

 [image: cover]

Making Sense of NoSQL: A guide for managers and the rest of us

 Dan McCreary and Ann Kelly

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Elizabeth Lexleigh
Copyeditor: Benjamin Berg
Proofreader: Katie Tennant
Typesetter: Dottie Marsico
Cover designer: Leslie Haimes

 ISBN 9781617291074

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

Dedication

 To technology innovators and early adopters... those who shake up the status quo

 We dedicate this book to people who understand the limitations of our current way of solving technology problems. They understand
 that by removing limitations, we can solve problems faster and at a lower cost and, at the same time, become more agile. Without
 these people, the NoSQL movement wouldn’t have gained the critical mass it needed to get off the ground.

 Innovators and early adopters are the people within organizations who shake up the status quo by testing and evaluating new
 architectures. They initiate pilot projects and share their successes and failures with their peers. They use early versions
 of software and help shake out the bugs. They build new versions of NoSQL distributions from source and explore areas where
 new NoSQL solutions can be applied. They’re the people who give solution architects more options for solving business problems.
 We hope this book will help you to make the right choices.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Introduction

 Chapter 1. NoSQL: It’s about making intelligent choices

 Chapter 2. NoSQL concepts

 2. Database patterns

 Chapter 3. Foundational data architecture patterns

 Chapter 4. NoSQL data architecture patterns

 Chapter 5. Native XML databases

 3. NoSQL solutions

 Chapter 6. Using NoSQL to manage big data

 Chapter 7. Finding information with NoSQL search

 Chapter 8. Building high-availability solutions with NoSQL

 Chapter 9. Increasing agility with NoSQL

 4. Advanced topics

 Chapter 10. NoSQL and functional programming

 Chapter 11. Security: protecting data in your NoSQL systems

 Chapter 12. Selecting the right NoSQL solution

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Introduction

 Chapter 1. NoSQL: It’s about making intelligent choices

 1.1. What is NoSQL?

 1.2. NoSQL business drivers

 1.2.1. Volume

 1.2.2. Velocity

 1.2.3. Variability

 1.2.4. Agility

 1.3. NoSQL case studies

 1.3.1. Case study: LiveJournal’s Memcache

 1.3.2. Case study: Google’s MapReduce—use commodity hardware to create search indexes

 1.3.3. Case study: Google’s Bigtable—a table with a billion rows and a million columns

 1.3.4. Case study: Amazon’s Dynamo—accept an order 24 hours a day, 7 days a week

 1.3.5. Case study: MarkLogic

 1.3.6. Applying your knowledge

 1.4. Summary

 Chapter 2. NoSQL concepts

 2.1. Keeping components simple to promote reuse

 2.2. Using application tiers to simplify design

 2.3. Speeding performance by strategic use of RAM, SSD, and disk

 2.4. Using consistent hashing to keep your cache current

 2.5. Comparing ACID and BASE—two methods of reliable database transactions

 2.5.1. RDBMS transaction control using ACID

 2.5.2. Non-RDBMS transaction control using BASE

 2.6. Achieving horizontal scalability with database sharding

 2.7. Understanding trade-offs with Brewer’s CAP theorem

 2.8. Apply your knowledge

 2.9. Summary

 2.10. Further reading

 2. Database patterns

 Chapter 3. Foundational data architecture patterns

 3.1. What is a data architecture pattern?

 3.2. Understanding the row-store design pattern used in RDBMSs

 3.2.1. How row stores work

 3.2.2. Row stores evolve

 3.2.3. Analyzing the strengths and weaknesses of the row-store pattern

 3.3. Example: Using joins in a sales order

 3.4. Reviewing RDBMS implementation features

 3.4.1. RDBMS transactions

 3.4.2. Fixed data definition language and typed columns

 3.4.3. Using RDBMS views for security and access control

 3.4.4. RDBMS replication and synchronization

 3.5. Analyzing historical data with OLAP, data warehouse, and business intelligence systems

 3.5.1. How data flows from operational systems to analytical systems

 3.5.2. Getting familiar with OLAP concepts

 3.5.3. Ad hoc reporting using aggregates

 3.6. Incorporating high availability and read-mostly systems

 3.7. Using hash trees in revision control systems and database synchronization

 3.8. Apply your knowledge

 3.9. Summary

 3.10. Further reading

 Chapter 4. NoSQL data architecture patterns

 4.1. Key-value stores

 4.1.1. What is a key-value store?

 4.1.2. Benefits of using a key-value store

 4.1.3. Using a key-value store

 4.1.4. Use case: storing web pages in a key-value store

 4.1.5. Use case: Amazon simple storage service (S3)

 4.2. Graph stores

 4.2.1. Overview of a graph store

 4.2.2. Linking external data with the RDF standard

 4.2.3. Use cases for graph stores

 4.3. Column family (Bigtable) stores

 4.3.1. Column family basics

 4.3.2. Understanding column family keys

 4.3.3. Benefits of column family systems

 4.3.4. Case study: storing analytical information in Bigtable

 4.3.5. Case study: Google Maps stores geographic information in Bigtable

 4.3.6. Case study: using a column family to store user preferences

 4.4. Document stores

 4.4.1. Document store basics

 4.4.2. Document collections

 4.4.3. Application collections

 4.4.4. Document store APIs

 4.4.5. Document store implementations

 4.4.6. Case study: ad server with MongoDB

 4.4.7. Case study: CouchDB, a large-scale object database

 4.5. Variations of NoSQL architectural patterns

 4.5.1. Customization for RAM or SSD stores

 4.5.2. Distributed stores

 4.5.3. Grouping items

 4.6. Summary

 4.7. Further reading

 Chapter 5. Native XML databases

 5.1. What is a native XML database?

 5.2. Building applications with a native XML database

 5.2.1. Loading data can be as simple as drag-and-drop

 5.2.2. Using collections to group your XML documents

 5.2.3. Applying simple queries to transform complex data with XPath

 5.2.4. Transforming your data with XQuery

 5.2.5. Updating documents with XQuery updates

 5.2.6. XQuery full-text search standards

 5.3. Using XML standards within native XML databases

 5.4. Designing and validating your data with XML Schema and Schematron

 5.4.1. XML Schema

 5.4.2. Using Schematron to check document rules

 5.5. Extending XQuery with custom modules

 5.6. Case study: using NoSQL at the Office of the Historian at the Department of State

 5.7. Case study: managing financial derivatives with MarkLogic

 5.7.1. Why financial derivatives are difficult to store in RDBMSs

 5.7.2. An investment bank switches from 20 RDBMSs to one native XML system

 5.7.3. Business benefits of moving to a native XML document store

 5.7.4. Project results

 5.8. Summary

 5.9. Further reading

 3. NoSQL solutions

 Chapter 6. Using NoSQL to manage big data

 6.1. What is a big data NoSQL solution?

 6.2. Getting linear scaling in your data center

 6.3. Understanding linear scalability and expressivity

 6.4. Understanding the types of big data problems

 6.5. Analyzing big data with a shared-nothing architecture

 6.6. Choosing distribution models: master-slave versus peer-to-peer

 6.7. Using MapReduce to transform your data over distributed systems

 6.7.1. MapReduce and distributed filesystems

 6.7.2. How MapReduce allows efficient transformation of big data problems

 6.8. Four ways that NoSQL systems handle big data problems

 6.8.1. Moving queries to the data, not data to the queries

 6.8.2. Using hash rings to evenly distribute data on a cluster

 6.8.3. Using replication to scale reads

 6.8.4. Letting the database distribute queries evenly to data nodes

 6.9. Case study: event log processing with Apache Flume

 6.9.1. Challenges of event log data analysis

 6.9.2. How Apache Flume works to gather distributed event data

 6.9.3. Further thoughts

 6.10. Case study: computer-aided discovery of health care fraud

 6.10.1. What is health care fraud detection?

 6.10.2. Using graphs and custom shared-memory hardware to detect health care fraud

 6.11. Summary

 6.12. Further reading

 Chapter 7. Finding information with NoSQL search

 7.1. What is NoSQL search?

 7.2. Types of search

 7.2.1. Comparing Boolean, full-text keyword, and structured search models

 7.2.2. Examining the most common types of search

 7.3. Strategies and methods that make NoSQL search effective

 7.4. Using document structure to improve search quality

 7.5. Measuring search quality

 7.6. In-node indexes versus remote search services

 7.7. Case study: using MapReduce to create reverse indexes

 7.8. Case study: searching technical documentation

 7.8.1. What is technical document search?

 7.8.2. Retaining document structure in a NoSQL document store

 7.9. Case study: searching domain-specific languages—findability and reuse

 7.10. Apply your knowledge

 7.11. Summary

 7.12. Further reading

 Chapter 8. Building high-availability solutions with NoSQL

 8.1. What is a high-availability NoSQL database?

 8.2. Measuring availability of NoSQL databases

 8.2.1. Case study: the Amazon’s S3 SLA

 8.2.2. Predicting system availability

 8.2.3. Apply your knowledge

 8.3. NoSQL strategies for high availability

 8.3.1. Using a load balancer to direct traffic to the least busy node

 8.3.2. Using high-availability distributed filesystems with NoSQL databases

 8.3.3. Case study: using HDFS as a high-availability filesystem to store master data

 8.3.4. Using a managed NoSQL service

 8.3.5. Case study: using Amazon DynamoDB for a high-availability data store

 8.4. Case study: using Apache Cassandra as a high-availability column family store

 8.4.1. Configuring data to node mappings with Cassandra

 8.5. Case study: using Couchbase as a high-availability document store

 8.6. Summary

 8.7. Further reading

 Chapter 9. Increasing agility with NoSQL

 9.1. What is software agility?

 9.1.1. Apply your knowledge: local or cloud-based deployment?

 9.2. Measuring agility

 9.3. Using document stores to avoid object-relational mapping

 9.4. Case study: using XRX to manage complex forms

 9.4.1. What are complex business forms?

 9.4.2. Using XRX to replace client JavaScript and object-relational mapping

 9.4.3. Understanding the impact of XRX on agility

 9.5. Summary

 9.6. Further reading

 4. Advanced topics

 Chapter 10. NoSQL and functional programming

 10.1. What is functional programming?

 10.1.1. Imperative programming is managing program state

 10.1.2. Functional programming is parallel transformation without side effects

 10.1.3. Comparing imperative and functional programming at scale

 10.1.4. Using referential transparency to avoid recalculating transforms

 10.2. Case study: using NetKernel to optimize web page content assembly

 10.2.1. Assembling nested content and tracking component dependencies

 10.2.2. Using NetKernel to optimize component regeneration

 10.3. Examples of functional programming languages

 10.4. Making the transition from imperative to functional programming

 10.4.1. Using functions as a parameter of a function

 10.4.2. Using recursion to process unstructured document data

 10.4.3. Moving from mutable to immutable variables

 10.4.4. Removing loops and conditionals

 10.4.5. The new cognitive style: from capturing state to isolated transforms

 10.4.6. Quality, validation, and consistent unit testing

 10.4.7. Concurrency in functional programming

 10.5. Case study: building NoSQL systems with Erlang

 10.6. Apply your knowledge

 10.7. Summary

 10.8. Further reading

 Chapter 11. Security: protecting data in your NoSQL systems

 11.1. A security model for NoSQL databases

 11.1.1. Using services to mitigate the need for in-database security

 11.1.2. Using data warehouses and OLAP to mitigate the need for in-database security

 11.1.3. Summary of application versus database-layer security benefits

 11.2. Gathering your security requirements

 11.2.1. Authentication

 11.2.2. Authorization

 11.2.3. Audit and logging

 11.2.4. Encryption and digital signatures

 11.2.5. Protecting pubic websites from denial of service and injection attacks

 11.3. Case Study: access controls on key-value store—Amazon S3

 11.3.1. Identity and Access Management (IAM)

 11.3.2. Access-control lists (ACL)

 11.3.3. Bucket policies

 11.4. Case study: using key visibility with Apache Accumulo

 11.5. Case study: using MarkLogic’s RBAC model in secure publishing

 11.5.1. Using the MarkLogic RBAC security model to protect documents

 11.5.2. Using MarkLogic in secure publishing

 11.5.3. Benefits of the MarkLogic security model

 11.6. Summary

 11.7. Further reading

 Chapter 12. Selecting the right NoSQL solution

 12.1. What is architecture trade-off analysis?

 12.2. Team dynamics of database architecture selection

 12.2.1. Selecting the right team

 12.2.2. Accounting for experience bias

 12.2.3. Using outside consultants

 12.3. Steps in architectural trade-off analysis

 12.4. Analysis through decomposition: quality trees

 12.4.1. Sample quality attributes

 12.4.2. Evaluating hybrid and cloud architectures

 12.5. Communicating the results to stakeholders

 12.5.1. Using quality trees as navigational maps

 12.5.2. Apply your knowledge

 12.5.3. Using quality trees to communicate project risks

 12.6. Finding the right proof-of-architecture pilot project

 12.7. Summary

 12.8. Further reading

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Where does one start to explain a topic that’s defined by what it isn’t, rather than what it is? Believe me, as someone who’s
 been trying to educate people in this field for the past three years, it’s a frustrating dilemma, and one shared by lots of
 technical experts, consultants, and vendors. Even though few think the name NoSQL is optimal, almost everyone seems to agree that it defines a category of products and technologies better than any other
 term. My best advice is to let go of whatever hang-ups you might have about the semantics, and just choose to learn about
 something new. And trust me please...the stuff you’re about to learn is worth your time.

 Some brief personal context up front: as a publisher in the world of information management, I had heard the term NoSQL, but had little idea of its significance until three years ago, when I ran into Dan McCreary in the corridor of a conference
 in Toronto. He told me a bit about his current project and was obviously excited about the people and technologies he was
 working with. He convinced me in no time that this NoSQL thing was going to be huge, and that someone in my position should
 learn as much as I could about it. It was excellent advice, and we’ve had a wonderful partnership since then, running a conference
 together, doing webinars, and writing white papers. Dan was spot on...this NoSQL stuff is exciting, and the people in the community are quite brilliant.

 Like most people who work in arcane fields, I often find myself trying to explain complex things in simple terms for the benefit
 of those who don’t share the same passion or context that I have. And even when you understand the value of the perfect elevator
 pitch, or desperately want to explain what you do to your mother, the right explanation can be elusive. Sometimes it’s even
 more difficult to explain new things to people who have more knowledge, rather than less. Specifically in terms of NoSQL, that’s the huge community of relational DBMS devotees who’ve
 existed happily and efficiently for the past 30 years, needing nothing but one toolkit.

 That’s where Making Sense of NoSQL comes in. If you’re in an enterprise computing role and trying to understand the value of NoSQL, then you’re going to appreciate
 this book, because it speaks directly to you. Sure, you startup guys will get something out of it, but for enterprise IT folks,
 the barriers are pretty daunting—not the least of which will be the many years of technical bias accumulated against you from
 the people in your immediate vicinity, wondering why the heck you’d want to put your data into anything but a nice, orderly
 table.

 The authors understand this, and have focused a lot of their analysis on the technical and architectural trade-offs that you’ll
 be facing. I also love that they’ve undertaken so much effort to offer case studies throughout the book. Stories are key to
 persuasion, and these examples drawn from real applications provide a storyline to the subject that will be invaluable as
 you try to introduce these new technologies into your organization.

 Dan McCreary and Ann Kelly have provided the first comprehensive explanation of what NoSQL technologies are, and why you might
 want to use them in a corporate context. While this is not meant to be a technical book, I can tell you that behind the scenes
 they’ve been diligent about consulting with the product architects and developers to ensure that the nuances and features
 of different products are represented accurately.

 Making Sense of NoSQL is a handbook of easily digestible, practical advice for technical managers, architects, and developers. It’s a guide for
 anyone who needs to understand the full range of their data management options in the increasingly complex and demanding world
 of big, fast data. The title of chapter 1 is “NoSQL: It’s about making intelligent choices,” and based on your selection of this book, I can confirm that you’ve made one already.

 TONY SHAW

 FOUNDER AND CEO

 DATAVERSITY

Preface

 Sometimes we’re presented with facts that force us to reassess what we think we know. After spending most of our working life
 performing data modeling tasks with a focus on storing data in rows, we learned that the modeling process might not be necessary.
 While this information didn’t mean our current knowledge was invalid, it forced us to take a hard look at how we solved business
 technology problems. Armed with new knowledge, techniques, and problem-solving styles, we broadened the repertoire of our
 solution space.

 In 2006, while working on a project that involved the exchange of real estate transactions, we spent many months designing
 XML schemas and forms to store the complex hierarchies of data. On the advice of a friend (Kurt Cagle), we found that storing
 the data into a native XML database saved our project months of object modeling, relational database design, and object-relational
 mapping. The result was a radically simple architecture that could be maintained by nonprogammers.

 The realization that enterprise data can be stored in structures other than RDBMSs is a major turning point for people who
 enter the NoSQL space. Initially, this information may be viewed with skepticism, fear, and even self-doubt. We may question
 our own skills as well as the educational institutions that trained us and the organizations that reinforce the notion that
 RDBMS and objects are the only way to solve problems. Yet if we’re going to be fair to our clients, customers, and users,
 we must take a holistic approach to find the best fit for each business problem and evaluate other database architectures.

 In 2010, frustrated with the lack of exposure NoSQL databases were getting at large enterprise data conferences, we approached
 Tony Shaw from DATAVERSITY about starting a new conference. The conference would be a venue for anyone interested in learning
 about NoSQL technologies and exposing individuals and organizations to the NoSQL databases available to them. The first NoSQL
 Now! conference was successfully held in San Jose, California, in August of 2011, with approximately 500 interested and curious
 attendees.

 One finding of the conference was that there was no single source of material that covered NoSQL architectures or introduced
 a process to objectively match a business problem with the right database. People wanted more than a collection of “Hello
 World!” examples from open source projects. They were looking for a guide that helped them match a business problem to an
 architecture first, and then a process that allowed them to consider open source as well as commercial database systems.

 Finding a publisher that would use our existing DocBook content was the first step. Luckily, we found that Manning Publications
 understands the value of standards.

Acknowledgments

 We’d like to thank everyone at Manning Publications who helped us take our raw ideas and transform them into a book: Michael
 Stephens, who brought us on board; Elizabeth Lexleigh, our development editor, who patiently read version after version of
 each chapter; Nick Chase, who made all the technology work like it’s supposed to; the marketing and production teams, and
 everyone who worked behind the scenes—we acknowledge your efforts, guidance, and words of encouragement.

 To the many people who reviewed case studies and provided us with examples of real-world NoSQL usage—we appreciate your time
 and expertise: George Bina, Ben Brumfield, Dipti Borkar, Kurt Cagle, Richard Carlsson, Amy Friedman, Randolph Kahle, Shannon
 Kempe, Amir Halfon, John Hudzina, Martin Logan, Michaline Todd, Eric Merritt, Pete Palmer, Amar Shan, Christine Schwartz,
 Tony Shaw, Joe Wicentowski, Melinda Wilken, and Frank Weige.

 To the reviewers who contributed valuable insights and feedback during the development of our manuscript—our book is better
 for your input: Aldrich Wright, Brandon Wilhite, Craig Smith, Gabriela Jack, Ian Stirk, Ignacio Lopez Vellon, Jason Kolter,
 Jeff Lehn, John Guthrie, Kamesh Sampah, Michael Piscatello, Mikkel Eide Eriksen, Philipp K. Janert, Ray Lugo, Jr., Rodrigo
 Abreu, and Roland Civet.

 We’d like to say a special thanks to our friend Alex Bleasdale for providing us with working code to support the role-based,
 access-control case study in our chapter on NoSQL security and secure document publishing. Special thanks also to Tony Shaw
 for contributing the foreword, and to Leo Polovets for his technical proofread of the final manuscript shortly before it went
 to production.

About this Book

 In writing this book, we had two goals: first, to describe NoSQL databases, and second, to show how NoSQL systems can be used
 as standalone solutions or to augment current SQL systems to solve business problems. We invite anyone who has an interest
 in learning about NoSQL to use this book as a guide. You’ll find that the information, examples, and case studies are targeted
 toward technical managers, solution architects, and data architects who have an interest in learning about NoSQL.

 This material will help you objectively evaluate SQL and NoSQL database systems to see which business problems they solve.
 If you’re looking for a programming guide for a particular product, you’ve come to wrong place. In this book you’ll find information
 about the motivations behind NoSQL, as well as related terminology and concepts. There might be sections and chapters of this
 book that cover topics you already understand; feel free to skim or skip over them and focus on the unknown.

 Finally, we feel strongly about and focus on standards. The standards associated with SQL systems allow applications to be
 ported between databases using a common language. Unfortunately, NoSQL systems can’t yet make this claim. In time, NoSQL application
 vendors will pressure NoSQL database vendors to adopt a set of standards to make them as portable as SQL.

Roadmap

 This book is divided into four parts. Part 1 sets the stage by defining NoSQL and reviewing the basic concepts behind the NoSQL movement.

 In chapter 1, “NoSQL: It’s about making intelligent choices,” we define the term NoSQL, talk about the key events that triggered the NoSQL movement, and present a high-level view of the business benefits of NoSQL
 systems. Readers already familiar with the NoSQL movement and the business benefits might choose to skim this chapter.

 In chapter 2, “NoSQL concepts,” we introduce the core concepts associated with the NoSQL movement. Although you can skim this chapter
 on a first read-through, it’s important for understanding material in later chapters. We encourage you to use this chapter
 as a reference guide as you encounter these concepts throughout the book.

 In part 2, “Database patterns,” we do an in-depth review of SQL and NoSQL database architecture patterns. We look at the different
 database structures and how we access them, and present use cases to show the types of situations where each architectural
 pattern is best used.

 Chapter 3 covers “Foundational data architecture patterns.” It begins with a review of the drivers behind RDBMSs and how the requirements of ERP systems shaped the features we have
 in current RDBMS and BI/DW systems. We briefly discuss other database systems such as object databases and revision control
 systems. You can skim this chapter if you’re already familiar with these systems.

 In chapter 4, “NoSQL data architecture patterns,” we introduce the database patterns associated with NoSQL. We look at key-value stores,
 graph stores, column family (Bigtable) systems, and document databases. The chapter provides definitions, examples, and case
 studies to facilitate understanding.

 Chapter 5 covers “Native XML databases,” which are most often found in government and publishing applications, as they are known to lower costs and support the
 use of standards. We present two case studies from the financial and government publishing areas.

 In part 3, we look at how NoSQL systems can be applied to the problems of big data, search, high availability, and agile web development.

 In chapter 6, “Using NoSQL to manage big data,” you’ll see how NoSQL systems can be configured to efficiently process large volumes of
 data running on commodity hardware. We include a discussion on distributed computing and horizontal scalability, and present
 a case study where commodity hardware fails to scale for analyzing large graphs.

 In chapter 7, “Finding information with NoSQL search,” you’ll learn how to improve search quality by implementing a document model and
 preserving the document’s content. We discuss how MapReduce transforms are used to create scalable reverse indexes, which
 result in fast search. We review the search systems used on documents and databases and show how structured search solutions
 are used to create accurate search result rankings.

 Chapter 8 covers “Building high-availability solutions with NoSQL.” We show how the replicated and distributed nature of NoSQL systems can be used to result in systems that have increased
 availability. You’ll see how many low-cost CPUs can provide higher uptime once data synchronization technologies are used.
 Our case study shows how full peer-to-peer architectures can provide higher availability than other distribution models.

 In chapter 9, we talk about “Increasing agility with NoSQL.” By eliminating the object-relational mapping layer, NoSQL software development is simpler and can quickly adapt to changing
 business requirements. You’ll see how these NoSQL systems allow the experienced developer, as well as nonprogramming staff,
 to become part of the software development lifecycle process.

 In part 4, we cover the “Advanced topics” of functional programming and security, and then review a formalized process for selecting the right NoSQL system.

 In chapter 10, we cover the topic of “NoSQL and functional programming” and the need for distributed transformation architectures such as MapReduce. We look at how functional programming has influenced
 the ability of NoSQL solutions to use large numbers of low-cost processors and why several NoSQL databases use actor-based
 systems such as Erlang. We also show how functional programming and resource-oriented programming can be combined to create
 scalable performance on distributed systems with a case study of the NetKernel system.

 Chapter 11 covers the topic of “Security: protecting data in your NoSQL systems.” We review the history and key security considerations that are common to NoSQL solutions. We provide examples of how a
 key-value store, a column family store, and a document store can implement a robust security model.

 In chapter 12, “Selecting the right NoSQL solution,” we walk through a formal process that organizations can use to select the right database
 for their business problem. We close with some final thoughts and information about how these technologies will impact business
 system selection.

Code conventions and downloads

 Source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. You can download the source code for the listings from the Manning website, www.manning.com/MakingSenseofNoSQL.

Author Online

 The purchase of Making Sense of NoSQL includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/MakingSenseofNoSQL. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 DAN MCCREARY is a data architecture consultant with a strong interest in standards. He has worked for organizations such as Bell Labs
 (integrated circuit design), the supercomputing industry (porting UNIX) and Steve Job’s NeXT Computer (software evangelism),
 as well as founded his own consulting firm. Dan started working with US federal data standards in 2002 and was active in the
 adoption of the National Information Exchange Model (NIEM). Dan started doing NoSQL development in 2006 when he was exposed
 to native XML databases for storing form data. He has served as an invited expert on the World Wide Web XForms standard group
 and is a cofounder of the NoSQL Now! Conference.

 ANN KELLY is a software consultant with Kelly McCreary & Associates. After spending much of her career working in the insurance industry
 developing software and managing projects, she became a NoSQL convert in 2011. Since then, she has worked with her customers
 to create NoSQL solutions that allow them to solve their business problems quickly and efficiently while providing them with
 the training to manage their own applications.

Part 1. Introduction

 In part 1 we introduce you to the topic of NoSQL. We define the term NoSQL, talk about why the NoSQL movement got started, look at the core topics, and review the business benefits of including NoSQL
 solutions in your organization.

 In chapter 1 we begin by defining NoSQL and talk about the business drivers and motivations behind the NoSQL movement. Chapter 2 expands on the foundation in chapter 1 and provides a review of the core concepts and important definitions associated with NoSQL.

 If you’re already familiar with the NoSQL movement, you may want to skim chapter 1. Chapter 2 contains core concepts and definitions associated with NoSQL. We encourage everyone to read chapter 2 to gain an understanding of these concepts, as they’ll be referenced often and applied throughout the book.

Chapter 1. NoSQL: It’s about making intelligent choices

 This chapter covers

 	What’s NoSQL?

 	NoSQL business drivers

 	NoSQL case studies

 The complexity for minimum component costs has increased at a rate of roughly a factor of two per year...Certainly over the
 short term this rate can be expected to continue, if not to increase.

 Gordon Moore, 1965

 ...Then you better start swimmin’...Or you’ll sink like a stone...For the times they are a-changin’.

 Bob Dylan

 In writing this book we have two goals: first, to describe NoSQL databases, and second, to show how NoSQL systems can be used
 as standalone solutions or to augment current SQL systems to solve business problems. Though we invite anyone who has an interest
 in NoSQL to use this as a guide, the information, examples, and case studies are targeted toward technical managers, solution architects, and data architects who are interested in learning
 about NoSQL.

 This material will help you objectively evaluate SQL and NoSQL database systems to see which business problems they solve.
 If you’re looking for a programming guide for a particular product, you’ve come to the wrong place. Here you’ll find information
 about the motivations behind NoSQL, as well as related terminology and concepts. There may be sections and chapters of this
 book that cover topics you already understand; feel free to skim or skip over them and focus on the unknown.

 Finally, we feel strongly about and focus on standards. The standards associated with SQL systems allow applications to be ported between databases using a common language. Unfortunately,
 NoSQL systems can’t yet make this claim. In time, NoSQL application vendors will pressure NoSQL database vendors to adopt
 a set of standards to make them as portable as SQL.

 In this chapter, we’ll begin by giving a definition of NoSQL. We’ll talk about the business drivers and motivations that make
 NoSQL so intriguing to and popular with organizations today. Finally, we’ll look at five case studies where organizations
 have successfully implemented NoSQL to solve a particular business problem.

1.1. What is NoSQL?

 One of the challenges with NoSQL is defining it. The term NoSQL is problematic since it doesn’t really describe the core themes in the NoSQL movement. The term originated from a group in
 the Bay Area who met regularly to talk about common concerns and issues surrounding scalable open source databases, and it
 stuck. Descriptive or not, it seems to be everywhere: in trade press, product descriptions, and conferences. We’ll use the
 term NoSQL in this book as a way of differentiating a system from a traditional relational database management system (RDBMS).

 For our purpose, we define NoSQL in the following way:

 NoSQL is a set of concepts that allows the rapid and efficient processing of data sets with a focus on performance, reliability,
 and agility.

 Seems like a broad definition, right? It doesn’t exclude SQL or RDBMS systems, right? That’s not a mistake. What’s important
 is that we identify the core themes behind NoSQL, what it is, and most importantly what it isn’t.

 So what is NoSQL?

 	
It’s more than rows in tables —NoSQL systems store and retrieve data from many formats: key-value stores, graph databases, column-family (Bigtable) stores,
 document stores, and even rows in tables.

 	
It’s free of joins —NoSQL systems allow you to extract your data using simple interfaces without joins.

 	
It’s schema-free —NoSQL systems allow you to drag-and-drop your data into a folder and then query it without creating an entity-relational
 model.

 	
It works on many processors —NoSQL systems allow you to store your database on multiple processors and maintain high-speed performance.

 	
It uses shared-nothing commodity computers —Most (but not all) NoSQL systems leverage low-cost commodity processors that have separate RAM and disk.

 	
It supports linear scalability —When you add more processors, you get a consistent increase in performance.

 	
It’s innovative —NoSQL offers options to a single way of storing, retrieving, and manipulating data. NoSQL supporters (also known as NoSQLers) have an inclusive attitude about NoSQL and recognize SQL solutions as viable options. To the NoSQL community, NoSQL means
 “Not only SQL.”

 Equally important is what NoSQL is not:

 	
It’s not about the SQL language —The definition of NoSQL isn’t an application that uses a language other than SQL. SQL as well as other query languages are
 used with NoSQL databases.

 	
It’s not only open source —Although many NoSQL systems have an open source model, commercial products use NOSQL concepts as well as open source initiatives.
 You can still have an innovative approach to problem solving with a commercial product.

 	
It’s not only big data —Many, but not all, NoSQL applications are driven by the inability of a current application to efficiently scale when big
 data is an issue. Though volume and velocity are important, NoSQL also focuses on variability and agility.

 	
It’s not about cloud computing —Many NoSQL systems reside in the cloud to take advantage of its ability to rapidly scale when the situation dictates. NoSQL
 systems can run in the cloud as well as in your corporate data center.

 	
It’s not about a clever use of RAM and SSD —Many NoSQL systems focus on the efficient use of RAM or solid state disks to increase performance. Though this is important,
 NoSQL systems can run on standard hardware.

 	
It’s not an elite group of products —NoSQL isn’t an exclusive club with a few products. There are no membership dues or tests required to join. To be considered
 a NoSQLer, you only need to convince others that you have innovative solutions to their business problems.

 NoSQL applications use a variety of data store types (databases). From the simple key-value store that associates a unique
 key with a value, to graph stores used to associate relationships, to document stores used for variable data, each NoSQL type
 of data store has unique attributes and uses as identified in table 1.1.

 Table 1.1. Types of NoSQL data stores—the four main categories of NoSQL systems, and sample products for each data store type

 	
 Type

 	
 Typical usage

 	
 Examples

 	
Key-value store—A simple data storage system that uses a key to access a value

 	

 	Image stores

 	Key-based filesystems

 	Object cache

 	Systems designed to scale

 	

 	Berkeley DB

 	Memcache

 	Redis

 	Riak

 	DynamoDB

 	
Column family store—A sparse matrix system that uses a row and a column as keys

 	

 	Web crawler results

 	Big data problems that can relax consistency rules

 	

 	Apache HBase

 	Apache Cassandra

 	Hypertable

 	Apache Accumulo

 	
Graph store—For relationship-intensive problems

 	

 	Social networks

 	Fraud detection

 	Relationship-heavy data

 	

 	Neo4j

 	AllegroGraph

 	Bigdata (RDF data store)

 	InfiniteGraph (Objectivity)

 	
Document store—Storing hierarchical data structures directly in the database

 	

 	High-variability data

 	Document search

 	Integration hubs

 	Web content management

 	Publishing

 	

 	MongoDB (10Gen)

 	CouchDB

 	Couchbase

 	MarkLogic

 	eXist-db

 	Berkeley DB XML

 NoSQL systems have unique characteristics and capabilities that can be used alone or in conjunction with your existing systems.
 Many organizations considering NoSQL systems do so to overcome common issues such as volume, velocity, variability, and agility,
 the business drivers behind the NoSQL movement.

1.2. NoSQL business drivers

 The scientist-philosopher Thomas Kuhn coined the term paradigm shift to identify a recurring process he observed in science, where innovative ideas came in bursts and impacted the world in nonlinear
 ways. We’ll use Kuhn’s concept of the paradigm shift as a way to think about and explain the NoSQL movement and the changes
 in thought patterns, architectures, and methods emerging today.

 Many organizations supporting single-CPU relational systems have come to a crossroads: the needs of their organizations are
 changing. Businesses have found value in rapidly capturing and analyzing large amounts of variable data, and making immediate
 changes in their businesses based on the information they receive.

 Figure 1.1 shows how the demands of volume, velocity, variability, and agility play a key role in the emergence of NoSQL solutions.
 As each of these drivers applies pressure to the single-processor relational model, its foundation becomes less stable and
 in time no longer meets the organization’s needs.

 Figure 1.1. In this figure, we see how the business drivers volume, velocity, variability, and agility apply pressure to the single CPU
 system, resulting in the cracks. Volume and velocity refer to the ability to handle large datasets that arrive quickly. Variability
 refers to how diverse data types don’t fit into structured tables, and agility refers to how quickly an organization responds
 to business change.

 [image:]

 1.2.1. Volume

 Without a doubt, the key factor pushing organizations to look at alternatives to their current RDBMSs is a need to query big
 data using clusters of commodity processors. Until around 2005, performance concerns were resolved by purchasing faster processors.
 In time, the ability to increase processing speed was no longer an option. As chip density increased, heat could no longer
 dissipate fast enough without chip overheating. This phenomenon, known as the power wall, forced systems designers to shift
 their focus from increasing speed on a single chip to using more processors working together. The need to scale out (also
 known as horizontal scaling), rather than scale up (faster processors), moved organizations from serial to parallel processing where data problems are
 split into separate paths and sent to separate processors to divide and conquer the work.

 1.2.2. Velocity

 Though big data problems are a consideration for many organizations moving away from RDBMSs, the ability of a single processor
 system to rapidly read and write data is also key. Many single-processor RDBMSs are unable to keep up with the demands of
 real-time inserts and online queries to the database made by public-facing websites. RDBMSs frequently index many columns
 of every new row, a process which decreases system performance. When single-processor RDBMSs are used as a back end to a web
 store front, the random bursts in web traffic slow down response for everyone, and tuning these systems can be costly when
 both high read and write throughput is desired.

 1.2.3. Variability

 Companies that want to capture and report on exception data struggle when attempting to use rigid database schema structures
 imposed by RDBMSs. For example, if a business unit wants to capture a few custom fields for a particular customer, all customer
 rows within the database need to store this information even though it doesn’t apply. Adding new columns to an RDBMS requires
 the system be shut down and ALTER TABLE commands to be run. When a database is large, this process can impact system availability,
 costing time and money.

 1.2.4. Agility

 The most complex part of building applications using RDBMSs is the process of putting data into and getting data out of the
 database. If your data has nested and repeated subgroups of data structures, you need to include an object-relational mapping
 layer. The responsibility of this layer is to generate the correct combination of INSERT, UPDATE, DELETE, and SELECT SQL statements
 to move object data to and from the RDBMS persistence layer. This process isn’t simple and is associated with the largest
 barrier to rapid change when developing new or modifying existing applications.

 Generally, object-relational mapping requires experienced software developers who are familiar with object-relational frameworks
 such as Java Hibernate (or NHibernate for .Net systems). Even with experienced staff, small change requests can cause slowdowns
 in development and testing schedules.

 You can see how velocity, volume, variability, and agility are the high-level drivers most frequently associated with the
 NoSQL movement. Now that you’re familiar with these drivers, you can look at your organization to see how NoSQL solutions
 might impact these drivers in a positive way to help your business meet the changing demands of today’s competitive marketplace.

1.3. NoSQL case studies

 Our economy is changing. Companies that want to remain competitive need to find new ways to attract and retain their customers.
 To do this, the technology and people who create it must support these efforts quickly and in a cost-effective way. New thoughts
 about how to implement solutions are moving away from traditional methods toward processes, procedures, and technologies that
 at times seem bleeding-edge.

 The following case studies demonstrate how business problems have successfully been solved faster, cheaper, and more effectively
 by thinking outside the box. Table 1.2 summarizes five case studies where NoSQL solutions were used to solve particular business problems. It presents the problems,
 the business drivers, and the ultimate findings. As you view subsequent sections, you’ll begin to see a common theme emerge:
 some business problems require new thinking and technology to provide the best solution.

 Table 1.2. The key case studies associated with the NoSQL movement—the name of the case study/standard, the business drivers, and the
 results (findings) of the selected solutions

 	
 Case study/standard

 	
 Driver

 	
 Finding

 	LiveJournal’s Memcache
 	Need to increase performance of database queries.
 	By using hashing and caching, data in RAM can be shared. This cuts down the number of read requests sent to the database,
 increasing performance.

 	Google’s MapReduce
 	Need to index billions of web pages for search using low-cost hardware.
 	By using parallel processing, indexing billions of web pages can be done quickly with a large number of commodity processors.

 	Google’s Bigtable
 	Need to flexibly store tabular data in a distributed system.
 	By using a sparse matrix approach, users can think of all data as being stored in a single table with billions of rows and
 millions of columns without the need for up-front data modeling.

 	Amazon’s Dynamo
 	Need to accept a web order 24 hours a day, 7 days a week.
 	A key-value store with a simple interface can be replicated even when there are large volumes of data to be processed.

 	MarkLogic
 	Need to query large collections of XML documents stored on commodity hardware using standard query languages.
 	By distributing queries to commodity servers that contain indexes of XML documents, each server can be responsible for processing
 data in its own local disk and returning the results to a query server.

 1.3.1. Case study: LiveJournal’s Memcache

 Engineers working on the blogging system LiveJournal started to look at how their systems were using their most precious resource:
 the RAM in each web server. Live-Journal had a problem. Their website was so popular that the number of visitors using the
 site continued to increase on a daily basis. The only way they could keep up with demand was to continue to add more web servers,
 each with its own separate RAM.

 To improve performance, the LiveJournal engineers found ways to keep the results of the most frequently used database queries
 in RAM, avoiding the expensive cost of rerunning the same SQL queries on their database. But each web server had its own copy
 of the query in RAM; there was no way for any web server to know that the server next to it in the rack already had a copy
 of the query sitting in RAM.

 So the engineers at LiveJournal created a simple way to create a distinct “signature” of every SQL query. This signature or
 hash was a short string that represented a SQL SELECT statement. By sending a small message between web servers, any web server
 could ask the other servers if they had a copy of the SQL result already executed. If one did, it would return the results
 of the query and avoid an expensive round trip to the already overwhelmed SQL database. They called their new system Memcache
 because it managed RAM memory cache.

 Many other software engineers had come across this problem in the past. The concept of large pools of shared-memory servers
 wasn’t new. What was different this time was that the engineers for LiveJournal went one step further. They not only made
 this system work (and work well), they shared their software using an open source license, and they also standardized the
 communications protocol between the web front ends (called the memcached protocol). Now anyone who wanted to keep their database from getting overwhelmed with repetitive queries could use their front end
 tools.

 1.3.2. Case study: Google’s MapReduce—use commodity hardware to create search indexes

 One of the most influential case studies in the NoSQL movement is the Google MapReduce system. In this paper, Google shared
 their process for transforming large volumes of web data content into search indexes using low-cost commodity CPUs.

 Though sharing of this information was significant, the concepts of map and reduce weren’t new. Map and reduce functions are simply names for two stages of a data transformation, as described in figure 1.2.

 Figure 1.2. The map and reduce functions are ways of partitioning large datasets into smaller chunks that can be transformed on isolated
 and independent transformation systems. The key is isolating each function so that it can be scaled onto many servers.

 [image:]

 The initial stages of the transformation are called the map operation. They’re responsible for data extraction, transformation, and filtering of data. The results of the map operation are then
 sent to a second layer: the reduce function. The reduce function is where the results are sorted, combined, and summarized
 to produce the final result.

 The core concepts behind the map and reduce functions are based on solid computer science work that dates back to the 1950s
 when programmers at MIT implemented these functions in the influential LISP system. LISP was different than other programming
 languages because it emphasized functions that transformed isolated lists of data. This focus is now the basis for many modern
 functional programming languages that have desirable properties on distributed systems.

 Google extended the map and reduce functions to reliably execute on billions of web pages on hundreds or thousands of low-cost
 commodity CPUs. Google made map and reduce work reliably on large volumes of data and did it at a low cost. It was Google’s
 use of MapReduce that encouraged others to take another look at the power of functional programming and the ability of functional
 programming systems to scale over thousands of low-cost CPUs. Software packages such as Hadoop have closely modeled these
 functions.

 The use of MapReduce inspired engineers from Yahoo! and other organizations to create open source versions of Google’s MapReduce.
 It fostered a growing awareness of the limitations of traditional procedural programming and encouraged others to use functional
 programming systems.

 1.3.3. Case study: Google’s Bigtable—a table with a billion rows and a million columns

 Google also influenced many software developers when they announced their Bigtable system white paper titled A Distributed Storage System for Structured Data. The motivation behind Bigtable was the need to store results from the web crawlers that extract HTML pages, images, sounds,
 videos, and other media from the internet. The resulting dataset was so large that it couldn’t fit into a single relational
 database, so Google built their own storage system. Their fundamental goal was to build a system that would easily scale as
 their data increased without forcing them to purchase expensive hardware. The solution was neither a full relational database
 nor a filesystem, but what they called a “distributed storage system” that worked with structured data.

 By all accounts, the Bigtable project was extremely successful. It gave Google developers a single tabular view of the data
 by creating one large table that stored all the data they needed. In addition, they created a system that allowed the hardware
 to be located in any data center, anywhere in the world, and created an environment where developers didn’t need to worry
 about the physical location of the data they manipulated.

 1.3.4. Case study: Amazon’s Dynamo—accept an order 24 hours a day, 7 days a week

 Google’s work focused on ways to make distributed batch processing and reporting easier, but wasn’t intended to support the
 need for highly scalable web storefronts that ran 24/7. This development came from Amazon. Amazon published another significant
 NoSQL paper: Amazon’s 2007 Dynamo: A Highly Available Key-Value Store. The business motivation behind Dynamo was Amazon’s need to create a highly reliable web storefront that supported transactions
 from around the world 24 hours a day, 7 days a week, without interruption.

 Traditional brick-and-mortar retailers that operate in a few locations have the luxury of having their cash registers and
 point-of-sale equipment operating only during business hours. When not open for business, they run daily reports, and perform
 backups and software upgrades. The Amazon model is different. Not only are their customers from all corners of the world,
 but they shop at all hours of the day, every day. Any downtime in the purchasing cycle could result in the loss of millions
 of dollars. Amazon’s systems need to be iron-clad reliable and scalable without a loss in service.

