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   preface
 

  
 

   

   Using a large language model for the first time is an almost magical experience. I still remember my first chat with GPT-3 (nowadays an outdated model). For the first time, it seemed to me that my computer actually understood me and could react appropriately to a wide range of complex inputs. What’s more, I gave it various tasks, ranging from text analysis to coding, and the model was able to solve them based on my instructions alone! I was used to a world in which neural networks had to be trained for highly specialized tasks using large amounts of task-specific training data that had to be labeled tediously by hand, so this was an absolute game-changer that opened a world of new and exciting possibilities.
 

  
 

   

   I was hooked, and since then I have dedicated a large portion of my professional career to exploiting the amazing capabilities of language models. Coming from a data-analysis background, it was natural for me to look at language models from a data-analysis perspective. How can we use language models to make the most of our data sets? Since I started using language models, a big change has been the types of data to which language models can be applied. Starting with text analysis, modern models have expanded their scope to multimodal inputs including images, audio, video, and text. This makes them an invaluable tool for any kind of data science, allowing users to build complex analysis pipelines with just a few lines of Python code along with instructions for the model in natural language describing the task to solve.
 

  
 

   

   In my work, I regularly meet data scientists and data workers who could benefit tremendously from the possibilities offered by language models. However, getting into this new area can be challenging.
 

  
 

   

   I had to rely on blog posts and online tutorials to piece together the information I needed to use language models for various data-analysis tasks. This is the book I wish I’d had when I started my journey. I hope you will find the book useful and enjoyable!
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   about this book
 

  
 

   

   This book was written to help developers build applications for multimodal data analysis using state-of-the-art language models. It introduces language models and the most important libraries for using them in Python. Via a series of mini projects, it showcases how to use language models to analyze text, tabular data, graph data, images, videos, and audio files. By discussing topics such as prompt engineering, fine-tuning, and advanced software frameworks, the book will enable you to quickly build complex data-analysis applications with language models that are effective and cost-efficient.
 

  
 

   

    Who should read this book? 
 

  
 

   

   Whether you are a software developer, data scientist, or hobbyist interested in data analysis, this book is for you if you want to exploit the powerful abilities of large language models to perform various types of data analysis. Prior experience with language models is unnecessary, as the book covers all the basics. However, experience with Python is helpful, at least at a beginner’s level, as this book uses Python to interact with language models.
 

  
 

   

    How this book is organized: A road map 
 

  
 

   

   This book has 10 chapters in three parts. Part 1 introduces language models and gives a first impression of their benefits for data analysis:
 

  
 

   

   	Chapter 1 introduces language models and explains how they can be used for data analysis.
 

   	Chapter 2 guides you through a chat with ChatGPT, illustrating the analysis of text and tabular data in the ChatGPT web interface.
 

  
 

   

   Part 2 introduces OpenAI’s Python library and shows how to analyze various types of data using language models directly from Python:
 

  
 

   

   	Chapter 3 introduces OpenAI’s Python library, enabling users to send requests to language models and configure their behavior in various ways.
 

   	Chapter 4 shows how to use language models to process text data: for example, to classify text documents or extract specific information.
 

   	Chapter 5 demonstrates how to build natural language query interfaces using language models, translating questions in natural language to formal queries referring to data tables or graphs.
 

   	Chapter 6 describes how to use multimodal language models to process images or video data for tasks such as object detection, question-answering, and captioning.
 

   	Chapter 7 illustrates multiple use cases for language models in analyzing audio data: for instance, transcribing audio recordings, realizing voice query interfaces, or translating spoken input to other languages.
 

  
 

   

   Part 3 covers advanced topics, enabling you to optimize your choice of models, configurations, and frameworks:
 

  
 

   

   	Chapter 8 discusses different providers of large language models and gives a short overview of the models they offer and the corresponding Python libraries.
 

   	Chapter 9 demonstrates methods that can be used to minimize processing fees and maximize output quality when working with language models, including optimizing model choices and parameter settings and fine-tuning.
 

   	Chapter 10 discusses several software frameworks, particularly LangChain and LlamaIndex, that can be used to build complex applications on top of large language models with lower implementation overheads.
 

  
 

   

   It is recommended that you start by reading chapter 1, which introduces important terms and concepts. You can skip chapter 2 if you have already used language models via web interfaces. Most of the remaining chapters are based on OpenAI’s Python library. It is therefore a good idea to read chapter 3 before diving into any later chapters. Chapters 4 to 7 focus on different data types and can be read in any order. Similarly, chapters 8 to 10 are independent, and you can study them in any order.
 

  
 

   

    About the code 
 

  
 

   

   This book contains various code samples in numbered and unnumbered listings. All code in numbered listings is available for download from the book’s companion website at www.dataanalysiswithllms.com. Code, as well as suitable test data, is categorized by book chapter. Code files are named using the number of the corresponding listing in the book. The entire code and data repository can also be downloaded from the publisher’s website at www.manning.com/books/data-analysis-with-llms.
 

  
 

   

   The source code is formatted in a fixed-width font like this to separate it from ordinary text. In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.
 

  
 

   

    liveBook discussion forum 
 

  
 

   

   Purchase of Data Analysis with LLMs includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/data-analysis-with-llms/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.
 

  
 

   

   Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
 

  
 

 

   

   about the author
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    Part 1  Introducing language models 
 

  
 

   

   So what are language models, exactly? And how can we use them for data analysis? This part of the book answers both those questions.
 

  
 

   

   In chapter 1, we discuss the principles underlying language models and what makes them special. We also discuss all the different ways in which language models can be used for data analysis, covering options to use them directly on data as well as the possibility of using them as interfaces to more specialized data-analysis tools.
 

  
 

   

   In chapter 2, we have a “chat” with ChatGPT: that is, we interact with a popular language model by OpenAI. We witness the flexibility of ChatGPT when performing a variety of tasks on text, ranging from text classification to extracting specific pieces of information from text based on a concise task description. We also see that ChatGPT does well when translating questions about data, formulated in natural language, to formal query languages such as SQL.
 

  
 

   

   After reading this part, you should have a good understanding of what language models are and how you can use them for data analysis.
 

  


 

   

    1  Analyzing data with large language models 
 

  
 

   

   This chapter covers
 

    

    	An introduction to language models
 

    	Data analysis with language models
 

    	Using language models efficiently
 

   
 

  
 

   

   Language models are powerful neural networks that can be used for various data-processing tasks. This chapter introduces language models and shows how and why to use them for data analysis.
 

  
 

   

   
1.1 What can language models do?
 

  
 

   

   We will start this section with a little poem and an associated picture (figure 1.1) connecting the two main topics of this book, data analysis and large language models:
 

  
 

   

   In the silent hum of the server’s light,
 Data flows through the veins of night.
 Rows and columns, a structured sea,
 With stories hidden, waiting to be free.
 

  
 

   

   Each number sings of pasts untold,
 Trends and truths in patterns bold.
 And here arrives a curious friend,
 A language model, eager to comprehend.
 

  
 

   

   It listens close, with circuits keen,
 To turn raw facts into insight unseen.
 From scatter plots to sentences clear,
 Data’s language is all it can hear.
 

  
 

   

   The figures dance, the texts reply,
 As code meets meaning under AI’s eye.
 They merge their worlds, a seamless blend,
 Where logic and language have no end.
 

  
 

   

   For in this bond, both deep and wide,
 Data’s essence finds a guide.
 And in the neural net’s embrace,
 Data analysis gains a poetic grace.
 

  
 

    

   [image: figure] 

   
Figure 1.1 Illustration by GPT-4o, connecting the topics “data analysis” and “large language models”


  
 

   

   The poem and the picture were generated by GPT-4o (“o” for “omni”), a language model by OpenAI that processes multimodal data, based solely on the instructions “Write a poem connecting data analysis and large language models!” followed by “Now draw a corresponding picture!” Both the picture and the poem seem to relate to the requested topics. Although the poem may not win any literature awards, its text is coherent, it is structured as we would expect from a poem, and it rhymes! Perhaps most importantly, all it took to generate the poem and the picture were short instructions expressed in natural language. Whereas prior machine learning methods relied on large amounts of task-specific training data, this requirement is now obsolete. And, of course, the task is specific enough to convince us that the language model is not copying existing solutions from the web and generates original content instead.
 

  
 

   

   Writing poems and generating pictures are only two of many possible use cases (albeit possibly the most entertaining ones). Models like GPT-4o can solve various tasks, such as summarizing text documents, writing program code, and answering questions about pictures. In this book, you will learn how to use language models to accomplish a plethora of data-analysis tasks ranging from extracting information from large collections of text documents to writing code for data analysis. After reading this book, you will be able to quickly build data-analysis pipelines that are based on language models and extract useful insights from a variety of data formats.
 

  
 

   

    

    What does GPT stand for?
 

   
 

    

     GPT stands for Generative Pretrained Transformer.
 

   
 

    

    Generative: GPT is a large neural network that generates content (e.g., text or code) in response to input text. This fact distinguishes it from other neural networks that, for example, can only classify input text into a fixed set of predefined categories.
 

   
 

    

    Pretrained: GPT is pretrained on large amounts of data, solving generic tasks such as predicting the next word in text. Typically, the pretraining task is different from the tasks it is primarily used for. However, pretraining helps it learn more specialized tasks faster.
 

   
 

    

    The Transformer is a new neural network architecture that is particularly useful for learning tasks that involve variable-length input or output (such as text documents). It is currently the dominant architecture for generative AI approaches.
 

   
 

  
 

   

   
1.2 What you will learn
 

  
 

   

   This book is about using language models for data analysis. We can categorize data-analysis tasks by the type of data we’re analyzing and by the type of analysis. This book covers a wide range of data types and analysis tasks.
 

  
 

   

   We focus on multimodal data analysis: that is, we use language models to analyze various types of data. More precisely, we cover the following data types in this book:
 

  
 

   

   	
Text—Think of emails, newspaper articles, and comments on a web forum. Text data is ubiquitous and contains valuable information. In this book, we will see how to use language models to automatically classify text documents based on their content, how to extract specific pieces of information from text, and how to group text documents about related topics.
 

   	
Images—A picture is worth a thousand words, as they say. Images help us to understand complex concepts, capture fond memories of our last holiday, and illustrate current events. Language models can easily extract information from pictures. For instance, we will use language models to answer arbitrary questions about images or identify people who appear in pictures based on a database of profiles.
 

   	
Videos—A large percentage of the data on the web is video data. Even on your smartphone, video data is probably taking up a significant part of your phone’s total storage capacity. In this book, we will see that language models can be applied to analyze videos as well: for instance, to generate suitable video titles based on the video content.
 

   	
Audio—To many people, speech is the most natural form of communication. Audio recordings capture speeches and conversations and complement videos. In this book, we will see how to transcribe audio recordings, how to translate spoken language into other languages, and how to build a query interface that answers spoken questions about data.
 

   	
Tables—Imagine a data set containing information about customers. It is natural to represent that data as a table, featuring columns for the customer’s address, phone number, and credit card information, while different rows store information about different customers. In this book, we will see how to use language models to write code that performs complex operations on such tabular data.
 

   	
Graphs—From social networks to metro networks, many data sets are conveniently represented as graphs, modeling entities (such as people or metro stations) and their connections (representing friendships or metro connections). We will see how we can use language models to generate code that analyzes large graphs in various ways.
 

  
 

   

    

    Structured vs. unstructured data
 

   
 

    

     Data types are often categorized into two groups: structured and unstructured data. Structured data has a structure that facilitates efficient data processing via specialized tools. Examples of structured data include tables and graph data. For such data, we typically use the language model as an interface to specialized data-processing tools. Unstructured data, including text, images, videos, and audio files, does not have a structure that can be easily exploited for efficient processing. So, for unstructured data, we typically need to use the language model directly on the data.
 

   
 

  
 

   

   For most of this book, we will use OpenAI models via OpenAI’s Python library. Toward the end of the book, we will also discuss language models from other providers. As libraries from different providers tend to offer similar functionality, getting used to other models shouldn’t take long.
 

  
 

   

   Typically, using language models incurs monetary fees proportional to the amount of data being processed. The fees depend on the language model used, the model configuration, and the way in which the input to the language model is formulated. In this book, not only will you learn to solve various data-analysis tasks via language models, but we will discuss how to do so with minimal costs.
 

  
 

   

   
1.3 How to use language models
 

  
 

   

   State-of-the-art language models are used via a method called prompting. We discuss prompting next, followed by the interfaces we can use for prompting.
 

  
 

   

   
1.3.1 Prompting
 

  
 

   

   Until a few years ago, machine learning models were trained for one specific task. For instance, we might have a model trained to classify the text of a review as either “positive” (i.e., the review author is satisfied) or “negative” (i.e., the author is dissatisfied). To use that model, we only need the review text as input. There’s no need to describe the task (classifying the review) as part of the input because the model has been specialized to do that task and that task only.
 

  
 

   

   This has changed in recent years with the emergence of large language models such as GPT. Such models are no longer trained for specific tasks. Instead, they are intended to serve as universal task solvers that can, in principle, solve any task the user desires. When using such a model, it is up to the user to describe to the model in precise terms what the model should do.
 

  
 

   

   The prompt is the input to the language model. The prompt can contain multimodal data: for example, text and images. At a minimum, to get the language model to solve a specific task, the prompt should contain a text instructing the model on what to do. Beyond those instructions, the prompt should contain all relevant context. For instance, if the instructions ask the model to determine whether a car is visible in a picture, the prompt must also contain the picture. The instructions in the prompt should be specific and clarify, for instance, the expected output format. For example, if we want the model to output “1” if a car is present and “0” otherwise, enabling us to easily add the numbers generated by the model to count cars, we need to explicitly clarify that in the prompt (otherwise, the model might answer “Yes, there is a car in the picture,” which makes it harder to count in the post-processing stage). Besides instructions and context, the prompt may contain examples to help the language model understand the task.
 

  
 

   

    

    Few-shot vs. zero-shot learning
 

   
 

    

     We can help the language model better understand a task by providing examples as part of the prompt. Those examples are similar to the task we want the model to solve and specify the input and desired output. This approach is sometimes called few-shot learning, as the model learns the task based on a few samples. On the other hand, we can use zero-shot learning, meaning the model learns the task without any (zero) samples based only on the task description.
 

   
 

  
 

   

   
1.3.2 Example prompt
 

  
 

   

   Let’s illustrate prompts with an example. A classical use case for language models is analyzing product reviews to determine the sentiment underlying the review: whether the review is positive (i.e., the customer recommends the product) or negative (i.e., the customer is unhappy with the product). Assume that we have a review to classify as positive or negative. If we have a specialized model trained for review classification for the specific product category we’re interested in, all it takes is to send our review to that model. As the model is specialized to the target problem, it already “knows” what to do with the input and the required output format. However, because we use large language models, we have to provide a bit more context along with the review.
 

  
 

   

   Our prompt should contain all relevant information for the model, describing the task to solve and all context. In the example scenario, we probably want to include the following pieces of information:
 

  
 

   

   	
Review text—The text of the review we want to classify.
 

   	
Task description—A description of the task to solve.
 

   	
Output formats—What is the required output format?
 

   	
Relevant context—For example, are we reviewing laptops or lawn mowers?
 

  
 

   

   Optionally, we can include a few example reviews with their associated correct classification. This may help the model classify reviews more accurately.
 

  
 

   

   The following prompt includes all the relevant pieces of information for an example review.
 

  
 

   

   
Listing 1.1 Prompt for classifying a laptop review
 

    

    We are considering product reviews for laptops.  #1

For each review, output "satisfied" or "dissatisfied", 

depending on whether the customer is satisfied 

with the product or not.  #2

Examples:

This is a great laptop! I recommend everyone to buy it! 

satisfied  #3

This laptop did not work. I had to return it.

dissatisfied  #4

The screen is too small and it takes too long to start.  #5
 

    

     #1 Context

     
#2 Task description and output format

     
#3 First example

     
#4 Second example

     
#5 Review

     


    
 

   
 

  
 

   

   This prompt starts with a description of relevant context (1). Customers are reviewing laptops, so, for example, if they label items as “heavy,” that’s probably a bad sign (unlike analyzing reviews for, let’s say, steamrollers). The task description (2) tells the model what to do with the reviews and specifies the desired output format (output “satisfied” or “dissatisfied”) as well. Next, we have a list of examples. Strictly speaking, adding examples in the prompt may not be necessary for this simple task. However, adding examples in the prompt can sometimes increase the accuracy of the output. Here, we add two example reviews (3 and 4), together with the desired output for those reviews. Finally, we add the review (5) that we want the model to classify. Given the preceding prompt, state-of-the-art language models are likely to output “dissatisfied” when sent this prompt as input. That, of course, is indeed the desired output.
 

  
 

   

   
1.3.3 Interfaces
 

  
 

   

   So how can we send prompts to a language model? Providers such as OpenAI typically offer web interfaces, enabling users to send single prompts to their language models. In chapter 2, we will use OpenAI’s web interface to send prompts instructing the model to analyze text or to write code for data processing.
 

  
 

   

   The web interface works well as long as we send only a few prompts. However, analyzing a large collection of text documents would require sending many prompts (one per text document). Clearly, we don’t want to enter thousands of prompts by hand. This is where OpenAI’s Python library comes in handy. Using this library enables us to send prompts to OpenAI’s models directly from Python and to process the model’s answer in Python. This enables us to automate data loading, prompt generation, and any kind of post-processing we need to do on the model’s answers. It also allows us to integrate language models with other useful tools: for example, to use the language model to write code for data processing and immediately execute that code using other tools.
 

  
 

   

   We will review OpenAI’s Python library in chapter 3. We will use this library throughout most of this book. Other providers of language models, including Google, Anthropic, and Cohere, offer similar Python libraries to send prompts to their language models. We will discuss those libraries in more detail in chapter 8.
 

  
 

   

   
1.4 Using language models for data analysis
 

  
 

   

   So how do we use language models specifically for data analysis? This book considers two possibilities. First, we can use the language model directly on the data. This means the language model receives the data we want to analyze as part of the prompt (along with instructions on which analysis to perform). Second, we can use the language model indirectly to analyze data. Here, the language model does not directly “see” the data: that is, we do not include the data in its entirety in the prompt. Instead, we use the language model to write code for data processing, executed in specialized data-processing tools. Which approach to use depends on the data properties and the task. Let’s have a closer look at both methods.
 

  
 

   

   
1.4.1 Using language models directly on data
 

  
 

   

   The most natural approach to analyzing data with language models is to put the data directly into the prompt. This is what we did in section 1.3.2: to analyze a review, we include the review text in the prompt, along with instructions on what to do with the text. We can use the same approach for other types of data besides text. For example, when using multimodal models such as GPT-4o, we can simply include the pictures to analyze, together with analysis instructions, in the prompt.
 

  
 

   

   Typically, we do not want to analyze a single picture or review but a whole collection of them. For instance, assume that we want to classify an entire collection of reviews, determining for each of them whether the review is positive or negative. In such cases, we generally take the following approach, implemented in Python using OpenAI’s Python library (or an equivalent library allowing users to send prompts to other providers’ models). We load the reviews to classify and generate one prompt for each review. Then, we send those prompts to the language model, extract the classification result from the answer generated by the model for each review, and save the results in a file on disk.
 

  
 

   

   In this scenario, we want to solve the same task (review classification) for multiple text documents (i.e., reviews). As you can imagine, the prompts for different reviews should therefore bear some similarity. Although the text of the review to classify changes each time, the task description and other parts of the prompt remain the same.
 

  
 

   

   To generate prompts in Python, we use a prompt template. A prompt template specifies a prompt associated with a specific task to solve. In our example, we would use a prompt template to classify reviews as positive or negative. A prompt template contains placeholders to represent parts of the prompt that change depending on the input data. Considering our prompt template for review classification, we should probably include a placeholder for the review text. Then, when generating prompts in Python, we replace that placeholder with the text of the current review to classify.
 

  
 

   

   For instance, we can use the following prompt template to classify reviews.
 

  
 

   

   
Listing 1.2 Prompt template for classifying laptop reviews

 

    

    We are considering product reviews for laptops.  #1

For each review, output "satisfied" or "dissatisfied", 

depending on whether the customer is satisfied 

with the product or not.  #2

Examples:

This is a great laptop! I recommend everyone to buy it! 

satisfied  #3

This laptop did not work. I had to return it.

dissatisfied  #4

[ReviewText]  #5
 

    

     #1 Context

     
#2 Task description and output format

     
#3 First example

     
#4 Second example

     
#5 Placeholder for review text

     


    
 

   
 

  
 

   

   This prompt template generalizes the prompt we saw for classifying one specific review (have a look at listing 1.1 in section 1.3.2). Again, we provide context (the fact that we’re classifying laptop reviews) (1) and instructions describing the task to solve, as well as the output format (2). We also provide a few example reviews with associated classification results (3 and 4). Although the review to classify changes, depending on the input, we do not need to change the example reviews. Those reviews merely illustrate what task the language model needs to solve. Finally (5), we have a placeholder for the review text. When iterating over different reviews, we generate a prompt for each of them by substituting the review text for this placeholder.
 

  
 

   

   The example prompt template has only a single placeholder. In general, several parts of the prompt may change depending on the input data. If so, we introduce placeholders for each of those parts and substitute all of them to generate prompts.
 

  
 

   

   Figure 1.2 summarizes how we use prompt templates when analyzing data directly with language models. For each data item (e.g., a review to classify), we substitute for placeholders in the prompt template to generate a prompt (we can also say that we instantiate a prompt). We then send this prompt to the language model to solve the data-analysis task we’re interested in.
 

  
 

    

   [image: figure] 

   
Figure 1.2 Using language models directly for data analysis. A prompt template describes the analysis task. It contains placeholders that are replaced with data to analyze. After substituting for the placeholders, the resulting prompt is submitted to the language model to produce output.


  
 

   

   
1.4.2 Data analysis via external tools
 

  
 

   

   Putting data directly into the prompt is not always the most efficient approach. For some types of data, specialized tools are available that process certain operations on that data very efficiently. In those cases, it is often more efficient to use the language model to write code for data processing (rather than analyzing the data directly). The code generated by the language model can then be executed by the specialized tool.
 

  
 

   

   We will apply this approach to structured data. For structured data such as data tables and graphs, specialized data-processing tools are available that support a wide range of analysis operations. Those operations, such as filtering and aggregating data, can be performed very efficiently on structured data. Even if it was possible to perform the same operations reliably with language models (which is not the case), we would not want to do it because the fees we pay to providers like OpenAI are proportional to the size of the input data. Processing large structured data sets (such as tables with millions of rows) using language models is prohibitively expensive. In the following chapters, we discuss the following types of tools for structured data processing:
 

  
 

   

   	
Relational database management system—Stores and processes relational data: that is, collections of data tables. Most relational database management systems support SQL, the Structured Query Language. We will use language models to translate questions about data to queries in SQL.
 

   	
Graph data management system—Handles graph data representing entities and the relationships between them. Different graph data management systems support different query languages. In chapter 5, we see how to use language models to translate questions about data into queries in the Cypher language, supported by the Neo4j graph data management system.
 

  
 

   

   For instance, let’s assume we want to enable lay users ompt template for translating questto analyze a relational database: that is, a collection of data tables. Perhaps a table contains the results of a survey, and we want to let users aggregate answers from different groups of respondents. The survey results are stored in a relational database management system (the most suitable type of tool for this data type). Using language models, we can enable users to ask questions about the data in natural language (that is, in plain English). The language model takes care of translating those questions into formal queries. More precisely, given that the data is stored in a relational database management system, we want to translate those questions into SQL queries.
 

  
 

   

   Again, we introduce a prompt template for the task we’re interested in. Here, we’re interested in text-to-SQL translation, meaning we want to use the language model to translate questions in natural language to SQL queries. Although the task (text-to-SQL translation) and the data (the database containing survey results) remain fixed, the user’s questions will change over time. Therefore, we introduce a placeholder for the user question in our prompt template. In principle, the following prompt template should enable us to translate questions on our survey data into SQL queries.
 

  
 

   

   
Listing 1.3 Prompt template for translating questions to SQL

 

    

    Database:  #1

The database contains the results of a survey, stored

in a table called "SurveyResults" with the following

columns: ...

Question:  #2

[Question]

Translate the question to SQL!  #3
 

    

     #1 Description of database

     
#2 Question to translate

     
#3 Task description

     


    
 

   
 

  
 

   

   First the prompt describes the structure of our data (1). This is required to enable the system to write correct queries (e.g., queries that refer to the correct names of tables and columns in those tables). The description in the example template is abbreviated. We will see how to accurately describe the structure of a relational database in later chapters. Next, the prompt template contains the question to translate (2). This is a placeholder to enable users to ask different questions using the same prompt template. Finally, the prompt template contains a (concise) task description (3): we want to translate questions to SQL queries!
 

  
 

   

   Figure 1.3 summarizes the process for text-to-SQL translation. Given a corresponding prompt template, we substitute the user question for the placeholder, translate the question to an SQL query via the language model, and finally execute the query in a relational database management system. The query result is shown to the user.
 

  
 

    

   [image: figure] 

   
Figure 1.3 Using language models indirectly to build a natural language interface for tabular data. The prompt template contains placeholders for questions about data. After substituting for placeholders, the resulting prompt is used as input for the language model. The model translates the question into an SQL query that is executed via a relational database management system.


  
 

   

   
1.5 Minimizing costs
 

  
 

   

   When processing data with language models, we typically pay fees to a model provider. The larger the amount of data we process, the higher the fees. Before analyzing large amounts of data, we want to make sure we’re not overpaying. For instance, using larger language models (the neural network implementing the language model has more “neurons,” so to speak) is often more expensive, but for complex tasks, it may pay off with higher-quality results. But if the large model is not needed to solve our current task well, we should save the money and use a smaller model. Fortunately, there are quite a few ways in which we can optimize the tradeoff between processing costs and result quality. We discuss the different options next. All of them are covered in more detail in later book chapters.
 

  
 

   

   
1.5.1 Picking the best model
 

  
 

   

   OpenAI offers many different versions of the GPT model, ranging from relatively small models to giant models like GPT-4. At the time of writing, using GPT-4 is over 100 times more expensive, per input token, than using the cheapest version.
 

  
 

   

    

    What are tokens?
 

   
 

    

     The processing fees for language models like GPT-4 are proportional to the number of tokens read and generated by the model. A token is the atomic unit at which the language model represents text internally. Typically, one token corresponds to approximately four characters.
 

   
 

  
 

   

   Given those price differences, it is clearly a good idea to think hard about which specific model satisfies our needs. For instance, for a simple task like review classification, we probably don’t need to use OpenAI’s most expensive model. But if we want to use the model to write complex code for data processing, using the most expensive version may be worth it.
 

  
 

   

   Of course, we don’t need to restrict ourselves to models offered by OpenAI. Language models are offered by many providers, including Google, Anthropic, and Cohere. In principle, we might even choose to host our own model, using models that are publicly available: for example, on the Hugging Face platform. Some of those models are generic (similar to OpenAI’s GPT models), whereas others are trained for more specific tasks. If we happen to be interested in tasks for which specialized models exist, we may want to use one of them. We discuss models from other providers in more detail in chapter 8.
 

  
 

   

   Picking the right model for your needs is not an easy task. As a first step, you might want to look at benchmarks such as Stanford’s Holistic Evaluation of Language Models (HELM, https://crfm.stanford.edu/helm/; see figure 1.4). This benchmark compares the quality of results produced by different language models on different types of tasks. Ultimately, you may have to try a few models on your task and a data sample to ensure that you choose the optimal one. In chapter 9, we will see how to benchmark different models systematically for an example task.
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Figure 1.4 Holistic Evaluation of Language Models (HELM): comparing language models offered by different providers according to various metrics


  
 

   

   
1.5.2 Optimally configuring models
 

  
 

   

   The OpenAI Python library offers a variety of tuning parameters to influence model behavior. For instance, we can influence the probability that certain words appear in the output of a model. This can be useful, for instance, when classifying reviews. If the output of the model should be one of only a few possible choices (such as “positive” and “negative”), it makes sense to restrict possible outputs to those choices. That way, we avoid cases in which the model generates output that does not correspond to any of the class names. To take another example, we can fine-tune the criteria used to decide when the model stops generating output. For instance, if we know that the output should consist of a single token (e.g., the name of a class when classifying reviews), we can explicitly limit the output length to a single token. This prevents the model from generating more output than necessary (saving us money in the process, as costs depend on the amount of output generated).
 

  
 

   

   We will discuss those and many other tuning parameters in more detail in chapter 3. In chapter 9, we will see how to use those tuning parameters to get better performance from our language models.
 

  
 

   

   Another option to configure models is to fine-tune them. This means, essentially, that we’re creating our own variant of an existing model. By training the model with a small amount of task-specific training data, we get a model that potentially performs better at our task than the vanilla version. For instance, if we want to classify reviews, we might train the model with a few hundred example reviews and associated classification results. This may enable us to use a much smaller and cheaper model, fine-tuned for our specific task, that performs as well on this task as a much larger model that has not been fine-tuned.
 

  
 

   

   Of course, fine-tuning also costs money, and it may not be immediately clear whether it is worth it for a specific task. We discuss fine-tuning and the associated tradeoffs in more detail in chapter 9.
 

  
 

   

   
1.5.3 Prompt engineering
 

  
 

   

   The prompt template can significantly affect the quality of the results produced by the language model. A good prompt template clearly specifies the task to solve and provides all relevant context. We will see how to map various tasks to suitable prompt templates throughout the following chapters, covering a variety of data types. After working through those examples, you should be able to design your own prompt templates for novel tasks, following the same principles.
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