

Flex 4 in Action:
 Revised Edition of Flex 3 in Action

 Tariq Ahmed and Dan Orlando, with John C. Bland II and Joel Hooks

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 180 Broad St.
 Suite 1323
 Stamford, CT 06901
 Email: orders@manning.com

 ©2011 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 [image:]

	Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901

	Development editor: Cynthia Kane
 Copyeditor: Linda Recktenwald
 Proofreader: Maureen Spencer
 Typesetter: Dottie Marsico
 Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for Flex 3 in Action

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Title

 About the Cover Illustration

 1. Application basics

 Chapter 1. Making the case

 Chapter 2. Getting started

 Chapter 3. Working with ActionScript

 Chapter 4. Layout and containers

 Chapter 5. Displaying forms and capturing user input

 Chapter 6. Validating user input

 Chapter 7. Formatting data

 Chapter 8. MX DataGrids, Lists, and Trees

 Chapter 9. Using the Spark List controls

 Chapter 10. List customization

 2. Application flow and structure

 Chapter 11. Events

 Chapter 12. Application navigation

 Chapter 13. Introduction to pop-ups

 Chapter 14. Implementing view states

 Chapter 15. Working with data services

 Chapter 16. Objects and classes

 Chapter 17. Custom components

 Chapter 18. Creating reusable components

 Chapter 19. Architectural design patterns

 3. The finishing touches

 Chapter 20. Customizing the experience

 Chapter 21. Working with effects

 Chapter 22. Drag-and-drop

 Chapter 23. Exploring Flex charting

 Chapter 24. Debugging and testing

 Chapter 25. Wrapping up a project

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for Flex 3 in Action

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Title

 About the Cover Illustration

 1. Application basics

 Chapter 1. Making the case

 1.1. Why are web applications so prolific?

 1.2. The RIA solution

 1.2.1. They all want it all

 1.2.2. RIAs to the rescue

 1.2.3. How RIAs do it

 1.3. The RIA contenders

 1.3.1. Flex by Adobe

 1.3.2. Silverlight by Microsoft

 1.3.3. JavaFX by Sun Microsystems

 1.3.4. AJAX—the last stand

 1.4. Becoming acquainted with Flex

 1.4.1. Taking advantage of Adobe Flash

 1.4.2. Flex and JavaScript can play together

 1.4.3. The Flex ecosystem

 1.5. How Flex works

 1.5.1. The Flex languages

 1.5.2. Events, events, events

 1.5.3. Limitations

 1.6. What’s new in Flex 4

 1.7. Summary

 Chapter 2. Getting started

 2.1. Flex on the cheap

 2.1.1. Setting up the compile environment

 2.0.1. Setting up the editing environment

 2.0.2. Next steps (if you’re still interested)

 2.1. Get serious with Flash Builder

 2.1.1. Product and pricing matrix

 2.1.2. Getting Flash Builder

 2.2. Exploring Flash Builder

 The Wizards (1)

 Application Launcher (2)

 Package Explorer (3)

 Application Outline View (4)

 Bottom Pane (5)

 Source Code Editor (6)

 Source and Design View Toggle (7)

 2.3. Views and perspectives

 2.3.1. Out-of-the-box perspectives

 2.3.2. Switching perspectives

 2.3.3. Customizing perspectives

 2.4. Our first project—Hello World!

 2.4.1. Create the project

 2.4.2. Entering code

 2.4.3. Compile and run

 2.4.4. Making it real

 2.5. Using design mode

 2.6. Built-in reference and API documentation

 2.6.1. Object-oriented languages and their APIs

 2.6.2. Accessing the API Reference

 2.6.3. Perusing the API Reference

 2.7. MXML and ActionScript in a nutshell

 2.7.1. The structure of MXML

 2.7.2. How MXML and ActionScript relate

 2.7.3. Events are handled by ActionScript

 2.8. Summary

 Chapter 3. Working with ActionScript

 3.1. Comments

 3.1.1. Inline comments

 3.1.2. Block comments

 3.2. Variables

 3.2.1. Variable names

 3.2.2. Strict data typing

 3.2.3. Static versus dynamic type checking

 3.2.4. Top-level classes

 3.2.5. Special data types

 3.3. Loops

 3.3.1. For (starting value; valid condition; increment)

 3.3.2. For (property names in array/object)

 3.3.3. For each (item in array/object)

 3.3.4. While (condition)

 3.3.5. Do while (condition)

 3.4. Conditional statements (if statements and switches)

 3.4.1. If..else

 3.4.2. Switch

 3.5. Arrays

 3.5.1. Indexed arrays

 3.5.2. Associative arrays

 3.6. ActionScript tidbits

 3.6.1. Braces

 3.6.2. Logical operators and shortcuts

 3.7. Sneak peek at functions, classes, and packages

 3.7.1. Your own functions

 3.7.2. Separating ActionScript to individual files

 3.8. Simple data binding

 3.8.1. Life without binding

 3.8.2. Adding binding

 3.8.3. The binding tag

 3.8.4. Making ActionScript variables bindable

 3.9. Summary

 Chapter 4. Layout and containers

 4.1. Spark versus Halo (MX)

 4.2. Absolute layout

 4.3. Constraint-based layout

 4.3.1. Basic constraints

 4.3.2. Enhanced constraints

 4.4. Automatic layout

 4.4.1. Using the layout classes

 4.4.2. Getting spaced out

 4.5. Variable and fixed sizing

 4.5.1. Variable sizing

 4.5.2. Fixed sizing

 4.6. Containers

 4.6.1. Application container

 4.6.2. Canvas container

 4.6.3. Group-based containers and SkinnableContainer

 4.6.4. Panel container

 4.6.5. ApplicationControlBar container

 4.6.6. DataGroup and SkinnableDataContainer

 4.6.7. DividedBox, HDividedBox, and VDividedBox containers

 4.6.8. Form container

 4.6.9. Grid container

 4.7. Summary

 Chapter 5. Displaying forms and capturing user input

 5.1. The id attribute

 5.2. Flex’s catalog of controls

 5.2.1. Text controls

 5.2.2. Date controls

 5.2.3. Numeric controls

 5.2.4. Exploring Flex’s buttons

 5.2.5. Picklist controls

 5.3. Accessing the control’s value

 5.3.1. Passing values to a function

 5.3.2. Passing events to a function

 5.3.3. Accessing properties directly

 5.3.4. Which approach to use

 5.4. Summary

 Chapter 6. Validating user input

 6.1. Overview of validation

 6.2. Built-in validators

 6.2.1. Validator

 6.2.2. StringValidator

 6.2.3. NumberValidator

 6.2.4. DateValidator

 6.2.5. EmailValidator

 6.2.6. CreditCardValidator

 6.2.7. CurrencyValidator

 6.2.8. PhoneNumberValidator

 6.2.9. RegExpValidator

 6.2.10. SocialSecurityValidator

 6.2.11. ZipCodeValidator

 6.3. Real-time validation

 6.4. Committed value validation

 6.5. Pass-through validation

 6.6. Scripted validation

 6.7. Validation tidbits

 6.7.1. Does a validator always check all criteria?

 6.7.2. Controlling what triggers validation

 6.8. Summary

 Chapter 7. Formatting data

 7.1. Built-in formatters

 7.1.1. Formatter

 7.1.2. NumberFormatter

 7.1.3. CurrencyFormatter

 7.1.4. DateFormatter

 7.1.5. PhoneFormatter

 7.1.6. ZipCodeFormatter

 7.1.7. SwitchSymbolFormatter

 7.2. Real-time formatting

 7.3. Scripted formatting

 7.3.1. Using a function with a formatter component

 7.3.2. Using a function with a formatter class

 7.4. Working with formatting errors

 7.5. Summary

 Chapter 8. MX DataGrids, Lists, and Trees

 8.1. MX List genealogy

 8.1.1. ListBase and AdvancedListBase’s properties

 8.1.2. MX ListBase events

 8.2. Understanding collections and the dataProvider

 8.2.1. Feeding the dataProvider

 8.2.2. Types of collections

 8.2.3. Users of collections

 8.3. Initializing collections

 8.4. Populating collections

 8.4.1. List

 8.4.2. HorizontalList

 8.4.3. TileList

 8.4.4. DataGrid

 8.4.5. Tree

 8.5. Interacting with MX List-based components

 8.5.1. List events

 8.5.2. Passing the event to a function

 8.5.3. Passing data to a function

 8.5.4. Accessing the selected row directly

 8.5.5. Binding to a selected row

 8.6. Summary

 Chapter 9. Using the Spark List controls

 9.1. Spark List genealogy

 9.1.1. Identifying the proper component using namespaces

 9.1.2. Item renderers with Spark List-based controls

 9.2. Spark List-based controls

 9.2.1. The ButtonBar control

 9.2.2. The Spark List control

 9.2.3. The DropDownList control

 9.3. Interacting with Spark List-based components

 9.3.1. Default event dispatching on item selection

 9.3.2. The IndexChangedEvent object

 9.4. Understanding Flex 4 List-based component architecture

 9.4.1. Class hierarchy

 9.4.2. New Spark classes for List-based components

 9.5. Building custom List-based components on Spark Architecture

 9.5.1. Understanding the Group and SkinnableContainer classes

 9.5.2. Building a custom Spark List component

 9.6. Summary

 Chapter 10. List customization

 10.1. Customizing data display

 10.1.1. The labelField property

 10.1.2. Label functions

 10.1.3. Types of label functions

 10.1.4. Using a multicolumn label function

 10.1.5. Uses for label functions

 10.1.6. The bigger picture

 10.2. Item renderers

 10.2.1. Spark MXML item renderers

 10.2.2. MXML item renderers in Spark with MX components

 10.2.3. Creating an inline item renderer

 10.2.4. Using drop-in item renderers

 10.3. Item editors

 10.3.1. Enabling item editing

 10.3.2. Creating an item editor

 10.3.3. Item editing events

 10.3.4. Combining forces: rendererIsEditor

 10.4. Advanced item renderers

 10.4.1. The AdvancedDataGridRendererProvider

 10.4.2. Referencing the column

 10.4.3. Spanning columns

 10.4.4. Spanning an entire row

 10.5. Filter functions

 10.6. Summary

 2. Application flow and structure

 Chapter 11. Events

 11.1. The event system

 11.1.1. Event system—the Hollywood Principle

 11.1.2. Event-delivery system

 11.2. Sending and receiving events

 11.2.1. Adding event listeners in ActionScript

 11.2.2. Binding events

 11.2.3. Removing event listeners

 11.3. Custom events

 11.3.1. Dispatching custom event types

 11.3.2. Creating custom events

 11.3.3. Adding event metadata to custom dispatchers

 11.3.4. Stopping event propagation

 11.4. Summary

 Chapter 12. Application navigation

 12.1. Preparing the menu data

 12.1.1. Nested arrays

 12.1.2. Nested array collections

 12.1.3. Models

 12.1.4. XML component and class

 12.1.5. XMLList component

 12.1.6. XMLListCollection component and class

 12.2. Working with menus

 12.2.1. Creating a menu

 12.2.2. Positioning the menu

 12.2.3. Customizing menu items

 12.2.4. Interacting with menus

 12.3. Using a menu bar

 12.3.1. Creating a menu bar

 12.3.2. Positioning the menu bar

 12.3.3. Customizing items in the menu bar

 12.3.4. Handling user interactions with menu bars

 12.4. Using view stacks

 12.4.1. Creating a view stack

 12.4.2. Adding navigation to the view stack

 12.4.3. Handling user interactions with view stacks

 12.5. TabNavigator

 12.5.1. Creating a tab navigator

 12.5.2. Handling user interactions with a tab navigator

 12.6. Accordion

 12.6.1. Creating an accordion

 12.6.2. Populating an accordion

 12.6.3. Handling user interactions with an accordion

 12.7. Summary

 Chapter 13. Introduction to pop-ups

 13.1. Creating your first pop-up

 13.1.1. First things first: create your title window

 13.1.2. Using PopUpManager to open the window

 13.1.3. Closing the pop-up

 13.2. Controlling the window location

 13.2.1. Using the centerPopUp() method

 13.2.2. Calculating window placement

 13.3. Data integration with pop-ups

 13.3.1. Getting data out of your pop-up window

 13.3.2. Sending custom events with data

 13.3.3. Getting data out

 13.3.4. Sending data to the window

 13.4. Using alerts

 13.4.1. Creating a simple alert

 13.4.2. Doing more with alerts

 13.4.3. A more advanced alert

 13.4.4. Pimp this alert

 13.5. Summary

 Chapter 14. Implementing view states

 14.1. Understanding view states

 14.2. View states in Flex

 14.2.1. Working with properties

 14.2.2. Working with event handlers

 14.2.3. Utilizing state groups

 14.2.4. Adding and removing components

 14.2.5. Reparenting components

 14.2.6. State events

 14.3. Bring it together

 14.4. Summary

 Chapter 15. Working with data services

 15.1. Accessing server-side data

 15.1.1. Using the HTTPService object

 15.1.2. Consuming web services with the WebService component

 15.2. Action Message Format in action

 15.2.1. Open-source AMF

 15.2.2. AMF with PHP

 15.2.3. AMF and ColdFusion

 15.2.4. BlazeDS

 15.2.5. LiveCycle Data Services

 15.2.6. Additional technologies

 15.3. Building data-centric applications with Flash Builder

 15.3.1. Setting up the right environment

 15.3.2. Establishing connection to the server

 15.4. Data-centric Flex with ColdFusion

 15.5. Data-centric Flex with Java EE and BlazeDS

 Setting Up Blazeds

 15.6. Binding the model to the view

 15.6.1. Drag-and-drop data binding

 15.6.2. Generating a Master-Detail form

 15.6.3. Flash Builder code review

 15.7. Summary

 Chapter 16. Objects and classes

 16.1. OO theory in five minutes

 16.1.1. The relationship between objects and classes

 16.1.2. Objects have properties and methods

 16.1.3. Inheritance

 16.1.4. Encapsulation and coupling

 16.2. Playing with objects

 16.2.1. A closer look at objects

 16.2.2. Methods of objects

 16.2.3. Method parameters

 16.2.4. Methods return information

 16.3. Creating a class

 16.3.1. Creating the class file

 16.3.2. Specifying a package

 16.3.3. Class modifiers

 16.3.4. Superclasses: extending a class

 16.3.5. Interfaces

 16.3.6. Looking at your class

 16.4. Working with properties

 16.4.1. Adding properties

 16.4.2. Adding geter/setter methods

 16.5. Creating methods for your class

 16.6. Summary

 Chapter 17. Custom components

 17.1. Understanding Flex 4 components

 17.1.1. Spark component architecture

 17.1.2. The many flavors of custom components

 17.2. Creating simple custom components

 Controls

 Containers

 Item Renderers

 17.2.1. Build your own simple ComboBox

 17.2.2. Simple Spark components

 17.3. Skinning with the Spark Skin object

 17.3.1. Using metadata to bind component skins

 17.3.2. Custom component view states

 17.3.3. Defining skin parts

 17.3.4. Declaring the host

 17.4. Composite components

 17.4.1. Halo versus Spark

 17.4.2. Spark layout classes

 17.4.3. Creating MXML composite components

 17.5. Creating advanced Flex 4 components

 17.5.1. Using ActionScript to build the state selector

 17.5.2. Knowing when to override

 17.6. Get your components to communicate

 17.6.1. Use getters and setters as property proxies

 17.6.2. Binding variables to component properties

 17.6.3. Use events to pass data

 17.7. Summary

 Chapter 18. Creating reusable components

 18.1. Putting reusability into action

 18.1.1. Reveal component background

 18.1.2. Theory and concepts in Spark reusability

 18.1.3. Creating the Reveal component

 18.1.4. Skinning the first Reveal

 18.2. Reveal gets a new look

 18.2.1. Implementation of the Reveal controls

 18.3. Runtime shared libraries

 18.3.1. Understanding SWC files

 18.3.2. Types of RSLs

 18.3.3. Making your Flex application use the RSL

 18.4. Summary

 Chapter 19. Architectural design patterns

 19.1. Flex-driven design patterns

 19.1.1. The Model-View-Controller pattern

 19.1.2. Roll your own architecture

 19.2. Introduction to microarchitectures

 19.2.1. What is a microarchitecture?

 19.2.2. Why use a microarchitecture?

 19.2.3. First-generation microarchitecture

 19.2.4. Second-generation microarchitectures

 19.2.5. Inversion of Control and dependency injection

 19.3. Using the Robotlegs framework

 19.3.1. Injecting dependencies with Robotlegs

 19.3.2. Configuring dependency injection with the Robotlegs mapping utilities

 19.4. Creating an application with Robotlegs MVCS

 19.4.1. Setting up a Robotlegs project

 19.4.2. Bootstrapping your application with the Context class

 19.4.3. Mediating your views

 19.4.4. Taking control with Robotlegs commands

 19.4.5. Services are the gateway to the world

 19.4.6. Using the model to manage data and state

 19.5. Summary

 3. The finishing touches

 Chapter 20. Customizing the experience

 20.1. Principles of user experience design

 20.1.1. Building around user stories

 20.1.2. Considering context

 20.1.3. The VIBE model

 20.2. Visual appeal

 20.2.1. Using and creating themes

 20.2.2. Styling Flex 4 applications with CSS

 20.3. Interactive experience

 20.3.1. Declarative design with FXG and Flash Catalyst CS5

 20.3.2. Enhancing the experience with effects

 20.4. Business optimization

 20.4.1. Using best practices to improve the experience

 20.4.2. Improve the experience by unit testing

 20.4.3. Profiling Flex 4 applications

 20.5. Extensibility

 20.5.1. Extensibility’s indirect relationship to user experience

 20.5.2. The direct relationship between extensibility and user experience

 20.5.3. Write clean code for the sake of usability

 20.6. Summary

 Chapter 21. Working with effects

 21.1. What’s an effect?

 21.1.1. Available effects

 21.1.2. Composite effects

 21.2. Using effects

 21.2.1. Cause and effect

 21.2.2. Event-triggered effects

 21.2.3. Programmatically applying an effect

 21.2.4. Using state transitions to trigger effects

 21.3. Creating composite effects

 21.3.1. Sequential effects

 21.3.2. Parallel effects

 21.3.3. Composite composites

 21.4. Exploring effects

 21.4.1. The Animate effect

 21.4.2. Animating filters with AnimateFilter

 21.4.3. Animating pixel shaders with AnimateTransitionShader

 21.4.4. Customizing effect easing

 21.4.5. Maintaining fonts while animating

 21.4.6. Creating sound effects

 21.5. Summary

 Chapter 22. Drag-and-drop

 22.1. The drag-and-drop process

 22.1.1. Drag-and-drop events

 22.2. Implementing drag-and-drop in Flex components

 22.2.1. Components with native drag-and-drop support

 22.2.2. Enabling D&D on Lists

 22.2.3. Moving versus copying

 22.2.4. Using D&D for user-controlled sorting

 22.2.5. Multi-item drag-and-drop

 22.2.6. Two-way drag-and-drop

 22.3. Enter the DragManager

 22.3.1. DragManager properties and methods

 22.3.2. Accepting or denying a drop

 22.3.3. Applying your own drop

 22.4. Adding D&D to non-List components

 22.4.1. Setting up the example

 22.4.2. Initiating the drag

 22.4.3. Using a custom drag proxy

 22.4.4. Handling the drop

 22.5. Customizing the drag-and-drop experience

 22.5.1. Changing the drag proxy icons

 22.5.2. List component skinning for drag-and-drop

 22.5.3. Mixing drag-and-drop between Spark and Halo

 22.6. Summary

 Chapter 23. Exploring Flex charting

 23.1. Introduction to charting

 23.1.1. Chart parts

 23.1.2. Chart types overview

 23.2. Setting the stage with series and data

 23.3. Creating charts

 23.3.1. Invoking a chart

 23.3.2. Adding a legend

 23.3.3. Changing chart types

 23.3.4. Filtering chart data

 23.4. Stacking charts

 23.5. Exploring chart types

 23.5.1. Area charts

 23.5.2. Bar charts and column charts

 23.5.3. Line charts

 23.5.4. Bubble charts

 23.5.5. Candlestick and HLOC charts

 23.5.6. Pie charts

 23.5.7. Plot charts

 23.6. Customizing charts

 23.6.1. Series strokes

 23.6.2. Series fills

 23.7. Summary

 Chapter 24. Debugging and testing

 24.1. Debugging

 24.1.1. Setting up the Flash Debug Player

 24.1.2. Using the trace() function

 24.1.3. Using the Flash Builder debugger

 24.1.4. Monitoring network activity

 24.2. Flex profiler

 Launching the Profiler

 Controlling Execution

 24.3. Testing your applications with automation

 24.3.1. Unit testing

 24.3.2. Functional testing

 24.4. Summary

 Chapter 25. Wrapping up a project

 25.1. Customizing the HTML wrapper

 25.1.1. Wrapper files

 25.1.2. The HTML template

 25.1.3. SWFObject 2

 25.2. Deployment

 25.2.1. Creating a production build

 25.2.2. Positioning client-side files

 25.2.3. Positioning server-side files

 25.2.4. Testing your application

 25.3. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for Flex 3 in Action

 The code examples are the strength of this book—plentiful for almost every topic covered.

 Andrew Grother, Triware Technologies, Inc.

 Easy enough for the newbie, detailed enough for the veteran.

 Ken Brueck, Move Network

 This is a book you will not only want to read cover to cover but also keep on your desk as a reference for your day to day
 development needs.

 Abdul Qabiz, reader

 Does a great job of covering some of the history behind traditional web development and where Rich Internet Applications are
 headed.

 Sami Hoda, eCivis Inc.

 A user-friendly tutorial and reference.

 Christophe Bunn, Kitry S.A.S.

 An impressive amount of Flex content in a single volume.

 Charlie Griefer, Amcom Technology

 It’s clear that the authors put a lot of time and effort into the book. The fact that it comes with an ebook for this version
 and the future Flex 4 in Action is a nice bonus.

 A. Kapadia, Amazon reader

 I’m a huge fan of Manning’s In Action series. This series caters to people who want more than a quick gloss-over.... Flex 3 in Action is a roll up your sleeves and get busy kind of book that makes it easy to get into Flex.

 Allan Mercado, Amazon reader

Foreword to the First Edition

 The ability to create Rich Internet Applications (RIAs) has been around much longer than the term itself; since version 8,
 the Flash Platform has been a viable RIA platform. But it was initially geared toward designers using the environment from
 a creative perspective, which wasn’t ideal for those coming from a pure development background.

 If you were a Flash application developer, major hurdles still remained in your way. Delivering feature-laden rich applications
 in a productive and timely manner was difficult because you had to do most of the work yourself.

 The challenge became clear and simple: provide a pure development environment that leveraged the ubiquity and capabilities
 of Flash yet catered directly to developers and their systems-development lifecycle. Give developers tools to be productive,
 and give them a framework that did most of the hard work for them so that they could focus their efforts on application logic.
 The solution to this challenge was Flex.

 Flex has been on quite a journey since its release in March 2004 by Macromedia. That first version was followed by the more
 widely distributed version 1.5 later that year. Flex started as a server product and was billed as a way for developers to
 create applications on the Flash Platform.

 This opened up a whole new world and helped light the fire for RIAs. As Flex-based RIAs began to gain traction, it proved
 that a demand existed for RIAs and that the general premise for the technological approach was sound. The next step would
 be to bring RIAs to the masses.

 Now under the Adobe brand, the product made a huge jump with the release of Flex 2 in June 2006. Performance was greatly improved
 as a result of a language overhaul (ActionScript 3) and a major update to the Flash Player (V9).

 The tooling switched to the Eclipse platform, which gave it instant credibility with programmers. Flex 2 saw the split of
 basic compilation and server-side data management. We also saw the first release of the free SDK for compiling Flex apps outside
 of the IDE. The server-side component evolved into Flex Data Services, now known as LiveCycle Data Services, which enabled
 real-time data sharing.

 These changes helped legitimize the idea of RIAs by proving a desktop experience was possible inside of the browser. At this
 point, what RIAs needed most was community support.

 Tariq saw the need for community support and was there from the very start. He began by creating the first portal and community
 dedicated to Flex—also known as Community Flex (CFLEX.Net).

 CFLEX.Net aggregated tips, tricks, blog posts, events, and technical articles about how to get started with this new framework.
 Tariq was instrumental in contributing content to the early Flex community, and I owe many of my Flex skills to him.

 Early on, Tariq grasped the importance of data services and how real-time data can help complete a Rich Internet Application.
 He’s built everything from internal business-facing Flex applications to great consumer applications. He’s seen and used everything
 the platform has to offer, which is one of many reasons he’s an ideal author for a Flex book. I think it’s long overdue that
 this recognized expert’s work be bound and made portable.

 The release of Flex 3 brings us to a new and exciting stage in the framework and the technology. Adobe open-sourced much of
 the Flex platform in an effort to be as transparent as possible and to incorporate valuable feedback (not to mention great
 code) from the community.

 With the release of the Adobe AIR, developers can now use Flex to deploy desktop applications as well as browser-based applications.

 Adobe has long been known for its great design tools. Flex 3 is the first release that allows designers using those tools
 to seamlessly collaborate with developers to create great-looking Flex applications. Numerous productivity enhancements in
 the framework and Flex Builder also make it easier for new developers to get started and scale their applications.

 Regardless of your development background or experience with Flex, you’ll find Flex 3 in Action to be an invaluable guide. There is something for everyone in this book. Tariq and his coauthors Jon and Faisal provide a
 must-have for any Flex library. This is to be expected from the star who has provided the Flex community with the must-have
 resource we all know and love, CFLEX.Net.

 RYAN STEWART

 PLATFORM EVANGELIST

 ADOBE SYSTEMS, INC

Preface

 For many decades user experience was a generally low priority; up until the mid-2000s the term barely existed. It wasn’t taught
 in software engineering university programs, and businesses weren’t cognizant of user experience and design (also known as
 UXD).

 Over the years, however, UXD has become a first-class citizen and a top priority, particularly for public-facing web applications.
 Supporting that are some awesome web-based technologies that allow developers to create these rich internet applications.

 But it wasn’t always so awesome. Back in the day (early 2000s) I’d been searching for a way to provide users with a better
 online experience. It took time before Google wowed everyone with the innovative Google Maps site, so for a long time users
 didn’t know how much better things could be.

 Through the years of using the web for document distribution, users’ expectations devolved from the power of native desktop
 applications to the anemic ability of HTML applications. That’s not a knock against HTML and the web; the web is perfect for
 what it does, which is deliver platform-neutral documents. Developers and companies focused on the web’s ability to give them
 time-to-market rapid application development, and users accepted whatever was in front of them because, hey, that’s how web
 applications are, right?

 It bothered me that with every click, a backend system executed a lot of code to result in minimal UI changes. Even worse
 was the constant bombardment of database servers. For a technologist, the quick remedy to this is simple: Slap in more memory,
 load up on virtual machines, scale out horizontally with low-cost commodity servers, and call it a day. But I’m talking about
 the cost to the users. On their end, they were experiencing that annoying click-and-wait feeling that was common for web applications.
 In addition, UIs were limited. Sure, you could use JavaScript, but you could only go so far before you needed advanced skills.
 From an ROI perspective, it generally wasn’t worth it.

 At the time, Java applets and Flash were available, and they seemed to offer the potential to achieve what I was looking for.
 But applets failed as a solution; they were bloated, slow, and inconsistent across platforms. Flash was promising, but trying
 to produce enterprise business applications in a designer’s environment proved to be more challenging than it was worth.

 During my time in the Knowledge Management department at eBay, this challenge came up again. I needed a way to abstract the
 complexity of the data and make it simple for users to work in a visual environment.

 Along came Flex in 2004 (V1 initially and V1.5 shortly after that). I was able to make a business case for using it, and our
 team delivered experiences at an entirely new level. At this point, I knew Flex would be big. It delivered the desktop power
 users needed while maintaining the development velocity that software teams required to survive.

 As a believer in Flex, I made it a personal mission to help grow the Flex community. I created CFLEX.Net (www.cflex.net), believing that the bigger the community, the more it will reinvest in itself through knowledge and code sharing and in
 this way continue to boost the technology’s adoption rate. If there’s a strong support network, you take less of a risk in
 bringing a new technology into your organization.

 For the early adopters of Flex, the learning curve was rough because only a limited number of books and other reading material
 were available. That changed with the release of Flex 2, when the number of resources dramatically increased.

 I left eBay in late 2005 to join Amcom Technology and build and manage a team of developers. As with any new technology, experts
 in the field are hard to come by, so your best bet is to grow the skill. While training developers on Flex, I found that the
 current set of books didn’t map to how they think and that obvious challenges were never addressed.

 In continuing my mission of growing the community, I set out to write Flex 3 in Action, hoping it would help solve the learning challenges that everyday developers face. Instead of grouping topics based on feature
 categories, the book is structured according to the natural progression of creating an application. I focused on maximum simplicity
 by not introducing anything you don’t need to know until it was needed and by using small code examples that are easy to absorb.
 I also found that people learn best when they’re able to relate new things to things they already know, so whenever possible,
 I use analogies to how you’d do things in another technology.

 With this Flex 4 version of the book, I brought on some industry heavy hitters (Dan Orlando, John C. Bland II, and Joel Hooks)
 to help take it to a higher level in order to provide you with a solid foundation of understanding. My hope is that by teaching
 you the keys to success, the Flex community will expand as a result, because you too will be able to share your knowledge
 and experience with those around you.

 Now is the time to get into Flex. The community continues to grow, more and more third-party vendors are coming out with Flex-related
 technologies, and Flex user groups are popping up all over the place.

 The RIA space is red hot with technologies and competition, but Adobe continues to prove it’s a few steps ahead. We’re in
 for some exciting times! HTML web applications will always have a place, but it’s time to take your skills to another level,
 because the industry is moving forward with or without you.

 Sit down, buckle up, and strap in for the ride!

 TARIQ AHMED

Acknowledgments

 Although most developers want to believe that choices related to technology are premised on purity, capability, and supremacy,
 the reality is that in the end it boils down to business—and technology as a tool to help businesses achieve their goals.
 In this book I try to keep this perspective in mind, because a well-rounded view will help you be successful. I’ve learned
 about this perspective—and so much more—from my manager and mentor Steve McClary, president of Amcom Technology.

 In this second incarnation the book was made possible and better with my fellow authors Dan Orlando, John C. Bland II, and
 Joel Hooks. While I focused on the basics, Dan teaches you about working with lists, reusability, custom components, architecture,
 how to work with back end systems, and how to snazzy up your apps with themes and skins. John demystifies events, and provides
 the in-depth lowdown on pop-ups and view states, as well as adding pizzazz using effects, and how to take advantage of drag
 and drop. Joel covers Flex charting, effective techniques and tools for debugging, wrapping up a project in preparation for
 deployment, and application architecture using the RobotLegs framework.

 Of course, the crew at Manning are the silent heroes here; they make being an author as easy as possible. With their open
 and collaborative approach, they guided us along this journey; their professionalism and willingness to help made the process
 smooth and easy. They also made the experience a personal one—and that meant a lot to me. There are a lot of people to thank
 at Manning, starting with publisher Marjan Bace, acquisitions editor Mike Stephens, assistants Christina Rudloff and Megan
 Yockey, and review editor Karen Tegtmeyer, but special kudos to our development editor Cynthia Kane, and to the production
 team for the book (Linda Recktenwald, Maureen Spencer, Mary Piergies, and Dottie Marsico).

 There were many reviewers who read the manuscript at different stages of its development and who provided us with invaluable
 insights and feedback. We’d like to thank Patrick Steger, Sara Plowright, Zareen Zaffar, Matt Smith, John Farrar, Niaz Jalal,
 Alex Salapatas, Nikolaos Kaintantzis, Doug Warren, Brian Curnow, Christophe Bunn, Phil Hanna, Rick Evans, Sopan Shewale, Jeremy
 Flowers, John Griffin, Peter Pavlovich, Norman Klein, Rick Wagner, Sean Moore, and Kevin Schmidt who did a final technical
 review of the manuscript shortly before it went to press.

 Most importantly I thank my wife Juliana and daughter Zafira for being supportive of this project. Although I was physically
 around most of the time, I was often in another dimension, mentally. I know it was hard for them, and I want to thank them
 with all my heart for giving the opportunity to achieve this goal.

 TARIQ AHMED

About this Book

 Flex is an event-driven, object-oriented application framework and programming language that lets you build compelling and
 fluid Rich Internet Applications (RIAs) that run in the Adobe Flash environment.

 Historically, the priority in web application development has been feature velocity and time to market, at the cost of usability
 to the end user. Flex lets you maintain that centrally deployed rapid-turnaround model, but it gives you the power to achieve
 usability at the same time.

 Someone coming into Flex faces unique challenges. First, many developers aren’t used to an event-driven technology. They can
 understand it at a high level, but don’t truly get it for a long time. Until that happens, you can’t use the technology to its full capability; and, more important, you won’t
 be able to work as productively.

 The second challenge stems from the fact that many developers have been working in their current technology stack for many
 years. Because people go with what they know, they tend to copy what they did in HTML over into Flex. That will work, but
 you’re limiting yourself creatively.

 The third challenge is the complexity that comes as a result of Flex’s power. It’s not complicated per se, but a lot of web-application technologies are procedural and non-event-driven. The learning curve starts off slowly as you
 see the basic examples; but the moment you try to go one step further, it suddenly feels a lot harder.

 Flex 4 in Action addresses these challenges and uses them as an underlying premise; it’s what makes the book unique. With the first challenge,
 the book emphasizes the event-driven nature of Flex by periodically reminding you how to leverage the event objects. We also
 help you catch on more quickly by showing many ways of doing the same thing along with the advantages and disadvantages of
 each.

 Addressing the second challenge, we don’t negate your existing skills and we understand that you’re probably coming from another
 web technology. We came from there, too, and we know the mental leap it takes to break out of a mold you’re accustomed to.
 The book continuously provides suggestions how you can harness the power of a particular feature.

 As far as the third challenge—complexity—is concerned, the mission of the book is to enable you to become an effective Flex
 developer in a short time. We do this through a combination of techniques that include using small examples you can relate
 to. We also leverage your existing skills by relating how you used to do things in other technologies with how you do them
 in Flex. The chapters are ordered in a logical progression of how you would go about building an application, starting with
 the easy stuff and ramping up your skills along the way.

 You’re in good hands, and we’ll be your guide as you take your skills and career to the next level. The one thing we haven’t
 figured out is how to deal with all the fanfare that you’ll get from appreciative users. You’ll have to figure that out on
 your own!

Roadmap

 Chapter 1 introduces Flex. It defines the problem and the approach Flex takes to solving it. Playing off that, we give you the business
 case that you’ll need to make in order to sell Flex to your department, customer, or clients. We describe how Flex works at
 a high level along with the concept of events, and where Flex sits in the overall suite of Adobe products.

 Chapter 2 gets you started with building applications in Flex by introducing the toolset, environment, and languages. Events are fleshed
 out a bit more to ensure that your understanding continues to grow.

 Chapter 3 is about Flex’s core language: ActionScript. This powerful ECMAScript-compliant, object-oriented language is what makes Flex
 possible. The chapter reviews data types, operators, loops, conditionals, and so on. You won’t get far without Action-Script,
 so it’s worth learning about it early on.

 Chapter 4 addresses the layout of an application. It covers how you position display objects, as well as use containers to group visual
 objects together.

 Chapter 5 begins by teaching you how to capture user input via forms. Flex has form inputs similar to those in HTML, but it also has
 a number of inputs that move beyond how they are captured in HTML.

 Chapter 6 continues the topics from chapter 5 by discussing how Flex’s validators are used to validate user input. From a usability perspective, validating up front saves
 the user time and grief.

 Chapter 7 flips things around by using formatters to format raw information (now that you have it). Often used alongside validators,
 formatters address the headache of having to format things yourself.

 Chapter 8 explores the workhorse of Flex: list-based components. Lists are data-driven components that automatically build their display
 based on the data that they’re pointed at.

 Chapter 9 adds onto chapter 8 by delving into the next generation of list-based components, which are part of Flex 4’s new Spark components.

 Chapter 10 continues the topic of lists and focuses on how to customize them, from quick ‘n’ dirty approaches to using full-blown item
 renderers for customized display. Chapter 10 also introduces editors, which allow for inline editing.

 Chapter 11 goes all out on events. By this point, we’ll have introduced how to use events in a minimal way; but this chapter takes it
 to the next level by going deep into how they work.

 Chapter 12 shows you how to add navigation to your application so you can give your users the ability to switch between features.

 Chapter 13 covers the use of pop-up windows as an extension to application navigation. It describes how your application can communicate
 with the pop-up by sending information back and forth.

 Chapter 14 explores the subject of application flow and discusses a unique Flex feature known as view states. This mechanism can save
 you a lot of time by configuring the different views in your application; you can then switch from one view to another easily.

 Chapter 15 begins the subject of working with data, particularly with getting data to and from your application from a back-end service.
 This includes connecting to servers that support Flex’s native binary protocol (AMF), XML over HTTP, and web services.

 Chapter 16 covers objects and classes. Flex is an object-oriented language, after all. And although the comfort factor of sticking to
 its tag-based MXML language is nice, being aware of how ActionScript objects are created and used only adds to your powers.

 Chapter 17 goes into detail about custom components, which is an area in which you’ll spend a lot of your development time. Custom components
 are your primary vehicle to break your application into small, manageable, reusable pieces.

 Chapter 18 wraps up application structure with an overview of Flex’s reusability features such as sharing custom components across multiple
 projects and compiling shared libraries of functionality.

 Chapter 19 takes application structure further by introducing formal architectural considerations, designing a Flex application, and
 utilizing the RobotLegs MVC framework as a means to accomplish a well architected application.

 Chapter 20 begins the subject of customizing the experience. This topic includes using Flex’s version of CSS styles, skinning, and themes.
 Images and fonts are also covered.

 Chapter 21 dives into one of Flex’s coolest features: effects. Effects add that “wow” factor to your application, and we also show how
 they can assist you in increasing usability.

 Chapter 22 finishes our discussion of customization by showing you in detail how to use the drag-and-drop feature. This is a crowd favorite,
 but from the usability perspective you can save your users a few clicks by speeding up the workflow.

 Chapter 23 is about charting. We review the various types of charts and give you advice about when to use each type. We also discuss
 the parts that make up a chart and how to customize it.

 Chapter 24 covers testing and debugging. At this point, you’re wrapping up the project and entering the QA cycle. Knowing how to debug
 applications and how to isolate issues is key. Flex comes with a number of built-in features, but we also review third-party
 tools.

 Chapter 25 wraps up the project with the final steps. These involve adding print capabilities to your application, using wrappers to
 load your application, and developing a release plan to deploy a production build of the software.

 Chapter 26 is a bonus add-on chapter, available online, which dives into working with XML. XML is a ubiquitous language; but
 Flex is the first to support the E4X syntax, which lets you work with XML as if it were a native Flex object. The chapter
 is available for download from the publisher’s website at www.manning.com/Flex4inAction.

Code downloads and conventions

 This book contains numerous examples of Flex, ActionScript, and XML code. All code examples can be found at the book’s website:
 http://www.flexinaction.com as well as at the publisher’s website: www.manning.com/Flex4inAction.

 The following conventions are used throughout the book:

	
Italic typeface is used to introduce new terms.

 	
Courier/Fixed-Width typeface is used for code samples, as well as elements, attributes/properties, function names, and class names. MXML components,
 when used by name, won’t use this typeface in text unless they’re referenced as part of an actual code snippet.

 	
Bold and Italic face Courier/Fixed-Width typeface is used to highlight portions within code.

 	Code annotations accompany many segments of code. Certain annotations are marked with bullets such as [image:]. These annotations have further explanations that follow the code.

 	The > symbol is used to indicate menu items that should be selected in sequence.

 	Code-line continuations use the [image:] symbol.

Author Online

 Purchase of Flex 4 in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask questions,
 and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to
 www.manning.com/Flex4inAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 TARIQ AHMED is an accomplished web application pioneer with over 15 years of experience introducing next generation web technologies
 to companies such as Bell Canada and REUTERS. He was first to introduce eBay to Adobe Flex, and saw it proliferate to other
 teams. As an Adobe Flex Community Expert, Tariq evangelizes the technology and supports the community, particularly through
 his Community Flex (CFLEX.Net) site and his personal blog (www.dopejam.com). He is currently the Manager of Product Development at Amcom Technology, managing a team of RIA Engineers and Business Intelligence
 Analysts.

 DAN ORLANDO is a recognized RIA Architect, specializing in enterprise class Flex and AIR applications. Dan is often called on as a resource
 for information on topics involving bleeding edge technology platforms for radio interviews and print publications, which
 include: PHP Architect magazine, Flex and Flash Developer Magazine, Amazon Web Services Developer Connection, Adobe Developer
 Connection, IBM developer-Works, PHPBuilder.com, and many others.

 JOHN C. BLAND II is founder of Katapult Media Inc. which focuses on software and web development using technologies such as ColdFusion, the
 Flash Platform, PHP, Java, the .NET Platform, and Objective-C (iPhone, Mac OSX, etc). Through Katapult, he works diligently
 on custom software and web products for small and large clients throughout the world. As a 2009 Adobe Community Expert, John
 continues to put back into the community which helped mold him into the developer he is today. John blogs regularly on his
 Geek Life blog: www.johncblandii.com.

 JOEL HOOKS is a Flash Platform developer with experience in Actionscript 3, Flex, and Python. Joel spent the first 13 years of his professional
 career as a 3d animator and graphic designer working on computer based training applications from that perspective. His interest
 in programming goes as far back as “TELL TURTLE” and he has always been interested in the technological challenges related
 to developing software. With the introduction of Actionscript 3, Joel finally found a platform that allows him to architect
 useful tools while fully leveraging his experience as a visual artist. Joel is passionate about technology and enjoys exploring
 the landscape of frameworks, libraries, and tools that make his work constantly fun and challenging.

About the Title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it’s example driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The illustration on the cover of Flex 4 in Action bears the caption “An Armenian” and is taken from a collection of costumes of the Ottoman Empire published on January 1,
 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection and we have been unable
 to track it down to date. The book’s table of contents identifies the figures in both English and French, and each illustration
 also bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the
 front cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation was
 getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present. Dress codes have changed since then and the diversity by region,
 so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying
 to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied
 and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Application basics

 Your journey into Flex is about to begin. This part of the book is focused on getting you ramped up with the basics of making
 Flex applications.

 Before the coding starts, we’ll present a high-level overview of what Flex is, from its languages to its ecosystem, and show
 how the parts fit together. Building on what you learn, you’ll set up your development environment so you can create and build
 Flex applications.

 With the ability to compile and run Flex applications, the coding (a.k.a. the good stuff) begins with an overview of ActionScript—the
 core language of Flex. Progressively, you’ll put together all the building blocks that make up the essence of every application
 from layout, to building and validating forms, to formatting data, to displaying lists of information.

Chapter 1. Making the case

 This chapter covers

	Solving problems with Flex

 	Using RIAs and RWAs

 	Comparing Flex to the competition

 	Learning the Flex ecosystem

Why is Flex a great addition to your personal skill set or organization? With buzzwords flying all over, a nonstop stream
 of websites with missing vowels in their names, and the Web 2.0 space on fire, a hodgepodge of technologies leaves the common
 developer caught in the middle. It’s vital to be able to defend the decision to move forward with Flex to both customers and
 management.

 In this chapter, we talk about challenges that a web developer faces and how to solve them using Flex by Adobe. We also get
 into the mechanics of a Flex application and discuss the ecosystem as a whole. But before we get into that, we want to identify
 the problem that Flex solves, so let’s begin with how the problem emerged with the proliferation of web applications.

1.1. Why are web applications so prolific?

 Web applications are so prolific because the strength of the web is also its weakness. The original intent of the web was
 to be a lightweight information distribution system: a simple and platform-neutral way (any OS, any hardware) to post documents on a server and retrieve them as easily.

 This advantage of centralized deployment (figure 1.1) inherited by dynamic pages (such as web applications) provides such a strategic value in both a business (such as ROI) and
 development perspective that it makes the thought of developing old-school desktop applications difficult to justify.

 Figure 1.1. The great web advantage—centralized deployment

 [image:]

 Yes, desktop applications are rich and robust; you can do anything the OS permits. But their deployment model is a nightmare.
 The logistical complications of trying to get thousands, if not hundreds of thousands, of clients to run the precise version
 of your software at the exact same time are immense.

	

Note

 This may all feel obvious to some of you, but part of being successful with Flex is being able to articulate the business
 case to management and teammates. At the same time, knowing the problems that Flex solves helps you better understand the
 technology.

	

With the web, you can release enhancements and fixes as fast as you can code them. Now all your users can take advantage of
 the latest and greatest updates transparently.

 Seems like a no-brainer, right? As you know, technologies quickly become obsolete, yet the centralized deployment model of
 web applications is so effective that we’ve continued to use its HTML 4 language since 1999 (HTML 5 is supposedly due by 2022).

 During all this time, one critical element was overlooked: the user experience (figure 1.2). Users willingly gave up usability for the ubiquity of web applications. Ultimately, we trained ourselves and the users
 to accept this situation.

 Figure 1.2. We took a great step backward in terms of usability for the sake of deployability. Mainframes provided horrific user experiences,
 but were easy to deploy based on their centralized model. Moving to desktop clients allowed for uncompromised usability, but
 they were a challenge to keep updated. Web applications took a step backward by having a high degree of deployment ease, but
 they sacrificed usability as a result.

 [image:]

 True, there was an emphasis in the web development community prior to the AJAX revolution to utilize JavaScript to improve
 usability by employing a more progressive approach, but the core of the usability problem lies in the historical roots of
 the web—its structure has been built around what was intended to be a documentation-distribution mechanism.

 As a developer, you exert a significant amount of effort to restore some semblance of usability by transferring as much application
 logic as possible to the front end (client side) to mimic a client (desktop-like) experience.

 The web was supposed to be platform agnostic, yet ironically the more you push logic to the client side, the more you struggle
 with browser incompatibilities. This is where rich internet applications (RIAs) come into play.

1.2. The RIA solution

 In this data-centric society, users and businesses depend on being able to work with information efficiently. Users want information
 quickly and easily. Businesses, from a customer-retention perspective, want to provide a better user experience than the competition
 and need the technology to ensure the workforce is functioning productively.

 In a sense, you now have a paradox: users wanting a pleasant experience and businesses trying to achieve high-feature velocity
 and operational efficiency. This is the case with traditional technologies and the divide on which RIAs capitalize.

 1.2.1. They all want it all

 Users want to be able to access their data from whatever computer they’re on. They also want to be able to do such trivial
 things as dragging and dropping. They want a rich, fluid graphical experience that incorporates sound and video. But they
 don’t want to be constantly nagged to download the latest version.

 Developers and software teams want it all too. Time-to-market is of high strategic value, whereas software development and
 maintenance are enormously expensive. Developers want to create software quickly and not worry about how to make it work on
 various platforms. They want the process of pushing out updates to be easy and fast.

 Figure 1.3 summarizes who wins—and who loses—in each scenario.

 Figure 1.3. Pros and cons of desktop and web clients—choose the lesser of the evils. Desktop clients provide a high degree of experience,
 but it’s difficult to keep all users synchronized to the same software version. Web applications are the opposite; you can
 push updates out all day long with ease, but this comes at a cost of usability.

 [image:]

 But with problems or challenges comes opportunity, and RIAs seize this opportunity.

 1.2.2. RIAs to the rescue

 RIAs solve this problem by incorporating the best of both worlds. RIAs are a technology that gives businesses feature velocity
 and rapid deployment through the centralized internet deployment model while providing users a desktop-like experience (figure 1.4).

 Figure 1.4. RIAs add the best of both worlds by combining the ease of deployment of web applications with the power of client-side usability.
 Who says you can’t have your cake and eat it too?

 [image:]

 RIAs bring back usability by enabling developers to give their users a compelling and fluid experience with that feeling of
 a live application (versus completely reloading a page every time they click something). That’s the core ingredient to providing
 users a sense of engagement.

 At the same time, the deployment and accessibility model remains the same—users can load these applications from any machine
 and all be running the same version. The best part is true platform neutrality; the same application yields the same look
 and feel regardless of environment.

 1.2.3. How RIAs do it

 RIAs are able to accomplish this by not being an interactive document and thus having none of the restrictions of one. They
 do this via the use of a browser plug-in that acts as a local runtime engine. With a runtime engine available for various
 browsers and operating systems, you’re able to achieve platform neutrality.

 Because the RIA is a plug-in, it can piggyback onto the browser. Using the browser as a delivery mechanism gives the plug-in
 the high degree of deployability that web applications enjoy.

1.3. The RIA contenders

 The RIA space is hot right now, and contenders are standing in their respective corners. In one corner is the front-runner,
 Flex by Adobe, which faces Microsoft’s Silver-light and Sun’s JavaFX. From a technical perspective you could argue that AJAX
 is more of a rich web application (RWA) technology than a rich internet application technology, but because of the big advancements
 in the AJAX toolkit arena, it’s worth adding to the list.

	

Note

 RWA isn’t a commonly used term but rather food for thought as to whether HTML and JavaScript natively support enough rich
 media to be considered a true RIA. And if not, shouldn’t there be a term to make such a distinction?

	

Here’s a brief summary of the major RIA contenders.

 1.3.1. Flex by Adobe

 First out of the gate, Adobe has maintained a fierce pace in expanding this platform. With Flex 4, Adobe made the framework
 open source; the software development kit (SDK) has been free since Flex 2, and the price point for the optional IDE is attractive.

 Flex applications truly are rich internet applications; they’re platform-agnostic, internet-deployed thin clients. Flex supports multiple transfer protocols such as
 text/XML, web services, RTMP/messaging, and the binary format known as Action Message Format (AMF). It also has a robust charting
 engine, can stream video natively, and do much more.

 Flex has the following things going for it:

	It leverages the nearly ubiquitous Flash Player, which has a 98% penetration level.

 	It uses the huge Flash ecosystem (existing forums, community, and knowledge).

 	It’s tightly integrated with other Adobe products from designer (Photoshop, Fireworks, Catalyst, and so on), to developer,
 to server (ColdFusion, Blaze DS, media streaming, and so forth).

 	It has a four-year head start.

 	It uses an open source framework and SDK.

On the downside:

	Although Flex’s printing abilities are satisfactory, there’s a lot of room for improvement (particularly with respect to report-style
 printing).

 	Because the technology is still relatively new, the size of the community is relatively small compared to that of .NET and
 Java.

Although heated arguments in discussion forums erupt whenever technologies are compared, we’ll next venture to Flex’s main
 threat, Silverlight by Microsoft.

 1.3.2. Silverlight by Microsoft

 Microsoft isn’t well known for being an early innovator, seemingly preferring to invest enormous amounts of capital to dominate
 only after others have invented market spaces. But once they set their minds on something, they’re willing to do what it takes
 to win.

 Microsoft released Silverlight 1.0 in September 2007, Silverlight 2.0 in October 2008, and Silverlight 4 in April 2010. They’re
 moving at a blistering pace to capture as much market share as possible.

 Comparing features of the Silverlight 4 technology with those of Flex 4 would be of little value because they’re roughly on
 par with each other. The key differentiators are their respective ecosystems with their own distinct advantages.

 Adobe dominates the design industry with their Creative Suite tools (Photoshop, Illustrator, Fireworks, and so on), and they
 have a new tool called Catalyst that can convert a Creative Suite image into a fully functioning Flex application.

 Microsoft does have relatively lesser-known creative tools known as Expression and Blend, but on the server side they have
 a formidable arsenal. The .NET universe is a large one, and developing on the Silverlight platform allows you to tap into
 all things .NET (IIS.NET, SharePoint, and the like).

 Adobe does have a server aspect to their business with ColdFusion, BlazeDS, Live-Cycle Data Services (LCDS), and their cloud
 computing initiatives. But compared to .NET, Microsoft has the edge. Granted, a Flex frontend could tap into a .NET backend.
 But the Silverlight environment makes it easy for developers familiar with .NET to be productive with a well-integrated development
 environment.

 From a platform perspective, Silverlight is available on Windows and Mac OS X, along with browser plug-ins for Internet Explorer,
 Firefox, and Safari. Opera is unofficially available, and the Chrome plug-in is available only on the Windows version.

 Flex, on the other hand, runs wherever Flash Player can be found, and that’s all combinations of major OSes and browsers.

 The bottom line is if you’re already a .NET developer, you’ll be able to leverage your existing code base and skill sets by
 going the Silverlight route.

 1.3.3. JavaFX by Sun Microsystems

 Sun had the opportunity to be the RIA leader with Java but failed to capitalize on it, rendering JavaFX pretty much a second
 attempt. JavaFX is also a latecomer to the game, with the first release having come out in March 2009, and as a result it
 has a lot of catching up to do.

 JavaFX is in the fortunate position of being able to leverage the commanding ecosystem of the enormous Java community, but
 it’s still too early to tell if the technology will be able to capitalize on it.

 The big question going forward is, now that Oracle (which is a big adopter of Flex for the UI of various tools) owns Sun,
 what will they do with JavaFX? Time will tell!

 1.3.4. AJAX—the last stand

 Impressive results have been achieved using extremely advanced JavaScript and Dynamic HTML (DHTML) techniques in combination
 with the browser’s XMLHTTPRequest function. But in the end, it’s a last great effort to squeeze every possible ounce of application usability from a document
 platform.

 Some amazing things have been done despite this limitation with AJAX toolkits such as Adobe’s own Spry, EXT, YUI (by Yahoo),
 GWT (by Google), and the formidable jQuery. These JavaScript toolkits go to great efforts to enable you to develop highly
 interactive applications and are a good option for making web applications more usable.

Native Abilities Versus Hacks

 But consider this: What if you want a three-state check box? Figure 1.5 shows how Microsoft Excel uses this form element to present three possible states, whereas HTML’s check box supports only
 two states (selected and unselected).

 Figure 1.5. In Flex, you can make a three-state check box like that of Microsoft Excel. In HTML, the option to extend components isn’t
 available.

 [image:]

 If you wanted to do this in HTML, you could fake it using a graphic, JavaScript, and some CSS. In contrast, an RIA engine
 such as Flex or Silverlight affords you the ability to extend the native check box to have three states.

 Take that even further and ask yourself if JavaScript can do the following:

	Play sound files natively?

 	Decode a compressed video stream?

 	Interact with devices such as a webcam?

 	Create new user input controls?

 	Transfer data natively in binary?

 	Open, and maintain, a persistent network connection?

As we mentioned earlier, impressive innovations have resulted from this last-hurrah squeeze, but they’ve come at a price that’s
 incurred by platform inconsistencies.

Cross-Platform Issues

 If you’ve worked with JavaScript, you know it’s a massive headache to support multiple browsers. Every browser has variations,
 such that if you utilize advanced AJAX/JavaScript techniques, the result would require a significantly increased quality-assurance
 cycle (figure 1.6).

 Figure 1.6. Don’t forget to factor in the development costs of supporting multiple browsers when using AJAX.

 [image:]

 This deficiency alone severely impairs the ability of a business or customer to achieve the desired return on investment (ROI); the biggest single cost of systems development is developer time.

AJAX Communication Limits

 AJAX supports just one thing: text over HTTP. Traditionally, that text has been in the form of XML, and the more recent trend
 is to use JSON to reduce client-side processing. In either case both are inefficient for transferring large amounts of information
 because of the verbose amount of text.

 Try transferring 5,000 records using XMLHTTPRequest and then parsing them in JavaScript. That’s exactly what Adobe’s technical evangelist James Ward did, and you can see the
 results posted on his blog (http://www.jamesward.org/wordpress/2007/04/30/ajax-and-flex-data-loading-benchmarks/).

 In figure 1.7, you can see how Flex—using its binary format, AMF3, versus XML or SOAP in AJAX—is up to 10 times faster. There are two reasons
 for this. First, as just mentioned, XML is verbose, which results in quite a bit of overhead in the message payload. Second,
 JavaScript is an interpreted language, whereas Flex is compiled to platform-neutral byte code.

 Figure 1.7. The speed of Flex’s binary protocols versus the verbose approaches of AJAX

 [image:]

 Beyond speed, Flex’s compact binary format offers other advantages. Less overhead means less demand on resources such as memory
 and network utilization.

	

Note

 Keep in mind that Flex and Flash do support simple transfer of textual data over HTTP and SOAP web services.

	

AMF3 provides a clear advantage, particularly for large-scale applications or applications that need to exchange large volumes
 of data.

 The fact that JavaScript and HTML haven’t had to evolve for many years is a true testament to their longevity. They’ve stood
 the test of time and will continue to thrive in some form or another for decades to come. This is because the web is great
 at what is does—distributing platform-neutral documents.

 Web applications will have their place too, but the trend is clear that users are demanding more. True RIA technologies will
 take over where web applications leave off.

1.4. Becoming acquainted with Flex

 Flex is a programmatic way (you use code) to make RIAs leverage the Flash platform. Flash is famous for interactive banner
 ads, cool animated portions of web pages, and interactive marketing experiences, which are often used for promotional sites.

 Flex has a head start with its ability to leverage the widely recognized and mature technology of Flash Player, in addition
 to taking advantage of its widespread deployment. But it doesn’t lock you out of the HTML world; you can have Flex interacting
 with web applications using JavaScript, while at the same time being a part of the large Adobe technology ecosystem.

 1.4.1. Taking advantage of Adobe Flash

 At the heart of Flex execution is Adobe Flash Player. This incredibly powerful, fast, lightweight, and platform-agnostic runtime
 engine is based on an object-oriented (OO) language called ActionScript. The experience is the same for Mac users as it is
 for Windows users—or users of any platform, for that matter (smart phones, PDAs, and so on).

 The Flash Player on which Flex applications execute is capable of processing large amounts of data and has robust 2D graphical-rendering
 abilities and support for various communication protocols. Flash puts the rich in RIA by supporting multimedia formats such as streaming video, images, and audio.

 The result is the ability to provide a rich desktop-like experience that allows developers to be innovative and creative.
 It also lets you present unique approaches to optimize the workflow for the end user.

Why not do it in Flash?

 Savvy Flash developers were making RIAs before Flex existed. But those coming from the development world and trying to get
 into Flash found it difficult to adopt the Flash mindset. Because Flash’s roots are in animation (figure 1.8), its environment is based on timelines, layers, frames, frames per second, and so on. It’s somewhat strange for someone
 with a development background based on lines of code to think of an application being a movie.

 Figure 1.8. Flash has always been capable of making RIAs, but can you imagine coding based on time?

 [image:]

 Even for seasoned Flash veterans, the cost of developing applications purely in Flash is significantly more than in other
 development environments (mostly due to the intensive work required to deal with change).

 Although Flash and Flex can function as standalone applications, they can also interact with web applications by using JavaScript
 as a bridge between them.

 1.4.2. Flex and JavaScript can play together

 If you’ve been developing HTML-based web applications and using JavaScript, as you get into Flex you’ll notice that its ActionScript
 language looks incredibly similar.

 That’s because JavaScript and ActionScript are based on the ECMAScript standard. If you’ve used JavaScript extensively, you’ll
 find comfort in familiarity. One interesting tidbit is that Flex’s ActionScript was the first production language to adopt
 the current ECMAScript 4 standard.

 In working with Flex you aren’t locked into technology silos. It doesn’t have to be all Flex or bust. Although RIAs and RWAs
 are different, Flex allows you to operate between technologies. To do this, Flex employs a feature called the External API,
 which enables JavaScript applications to communicate with Flex applications.

 In the context of AJAX, Flex has an additional feature called the Flex-AJAX Bridge (a.k.a. FABridge) that makes it easy to
 integrate AJAX and Flex applications. If you have a significant investment in an existing AJAX application but would like
 to leverage Flex’s capabilities, you can use Flex to generate interactive charts from your AJAX application.

	

Note

 To learn more about harnessing the power of JavaScript, you might want to check out Secrets of the JavaScript Ninja by John Resig. See http://www.manning.com/resig/ for more information.

	

The harmony doesn’t stop there; because Flex is made by Adobe, it also fits into a larger encompassing suite of technologies.

 1.4.3. The Flex ecosystem

 The amazing technology built into Flex isn’t its only major advantage. Because it’s part of a set of technologies from Adobe,
 your organization can achieve a smooth workflow from designer to developer to deployment. Figure 1.9 shows where Flex sits in relation to all of Adobe’s other technologies.

 Figure 1.9. Flex is part of a big technology stack.

 [image:]

 In the land of regular web development, a lot of time is wasted bouncing between designers and developers. As you may know,
 designers use tools such as Photoshop to design the application, and developers laboriously slice up the images and generate
 CSS.

 But in the Flex ecosystem, designers can export themes (skins), and developers can import them without tightly coupling the
 application to the design. And it keeps getting better. Catalyst, the most recent addition to the Adobe Creative Suite family,
 allows you to convert an image of an application (for example, from Photoshop) into a Flex application.

 Another client technology that has garnered a lot of press and is directly related to Flex is AIR, which allows your Flex
 applications to run as native desktop applications.

A Blurb on AIR

 AIR stands for Adobe Integrated Runtime. AIR allows you to go one step further by transforming your Flex RIAs into what we
 call rich desktop applications (RDAs). Although there’s no official term for it, this type of technology is also known as
 a hybrid desktop internet application.

 Because Flex is launched via the browser, for security reasons it’s limited in its ability to do certain things, such as access
 data on hard drives or interact with peripherals like scanners. AIR liberates Flex applications from the browser and lets
 them execute directly on the desktop (figure 1.10), giving you the full desktop experience.

 Figure 1.10. RDAs go that extra mile by achieving the desktop experience that RIAs aren’t able to reach. RDAs exist outside the browser,
 and like a desktop application they have access to the operating system’s clipboard and local filesystem.

 [image:]

 With AIR, you can perform functions such as these:

	Access cut-and-paste information from the operating system’s clipboard

 	Drag and drop from the desktop into the application

 	Create borderless applications that don’t require the square frame of a browser around them

AIR provides additional capabilities:

	Built-in database server

 	Transparent and automatic software updates to ensure everyone is using the same version

 	Built-in HTML rendering engine

It’s a revolutionary platform. If you decide you want to take your Flex applications beyond the browser, check out Manning
 Publications’ Adobe AIR in Action (Joey Lott, Kathryn Rotondo, Sam Ahn, and Ashley Atkins, 2007; ISBN: 978-1-933988-48-1).

A Blurb on Blazeds

 Mentioned in the Flex ecosystem is something called Adobe LiveCycle ES (Enterprise Suite). It’s an engine similar to a workflow
 and business rules engine that allows companies to automate processes. The most publicly demonstrated use of this technology
 is automating the claims process for an insurance company.

 Another popular use of LiveCycle is automating various government functions, because you can create triggers that execute
 subprocesses, ensure rules validation, and perform other such functions without having to write the code to do it.

 Because LiveCycle ES is aimed at big enterprises, it comes with a hefty price tag. Fortunately there’s its little brother
 BlazeDS, which is a trimmed-down version of Live-Cycle. It’s a middle-tier server component that acts as a middleman between
 backend components and services (other server technologies like Java and .NET), as well as connectors to database servers
 and messaging technologies such as Java Message Service (JMS).

 Its capabilities include the following:

	Transferring backend data to the Flex client using the binary AMF3 protocol.

 	High-performance data transfer.

 	Real-time data push using HTTP and AMF3. (It can notify your Flex application about new data, instead of your Flex application
 polling for new information.)

 	Publish/subscribe messaging. This is achieved through a technique known as long polling, unlike its LiveCycle big brother,
 which supports the more advanced Real Time Messaging Protocol (RTMP).

	

Tip

 Messaging-based applications are more network efficient when frequent updates are needed on many different items. For example,
 when making a chat application, an AJAX-based approach would periodically query for new information every few seconds. Using
 messaging, the chat client gets information pushed to it as it becomes available and not making unnecessary hits to the backend.

	

	Record set paging with a database. (It can stream 50 database records at a time or do the last/next 10 records from a query.)

 	The best part is that it’s free! As another piece of Adobe’s open source software, this technology is available and can be
 distributed under the LGPL v3 license.

BlazeDS has been a major factor in the adoption of Flex in the Java community, because it allows Java developers to leverage
 their existing backend Java efforts by using BlazeDS as the bridge between Flex and the Java object.

1.5. How Flex works

 At the heart of Flex is a free SDK that provides the framework for making Flex applications. In a nutshell, it’s all the out-of-the-box
 libraries and the compiler.

 1.5.1. The Flex languages

 On top of that is the Eclipse-based IDE named Flash Builder. Instead of using the Flash editor to make Flash applications,
 you use Flash Builder.

 Flex comprises two programming languages:

	The XML-based MXML tag language (No one knows what MXML stands for, but two popular assumptions are Macromedia XML and Magic
 XML.)

 	The ActionScript scripting language

When developing in Flex, you use both: MXML for primary layout of the application core (the visual components) and ActionScript
 to script out all the logic needed to drive your application.

 Although it isn’t particularly pertinent to our discussion at the moment, MXML is compiled behind the scenes into ActionScript.
 This means you can make a full-fledged Flex application using only ActionScript. (That’s what it ends up being anyway.)

	

Tip

 New users struggle to determine when to use ActionScript and when to use MXML. A simple rule of thumb is to pretend HTML is
 like MXML, which allows you to visually lay out how you want your application to initially appear. Then, think of ActionScript
 as JavaScript—it adds the brains to your application. As you become comfortable with it, you’ll find you can make entire applications
 using nothing but ActionScript.

	

Using the two languages, you create your application by compiling it into a single executable file that’s then deployed onto
 a web server (figure 1.11).

 Figure 1.11. Use Flash Builder to compile your application, and then deploy it to a server.

 [image:]

 Okay, I can tell you’re itching to see some code, so check out the following listing, which has a simple example of how these
 two languages are related.

 Listing 1.1. Example of a simple application

 [image:]

 In figure 1.12 you can see what the code in listing 1.1 looks like: a pop-up alert window in the foreground with the background blurred out.

 Figure 1.12. Using an event handler, the clicking of a button is intercepted.

 [image:]

 Even if you’ve never seen Flex code, this sample may feel somewhat familiar. One reason is that the tag-based MXML language
 [image:] is a derivative of XML. Another reason is that the script logic [image:] is similar to JavaScript.

 Let’s look at the typical lifecycle of the development process.

The Development Lifecycle

 This is what the Systems Development Life Cycle (SDLC) of a typical Flex application looks like:

	Using Flash Builder or the SDK, build in your local development environment by writing MXML and ActionScript code.

 	When testing, use Flash Builder or the SDK to compile your code. Doing so generates the main output .swf file (often pronounced
 swiff file).

 	Use the browser to launch this file, invoking the Flash Player plug-in. Your application begins to execute.

 	A Flex application typically interacts with a server tier to exchange data.

 	When the application is ready to be released, the .swf file (and any accompanying files, such as images) is published to your
 production web server, where it’s available to be invoked by your users via a URL.

For those who work with application servers like ColdFusion and PHP, note that you’re not pushing the source files to production
 but rather a compiled application (similar to Java’s .class files, but a Flex application also contains all the libraries
 needed for the application to work).

 1.5.2. Events, events, events

 It’s all about events. Flex is an event-driven environment, which may be a big departure from what you’re used to.

 In traditional web development technologies, an event represents an action such as a user clicking a link or a submit button.
 The server responds, executing whatever function is required—in this case, displaying a web page or sending field data.

 If you’ve been developing web applications, you’ve undoubtedly created JavaScript that responds to certain user gestures such
 as highlighting an item on a page by changing the background color of the item as the user moves the mouse over it (figure 1.13).

 Figure 1.13. Flex, like JavaScript, uses events that consist of triggers and handlers.

 [image:]

 That’s an event! But that term isn’t used as much in traditional web applications because the majority of the application
 resides on the backend. As in the JavaScript example we just described, Flex is a client-side technology, meaning all the
 action occurs on the user’s side.

 A Flex application is driven entirely through events; something causes something to occur, and something else handles it when
 it occurs. The two main pieces of an event-driven application are these:

	
Event triggers— Triggers cause events: the user moving the mouse over a button, the application loading, data coming back from a web service,
 and so on.

 	
Event handlers— Handlers respond to events: invoking a function that changes display characteristics, committing an input form, and so on;
 handlers are where the logic is.

Coming from a traditional web technology, you won’t be used to thinking like this. We’ll gradually introduce how events are
 used, but you’ll need to let go of the web application notion of generating pages. With Flex, the application is already loaded;
 all you’re doing is capturing events and responding accordingly.

 1.5.3. Limitations

 Flex isn’t perfect and has limitations that are true for any browser plug-in based engine (such as Silverlight). But to be
 objective, it’s worth being aware of these:

	Pop-up windows can exist only within the dimension of the player instance. This means that a pop-up can move around only within
 the area of the main application versus being a true pop-up that can move anywhere on the desktop. To break free of this limitation
 you’d have to convert your application to an AIR application (Silverlight refers to this as an out-of-browser application
 that’s achieved via deployment configuration).

 	Because Flash Player is a software install, many companies for support purposes standardize what’s on the desktop. If your
 application relies on a minimum version of Flash Player (for example, a Flex 4 application won’t run on the antiquated Flash
 Player 8), and the user is a corporate user who doesn’t have permission to upgrade software on their desktop, there’s a dependency
 on that organization’s IT department to push a sitewide update to all users.

 	Because you’re loading an entire application, memory usage is something to watch for. In the book you’ll learn about things
 like Runtime Shared Libraries that can help you manage that better, but this is an area that typically a web developer rarely cares about because the user is usually working with only a page at a time.

 	There’s no access to local drives or the clipboard unless you go to AIR. This would be true for web applications as well,
 but this is a distinct advantage of desktop applications.

With that said, the rich, fluid, interactive and fast experience tends to enable users with higher productivity, and the pros
 outweigh the cons by a wide margin. Plus, with each version of Flex comes new capabilities; let’s see what’s new in Flex 4.

1.6. What’s new in Flex 4

 Since its inception, Flex technology has been evolving at an incredibly rapid pace. The product started as a pure server-side
 technology, modeling the conventions of most server-based web application technologies.

 Flex 2 was a major overhaul of the language. Adobe split it into two portions: The client portion consists of the application
 framework and tools to compile a Flex application; the server portion is the data bridge. This has evolved into LCDS/BlazeDS.
 The Flex 2 overhaul also involved a technology rewrite—a one-time hit to provide an industrial-strength platform that could
 grow well into the future.

 Flex 3 focused on developer tooling and maturing the framework to support larger-scale applications. On the IDE side they
 added a profiler for measuring memory and CPU usage within an application, refactoring abilities, and an initial attempt at
 design to developer workflow. On the framework side they added charting enhancements, persistent framework caching, and a
 power grid component called the Advanced DataGrid. There was also the introduction of Adobe AIR for allowing your Flex applications
 to run as desktop applications.

 Now in its fourth version, Flex 4 focuses on three key areas. One area is developer productivity, which Flex 4 addresses by
 speeding up how fast you can create a typical CRUD (create, read, update, delete) application. A second area is the design-to-developer
 workflow by allowing designers and developers to work in tandem during the development process. And finally, data-centric
 development, where the process of hooking into backend systems now becomes much easier.

 The designer-to-developer workflow, on any technology platform, has always been a challenging one because at the point where
 a designer hands over the graphics, the developer then starts chopping it up into pieces to make it functional. The problem
 is that if the design changes, the developer has to redo a lot of work as well as interpret the interaction because all the
 developer has is static images.

 Adobe took a step back and redefined how the tools relate to each other. Instead of having an integration perspective where
 it’s about getting one tool to integrate, the vision was updated to view it as a platform with Flash at the core. So it’s
 not about just Flex; the whole platform (see figure 1.9) has evolved in unison.

 With that said, here are some of the new goodies in Flex 4:

	
A new class of visual components known as Spark components that replace the previous component set known as Halo components
 (also referred to as MX components). Spark components support Flex 4’s new skinning abilities.

 	Skinning is completely redone, allowing designers to have fine-grained control over the look and feel of all visual aspects.
 In Flex 3 you had to create programmatic skins if you really wanted to get serious, which no one did because it’s too time
 consuming.

 	A new graphics format called FXG that Flex, Flash, and Creative Suite will support. It’s based on XML so you can easily define/create
 graphics in code.

 	Data-centric development wizards and capabilities that let you quickly point at any backend service (ColdFusion, PHP, Web
 Service, and so on), and it’ll figure out what all of the available functions are, what the parameters are, and what kind
 of information comes back. And then you can link it to data-centric components that can display and interact with the data.

 	Along with data-centric development are other productivity boosters such as a faster compiler, getter/setter function generators,
 event coder generators, integrated FlexUnit support, tooltip documentation (mouse over some code, and a hover window shows
 the documentation about that function/tag), and a network monitor for watching communications over the wire.

 	Layout and visual states have been overhauled to be easier to work with. Along those lines, Flash Player 10 introduces a new
 text layout engine that you can leverage in Flex (making it easier to lay out text).

These are the big at-a-glance features that are new Flex 4, but we’ll get into a number of additional enhancements as the
 chapters progress.

1.7. Summary

 You’ve seen that historically, usability has been sacrificed for the sake of rapid deployment and a semi-neutral platform,
 but it came at the cost of the user experience. Amazingly, users (including ourselves) became accustomed to it. When it came
 to web applications, we assumed that being limited was normal.

 It was just a matter of time in our information-crazed lives until the cost of this sacrifice began to outweigh the benefits.
 Users were suffering, and businesses were paying the price in productivity and efficiency.

 RIAs demonstrate that we can achieve the best of both worlds. On the development side, a centralized deployment model on a
 platform-neutral environment means enhancements can be made quickly. On the user side, we can provide a desktop-like experience,
 allowing for fluid and engaging experiences from any device that can access the application.

 Flex entered this RIA scene, leveraging its ubiquitous cross-platform Flash Player by creating a programmatic way to make
 a Flash application. This programmatic approach uses Flex’s core languages: the XML templating language (MXML) and its scripting
 language (ActionScript).

 Now in its fourth major version, Flex maintains a lead in the RIA space, although Microsoft is working hard to catch up. But
 what Microsoft doesn’t have is Flex’s ecosystem—a large technology environment that encompasses the end-to-end workflow of
 software development. From designer to developer to deployment, Adobe offers the environments and tools for each phase of
 the game.

OEBPS/01fig02.jpg
S

Desktop Clients

Mainframe

Usability/Capability

OEBPS/01fig03_alt.jpg
~Ful dlentside capability p ~Platform neutral (ind of)
~Strong usabilty ~Easy todeploy
- Strong user experience -Easy to developin
~Thin lienteasy accessibiiy
- Deployment hurdles ~Poor usabilty
- Multiplatiorm hurdies ~Poor user experience
~Thick cient ~Low ent:side capabillty

- Limited accessibilty ~Platform incompati

-

OEBPS/continuations.jpg

OEBPS/01fig01.jpg
<

Thousands of Internet
users loading a web app
‘from justone place

Developers of web app

sl Centralized location that

hosts the web app.

OEBPS/m.jpg

OEBPS/circle-1.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/01fig04.jpg
Deployability/Accessibility

-

Mainframe Desktop Cients

Usability/Capability

OEBPS/01fig06.jpg

OEBPS/01fig05.jpg
[wrap text O wrap text
E fit [0 shrink to fit
B aesaeecls [E) Merge cells

OEBPS/cover.jpg
Tariq Ahmed
Dan Orlando
John C.Bland I
Joel Hooks

OEBPS/01fig08_alt.jpg

OEBPS/01fig07_alt.jpg

OEBPS/01fig10.jpg
4

Mainframe Desktop Clients

Usability/Capability

OEBPS/01fig09.jpg
Flash Bulder_|

> | Spry (AJAX)

(Caduion Butde

Flex

necydets |

Coldruson” |

FlashMedia |

e

OEBPS/016fig01_alt.jpg
<7xml version="1.0" encoding="utf-8°?>

<s:Application mlns: £x="http://ns.adobe.com/manl/2009"
smlns:s="1ibrary://ns.adobe.com/ flex/spark"
smins:mx="1ibrary://ns.adobe.com/ f lex/mx* >

<fx:Script>
<t [CDATAL

import mx.controls.Alert;

public function handleEvent () :void

i ActionScript for
mx.controls.Alert.show (*Event handled®); scripted logic

)

1>

</fx:Script> MXML

<s:Button label=*Click on me* click=*handleEvent (}"/> for layout

</s:Application>

OEBPS/01fig11.jpg

OEBPS/circle-2.jpg

OEBPS/01fig12.jpg
LSckonme. |

Eventhandled

OEBPS/01fig13.jpg
S hratety SoMonmsYETERIREE (CTMpL 1) THIGUAR TR Ll Ay

Event Trigger Event Handler

