

 [image: cover]

 OpenCL in Action:
How to Accelerate Graphics and Computation

 Matthew Scarpino

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Maria Townsley
Copyeditor: Andy Carroll
Proofreader: Maureen Spencer
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. Foundations of OpenCL programming

 Chapter 1. Introducing OpenCL

 Chapter 2. Host programming: fundamental data structures

 Chapter 3. Host programming: data transfer and partitioning

 Chapter 4. Kernel programming: data types and device memory

 Chapter 5. Kernel programming: operators and functions

 Chapter 6. Image processing

 Chapter 7. Events, profiling, and synchronization

 Chapter 8. Development with C++

 Chapter 9. Development with Java and Python

 Chapter 10. General coding principles

 2. Coding practical algorithms in OpenCL

 Chapter 11. Reduction and sorting

 Chapter 12. Matrices and QR decomposition

 Chapter 13. Sparse matrices

 Chapter 14. Signal processing and the fast Fourier transform

 3. Accelerating OpenGL with OpenCL

 Chapter 15. Combining OpenCL and OpenGL

 Chapter 16. Textures and renderbuffers

 Appendix A. Installing and using a software development kit

 Appendix B. Real-time rendering with OpenGL

 Appendix C. The minimalist GNU for Windows and OpenCL

 Appendix D. OpenCL on mobile devices

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. Foundations of OpenCL programming

 Chapter 1. Introducing OpenCL

 1.1. The dawn of OpenCL

 1.2. Why OpenCL?

 1.2.1. Portability

 1.2.2. Standardized vector processing

 1.2.3. Parallel programming

 1.3. Analogy: OpenCL processing and a game of cards

 1.4. A first look at an OpenCL application

 1.5. The OpenCL standard and extensions

 1.6. Frameworks and software development kits (SDKs)

 1.7. Summary

 Chapter 2. Host programming: fundamental data structures

 2.1. Primitive data types

 2.2. Accessing platforms

 2.2.1. Creating platform structures

 2.2.2. Obtaining platform information

 2.2.3. Code example: testing platform extensions

 2.3. Accessing installed devices

 2.3.1. Creating device structures

 2.3.2. Obtaining device information

 2.3.3. Code example: testing device extensions

 2.4. Managing devices with contexts

 2.4.1. Creating contexts

 2.4.2. Obtaining context information

 2.4.3. Contexts and the reference count

 2.4.4. Code example: checking a context’s reference count

 2.5. Storing device code in programs

 2.5.1. Creating programs

 2.5.2. Building programs

 2.5.3. Obtaining program information

 2.5.4. Code example: building a program from multiple source files

 2.6. Packaging functions in kernels

 2.6.1. Creating kernels

 2.6.2. Obtaining kernel information

 2.6.3. Code example: obtaining kernel information

 2.7. Collecting kernels in a command queue

 2.7.1. Creating command queues

 2.7.2. Enqueuing kernel execution commands

 2.8. Summary

 Chapter 3. Host programming: data transfer and partitioning

 3.1. Setting kernel arguments

 3.2. Buffer objects

 3.2.1. Allocating buffer objects

 3.2.2. Creating subbuffer objects

 3.3. Image objects

 3.3.1. Creating image objects

 3.3.2. Obtaining information about image objects

 3.4. Obtaining information about buffer objects

 3.5. Memory object transfer commands

 3.5.1. Read/write data transfer

 3.5.2. Mapping memory objects

 3.5.3. Copying data between memory objects

 3.6. Data partitioning

 3.6.1. Loops and work-items

 3.6.2. Work sizes and offsets

 3.6.3. A simple one-dimensional example

 3.6.4. Work-groups and compute units

 3.7. Summary

 Chapter 4. Kernel programming: data types and device memory

 4.1. Introducing kernel coding

 4.2. Scalar data types

 4.2.1. Accessing the double data type

 4.2.2. Byte order

 4.3. Floating-point computing

 4.3.1. The float data type

 4.3.2. The double data type

 4.3.3. The half data type

 4.3.4. Checking IEEE-754 compliance

 4.4. Vector data types

 4.4.1. Preferred vector widths

 4.4.2. Initializing vectors

 4.4.3. Reading and modifying vector components

 4.4.4. Endianness and memory access

 4.5. The OpenCL device model

 4.5.1. Device model analogy part 1: math students in school

 4.5.2. Device model analogy part 2: work-items in a device

 4.5.3. Address spaces in code

 4.5.4. Memory alignment

 4.6. Local and private kernel arguments

 4.6.1. Local arguments

 4.6.2. Private arguments

 4.7. Summary

 Chapter 5. Kernel programming: operators and functions

 5.1. Operators

 5.2. Work-item and work-group functions

 5.2.1. Dimensions and work-items

 5.2.2. Work-groups

 5.2.3. An example application

 5.3. Data transfer operations

 5.3.1. Loading and storing data of the same type

 5.3.2. Loading vectors from a scalar array

 5.3.3. Storing vectors to a scalar array

 5.4. Floating-point functions

 5.4.1. Arithmetic and rounding functions

 5.4.2. Comparison functions

 5.4.3. Exponential and logarithmic functions

 5.4.4. Trigonometric functions

 5.4.5. Miscellaneous floating-point functions

 5.5. Integer functions

 5.5.1. Adding and subtracting integers

 5.5.2. Multiplication

 5.5.3. Miscellaneous integer functions

 5.6. Shuffle and select functions

 5.6.1. Shuffle functions

 5.6.2. Select functions

 5.7. Vector test functions

 5.8. Geometric functions

 5.9. Summary

 Chapter 6. Image processing

 6.1. Image objects and samplers

 6.1.1. Image objects on the host: cl_mem

 6.1.2. Samplers on the host: cl_sampler

 6.1.3. Image objects on the device: image2d_t and image3d_t

 6.1.4. Samplers on the device: sampler_t

 6.2. Image processing functions

 6.2.1. Image read functions

 6.2.2. Image write functions

 6.2.3. Image information functions

 6.2.4. A simple example

 6.3. Image scaling and interpolation

 6.3.1. Nearest-neighbor interpolation

 6.3.2. Bilinear interpolation

 6.3.3. Image enlargement in OpenCL

 6.4. Summary

 Chapter 7. Events, profiling, and synchronization

 7.1. Host notification events

 7.1.1. Associating an event with a command

 7.1.2. Associating an event with a callback function

 7.1.3. A host notification example

 7.2. Command synchronization events

 7.2.1. Wait lists and command events

 7.2.2. Wait lists and user events

 7.2.3. Additional command synchronization functions

 7.2.4. Obtaining data associated with events

 7.3. Profiling events

 7.3.1. Configuring command profiling

 7.3.2. Profiling data transfer

 7.3.3. Profiling data partitioning

 7.4. Work-item synchronization

 7.4.1. Barriers and fences

 7.4.2. Atomic operations

 7.4.3. Atomic commands and mutexes

 7.4.4. Asynchronous data transfer

 7.5. Summary

 Chapter 8. Development with C++

 8.1. Preliminary concerns

 8.1.1. Vectors and strings

 8.1.2. Exceptions

 8.2. Creating kernels

 8.2.1. Platforms, devices, and contexts

 8.2.2. Programs and kernels

 8.3. Kernel arguments and memory objects

 8.3.1. Memory objects

 8.3.2. General data arguments

 8.3.3. Local space arguments

 8.4. Command queues

 8.4.1. Creating CommandQueue objects

 8.4.2. Enqueuing kernel-execution commands

 8.4.3. Read/write commands

 8.4.4. Memory mapping and copy commands

 8.5. Event processing

 8.5.1. Host notification

 8.5.2. Command synchronization

 8.5.3. Profiling events

 8.5.4. Additional event functions

 8.6. Summary

 Chapter 9. Development with Java and Python

 9.1. Aparapi

 9.1.1. Aparapi installation

 9.1.2. The Kernel class

 9.1.3. Work-items and work-groups

 9.2. JavaCL

 9.2.1. JavaCL installation

 9.2.2. Overview of JavaCL development

 9.2.3. Creating kernels with JavaCL

 9.2.4. Setting arguments and enqueuing commands

 9.3. PyOpenCL

 9.3.1. PyOpenCL installation and licensing

 9.3.2. Overview of PyOpenCL development

 9.3.3. Creating kernels with PyOpenCL

 9.3.4. Setting arguments and executing kernels

 9.4. Summary

 Chapter 10. General coding principles

 10.1. Global size and local size

 10.1.1. Finding the maximum work-group size

 10.1.2. Testing kernels and devices

 10.2. Numerical reduction

 10.2.1. OpenCL reduction

 10.2.2. Improving reduction speed with vectors

 10.3. Synchronizing work-groups

 10.4. Ten tips for high-performance kernels

 10.5. Summary

 2. Coding practical algorithms in OpenCL

 Chapter 11. Reduction and sorting

 11.1. MapReduce

 11.1.1. Introduction to MapReduce

 11.1.2. MapReduce and OpenCL

 11.1.3. MapReduce example: searching for text

 11.2. The bitonic sort

 11.2.1. Understanding the bitonic sort

 11.2.2. Implementing the bitonic sort in OpenCL

 11.3. The radix sort

 11.3.1. Understanding the radix sort

 11.3.2. Implementing the radix sort with vectors

 11.4. Summary

 Chapter 12. Matrices and QR decomposition

 12.1. Matrix transposition

 12.1.1. Introduction to matrices

 12.1.2. Theory and implementation of matrix transposition

 12.2. Matrix multiplication

 12.2.1. The theory of matrix multiplication

 12.2.2. Implementing matrix multiplication in OpenCL

 12.3. The Householder transformation

 12.3.1. Vector projection

 12.3.2. Vector reflection

 12.3.3. Outer products and Householder matrices

 12.3.4. Vector reflection in OpenCL

 12.4. The QR decomposition

 12.4.1. Finding the Householder vectors and R

 12.4.2. Finding the Householder matrices and Q

 12.4.3. Implementing QR decomposition in OpenCL

 12.5. Summary

 Chapter 13. Sparse matrices

 13.1. Differential equations and sparse matrices

 13.2. Sparse matrix storage and the Harwell-Boeing collection

 13.2.1. Introducing the Harwell-Boeing collection

 13.2.2. Accessing data in Matrix Market files

 13.3. The method of steepest descent

 13.3.1. Positive-definite matrices

 13.3.2. Theory of the method of steepest descent

 13.3.3. Implementing SD in OpenCL

 13.4. The conjugate gradient method

 13.4.1. Orthogonalization and conjugacy

 13.4.2. The conjugate gradient method

 13.5. Summary

 Chapter 14. Signal processing and the fast Fourier transform

 14.1. Introducing frequency analysis

 14.2. The discrete Fourier transform

 14.2.1. Theory behind the DFT

 14.2.2. OpenCL and the DFT

 14.3. The fast Fourier transform

 14.3.1. Three properties of the DFT

 14.3.2. Constructing the fast Fourier transform

 14.3.3. Implementing the FFT with OpenCL

 14.4. Summary

 3. Accelerating OpenGL with OpenCL

 Chapter 15. Combining OpenCL and OpenGL

 15.1. Sharing data between OpenGL and OpenCL

 15.1.1. Creating the OpenCL context

 15.1.2. Sharing data between OpenGL and OpenCL

 15.1.3. Synchronizing access to shared data

 15.2. Obtaining information

 15.2.1. Obtaining OpenGL object and texture information

 15.2.2. Obtaining information about the OpenGL context

 15.3. Basic interoperability example

 15.3.1. Initializing OpenGL operation

 15.3.2. Initializing OpenCL operation

 15.3.3. Creating data objects

 15.3.4. Executing the kernel

 15.3.5. Rendering graphics

 15.4. Interoperability and animation

 15.4.1. Specifying vertex data

 15.4.2. Animation and display

 15.4.3. Executing the kernel

 15.5. Summary

 Chapter 16. Textures and renderbuffers

 16.1. Image filtering

 16.1.1. The Gaussian blur

 16.1.2. Image sharpening

 16.1.3. Image embossing

 16.2. Filtering textures with OpenCL

 16.2.1. The init_gl function

 16.2.2. The init_cl function

 16.2.3. The configure_shared_data function

 16.2.4. The execute_kernel function

 16.2.5. The display function

 16.3. Summary

 Appendix A. Installing and using a software development kit

 A.1. Understanding OpenCL SDKs

 A.1.1. Checking device compliance

 A.1.2. OpenCL header files and libraries

 A.2. OpenCL on Windows

 A.2.1. Windows installation with an AMD graphics card

 A.2.2. Building Windows applications with an AMD graphics card

 A.2.3. Windows installation with an Nvidia graphics card

 A.2.4. Building Windows applications with an Nvidia graphics card

 A.3. OpenCL on Linux

 A.3.1. Linux installation with an AMD graphics card

 A.3.2. Linux installation with an Nvidia graphics card

 A.3.3. Building OpenCL applications for Linux

 A.4. OpenCL on Mac OS

 A.5. Summary

 Appendix B. Real-time rendering with OpenGL

 B.1. Installing OpenGL

 B.1.1. OpenGL installation on Windows

 B.1.2. OpenGL installation on Linux

 B.1.3. OpenGL installation on Mac OS

 B.2. OpenGL development on the host

 B.2.1. Placing data in vertex buffer objects (VBOs)

 B.2.2. Configuring vertex attributes

 B.2.3. Compiling and deploying shaders

 B.2.4. Launching the rendering process

 B.3. Shader development

 B.3.1. Introduction to shader coding

 B.3.2. Vertex shaders

 B.3.3. Fragment shaders

 B.4. Creating the OpenGL window with GLUT

 B.4.1. Configuring and creating a window

 B.4.2. Event handling

 B.4.3. Displaying a window

 B.5. Combining OpenGL and GLUT

 B.5.1. GLUT/OpenGL initialization

 B.5.2. Setting the viewport

 B.5.3. Rendering the model

 B.6. Adding texture

 B.6.1. Creating textures in the host application

 B.6.2. Texture mapping in the vertex shader

 B.6.3. Applying textures in the fragment shader

 B.7. Summary

 Appendix C. The minimalist GNU for Windows and OpenCL

 C.1. Installing MinGW on Windows

 C.1.1. Obtaining and running the graphical installer

 C.1.2. Installing new tools in MinGW

 C.2. Building MinGW executables

 C.2.1. Building Hello World! with MinGW

 C.2.2. The GNU compiler

 C.3. Makefiles

 C.3.1. Structure of a GNU makefile

 C.3.2. Targets and phony targets

 C.3.3. Simple example makefile

 C.4. Building OpenCL applications

 C.5. Summary

 Appendix D. OpenCL on mobile devices

 D.1. Numerical processing

 D.2. Image processing

 D.3. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 In the summer of 1997, I was terrified. Instead of working as an intern in my major (microelectronic engineering), the best
 job I could find was at a research laboratory devoted to high-speed signal processing. My job was to program the two-dimensional
 fast Fourier transform (FFT) using C and the Message Passing Interface (MPI), and get it running as quickly as possible. The
 good news was that the lab had sixteen brand new SPARCstations. The bad news was that I knew absolutely nothing about MPI
 or the FFT.

 Thanks to books purchased from a strange new site called Amazon.com, I managed to understand the basics of MPI: the application
 deploys one set of instructions to multiple computers, and each processor accesses data according to its ID. As each processor
 finishes its task, it sends its output to the processor whose ID equals 0.

 It took me time to grasp the finer details of MPI (blocking versus nonblocking data transfer, synchronous versus asynchronous
 communication), but as I worked more with the language, I fell in love with distributed computing. I loved the fact that I
 could get sixteen monstrous computers to process data in lockstep, working together like athletes on a playing field. I felt
 like a choreographer arranging a dance or a composer writing a symphony for an orchestra. By the end of the internship, I
 coded multiple versions of the 2-D FFT in MPI, but the lab’s researchers decided that network latency made the computation
 impractical.

 Since that summer, I’ve always gravitated toward high-performance computing, and I’ve had the pleasure of working with digital
 signal processors, field-programmable gate arrays, and the Cell processor, which serves as the brain of Sony’s PlayStation
 3. But nothing beats programming graphics processing units (GPUs) with OpenCL. As today’s supercomputers have shown, no CPU
 provides the same number-crunching power per watt as a GPU. And no language can target as wide a range of devices as OpenCL.

 When AMD released its OpenCL development tools in 2009, I fell in love again. Not only does OpenCL provide new vector types
 and a wealth of math functions, but it also resembles MPI in many respects. Both toolsets are freely available and their routines
 can be called in C or C++. In both cases, applications deliver instructions to multiple devices whose processing units rely
 on IDs to determine which data they should access. MPI and OpenCL also make it possible to send data using similar types of
 blocking/non-blocking transfers and synchronous/asynchronous communication.

 OpenCL is still new in the world of high-performance computing, and many programmers don’t know it exists. To help spread
 the word about this incredible language, I decided to write OpenCL in Action. I’ve enjoyed working on this book a great deal, and I hope it helps newcomers take advantage of the power of OpenCL and
 distributed computing in general.

 As I write this in the summer of 2011, I feel as though I’ve come full circle. Last night, I put the finishing touches on
 the FFT application presented in chapter 14. It brought back many pleasant memories of my work with MPI, but I’m amazed by how much the technology has changed. In 1997,
 the sixteen SPARCstations in my lab took nearly a minute to perform a 32k FFT. In 2011, my $300 graphics card can perform
 an FFT on millions of data points in seconds.

 The technology changes, but the enjoyment remains the same. The learning curve can be steep in the world of distributed computing,
 but the rewards more than make up for the effort expended.

Acknowledgments

 I started writing my first book for Manning Publications in 2003, and though much has changed, they are still as devoted to
 publishing high-quality books now as they were then. I’d like to thank all of Manning’s professionals for their hard work
 and dedication, but I’d like to acknowledge the following folks in particular:

 First, I’d like to thank Maria Townsley, who worked as developmental editor. Maria is one of the most hands-on editors I’ve
 worked with, and she went beyond the call of duty in recommending ways to improve the book’s organization and clarity. I bristled
 and whined, but in the end, she turned out to be absolutely right. In addition, despite my frequent rewriting of the table
 of contents, her pleasant disposition never flagged for a moment.

 I’d like to extend my deep gratitude to the entire Manning production team. In particular, I’d like to thank Andy Carroll
 for going above and beyond the call of duty in copyediting this book. His comments and insight have not only dramatically
 improved the polish of the text, but his technical expertise has made the content more accessible. Similarly, I’d like to
 thank Maureen Spencer and Katie Tennant for their eagle-eyed proofreading of the final copy and Gordan Salinovic for his painstaking
 labor in dealing with the book’s images and layout. I’d also like to thank Mary Piergies for masterminding the production
 process and making sure the final product lives up to Manning’s high standards.

 Jörn Dinkla is, simply put, the best technical editor I’ve ever worked with. I tested the book’s example code on Linux and
 Mac OS, but he went further and tested the code with software development kits from Linux, AMD, and Nvidia. Not only did he
 catch quite a few errors I missed, but in many cases, he took the time to find out why the error had occurred. I shudder to
 think what would have happened without his assistance, and I’m beyond grateful for the work he put into improving the quality
 of this book’s code.

 I’d like to thank Candace Gilhooley for spreading the word about the book’s publication. Given OpenCL’s youth, the audience
 isn’t as easy to reach as the audience for Manning’s many Java books. But between setting up web articles, presentations,
 and conference attendance, Candace has done an exemplary job in marketing OpenCL in Action.

 One of Manning’s greatest strengths is its reliance on constant feedback. During development and production, Karen Tegtmeyer
 and Ozren Harlovic sought out reviewers for this book and organized a number of review cycles. Thanks to the feedback from
 the following reviewers, this book includes a number of important subjects that I wouldn’t otherwise have considered: Olivier
 Chafik, Martin Beckett, Benjamin Ducke, Alan Commike, Nathan Levesque, David Strong, Seth Price, John J. Ryan III, and John
 Griffin.

 Last but not least, I’d like to thank Jan Bednarczuk of Jandex Indexing for her meticulous work in indexing the content of
 this book. She not only created a thorough, professional index in a short amount of time, but she also caught quite a few
 typos in the process. Thanks again.

About this Book

 OpenCL is a complex subject. To code even the simplest of applications, a developer needs to understand host programming,
 device programming, and the mechanisms that transfer data between the host and device. The goal of this book is to show how
 these tasks are accomplished and how to put them to use in practical applications.

 The format of this book is tutorial-based. That is, each new concept is followed by example code that demonstrates how the
 theory is used in an application. Many of the early applications are trivially basic, and some do nothing more than obtain
 information about devices and data structures. But as the book progresses, the code becomes more involved and makes fuller
 use of both the host and the target device. In the later chapters, the focus shifts from learning how OpenCL works to putting
 OpenCL to use in processing vast amounts of data at high speed.

Audience

 In writing this book, I’ve assumed that readers have never heard of OpenCL and know nothing about distributed computing or
 high-performance computing. I’ve done my best to present concepts like task-parallelism and SIMD (single instruction, multiple
 data) development as simply and as straightforwardly as possible.

 But because the OpenCL API is based on C, this book presumes that the reader has a solid understanding of C fundamentals.
 Readers should be intimately familiar with pointers, arrays, and memory access functions like malloc and free. It also helps to be cognizant of the C functions declared in the common math library, as most of the kernel functions have
 similar names and usages.

 OpenCL applications can run on many different types of devices, but one of its chief advantages is that it can be used to
 program graphics processing units (GPUs). Therefore, to get the most out of this book, it helps to have a graphics card attached
 to your computer or a hybrid CPU-GPU device such as AMD’s Fusion.

Roadmap

 This book is divided into three parts. The first part, which consists of chapters 1–10, focuses on exploring the OpenCL language and its capabilities. The second part, which consists of chapters 11–14, shows how OpenCL can be used to perform large-scale tasks commonly encountered in the field of high-performance computing.
 The last part, which consists of chapters 15 and 16, shows how OpenCL can be used to accelerate OpenGL applications.

 The chapters of part 1 have been structured to serve the needs of a programmer who has never coded a line of OpenCL. Chapter 1 introduces the topic of OpenCL, explaining what it is, where it came from, and the basics of its operation. Chapters 2 and 3 explain how to code applications that run on the host, and chapters 4 and 5 show how to code kernels that run on compliant devices. Chapters 6 and 7 explore advanced topics that involve both host programming and kernel coding. Specifically, chapter 6 presents image processing and chapter 7 discusses the important topics of event processing and synchronization.

 Chapters 8 and 9 discuss the concepts first presented in chapters 2 through 5, but using languages other than C. Chapter 8 discusses host/kernel coding in C++, and chapter 9 explains how to build OpenCL applications in Java and Python. If you aren’t obligated to program in C, I recommend that you
 use one of the toolsets discussed in these chapters.

 Chapter 10 serves as a bridge between parts 1 and 2. It demonstrates how to take full advantage of OpenCL’s parallelism by implementing a simple reduction algorithm that adds
 together one million data points. It also presents helpful guidelines for coding practical OpenCL applications.

 Chapters 11–14 get into the heavy-duty usage of OpenCL, where applications commonly operate on millions of data points. Chapter 11 discusses the implementation of MapReduce and two sorting algorithms: the bitonic sort and the radix sort. Chapter 12 covers operations on dense matrices, and chapter 13 explores operations on sparse matrices. Chapter 14 explains how OpenCL can be used to implement the fast Fourier transform (FFT).

 Chapters 15 and 16 are my personal favorites. One of OpenCL’s great strengths is that it can be used to accelerate three-dimensional rendering,
 a topic of central interest in game development and scientific visualization. Chapter 15 introduces the topic of OpenCL-OpenGL interoperability and shows how the two toolsets can share data corresponding to vertex
 attributes. Chapter 16 expands on this and shows how OpenCL can accelerate OpenGL texture processing. These chapters require an understanding of
 OpenGL 3.3 and shader development, and both of these topics are explored in appendix B.

 At the end of the book, the appendixes provide helpful information related to OpenCL, but the material isn’t directly used
 in common OpenCL development. Appendix A discusses the all-important topic of software development kits (SDKs), and explains how to install the SDKs provided by AMD
 and Nvidia. Appendix B discusses the basics of OpenGL and shader development. Appendix C explains how to install and use the Minimalist GNU for Windows (MinGW), which provides a GNU-like environment for building
 executables on the Windows operating system. Lastly, appendix D discusses the specification for embedded OpenCL.

Obtaining and compiling the example code

 In the end, it’s the code that matters. This book contains working code for over 60 OpenCL applications, and you can download
 the source code from the publisher’s website at www.manning.com/OpenCLinAction or www.manning.com/scarpino2/.

 The download site provides a link pointing to an archive that contains code intended to be compiled with GNU-based build tools.
 This archive contains one folder for each chapter/appendix of the book, and each top-level folder has subfolders for example
 projects. For example, if you look in the Ch5/shuffle_test directory, you’ll find the source code for Chapter 5’s shuffle_test project.

 As far as dependencies go, every project requires that the OpenCL library (OpenCL.lib on Windows, libOpenCL.so on *nix systems)
 be available on the development system. Appendix A discusses how to obtain this library by installing an appropriate software development kit (SDK).

 In addition, chapters 6 and 16 discuss images, and the source code in these chapters makes use of the open-source PNG library. Chapter 6 explains how to obtain this library for different systems. Appendix B and chapters 15 and 16 all require access to OpenGL, and appendix B explains how to obtain and install this toolset.

Code conventions

 As lazy as this may sound, I prefer to copy and paste working code into my applications rather than write code from scratch.
 This not only saves time, but also reduces the likelihood of producing bugs through typographical errors. All the code in
 this book is public domain, so you’re free to download and copy and paste portions of it into your applications. But before
 you do, it’s a good idea to understand the conventions I’ve used:

	Host data structures are named after their data type. That is, each cl_platform_id structure is called platform, each cl_device_id structure is called device, each cl_context structure is called context, and so on.

 	In the host applications, the main function calls on two functions: create_device returns a cl_device, and build_program creates and compiles a cl_program. Note that create_device searches for a GPU associated with the first available platform. If it can’t find a GPU, it searches for the first compliant
 CPU.

 	Host applications identify the program file and the kernel function using macros declared at the start of the source file.
 Specifically, the PROGRAM_FILE macro identifies the program file and KERNEL_FUNC identifies the kernel function.

 	All my program files end with the .cl suffix. If the program file only contains one kernel function, that function has the
 same name as the file.

 	For GNU code, every makefile assumes that libraries and header files can be found at locations identified by environment variables.
 Specifically, the makefile searches for AMDAPPSDKROOT on AMD platforms and CUDA on Nvidia platforms.

Author Online

 Nobody’s perfect. If I failed to convey my subject material clearly or (gasp) made a mistake, feel free to add a comment through
 Manning’s Author Online system. You can find the Author Online forum for this book by going to www.manning.com/OpenCLinAction and clicking the Author Online link.

 Simple questions and concerns get rapid responses. In contrast, if you’re unhappy with line 402 of my bitonic sort implementation,
 it may take me some time to get back to you. I’m always happy to discuss general issues related to OpenCL, but if you’re looking
 for something complex and specific, such as help debugging a custom FFT, I will have to recommend that you find a professional
 consultant.

About the cover illustration

 The figure on the cover of OpenCL in Action is captioned a “Kranjac,” or an inhabitant of the Carniola region in the Slovenian Alps. This illustration is taken from
 a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist
 who spent many years studying the botany, geology, and ethnography of the Julian Alps, the mountain range that stretches from
 northeastern Italy to Slovenia and that is named after Julius Caesar. Hand drawn illustrations accompany the many scientific
 papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the uniqueness and individuality of the eastern
 Alpine regions just 200 years ago. This was a time when the dress codes of two villages separated by a few miles identified
 people uniquely as belonging to one or the other, and when members of a social class or trade could be easily distinguished
 by what they were wearing. Dress codes have changed since then and the diversity by region, so rich at the time, has faded
 away. It is now often hard to tell the inhabitant of one continent from another and today the inhabitants of the picturesque
 towns and villages in the Slovenian Alps are not readily distinguishable from the residents of other parts of Slovenia or
 the rest of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 costumes from two centuries ago brought back to life by illustrations such as this one.

Part 1. Foundations of OpenCL programming

 Part 1 presents the OpenCL language. We’ll explore OpenCL’s data structures and functions in detail and look at example applications
 that demonstrate their usage in code.

 Chapter 1 introduces OpenCL, explaining what it’s used for and how it works. Chapters 2 and 3 explain how host applications are coded, and chapters 4 and 5 discuss kernel coding. Chapters 6 and 7 explore the advanced topics of image processing and event handling.

 Chapters 8 and 9 discuss how OpenCL is coded in languages other than C, such as C++, Java, and Python. Chapter 10 explains how OpenCL’s capabilities can be used to develop large-scale applications.

Chapter 1. Introducing OpenCL

	

 This chapter covers

	
Understanding the purpose and benefits of OpenCL

 	Introducing OpenCL operation: hosts and kernels

 	Implementing an OpenCL application in code

	

In October 2010, a revolution took place in the world of high-performance computing. The Tianhe-1A, constructed by China’s
 National Supercomputing Center in Tianjin, came from total obscurity to seize the leading position among the world’s best
 performing supercomputers. With a maximum recorded computing speed of 2,566 TFLOPS (trillion floating-point operations per
 second), it performs nearly 50 percent faster than the second-place finisher, Cray’s Jaguar supercomputer. Table 1.1 lists the top three supercomputers.

 Table 1.1. Top three supercomputers of 2010 (source: www.top500.org)

	
 Supercomputer

 	
 Max speed (TFLOPS)

 	
 Processors

 	
 Power (kW)

	Tianhe-1A
 	2,566
 	14,336 Intel Xeon CPUs, 7,168 Nvidia Tesla GPUs
 	4040.00

	Jaguar
 	1,759
 	224,256 AMD Opteron CPUs
 	6950.60

	Nebulae
 	1,271
 	9,280 Intel Xeon CPUs, 4,640 Nvidia Tesla GPUs
 	2580.00

What’s so revolutionary is the presence of GPUs (graphics processing units) in both the Tianhe-1A and Nebulae? In 2009, none
 of the top three supercomputers had GPUs, and only one system in the top 20 had any GPUs at all. As the table makes clear,
 the two systems with GPUs provide not only excellent performance, but also impressive power efficiency.

 Using GPUs to perform nongraphical routines is called general-purpose GPU computing, or GPGPU computing. Before 2010, GPGPU computing was considered a novelty in the world of high-performance computing and
 not worthy of serious attention. But today, engineers and academics are reaching the conclusion that CPU/GPU systems represent the future of supercomputing.

 Now an important question arises: how can you program these new hybrid devices? Traditional C and C++ only target traditional
 CPUs. The same holds true for Cray’s proprietary Chapel language and the Cray Assembly Language (CAL). Nvidia’s CUDA (Compute
 Unified Device Architecture) can be used to program Nvidia’s GPUs, but not CPUs.

 The answer is OpenCL (Open Computing Language). OpenCL routines can be executed on GPUs and CPUs from major manufacturers
 like AMD, Nvidia, and Intel, and will even run on Sony’s PlayStation 3. OpenCL is nonproprietary—it’s based on a public standard, and you can freely download all the development tools you need. When you code routines in
 OpenCL, you don’t have to worry about which company designed the processor or how many cores it contains. Your code will compile
 and execute on AMD’s latest Fusion processors, Intel’s Core processors, Nvidia’s Fermi processors, and IBM’s Cell Broadband
 Engine.

 The goal of this book is to explain how to program these cross-platform applications and take maximum benefit from the underlying
 hardware. But the goal of this chapter is to provide a basic overview of the OpenCL language. The discussion will start by
 focusing on OpenCL’s advantages and operation, and then proceed to describing a complete application. But first, it’s important
 to understand OpenCL’s origin. Corporations have spent a great deal of time developing this language, and once you see why,
 you’ll have a better idea why learning about OpenCL is worth your own.

1.1. The dawn of OpenCL

 The x86 architecture enjoys a dominant position in the world of personal computing, but there is no prevailing architecture
 in the fields of graphical and high-performance computing. Despite their common purpose, there is little similarity between
 Nvidia’s line of Fermi processors, AMD’s line of Evergreen processors, and IBM’s Cell Broadband Engine. Each of these devices
 has its own instruction set, and before OpenCL, if you wanted to program them, you had to learn three different languages.

 Enter Apple. For those of you who have been living as recluses, Apple Inc. produces an insanely popular line of consumer electronic
 products: the iPhone, the iPad, the iPod, and the Mac line of personal computers. But Apple doesn’t make processors for the Mac computers. Instead, it selects devices from other companies. If Apple chooses a graphics processor from Company
 A for its new gadget, then Company A will see a tremendous rise in market share and developer interest. This is why everyone
 is so nice to Apple.

	

 Important events in OpenCL and multicore computing history
 2001— IBM releases POWER4, the first multicore processor.

 2005— First multicore processors for desktop computers released: AMD’s Athlon 64 X2 and Intel’s Pentium D.

 June 2008— The OpenCL Working Group forms as part of the Khronos Group.

 December 2008— The OpenCL Working Group releases version 1.0 of the OpenCL specification.

 April 2009— Nvidia releases OpenCL SDK for Nvidia graphics cards.

 August 2009— ATI (now AMD) releases OpenCL SDK for ATI graphics cards. Apple includes OpenCL support in its Mac OS 10.6 (Snow Leopard)
 release.

 June 2010— The OpenCL Working Group releases version 1.1 of the OpenCL specification.

	

In 2008, Apple turned to its vendors and asked, “Why don’t we make a common interface so that developers can program your
 devices without having to learn multiple languages?” If anyone else had raised this question, cutthroat competitors like Nvidia,
 AMD, Intel, and IBM might have laughed. But no one laughs at Apple. It took time, but everyone put their heads together, and
 they produced the first draft of OpenCL later that year.

 To manage OpenCL’s progress and development, Apple and its friends formed the OpenCL Working Group. This is one of many working
 groups in the Khronos Group, a consortium of companies whose aim is to advance graphics and graphical media. Since its formation,
 the OpenCL Working Group has released two formal specifications: OpenCL version 1.0 was released in 2008, and OpenCL version
 1.1 was released in 2010. OpenCL 2.0 is planned for 2012.

 This section has explained why businesses think highly of OpenCL, but I wouldn’t be surprised if you’re still sitting on the
 fence. The next section, however, explains the technical merits of OpenCL in greater depth. As you read, I hope you’ll better
 understand the advantages of OpenCL as compared to traditional programming languages.

1.2. Why OpenCL?

 You may hear OpenCL referred to as its own separate language, but this isn’t accurate. The OpenCL standard defines a set of
 data types, data structures, and functions that augment C and C++. Developers have created OpenCL ports for Java and Python,
 but the standard only requires that OpenCL frameworks provide libraries in C and C++.

 Here’s the million-dollar question: what can you do with OpenCL that you can’t do with regular C and C++? It will take this
 entire book to answer this question in full, but for now, let’s look at three of OpenCL’s chief advantages: portability, standardized
 vector processing, and parallel programming.

 1.2.1. Portability

 Java is one of the most popular programming languages in the world, and it owes a large part of its success to its motto:
 “Write once, run everywhere.” With Java, you don’t have to rewrite your code for different operating systems. As long as the
 operating system supports a compliant Java Virtual Machine (JVM), your code will run.

 OpenCL adopts a similar philosophy, but a more suitable motto might be, “Write once, run on anything.” Every vendor that provides
 OpenCL-compliant hardware also provides the tools that compile OpenCL code to run on the hardware. This means you can write
 your OpenCL routines once and compile them for any compliant device, whether it’s a multicore processor or a graphics card.
 This is a great advantage over regular high-performance computing, in which you have to learn vendor-specific languages to
 program vendor-specific hardware.

 There’s more to this advantage than just running on any type of compliant hardware. OpenCL applications can target multiple
 devices at once, and these devices don’t have to have the same architecture or even the same vendor. As long as all the devices
 are OpenCL-compliant, the functions will run. This is impossible with regular C/C++ programming, in which an executable can
 only target one device at a time.

 Here’s a concrete example. Suppose you have a multicore processor from AMD, a graphics card from Nvidia, and a PCI-connected
 accelerator from IBM. Normally, you’d never be able to build an application that targets all three systems at once because
 each requires a separate compiler and linker. But a single OpenCL program can deploy executable code to all three devices.
 This means you can unify your hardware to perform a common task with a single program. If you connect more compliant devices,
 you’ll have to rebuild the program, but you won’t have to rewrite your code.

 1.2.2. Standardized vector processing

 Standardized vector processing is one of the greatest advantages of OpenCL, but before I explain why, I need to define precisely
 what I’m talking about. The term vector is going to get a lot of mileage in this book, and it may be used in one of three different (though essentially similar)
 ways:

	
Physical or geometric vector— An entity with a magnitude and direction. This is used frequently in physics to identify force, velocity, heat transfer, and
 so on. In graphics, vectors are employed to identify directions.

 	
Mathematical vector— An ordered, one-dimensional collection of elements. This is distinguished from a two-dimensional collection of elements, called
 a matrix.

 	
Computational vector— A data structure that contains multiple elements of the same data type. During a vector operation, each element (called a
 component) is operated upon in the same clock cycle.

This last usage is important to OpenCL because high-performance processors operate on multiple values at once. If you’ve heard
 the terms superscalar processor or vector processor, this is the type of device being referred to. Nearly all modern processors are capable of processing vectors, but ANSI C/C++
 doesn’t define any basic vector data types. This may seem odd, but there’s a clear problem: vector instructions are usually
 vendor-specific. Intel processors use SSE extensions, Nvidia devices require PTX instructions, and IBM devices rely on AltiVec
 instructions to process vectors. These instruction sets have nothing in common.

 But with OpenCL, you can code your vector routines once and run them on any compliant processor. When you compile your application,
 Nvidia’s OpenCL compiler will produce PTX instructions. An IBM compiler for OpenCL will produce AltiVec instructions. Clearly,
 if you intend to make your high-performance application available on multiple platforms, coding with OpenCL will save you
 a great deal of time. Chapter 4 discusses OpenCL’s vector data types and chapter 5 presents the functions available to operate on vectors.

 1.2.3. Parallel programming

 If you’ve ever coded large-scale applications, you’re probably familiar with the concept of concurrency, in which a single processing element shares its resources among processes and threads. OpenCL includes aspects of concurrency,
 but one of its great advantages is that it enables parallel programming. Parallel programming assigns computational tasks to multiple processing elements to be performed at the same time.

 In OpenCL parlance, these tasks are called kernels. A kernel is a specially coded function that’s intended to be executed by one or more OpenCL-compliant devices. Kernels are
 sent to their intended device or devices by host applications. A host application is a regular C/C++ application running on the user’s development system, which we’ll call the host. For
 many developers, the host dispatches kernels to a single device: the GPU on the computer’s graphics card. But kernels can
 also be executed by the same CPU on which the host application is running.

 Hosts applications manage their connected devices using a container called a context. Figure 1.1 shows how hosts interact with kernels and devices.

 Figure 1.1. Kernel distribution among OpenCL-compliant devices

 [image:]

 To create a kernel, the host selects a function from a kernel container called a program. Then it associates the kernel with argument data and dispatches it to a structure called a command queue. The command queue is the mechanism through which the host tells devices what to do, and when a kernel is enqueued, the device
 will execute the corresponding function.

 An OpenCL application can configure different devices to perform different tasks, and each task can operate on different data.
 In other words, OpenCL provides full task-parallelism. This is an important advantage over many other parallel-programming toolsets, which only enable data-parallelism. In a data-parallel system, each device receives the same instructions but operates on different sets of data.

 Figure 1.1 depicts how OpenCL accomplishes task-parallelism between devices, but it doesn’t show what’s happening inside each device.
 Most OpenCL-compliant devices consist of more than one processing element, which means there’s an additional level of parallelism internal to each
 device. Chapter 3 explains more about this parallelism and how to partition data to take the best advantage of a device’s internal processing.

 Portability, vector processing, and parallel programming make OpenCL more powerful than regular C and C++, but with this greater
 power comes greater complexity. In any practical OpenCL application, you have to create a number of different data structures
 and coordinate their operation. It can be hard to keep everything straight, but the next section presents an analogy that
 I hope will give you a clearer perspective.

1.3. Analogy: OpenCL processing and a game of cards

 When I first started learning OpenCL, I was overwhelmed by all the strange data structures: platforms, contexts, devices,
 programs, kernels, and command queues. I found it hard to remember what they do and how they interact, so I came up with an
 analogy: the operation of an OpenCL application is like a game of poker. This may seem odd at first, but please allow me to
 explain.

 In a poker game, the dealer sits at a table with one or more players and deals a set of cards to each. The players analyze
 their cards and decide what further actions to take. These players don’t interact with each other. Instead, they make requests
 to the dealer for additional cards or an increase in the stakes. The dealer handles each request in turn, and once the game
 is over, the dealer takes control.

 In this analogy, the dealer represents an OpenCL host, each player represents a device, the card table represents a context,
 and each card represents a kernel. Each player’s hand represents a command queue. Table 1.2 clarifies how the steps of a card game resemble the operation of an OpenCL application.

 Table 1.2. Comparison of OpenCL operation to a card game

	
 Card game

 	
 OpenCL application

	The dealer sits at a card table and determines who the players are.
 	The host selects devices and places them in a context.

	The dealer selects cards from a deck and deals them to each player. Each player’s cards form a hand.
 	The host selects kernels from a program. It adds kernels to each device’s command queue.

	Each player looks at their hand and decides what actions to take.
 	Each device processes the kernels that are sent through the command queue.

	The dealer responds to players’ requests during the game.
 	The host receives events from the devices and invokes event-handling routines.

	The game ends, and the dealer looks at each player’s hand to determine who won.
 	Once the devices are finished, the host receives and processes the output data.

In case the analogy seems hard to understand, figure 1.2 depicts a card game with four players, each of whom receives a hand with four cards. If you compare figures 1.1 and 1.2, I hope the analogy will become clearer.

 Figure 1.2. Pictorial representation of a game of cards

 [image:]

 This analogy will be revisited and enhanced throughout the next few chapters. It provides an intuitive understanding of OpenCL,
 but it has a number of flaws. These are six of the most significant flaws:

	The analogy doesn’t mention platforms. A platform is a data structure that identifies a vendor’s implementation of OpenCL. Platforms provide one way to access
 devices. For example, you can access an Nvidia device through the Nvidia platform.

 	A card dealer doesn’t choose which players sit at the table, but an OpenCL host selects which devices should be placed in
 a context.

 	A card dealer can’t deal the same card to multiple players, but an OpenCL host can dispatch the same kernel to multiple devices
 through their command queues.

 	The analogy doesn’t mention data or how it’s partitioned for OpenCL devices. OpenCL devices usually contain multiple processing
 elements, and each element may process a subset of the input data. The host sets the dimensionality of the data and identifies
 the number of work items into which the computation will be partitioned.

 	In a card game, the dealer distributes cards to the players, and each player arranges the cards to form a hand. In OpenCL,
 the host places kernel-execution commands into a command queue, and, by default, each device executes the kernels in the order
 in which the host enqueues them.

 	In card games, dealers commonly deal cards in a round-robin fashion. OpenCL sets no constraints on how kernels are distributed
 to multiple devices.

If you’re still nervous about OpenCL’s terminology, don’t be concerned. Chapter 2 will explain these data structures further and show how they’re accessed in code. After all, code is the primary goal. The
 next section will give you a first taste of what OpenCL code looks like.

1.4. A first look at an OpenCL application

 At this point, you should have a good idea of what OpenCL is intended to accomplish. I hope you also have a basic understanding
 of how an OpenCL application works. But if you want to know anything substantive about OpenCL, you have to look at source
 code.

 This section will present two OpenCL source files, one intended for a host processor and one intended for a device. Both work
 together to compute the product of a 4-by-4 matrix and a 4-element vector. This operation is central to graphics processing,
 where the matrix represents a transformation and the vector represents a color or a point in space. Figure 1.3 shows what this matrix-vector multiplication looks like and then presents the equations that produce the result.

 Figure 1.3. Matrix-vector multiplication

 [image:]

 If you open the directory containing this book’s example code, you’ll find the source files in the Ch1 folder. The first,
 matvec.c, executes on the host. It creates a kernel and sends it to the first device it finds. The following listing shows what this host code looks like. Notice that the source
 code is written in the C programming language.

	

Note

 Error-checking routines have been omitted from this listing, but you’ll find them in the matvec.c file in this book’s example
 code.

	

Listing 1.1. Creating and distributing a matrix-vector multiplication kernel: matvec.c

 [image:]

 [image:]

 [image:]

 This source file is long but straightforward. Most of the code is devoted to creating OpenCL’s data structures, which obey
 a simple naming convention: the cl_context is called context, the cl_platform_id is called platform, the cl_device_id is called device, and so on. If you follow this convention, you can copy and paste most of your code from one host application to the next.

 In contrast, the creation of the cl_program and the cl_kernel structures changes from application to application. In listing 1.1, the application creates a kernel from a function in a file called matvec.cl. More precisely, it reads the characters from
 matvec.cl into a character array, creates a program from the character array, and compiles the program. Then it constructs
 a kernel from a function called matvec_mult.

 The kernel code in matvec.cl is much shorter than the host code in matvec.c. The single function, matvec_mult, performs the entire matrix-vector multiplication algorithm depicted in figure 1.3.

 Chapters 2 and 3 discuss how to code host applications like the one presented in listing 1.1. Chapters 4 and 5 explain how to code kernel functions like the one in the following listing.

 Listing 1.2. Performing the dot-product on the device: matvec.cl

 __kernel void matvec_mult(__global float4* matrix,
 __global float4* vector,
 __global float* result) {
 int i = get_global_id(0);
 result[i] = dot(matrix[i], vector[0]);
}

 If you’re eager to compile the code in these two listings and test the dot-product, I recommend that you visit appendix A, which explains how to obtain and use OpenCL’s development tools. But before you do this, you should have a top-level understanding
 of the OpenCL standard, which we’ll discuss next.

1.5. The OpenCL standard and extensions

 If you look through the OpenCL website at www.khronos.org/opencl, you’ll find an important file called opencl-1.1.pdf. This contains the OpenCL 1.1 specification, which provides a wealth
 of information about the language. It defines not only OpenCL’s functions and data structures, but also the capabilities required
 by a vendor’s development tools. In addition, it sets the criteria that all devices must meet to be considered compliant.

 But compliant software and hardware can provide capabilities beyond those defined in the standard. These additional features
 are made available to OpenCL applications through extensions. There are two main types of extensions: those that relate to a vendor’s software package (called a platform) and those that relate to specific devices. Chapter 2 explains how to check for platform extensions and device extensions in code.

 Every OpenCL extension has a name that depends on the extension’s level of acceptance. If an extension has been approved by
 the OpenCL working group, its name will take the form cl_khr_<name>. If it has been released by a vendor but has not been approved by the working group, the extension’s name will be cl_<vendor>_<name>.

 For example, on my Linux system, the installed AMD platform supports the extension cl_khr_icd. This extension relates to software. In particular, it makes it possible for build tools to find vendor-specific OpenCL libraries
 installed on a system. ICD stands for Installable Client Driver, and appendix A explains more about this topic.

1.6. Frameworks and software development kits (SDKs)

 The code in matvec.c and matvec.cl may look impressive, but the two source files don’t serve any purpose until you compile
 them into an OpenCL application. To do this, you need to access the tools in a compliant framework. As defined in the OpenCL
 standard, a framework consists of three parts:

	
Platform layer— Makes it possible to access devices and form contexts

 	
Runtime— Enables host applications to send kernels and command queues to devices in the context

 	
Compiler— Builds programs that contain executable kernels

The OpenCL Working Group doesn’t provide any frameworks of its own. Instead, vendors who produce OpenCL-compliant devices
 release frameworks as part of their software development kits (SDKs). The two most popular OpenCL SDKs are released by Nvidia
 and AMD. In both cases, the development kits are free and contain the libraries and tools that make it possible to build OpenCL
 applications. Whether you’re targeting Nvidia or AMD devices, installing an SDK is a straightforward process. Appendix A provides step-by-step details and explains how the SDK tools work together to build executables.

1.7. Summary

 OpenCL is a new, powerful toolset for building parallel programs to run on high-performance processors. With OpenCL, you don’t
 have to learn device-specific languages; you can write your code once and run it on any OpenCL-compliant hardware.

 Besides portability, OpenCL provides the advantages of vector processing and parallel programming. In high-performance computing,
 a vector is a data structure comprising multiple values of the same data type. But unlike other data structures, when a vector
 is operated upon, each of its values is operated upon at the same time. Parallel programming means that one application controls processing on multiple devices at once. OpenCL can send different tasks to
 different devices, and this is called task-parallel programming. If used effectively, vector processing and task-parallel
 programming provide dramatic improvements in computational performance over that of scalar, single-processor systems.

 OpenCL code consists of two parts: code that runs on the host and code that runs on one or more devices. Host code is written
 in regular C or C++ and is responsible for creating the data structures that manage the host-device communication. The host
 selects functions, called kernels, to be placed in command queues and sent to the devices. Kernel code, unlike host code,
 uses the high-performance capabilities defined in the OpenCL standard.

 With so many new data structures and operations, OpenCL may seem daunting at first. But as you start writing your own code,
 you’ll see that it’s not much different from regular C and C++. And once you harness the power of vector-based parallel programming
 in your own applications, you’ll never want to go back to traditional single-core computing.

 In the next chapter, we’ll start our exploration of OpenCL coding. Specifically, we’ll examine the primary data structures
 that make up the host application.

Chapter 2. Host programming: fundamental data structures

	

 This chapter covers

	Understanding the six basic OpenCL data structures

 	Creating and examining the data structures in code

 	Combining the data structures to send kernels to a device

	

The first step in programming any OpenCL application is coding the host application. The good news is that you only need regular
 C and C++. The bad news is that you have to become familiar with six strange data structures: platforms, devices, contexts,
 programs, kernels, and command queues.

 The preceding chapter presented these structures as part of an analogy, but the goal of this chapter is to explain how they’re
 used in code. For each one, we’ll look at two types of functions: those that create the structure and those that provide information
 about the structure after it has been created. We’ll also look at examples that demonstrate how these functions are used in applications. These won’t be full applications like the matvec example
 in chapter 1. Instead, these will be short, simple examples that shed light on how these data structures work and work together.

 Most of this chapter deals with complex data structures and their functions, but let’s start with something easy. OpenCL provides
 a unique set of primitive data types for host applications, and we’ll examine these first.

2.1. Primitive data types

 Processors and operating systems vary in how they store basic data. An int may be 32 bits wide on one system and 64 bits wide on another. This isn’t a concern if you’re writing code for a single platform,
 but OpenCL code needs to compile on multiple platforms. Therefore, it requires a standard set of primitive data types.

 Table 2.1 lists OpenCL’s primitive data types. As you can see, these are all similar to their traditional counterparts in C and C++.

 Table 2.1. OpenCL primitive data types for host applications

	
 Scalar data type

 	
 Bit width

 	
 Purpose

	cl_char
 	8
 	Signed two’s complement integer

	cl_uchar
 	8
 	Unsigned two’s complement integer

	cl_short
 	16
 	Signed two’s complement integer

	cl_ushort
 	16
 	Unsigned two’s complement integer

	cl_int
 	32
 	Signed two’s complement integer

	cl_uint
 	32
 	Unsigned two’s complement integer

	cl_long
 	64
 	Signed two’s complement integer

	cl_ulong
 	64
 	Unsigned two’s complement integer

	cl_half
 	16
 	Half-precision floating-point value

	cl_float
 	32
 	Single-precision floating-point value

	cl_double
 	64
 	Double-precision floating-point value

These types are declared in CL/cl_platform.h, and in most cases, they’re simply redefinitions of the corresponding C/C++ types.
 For example, cl_float is defined as follows:

 #if (defined (_WIN32) && defined(_MSC_VER))
...
typedef float cl_float;
...
#else
...
typedef float cl_float _attribute__((aligned(4)));
...
#endif

 These types can be operated upon just like their C/C++ counterparts, so you can add and subtract cl_ints just as you would ints. You can invoke printf with a cl_char using the same formatting symbol (%c) as you would with an ordinary char. We’ll rely on the data types in table 2.1 throughout this book and the example code.

2.2. Accessing platforms

 When you build an OpenCL application, you don’t have to know anything about the underlying hardware. But let’s say your computer
 has two graphics cards—one from AMD and one from Nvidia—and you’ve installed AMD’s SDK and Nvidia’s SDK. In this situation,
 you may want to select which GPU should process your data. To make this possible, you need to identify a specific vendor’s
 OpenCL implementation in code.

 Alternatively, you may want to sell your OpenCL application. In this case, you have no idea what hardware your customers are
 using. Instead of checking for a particular vendor, you may want to count how many OpenCL devices are available for each implementation
 and distribute tasks evenly between them.

 OpenCL handles both scenarios by providing the cl_platform_id data structure. This section explains why these structures are important and how to access them in code.

	

Note

 The following discussion will make more sense if you’ve installed an SDK on your development system. Appendix A explains just about everything you may want to know about SDKs.

	

2.2.1. Creating platform structures

 Each cl_platform_id structure represents a different OpenCL implementation (called a platform) installed on the host. If you’ve installed two SDKs, you’ll have two platforms installed, and your code will detect two
 cl_platform_id structures.

 In code, working with platforms is a two-step process. First you need to allocate memory for one or more cl_platform_id structures. Then you need to call clGetPlatformIDs to initialize these structures. This is usually one of the first functions you’ll call in your OpenCL code. Its signature,
 consisting of its function name and parameter list, is given as follows:

 cl_int clGetPlatformIDs(cl_uint num_entries,
 cl_platform_id *platforms, cl_uint *num_platforms)

 There are three points to note about this function. First, despite the name, this function doesn’t return cl_platform_id structures. Instead, it places cl_platform_id structures in the memory referenced by platforms. It places the number of available platforms in the memory referenced by num_platforms. The return value is an integer that identifies whether the function successfully detected one or more platforms. A value
 of 0 indicates success. A negative value indicates failure.

 Second, it’s important to distinguish between num_entries and num_platforms. num_entries identifies the maximum number of platforms you’re interested in detecting. This will be the maximum number of cl_platform_id structures that will be placed in the platforms array. If you set this to 0, the function will return an error. num_platforms, on the other hand, is the number of platforms detected on the host. This value is set by the function during its operation.

 The num_entries and num_platforms parameters are used frequently in OpenCL functions, and when I first started programming with OpenCL, I found it hard to
 distinguish between the two. But I learned how to keep them straight by thinking egotistically: What I want (num_entries) comes first. What’s available (num_platforms) comes later.

 Third, either platforms or num_platforms can be set to NULL. There’s a good reason for this. If you want to create a cl_platform_id structure for every platform on your system, you have to know in advance how many platforms are installed. For this purpose,
 call clGetPlatformIDs with platforms set to NULL and use num_platforms to store the number of installed platforms. Then allocate your array and call clGetPlatformIDs a second time to initialize the cl_platform_id structures. The following code shows how this is accomplished:

 cl_platform_id *platforms;
cl_uint num_platforms;
clGetPlatformIDs(5, NULL, &num_platforms);
platforms = (cl_platform_id*)
 malloc(sizeof(cl_platform_id) * num_platforms);
clGetPlatformIDs(num_platforms, platforms, NULL);

 This code calls clGetPlatformIDs twice. The first time, it places the number of platforms in the num_platforms variable. The second time, it places the cl_platform_id structures in the platforms array. We’ll employ this function-allocation-function procedure for many other data structures as well.

 2.2.2. Obtaining platform information

 The clGetPlatformIDs function provides an array of cl_platform_id structures, but it doesn’t tell you anything about the platforms themselves. If you want to know what OpenCL version a platform
 supports or which vendor created it, you need to call a second function called clGetPlatformInfo. The signature for this function is as follows:

 cl_int clGetPlatformInfo(cl_platform_id platform,
 cl_platform_info param_name, size_t param_value_size,
 void *param_value, size_t *param_value_size_ret)

 The second argument, param_name, identifies the nature of the information that you’re looking for. Its data type is cl_platform_info, an enumerated type whose values are listed in table 2.2.

 Table 2.2. Platform information parameters

	
 Parameter name

 	
 Purpose

	CL_PLATFORM_NAME
 	Returns the name associated with the platform

	CL_PLATFORM_VENDOR
 	Identifies the vendor associated with the platform

	CL_PLATFORM_VERSION
 	Returns the maximum version of OpenCL supported by the platform

	CL_PLATFORM_PROFILE
 	Identifies whether the platform supports the full OpenCL standard (FULL_PROFILE) or the embedded standard (EMBEDDED_PROFILE)

	CL_PLATFORM_EXTENSIONS
 	Returns a list of extensions supported by the platform

In each case, the function returns the desired data in a char array whose full length in bytes is given by the last argument, param_value_size_ret. The third argument, param_value_size, tells the function how many bytes you want to store. This is shown in the following code, which reads the data about the
 platform’s vendor into a char array with 40 elements:

 char pform_vendor[40];
clGetPlatformInfo(platforms[0], CL_PLATFORM_VENDOR, sizeof(pform_vendor),
 &pform_vendor, NULL);

 This code allocates the char array first and calls clGetPlatformInfo second. This poses no problem, because a vendor’s name is unlikely to exceed 40 characters. But if you’re trying to find
 out what extensions a platform supports, you may have no idea how many characters you’ll need. In this case, you should call
 clGetPlatformInfo twice—once to determine the size of the data and once to read the data. The next subsection shows how this is accomplished
 in code.

 2.2.3. Code example: testing platform extensions

 As explained in chapter 1, an OpenCL extension defines features that go beyond those defined in the standard. Each extension is identified by a string,
 and if an extension has been approved by the OpenCL working group, its name will start with cl_khr_. Vendors can add their own extensions to a platform, and these names start with cl_<vendor>_.

 Let’s say you’re providing an application to customers, but it will only work if one of the installed platforms supports a
 given extension. The following code listing iterates through each installed platform and checks for a specific extension (cl_khr_icd). The first platform that supports the extension is made the active platform.

 Listing 2.1. Testing platform extensions: platform_ext_test.c

 [image:]

 [image:]

 Here, the for loop iterates through the installed platforms and prints the supported extensions of each one. If a platform supports the
 cl_khr_icd extension, the loop terminates and the application identifies the platform by its index. On my system, the application produces the following
 output:

 Platform 0 supports extensions: cl_khr_icd amd_event_callback
Platform 0 supports the cl_khr_icd extension.

 Throughout this book’s example code, the first step in every host application is to access a cl_platform_id. But these structures are mainly useful because they allow us to access the platform’s devices. The next section explains
 how OpenCL devices are represented in code.

2.3. Accessing installed devices

 Once you’ve accessed a vendor’s platform, you can access every connected device provided by the vendor. Returning to the card
 game analogy, devices are the players that receive cards from the dealer. In an OpenCL application, devices receive tasks
 and data from the host.

 In code, devices are represented by cl_device_id structures. These are easy to work with, and the functions that relate to devices are very similar to those we looked at
 in the preceding section. This section presents the two OpenCL device functions, clGetDeviceIDs and clGetDeviceInfo, and shows how they’re used in code.

 2.3.1. Creating device structures

 Before you can send a kernel to a device, you need to construct a cl_device_id to represent the device. The clGetDeviceIDs function makes this possible. It populates a cl_device_id array with structures corresponding to OpenCL devices. Its signature is as follows:

 cl_int clGetDeviceIDs(cl_platform_id platform,
 cl_device_type device_type, cl_uint num_entries,
 cl_device_id *devices, cl_uint *num_devices)

 This works like the clGetPlatformIDs function discussed in the preceding section. By setting either of the last two arguments to NULL, this can be used to determine the number of connected devices or to populate an cl_device_id array.

