have a set of built-in tools for this purpose, although with a different name, that you can adopt. For example, in Chrome
 these tools are called the Chrome Developer Tools (https://developers.google.com/chrome-developer-tools/), whereas in Internet Explorer they’re called the F12 developer tools (http://msdn.microsoft.com/en-us/library/bg182326(v=vs.85).aspx). Firefox has its own built-in tools as well, but developers usually use a plugin called Firebug (http://getfirebug.com). These tools not only let you inspect the JavaScript console, but they also allow you to inspect the live DOM, the CSS,
 the scripts, and many other aspects of your page as you work through its development.

 	

 As you’ve seen, the use of the All selector forces jQuery to traverse all of the DOM’s nodes. With a lot of elements in the
 DOM, the process might be very slow; therefore its use is discouraged. In addition, it’s unlikely that you’ll need to retrieve
 all the elements of a page, although you could need to collect those belonging to a specific subtree of the DOM, as you’ll
 see later.

 If you’ve ever played with JavaScript and a browser, you know that one of the most-used selections is performed using the
 ID of a given element. Let’s discover more about this topic.

 2.2.2. The ID selector

 The ID selector is one of the most used selectors, not only in jQuery but also in plain JavaScript. In JavaScript, to select
 an element by its ID, you pass the ID to the native document.getElementById() function. If you have some knowledge of CSS, you’ll recall that the ID selector is characterized by a sharp (#) sign (in
 some countries this symbol is known with a different name like number sign or pound sign) prepended to the element’s ID. If you have this paragraph in your page

 <p id="description">jQuery in Action is a book about jQuery</p>

 you can retrieve it using the ID selector and jQuery by writing

 $('#description');

 When used with the ID selector, jQuery returns a collection of either zero or one DOM element. In case you have more than
 one element on a page with the same ID, the library retrieves only the first matched element encountered. Although you can
 have more than one element with the same ID, it’s invalid and you should not do that.

 	

 Note

 The W3C specifications of HTML5 assert that the value of an ID “must not contain any space characters. There are no other
 restrictions on what form an ID can take; in particular, IDs can consist of just digits, start with a digit, start with an
 underscore, consist of just punctuation, etc.” It’s possible to use characters such as the period (.) that have a special
 meaning in CSS and jQuery (because it follows the CSS conventions). Because of this, they must be escaped by prepending two
 backslashes to the special character. Thus, if you want to select an element with ID of .description, you have to write $('#\\.description').

 	

 It isn’t accidental that we compared how to select elements by their ID in jQuery and in JavaScript at the beginning of this
 section, using the getElementById() function. In jQuery the selection by ID is the fastest one, regardless of the browser used, because behind the scenes the
 library uses getElementById(), which is very fast.

 Using the ID selector you’re able to quickly retrieve one element in the DOM. Often, you need to retrieve elements based on
 the class names used. How can you select elements that share the same style?

 2.2.3. The Class selector

 The Class selector is used to retrieve elements by the CSS class names used. As a JavaScript developer, you should be familiar
 with this kind of selection through the use of the native getElementsByClassName() function. jQuery follows the CSS conventions, so you have to prepend a dot before the chosen class name. For example, if
 you have the following HTML code inside the <body> of a page

