

 [image: manning]

 Write Powerful Rust Macros

 Sam Van Overmeire

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road        

   PO Box 761

   Shelter Island, NY 11964 

   Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Karen Miller
 Technical editor: Andrew Alexander Lilley Brinker Review editor: Kishor Rit
 Production editor: Andy Marinkovich
 Copy editor: Kari Lucke
 Proofreader: Katie Tennant
 Technical proofreader: Geert Van Laethem
 Typesetter and cover designer: Marija Tudor

 ISBN 9781633437494

 Printed in the United States of America

 contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Going meta

 1.1 A day in the life of a Rust developer

 1.2 What is metaprogramming?

 1.3 Metaprogramming in Rust

 1.3.1 Macro galore

 1.3.2 Appropriate use cases

 1.3.3 Unfit for purpose: When not to use macros

 1.4 Approach of this book

 2 Declarative macros

 2.1 Creating vectors

 2.1.1 Syntax basics

 2.1.2 Declaring and exporting declarative macros

 2.1.3 The first matcher explained

 2.1.4 Nonemtpy matchers

 2.2 Use cases

 2.2.1 Varargs and default arguments

 2.2.2 More than one way to expand code

 2.2.3 Newtypes

 2.2.4 DSLs

 2.2.5 Composing is easy

 2.2.6 Currying, on the other hand . . .

 2.2.7 Hygiene is something to consider as well

 2.3 From the real world

 3 A “Hello, World” procedural macro

 3.1 Basic setup of a procedural macro project

 3.2 Analyzing the procedural macro setup

 3.3 Generating output

 3.4 Experimenting with our code

 3.5 cargo expand

 3.6 The same macro—without syn and quote

 3.7 From the real world

 4 Making fields public with attribute macros

 4.1 Setup of an attribute macro project

 4.2 Attribute macros vs. derive macros

 4.3 First steps in public visibility

 4.4 Getting and using fields

 4.5 Possible extensions

 4.6 More than one way to parse a stream

 4.6.1 Delegating tasks to a custom struct

 4.6.2 Implementing the Parse trait

 4.6.3 Going low, low, low with cursor

 4.7 Even more ways to develop and debug

 4.8 From the real world

 5 Hiding information and creating mini-DSLs with function-like macros

 5.1 Hiding information

 5.1.1 Setup of the information-hiding macro

 5.1.2 Recreating the struct

 5.1.3 Generating the helper methods

 5.2 Debugging by writing normal code

 5.3 Composing

 5.4 Anything you can do, I can do better

 5.5 From the real world

 6 Testing a builder macro

 6.1 Builder macro project setup

 6.2 Fleshing out the structure of our setup

 6.3 Adding white-box unit tests

 6.4 Black-box unit tests

 6.4.1 A happy path test

 6.4.2 A happy path test with an actual property

 6.4.3 Testing enables refactoring

 6.4.4 Further improvements and testing

 6.4.5 An alternative approach

 6.4.6 Unhappy path

 6.5 What kinds of unit tests do I need?

 6.6 Beyond unit tests

 6.7 From the real world

 7 From panic to result: Error handling

 7.1 Errors and control flow

 7.2 Pure and impure functions

 7.3 Alternatives to exceptions

 7.4 Rust’s Result and panics

 7.5 Setup of the panic project

 7.6 Mutable or immutable returns

 7.7 Getting results

 7.8 Don’t panic

 7.8.1 Changing the panic into a Result

 7.8.2 Debugging observations

 7.9 Error-handling flavors

 7.9.1 Using syn for error handling

 7.9.2 Using proc_macro_error for error handling

 7.9.3 Deciding between syn and proc_macro_error

 7.10 From the real world

 8 Builder with attributes

 8.1 A rename attribute

 8.1.1 Testing the new attribute

 8.1.2 Implementing the attribute’s behavior

 8.1.3 Parsing variations

 8.2 Alternative naming for attributes

 8.3 Sensible defaults

 8.4 A better error message for defaults

 8.5 Build back better

 8.5.1 Avoiding illegal states and the type state pattern

 8.5.2 Combining the builder pattern with type state

 8.6 Avoiding scattered conditionals

 8.7 Attribute tokens and attributes

 8.8 Other attributes

 8.9 From the real world

 9 Writing an infrastructure DSL

 9.1 What is IaC? What is AWS?

 9.2 How our DSL works

 9.3 Parsing our input

 9.3.1 Project setup and usage examples

 9.3.2 Implementing the Parse trait for our structs

 9.4 Two alternative parsing approaches

 9.4.1 Using Punctuated with a custom struct

 9.4.2 Using Punctuated with a custom enum and builder

 9.5 Actually creating the services

 9.6 The two AWS clients

 9.7 Errors and declarative macros

 9.8 The right kind of testing

 9.9 From the real world

 10 Macros and the outside world

 10.1 A function-like configuration macro

 10.1.1 Macro project structure

 10.1.2 Code overview

 10.1.3 Using full paths

 10.2 Adding another macro

 10.3 Features

 10.4 Documenting a macro

 10.5 Publishing our macro

 10.6 From the real world

 10.7 Where to go from here

 appendix Exercise solutions

 index

 preface

 You are your own forerunner, and the towers you have builded are but the foundation of your giant-self. And that self too shall be a foundation.

 — Kahlil Gibran

 Like many developers, I have grown fond of the Rust language—not per se because of the language’s great performance characteristics but because of its sound fundamentals, powerful type system, and excellent tooling. And while it may be a hard language to learn, there are a lot of guides available for getting started, including many books, tutorials, and videos. When it came to procedural macros, I felt a bit in the dark, though. Introductions and tutorials on that subject were short or partial. Peculiar, considering the vast number of libraries that were using macros for all kinds of amazing functionality!

 So, after a lot of toying around with macros, I thought I could bring together what I had learned along the way, turning it into a book—a book that would take its reader on a journey from the simplest example of a procedural macro to things that could, almost, find a place in real applications. I started writing. After creating a raw draft of about a hundred pages, I contacted Manning to ask whether they were interested. They too thought that this subject was worthy of a book, and they wanted to give me a chance to write it for them. That meant more writing, the exploration of additional ideas and suggestions, and rewrites after feedback, all of which has led to the book you see before you now.

 Macros have their challenges: they can be hard to write and hard to read, especially for a newcomer. They also add complexity, as well as dreaded compilation time. But time and time again, Rust developers have found ways in which macros prove their worth.

 “It is divine for mortals to help each other,” as (my imperfect paraphrase of) Pliny the Elder would have it. I hope that this book, and the journey contained within, will be of some help to you in the fearless utilization of Rust’s macros.

 acknowledgments

 First, I thank my wife, Annelies, for your love and support, as well as my father, Marc, and mother, Marleen. I will love you until the end of my days. Second, I thank my two brothers, sister, grandmother Rafaella Otte, family, and friends, among them Joost Barclay, Thomas Wijnendaele, and Bernard Vanderhaeghen in particular. I have also been fortunate to encounter many talented, kind, fun colleagues at every company I have ever worked at. They have all proven to be very tolerant when it comes to my very annoying habit of pointing out the things “Rust does better” than other languages.

 All the people from Manning that I interacted with have been welcoming, friendly, and helpful from day one. Specifically, I would like to thank my development editor Karen Miller, technical editor Andrew Lilley Brinker, review editor Kishor Rit, production manager Aleksandar Dragosavljević, production editor Andy Marinkovich, copyeditor Kari Lucke, and proofreader Katie Tennant.

 Finally, thank you, my reviewers: Alessandro Campeis, David Jacobs, David Li, Etienne de Maricourt, Guillaume Schmid, Horaci Macias, Irach Ramos, Jakub Guzikowski, Jaume López, Jonathan Reeves, Lev Veyde, Mehmet Yilmaz, Nick Keers, Olivier Stas, Rui Liu, Sandeep Sandhu, Scott Ling, Simone Sguazza, Vojta Tuma, and William E. Wheeler. Your feedback was both kind and useful, and this book is better, more helpful, and more polished than it could ever have been without you.

 about this book

 The goal of this book is to teach the advantages, disadvantages, and common use cases of Rust macros. The reader will learn what makes #[derive(Debug)] work, how tokio transforms an asynchronous main function, or how yew checks HTML for errors. They will write macros to avoid boilerplate and duplication or Domain-Specific Languages that make everyone else’s life easier and—this is Rust after all—safer. Tests will help you ensure the correct behavior of those macros, while precise error messages give users a great idea of what goes wrong when they leave the happy path. Debugging issues arise frequently, and it’s an experience that teaches us to better handle issues with other people’s macros. As a bonus, the reader will probably pick up some additional knowledge about a load of other programming topics.

 Who should read this book?

 If Hello, World! did print, congratulations! […] That makes you a Rust programmer.

 That, at least, is what the Rust documentation states after the obligatory “Hello, World” example. This book, unfortunately, has a bit more stringent requirements. Its reader should at least be familiar with the syntax and building blocks of the language: structs, functions, modules, traits, control flow—basically, knowledge of the first 10 chapters of The Rust Programming Language (by Steve Klabnik and Carol Nichols; No Starch Press, 2018) will be taken for granted. The book also assumes some basic familiarity with declarative macros, sometimes called “macros by example” (the kind of macro you create with macro_rules!). If that is not you but you would still like to read this book, first, read an introductory Rust text. Right now! And maybe a couple more from Manning, for example, Rust in Action by Tim McNamara (2021) and Learn Rust in a Month of Lunches by David MacLeod (2024).

 How this book is organized: A roadmap

 This book contains 10 chapters:

 	 Chapter 1 introduces metaprogramming. It talks about when you should use macros but also when you should instead turn to Rust’s more basic building blocks, like functions and structs.

 	 Chapter 2 talks about declarative macros, starting with the basics and then moving on to examples and use cases.

 	 Chapter 3 is when we turn to procedural macros. We write our first derive macro, which generates a simple “Hello, World” method.

 	 Chapter 4 teaches the reader to use attribute macros to change the fields of a struct.

 	 Chapter 5 shows the flexible and powerful function-like macros, the final type of procedural macro, in action.

 	 Chapter 6 talks about (unit) testing a macro, using a derive macro that generates a builder as its leading example.

 	 Chapter 7 will help you understand error handling and giving error feedback to users.

 	 Chapter 8 goes back to the builder example from chapter 6, using it to show how we can use attributes to make a macro more flexible.

 	 Chapter 9 lets the reader write a Domain-Specific Language that can create actual infrastructure in the cloud.

 	 Chapter 10 finishes up by telling the reader about feature flags, documenting, publishing, and possible next steps.

 Readers are advised to go through the book linearly, though chapter 2 can be skipped by people who are only interested in learning about procedural macros. All other chapters build on the knowledge acquired in earlier ones. Doing the exercises is useful but not essential, as they are a recap of the chapter—meaning that if they touch on anything not discussed in the main text, the lessons learned will be repeated in one of the next chapters. You can find solutions in the appendix.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In some cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/write-powerful-rust-macros. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/write-powerful-rust-macros and from GitHub at https://github.com/VanOvermeire/rust-macros-book. In the toolchain of the repository, you will see that everything was written in stable Rust 1.75.0, 2021 edition. The most recent versions of libraries—at the time of writing—like quote and syn were used, and those versions are noted in the text.

 liveBook discussion forum

 Purchase of Writing Powerful Rust Macros includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/write-powerful-rust-macros/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 Sam Van Overmeire is a software developer with a background in history and archaeology. He has 10 years of experience working as a cloud engineer, writing code in languages such as Java, JavaScript, Python, Groovy, and Go. He is the author of multiple books, scientific articles, and blog posts about programming and other topics.

 [image: figure]

 About the technical editor

 Andrew Lilley Brinker is a lead cyber security engineer at MITRE, where he works on software supply chain security. In his spare time, he develops in, writes about, and teaches Rust. He holds an MCS from Rice University.

 about the cover illustration

 The figure on the cover of Write Powerful Rust Macros is captioned “Devineresse de Krasnoyarsk,” or “Soothsayer of Krasnoyarsk,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. The illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Going meta

 This chapter covers

 	What metaprogramming is

 	Metaprogramming in Rust

 	When to use macros

 	What this book will teach you

 Macros are some of the most important and powerful tools Rust has to offer. Because they have powers that Rust’s normal tooling (like functions) lacks, they can serve as “a light in dark places when all other lights go out.” That of itself is enough to make macros a core topic of this book. They have another neat quality though: they can be a pathway to other abilities. When you want to write a macro, you need knowledge of testing and debugging. You have to know how to set up a library because you cannot write a procedural macro without creating a library. Some knowledge about Rust internals, compilation, types, code organization, pattern matching, and parsing also comes in handy. Thus, teaching about macros allows me to talk about a variety of other programming topics. We will be learning about Rust macros and using them to explore other subjects.

 But we are getting ahead of ourselves. Let’s take a step back and start from the beginning.

1.1 A day in the life of a Rust developer

 You are a Rust developer, starting a new application that will accept JSON requests containing user data, like first and last names, and output useful information, say, the user’s full name. You start by simply adding a function that generates a full name based on a combination of first and last names, using format!. To turn JSON into a struct, you annotate Request with #[derive(Deserialize)]. And you always write tests, so you add a function for testing, annotating it with the #[test] attribute. To make sure everything matches your expectations, you use assert_eq!. And when something goes wrong, you either turn to a debugger or add some logging with dbg!.

Listing 1.1 The program you just wrote

 use serde::Deserialize;

#[derive(Deserialize)] #1
struct Request {
 given_name: String,
 last_name: String,
}

fn full_name(given: &str, last: &str) -> String {
 format!("{} {}", given, last) #2
}

fn main() {
 let r = Request {
 given_name: "Sam".to_string(),
 last_name: "Hall".to_string()
 };
 dbg!(full_name(&r.given_name, &r.last_name));
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn test_deserialize() {
 let actual: Request =
 serde_json::from_str("{ \"given_name\\": \\"Test\\",
 \"last_name\\": \\"McTest\\" }")
 .expect("deserialize to work");

 assert_eq!(actual.given_name, "Test".to_string());
 assert_eq!(actual.last_name, "McTest".to_string());
 }
}

 #1 A procedural macro

#2 This bit of code contains several declarative macros.

 And suddenly it dawns on you. Even when writing the simplest of Rust code, you just cannot stop using macros. You are surrounded by the fruits of Rust’s metaprogramming.

1.2 What is metaprogramming?

 In brief, metaprogramming is when you write code that will use other code as a data input. That means you can manipulate existing code, generate additional code, or add new capabilities to an application. To enable metaprogramming, Rust has macros, which are a specific form of metaprogramming. Rust’s macros run at compile time, expanding into “normal” code (structs, functions, and the like). When this process is complete, your code is ready for the next step, such as being linted, type-checked (cargo check), compiled into a linkable library, or transformed into a—runnable—binary by rustc (see figure 1.1).

 [image: figure]

Figure 1.1 I contain multitudes! How our simple example hides many more lines of code, generated by macros.

 Rust is not the only language to offer metaprogramming capabilities. C and Clojure also have powerful macros, with C also offering templates. Java has reflection to manipulate classes, which famously allowed the Spring framework to develop some of its most impressive capabilities, including using annotations for dependency injection. JavaScript has eval, a function that takes in a string as data that will be evaluated as an instruction at run time. In Python, you get eval as well as better options like metaclasses and the very popular decorators, which can manipulate both classes and functions.

1.3 Metaprogramming in Rust

 At some point in their career, most programmers will come into contact with a form of metaprogramming—often to do things that would be hard to do with normal coding tools. But unless you write a lot of Common Lisp or Clojure, where macros are very popular, on average such experiences are bound to be limited. So why on earth should we care about metaprogramming in Rust? Because Rust is different. This is something you have heard too many times before, but hear me out!

 The first difference from many other languages is that, similar to Clojure, it is hard to imagine Rust code without macros. Macros are used extensively in both the standard library (think of the ubiquitous dbg! and println!) and custom crates. At the time of writing (mid-2024), among the top 10 downloaded packages on crates.io, three are for creating procedural macros (syn, quote, and proc-macro2). One of the others is serde, where procedural macros ease your serialization work. Or search for the keyword “derive,” which often signifies that the package has a macro. You will get back over 10,661 results, about 7% of all packages! In brief, in Rust macros are not just some syntactic sugar but core functionality.

 Why are so many people writing macros? Well, in Rust they offer a very powerful form of metaprogramming that is also relatively easy and safe to use. Part of that safety comes from being a compiled language. Compare that with Clojure, a difficult language (in my opinion) that makes macros easy to use but without the aid of any compile-time checking. The same can be said for JavaScript and Python. And for JavaScript, safety/security is an important reason for the “Never use direct eval()” advice in the Mozilla documentation (http://mng.bz/4JMv).

 Meanwhile, all of Rust’s macros are evaluated at compile time and have to withstand the thorough checks that the language employs to verify code. This means that what you generate is as safe as normal code, and you still get to enjoy the compiler telling you exactly why you are wrong! Especially for declarative macros, hygiene is part of that safety, avoiding clashes with names used elsewhere in your code. This means you get more safety than you would get with C macros, as these are unhygienic, allowing macros to unintentionally reference or capture symbols from other code. C macros are also less safe since they are expanded when type information is not available. Templates are safer, though the errors you get back can be cryptic.

 Another advantage of doing everything at compile time is that the performance effect on your final binary is, in most cases, negligible. You are adding a bit of code. Nothing to lose sleep over. (Meanwhile, there is an obvious effect on compile times, but those are annoyingly long with or without macros.) Compare that to Java, where the aforementioned Spring framework does a lot of reflection at startup for dependency injection. This means performance takes a hit, and metaprogramming becomes—I’m sounding like a broken record—less safe because you only find out if everything works at run time, perhaps only when you go to production.

 Finally, for me, metaprogramming can sometimes be too “magical,” with a Spring Bean in one part of your application altering behavior in an entirely different part. And while Rust macros may seem magical, there is less of Spring’s, to paraphrase Einstein, “spooky action at run time.” That is because macros in Rust are (a) more localized and (b) run at compile time, allowing for easier inspection and better verification.

1.3.1 Macro galore

 To make the localized argument more concrete, let me introduce one of the main protagonists of this book, the procedural macro. Procedural macros take a piece of your code as a stream of tokens and return another stream of tokens, which will be processed together with the rest of your code by the compiler. This low-level manipulation stands in contrast to the approach of the better-known declarative macros (which feature in the next chapter). Those allow you to generate code using a higher (“declarative”) level of abstraction. This makes declarative macros a safe and easy option to get started with—even if they lack the raw power of their procedural brothers.

 NOTE Streams of tokens, expanding macros: as you may have guessed, we will talk about all of this in more depth in the upcoming chapters.

 There are three kinds of procedural macros (see figure 1.2). First are derive macros. You use them by adding a #[derive] attribute to a struct, enum, or union. When that is done, the code of that struct/enum/union will be passed as an input to your macro. This input is not modified. Instead, new code is generated as an output. These macros are for extending the capabilities of types by adding functions or implementing traits. So whenever you see #[derive] decorating a struct, you know it is adding some kind of additional functionality to that specific struct. No functionality is added to some random part of your application, and neither is the struct modified in any way. Despite (or maybe because of) these limits, these are probably the most widely used procedural macros.

 Attribute macros, the second type, can be placed on structs, enums, and unions as well as trait definitions and functions. They get their name from the fact that they define a new, custom attribute (one well-known example is #[tokio::main]), whereas derive macros are required to use #[derive]. They are more powerful and thus more dangerous because they transform the item they are decorating: the output they produce replaces the input. Whereas derive macros are only additive, with an attribute macro, the definition of your type might change. But at least the annotation is telling you what struct it is transforming and is not changing other code and other files.

 [image: figure]

Figure 1.2 The types of macros in Rust

 The third kind of procedural macro is called function-like. This one is invoked with the ! operator and works with any input you pass in. That input will disappear, replaced by what you generate as output, quite similar to attribute macros. But unlike the others, a function-like macro is not limited to annotating things like structs or functions. Instead, you can call it from almost anywhere within your code. As we shall see, this can produce some powerful magic. But—you probably already know where I am going with this—the input of that magic is whatever you decided to pass along. Rust, once again, seems to have found a way to take a known programming concept and make it safe(r) to work with.

1.3.2 Appropriate use cases

 “Okay, so since macros are so great and safe, I should use them everywhere for everything.” Wow, slow down there, straw man! Obviously, you should start any application without turning to custom macros. Zero to Production in Rust (https://www.zero2prod.com/index.html) built an entire deployable newsletter application without ever writing a macro. (The author uses a lot of those that are provided by the language and its libraries, though.) Structs, enums, and functions are just easier to understand and use, plain and simple. And while macros won’t have a lot of effect on run-time performance, they still add to compile times and binary size. And the former is already the biggest pain point reported by Rust developers! For small macros, like the examples in this book, that compile-time cost is negligible. But for many “production-grade” macros, the tradeoff will be real—but hopefully worth it.

 When and why would you use macros? In larger applications, they might be tempting to use for reducing boilerplate. But that might make the code harder to understand for people unfamiliar with the project because, compared to a function, the signature of a macro gives no insight into what is happening. In addition, your readers are bound to have more experience mentally parsing ordinary Rust code, so even if they have to “dive into” a function definition, it will take them less time to get the gist of it. And generic functions are a great tool for avoiding duplication, so they offer a valid alternative. Similarly, generic implementation blocks—or blanket implementations—are very powerful. Just look at the crazy piece of code in listing 1.2, an example of the “extension trait” pattern, combining a custom trait with a blanket implementation. We implement our trait for everything that implements Copy. Numbers, characters, Booleans, etc., suddenly have a new function available. We should probably be afraid of using blanket implementations as well as macros.

Listing 1.2 The powers and dangers of generics

 trait Hello {
 fn hello(&self);
}

impl<T:Copy> Hello for T {
 fn hello(&self) {
 println!("Hello world");
 }
}

fn main() {
 2.hello();
 true.hello();
 'c'.hello();
}

 So, the first takeaway: avoiding boilerplate, as well as duplication, is a good reason to use macros, but only if it doesn’t make the code hard to understand. And if, in order to use the macro, developers often look at the implementation, that’s bad. Consider the macros offered by the standard library: Debug, Clone, Default, etc. They all do the grunt work for one well-defined, repetitive task (e.g., Clone does only one thing: it makes your object cloneable). As a bonus, developers reading your code will immediately grasp your intent when they see the #[derive(Clone)} attribute. And they probably won’t care about the actual details of how this is done. This is perfect, as it avoids the additional mental strain involved in diving into the code. This approach to avoiding duplication is far better than the automatic code generation offered by some languages. Yes, code generation might help with writing code by adding useful boilerplate to your application. But it adds noise and makes it harder to read the code. And writing is often not the difficult part of programming. Making things understandable for those who come after you is.

 NOTE I was reading about the Decode trait that sqlx offers and instinctively thought: “That trait probably has a derive macro, seems like a perfect use case.” Lo and behold, there was indeed a derive macro available.

 So look for repetitive tasks that are very easy to describe from a bird’s-eye view (“clone this, copy that, print it”) and whose output will be predictable (debug prints every property of your struct). These are often tasks with a universal appeal, useful in many applications and easy to understand. For example, making sure that something can be compared to others of the same kind (PartialEq) is a common task that most developers have been confronted with. Functions can help fight duplication as well, but they can’t manipulate structs or add helper methods. (Blanket implementations can, but they are limited to working through traits.) Outside the standard library, you can find a lot of other examples that help you avoid duplication and boilerplate while being easy to describe and producing predictable results. Serde allows for easy serialization/deserialization of structs. Tokio manages the boilerplate involved in creating an async main for you.

 Another reason to turn to macros, closely related to the previous category, would be ease of use. You want to take away the uninteresting technical details of a task that developers do not need to know about when they are writing an application. You could argue that Serde and Tokio belong to this category since they hide the details of serialization and asynchronous behavior. Only rarely will you have to look under the hood of these macros; most of the time they will “just work.” How won’t matter—once again, a win for both the reader and the writer. Also worth mentioning is Clap, which hides the details—and boilerplate—of parsing command-line arguments, and Rocket, which uses macros to hide REST application complexities.

 One final use case is simulating capabilities that are not available in Rust. We will see an example of how declarative macros add varargs to the language in the next chapter. Outside the core language, Tokio is again worth mentioning as it enables you to have asynchronous main functions. But there are lots of other examples in this category. Static assertions also make guarantees about your code without ever running it, checking, for instance, whether a struct implements given traits. SQLx lets you write SQL strings, checks whether they are valid at compile time, and transforms the results into structs. Yew and Leptos allow you to write type-checked HTML within Rust. Shuttle sets up cloud infrastructure for you based on annotations. Obviously, a lot of these offer validation at compile time. After all, that is when your macro will run. But it is also the most interesting time to check and verify before you start doing more expensive, time-consuming things to verify your code, like unit testing, integration testing, end-to-end testing, or even testing in production (see figure 1.3). All of these have their place in modern application building. However, when a simple cargo check can point out errors before a single test has run, you are saving yourself a lot of time and effort. In addition, everything you do at compile time is a performance win for your users.

 [image: figure]

Figure 1.3 Spectrum of testing

 Besides verification, macros from this category add Domain-Specific Language (DSL) capabilities that allow you to write code in an easier, more elegant way than would be possible with native Rust. Using macros for DSLs is also interesting for application developers who want to enable easier expression of ideas in a way that is closer to the language of the business experts. When done well, this type also belongs to the ease-of-use category.

 DEFINITION What is a Domain-Specific Language (DSL)? The programming languages with which we programmers are most familiar are general-purpose languages, applicable to practically any domain. You can use JavaScript to write code regardless of the sector you are working in. But DSLs are written with a specific domain in mind. Think of SQL, which is designed specifically for interacting with databases. That means the creator can focus on making business concepts easier to express. If you were writing a language for use by banks, you might make it very easy for developers (or even end users) to write code that transfers money between accounts. A DSL can also allow you to optimize. If you were writing one for working with DNA, you could assume you would only need four letters (A, C, G, T) to represent your data, which could allow for better compression (and since A always pairs with T and G with C, maybe you would only need two options). DSLs come in two varieties: some are created entirely from the start, and others are created by using a general-purpose language like Rust as a base. In this book, we are interested in the latter.

 To summarize, macros are a great fit when you are confronted with a task that has a predictable output, whose details are irrelevant to (most) developers, and that needs to be performed frequently. Additionally, macros are the best or only choice for extending the language and writing elegant or complex DSLs. In other cases, you probably want to turn to functions, structs, and enums. For example, avoiding the duplication of filtering and mapping incoming data in two or three places calls for a function, not a new macro.

 NOTE If you do find a good use case for a procedural or declarative macro, do a (Google) search before you start coding. Someone may have beaten you to the punch.

1.3.3 Unfit for purpose: When not to use macros

 When it comes to inappropriate use cases for macros, two categories come to mind. The first was mentioned already: things that you can easily accomplish with functions. Starting with functions and moving to macros when things become too complicated or require too much boilerplate is often a good idea. Don’t try to overengineer things. The other category where I have some doubts is business logic. Your business code is specific to your use case and application. So almost all publicly available macros are disqualified from the get-go. Now you might write a custom macro for use inside your company. But in a microservice world, sharing business code between services and teams is often a bad idea. Your idea of a “user,” “aircraft,” “basket,” or “factory” within a microservice will differ from that in the next microservice. It’s a road paved with good intentions that leads to confusion and bugs or customization of an already custom macro. There are exceptions to this category, though. First, in larger codebases, macros could help you avoid some rare business boilerplate. Second, we already noted how DSLs can improve your quality of life as an application engineer—especially in a complex domain. And macros are a great tool for writing DSLs.

 One final—but minor—point to keep in mind before we move to the next section: integrated development environment (IDE) support for macros will always be less advanced than that for “normal” programming. This is pretty much an unavoidable downside. With more powerful tools come more options. That makes it harder for your computer to guess what you can and cannot legally do. Imagine a programming language whose only valid statement is 2 + 2 = 4. An IDE would be incredibly helpful in pointing out mistakes (“You typed b - @? !, did you mean 2 + 2 = 4?”) and giving code completions. Now imagine a language where everything is allowed. Does struvt Example {} have a typo? Maybe, maybe not. Who knows? This is also why it is harder for an IDE to help you when you work with dynamic languages; that is, types are helpful for the machine too! A type system limits your options, and that can limit the power of your language. But it can offer things like more safety, performance, and ease of use in return.

 In the case of procedural macros, one additional complexity is that your IDE has to expand the code in the same way that Rust would. Only that way can it tell you whether the fields or methods you think will be added by a macro are actually there. IntelliJ, RustRover, and Visual Studio Code (to a lesser extent) do this, as we will briefly discuss in a later chapter, but even so, their advice can still run into trouble when expansion fails, at which point they should report back to the user with details on what went wrong. But that is easier said than done. Where, for example, should they point to when it comes to that error?

1.4 Approach of this book

 The approach of this book can be summarized as example driven and step by step. Most chapters will have one application as a central theme to explore a macro topic as well as other relevant themes from Rust. Starting with a simple “Hello, World,” we will add layers of knowledge, piece by piece: how to parse, how to test, how to handle errors. We will also point out common errors that you might run into and give you some debugging hints. Finally, the chapters will briefly point out how popular crates (including those mentioned in this chapter) use the explained techniques or accomplish specific feats. This will give you insights into how you can apply what you have learned. Finally, while the next chapter will give a pretty thorough overview of declarative macros, the rest of the book will focus on the procedural ones, mainly because the latter are harder to use, and there is already a lot of useful content on the former.

 Exercise

 Think of a recent application that you worked on. Can you think of places where duplication and boilerplate were unavoidable? Did you have the feeling you were lacking a tool to make the application easier to use? Was there something that could not be done within the constraints of the language? Hopefully, by the end of this book, you will think of macros as one possible tool for fixing such problems.

 Summary

 	 Metaprogramming allows you to write code that generates more code.

 	 Many languages offer some way to do metaprogramming, but these tools are often difficult to use and not well integrated into the language, which can lead to hard-to-understand or buggy code.

 	 Rust’s macros are powerful and avoid many of these shortcomings, with a focus on safety and without real effect on run-time performance.

 	 Macros in Rust are “expanded” into code checked by the compiler.

 	 Rust has high-level declarative macros and three kinds of procedural macros (derive macros, attribute macros, and function-like macros) that process code as a stream of tokens.

 	 Metaprogramming should not be your first choice when solving problems, but it can help you avoid boilerplate and duplication, make your applications easier to use, or do things that are difficult to do with “normal” Rust.

 	 This book will explore macros, all the while using them to discuss other advanced subjects through an example-driven approach.

2 Declarative macros

 This chapter covers

 	Writing declarative macros

 	Avoiding boilerplate and duplication, implementing newtypes, writing simple domain specific languages, and composing functions

 	Understanding the lazy_static crate

 We will start this book in easy mode with declarative macros. These macros have a syntax that will immediately remind you of pattern matching, with a combination of matchers and transcribers. The matchers contain what you want to match against; the transcriber has the code you will generate when you find that match. It’s just that simple.

 NOTE This chapter’s focus is a broad overview of declarative macros and their usage. This stands in contrast with the rest of this book, where we will focus on specific topics and a limited number of examples. The reason is that declarative macros are not the main focus of this book, and I expect the reader to know more about them than procedural macros. That means we can go through the subject of this chapter more quickly.

2.1 Creating vectors

 But wait, this is an example-driven book! That means we should drag a first example into this. vec! is used in several beginner’s explanations of declarative macros. We will go through a simplified implementation that shows how the aforementioned matchers and transcribers work together to generate the correct kind of code output for any given situation.

Listing 2.1 my_vec, our first declarative macro

 macro_rules! my_vec { #1
 () => [#2
 Vec::new()
]; #3
 (make an empty vec) => (#4
 Vec::new()
); #5
 {$x:expr} => {
 {
 let mut v = Vec::new();
 v.push($x);
 v
 }
 }; #6
 [$($x:expr),+] => (
 {
 let mut v = Vec::new();
 $(
 v.push($x);
)+
 v
 }
)
}

fn main() {
 let empty: Vec<i32> = my_vec![];
 println!("{:?}", empty); #7
 let also_empty: Vec<i32> = my_vec!(make an empty vec);
 println!("{:?}", also_empty);
 let three_numbers = my_vec!(1, 2, 3);
 println!("{:?}", three_numbers); #8
}

 #1 We declare a new macro called my_vec.

#2
 () is our first matcher. Since it is empty, it will match a macro call without any arguments.

#3 Everything between the pair of square brackets is the first transcriber. This is what we will generate for an empty invocation of our macro. Note the semicolon at the end.

#4 (make an empty vec) is our second matcher. It will match when our input literally matches “make an empty vec.”

#5 This is our second transcriber, this time between parentheses. We generate the same output as before, in the first transcriber.

#6 The next two matcher-transcriber pairs. The first accepts one expression (expr) and will bind it to x. The second accepts multiple expressions separated by a comma. These will similarly be bound to x.

#7 These two print []
 .

#8 This one prints [1, 2, 3].

2.1.1 Syntax basics

 You start your declaration of a declarative macro with macro_rules!, followed by the name you would like to use for the macro, similar to how you would create a function by writing fn followed by a function name. Inside the curly braces, you put the desired matchers and transcribers. A matcher and its transcriber are (similar to the syntax of pattern matching) separated by an arrow: (matcher) => (transcriber). In this case, we have four pairs of matchers and transcribers. Our first pair consists of an empty matcher, represented by some empty brackets, and a transcriber whose content is wrapped in square brackets. Square brackets are not a requirement though: for both matcher and transcriber, you have your choice of brackets: (), {}, and [] are all valid. You need to pick one of these three alternatives though, as removing them entirely (e.g. () => Vec::new()) will lead to Rust getting confused. It will start complaining about the double colons: no rules expected the token `::`. If you remove those, it becomes more helpful, saying that the “macro’s right-hand side must be delimited”—that is, by using brackets!

 NOTE The alert reader will notice that every pair in the example has a different syntax. This is only intended as a demonstration of your options regarding brackets. Your code will look cleaner if you settle for one of these options. Which one should you pick? Going for the curly braces can have the downside of making your code a bit less clear if you have code blocks within your transcriber (see the second pair in listing 2.1). And square brackets seem to be the less popular choice, so parentheses are probably a good default.

 Another important syntactic element is that the pairs are separated by a semicolon. If you forget to do this, Rust will complain:

 5 | {$x:expr} => {
 | ^ no rules expected this token in macro call

 This is its way of saying that there should not be any rules if you end a matcher-transcriber without a semicolon. So keep adding them as long as you have more matcher-transcriber pairs coming. When you get to your last pair, the semicolon is optional.

2.1.2 Declaring and exporting declarative macros

 A limitation to consider is that declarative macros can only be used after they have been declared. If I had placed the macro below the main function, Rust would complain like this:

 error: cannot find macro `my_vec` in this scope
 --> src/main.rs:5:25
 |
5 | let three_numbers = my_vec!(1, 2, 3);
 | ^^^^^^
 |
 = help: have you added the `#[macro_use]` on the module/import?

 Once you start exporting macros, this is no longer a problem, because #[macro_use] on top of a module or import (e.g., #[macro_use] mod some_module;) adds the macros to the “macro_use prelude.” In programming, a prelude is used as a term for the collection of things from the language that are globally available for coding. For example, Clone (#[derive(Clone)]) does not require an import because it is in Rust’s prelude. When you add a #[macro_use], the same becomes true for macros from the chosen import: available everywhere, without an import. So the tip from the previous error message will solve the error, albeit by using a cannon to kill a mosquito. Also, this is the “older way” of exporting macros, and it is no longer the recommended approach. But we will get to that.

 When you need to invoke your macro, you use its name followed by an exclamation mark and arguments between brackets. Similar to the macro itself, during invocation you can have any bracket you like, as long as it is normal, curly, or square. No doubt you have often seen vec![], but vec!() and vec!{} are also valid, though curly brackets do not seem to be very popular for brief invocations. In this book, you will see me use curly braces for multiline quote! calls throughout.

2.1.3 The first matcher explained

 Now that we have covered the basic syntax, here is our first matcher again:

 () => [
 Vec::new()
];

 Since our matcher is empty, it will match any empty invocation of our macro. So when we called let empty: Vec<i32> = my_vec!(); in our main function, this is the matcher we ended up in, since (a) Rust goes through the matchers from top to bottom and (b) we did not pass anything in within the brackets. We said that the content of the transcriber is located between the (in this case, square) brackets, so that means Vec::new() is the code that Rust will generate when we have a match. So, in this case, we are telling it that we want to call the new method of the vector struct. This piece of code will be added to our application in the location where the macro was called.

 That brings us back to the first call in main. Rust sees my_vec!() and thinks, “An exclamation mark! This must be a macro invocation.” And since there are no imports in our file, this is either a macro from the standard library or a custom one. It turns out to be a custom one because Rust finds it in the same file. With the macro found, Rust starts with the first matcher, which turns out to be the correct one. Now it can replace my_vec!() with the content of the transcriber, Vec::new(). So by the time you do anything with your code (check, lint, run, etc.), let empty: Vec<i32> = my_vec!(); has already changed to let empty: Vec<i32> = Vec::new();. This is a minor but important detail: since only my_vec!() is being replaced, the semicolon at the end of the statement remains where it is. Because of this, we did not need to add one to our transcriber.

2.1.4 Nonemtpy matchers

 Let’s turn to the second matcher, which looks like this:

 (make an empty vec) => (
 Vec::new()
);

 In this case, the matcher contains literal values. This means that to match this particular “arm” of the macro, you would need to put that exact literal value between brackets when calling the macro, which is what we do in the second example from our main function: let also_empty: Vec<i32> = my_vec!(make an empty vec);. Our transcriber has not changed, so the output is still Vec::new() and the code becomes let also_empty: Vec<i32> = Vec::new();. In this case, the literals do not add anything interesting. But we will see some more useful sample cases later on.

 The next pair is more interesting:

 {$x:expr} => {
 {
 let mut v = Vec::new();
 v.push($x);
 v
 }
};

 This time we are telling Rust that we want it to match any single Rust expression (expr) and bind it to a value called x. The dollar sign preceding x is significant, since it signifies that this is a macro variable. Without it, Rust thinks that this is just another literal, in which case there would be exactly one match (i.e., my_vec![x:expr]). Besides expressions, which are a common target for matching, you can also match identifiers, literals, types, and so on.

 Metavariables

 expr is called a metavariable in Rust lingo, or fragment specifier. The most powerful of these metavariables is tt (TokenTree), and it will accept almost anything you pass to it. That’s a powerful option. But its comprehensiveness can also be a downside. For simpler types, Rust can catch mistakes, like when you pass in a literal while the macro only matches an ident. Plus, with tt your matchers become less fine-grained since this one is screaming “Give me anything you’ve got!” For the very same reason, tt can be overeager. There is really a lot that will match a token tree! This is somewhat similar to regexes. \d+, which will only capture one or more digits and is less powerful than .*, which will capture anyone and anything. But a limitation is also an advantage, making \d more predictable and easier to manage. In the case of metavariables, it is advisable to start with a more concrete type and only move up to things like tt when that proves necessary. And if you do need it, think and test carefully.

 The following is a list of all the fragment specifiers. Don’t worry; we will only use a limited subset of these to accomplish this chapter’s goals:

 	 block—A block expression; that is, statements between curly braces.

 	 expr—An expression; a very wide variety of things within Rust.

 	 ident—An identifier or keyword. For example, the start of a function declaration (fn hello) has a keyword followed by an identifier, and we can capture them both by using ident twice.

 	 item—Things like structs, enums, imports (“use declarations”).

 	 lifetime—A Rust lifetime ('a).

 	 literal—A literal, like a number or a character.

 	 meta—The content of an attribute, so Clone or rename = "true". You get a good idea of what an attribute might contain in later chapters.

 	 pat—A pattern. 1 | 2 | 3 is one example.

 	 pat_param—Similar to pat, except it can have | as a separator. So the rule ($first:pat_param | $second:ident) will work, but ($first:pat | $second:ident) tells you that | is not allowed after pat. This also means you need to do some extra work to parse 1 | 2 | 3 with pat_param (as it sees three separate tokens instead of one).

 	 path—A path; things like ::A::B::C, or Self::method.

 	 stmt—A statement; for example, an assignment (let foo = “bar”).

 	 tt—A TokenTree; see the previous explanation.

 	 ty—A type, for example, String.

 	 vis—A visibility modifier; pub comes to mind.

 Within the transcriber, we are creating a new vector, adding the input expression, and returning the entire vector, which now contains the expression as its only element. This is basic Rust code with only two things worth mentioning. The first is that we have to use the dollar sign within the transcriber as well. Remember, with $ we have identified x as a macro variable. So what we are telling Rust is to push this variable, which was bound to the input, into the vector. Without the dollar sign, Rust will tell you that it cannot find value x in this scope because there is no x, only $x.

 The second thing to note is the extra pair of curly braces. Without those, Rust gives you back an error saying expected expression, found let statement. The reason becomes clear once you try to mentally substitute the macro call with its output. Take this example, which should match our current rule: let a_number_vec = my_vec!(1);. We know that my_vec!(1) will be replaced with the content of the transcriber. So since let a_number_vec = will stay in place, we need something that can be assigned to a let—say, an expression. Instead, we are getting back two statements and an expression! How is Rust supposed to give that to let? Once again, the error sounded cryptic, but it makes perfect sense. And the solution is simply to turn our output into a single expression. The curly braces do just that. The following is the code after our macro has run:

 let a_number_vec = {
 let mut v = Vec::new();
 v.push(1);
 v
}

 Yes, writing macros does require some thinking and (a lot of) tinkering. But since you have chosen Rust, you know that thinking is definitely on the menu.

 We are now almost past the basics! The final matcher-transcriber pair is $[($x:expr),+] => (:

 {
 let mut v = Vec::new();
 $(
 v.push($x);
)+
 v
 }
)

 This is basically the same one as before, except with more dollar signs and some pluses. Within our matcher, we can see that $x:expr is now wrapped with $(),+. That tells Rust to accept “one or more expressions, separated by a comma.” As a programmer, it will not surprise you to hear that in addition to a +, you can use a * for zero or more occurrences and ? for zero or one. Like macros, regular expressions are everywhere. A slight gotcha is that this will not match an input with a trailing comma. my_vec![1,2,3] will work, whereas my_vec![1,2,3,] will not. For that, you need an extra rule (see the exercises at the end of this chapter).

 Inside the transcriber, the only thing that has changed is that a similar dollar-bracket-plus combo is surrounding our push statement, except, this time, without the comma. Here, too, this indicates repetition. “For every expression from the matcher, repeat what is inside these brackets.” That is, write a push statement for every expression that you found. That means my_vec![1,2,3] will generate three push statements.

 NOTE By now it might be obvious that the third matcher-transcriber pair is covered by this pair. But that additional pair made it easier to explain things step by step.

 There are a lot of alternatives that won’t compile. For example, maybe you were hoping that Rust would be smart enough to figure out by itself that you want to push every expression into the vector. So you remove the $()+ from $(v.push($x))+—only to be greeted by variable x is still repeating at this depth. With “repeating,” the compiler is telling you that x contains more than one expression, which is a problem since your code seems to assume you only have one expression to push into the Vec.

 And if you like playing around with this code, like one of my reviewers, you will eventually discover that you can use any repetition operator you want within the transcriber, regardless of the one in your matcher. You can do a push with ? and * and everything will work as expected, for now at least, since this is an open bug in Rust (see https://github.com/rust-lang/rust/issues/61053 for some context). If you want to make sure your code won’t break because of this in a future version of the language, you can add the #![deny(meta_variable_misuse)] lint to your file, which may, however, trigger false positives.

 One final point before we end this section: what happens when you try to do illegal things inside a macro? What if you try to mix integers and strings as input, something a Vec cannot accept? Your integrated development environment might not realize that anything is amiss. After all, it’s all valid expressions being passed in! But Rust is not fooled because it generates “normal” code from the “rules” of your macro. And that code has to obey Rust’s compilation rules. This means that you will get an error expecting x, found y (with the names depending on what you passed in first) if you try to mix types.

 Now that you have seen the basics, we can move on to more interesting stuff.

2.2 Use cases

 In this section, we will show common ways declarative macros increase the power of applications. In some cases, their utility is straightforward: they help you avoid writing boilerplate code, as we will see in our newtypes example. But other examples show you how we can do things with macros that are hard or impossible to do in any other way, like creating DSLs and fluent composition of functions or adding additional functionality to functions. Let’s get started.

2.2.1 Varargs and default arguments

 First, how about when we bump into the limits of functions? For example, unlike Java or C#, Rust functions do not allow variadic arguments. One reason might be that variadic arguments make the compiler’s life harder. Or it could be that it is not an important enough feature. Apparently, the discussion about adding them to the language is very old and extremely contentious (and the same goes for default arguments!). Be that as it may, if you do need varargs, there are always macros. In fact, our vector macro performs this exact trick. Pass in any number of arguments, and Rust will generate code to handle your needs.

 If you are coming to Rust from one of the many, many languages that permit overloading or default arguments, macros have you covered as well. For example, I have a function for greeting, and I would like it to default to “Hello” while also allowing more creative, custom salutations. I could create two functions with slightly different names to cover these cases. But it’s a bit annoying that the names would differ when they offer the same functionality. Instead, we will write a greeting macro.

Listing 2.2 Greeting people, with defaults, in greeting.rs

 pub fn base_greeting_fn(name: &str, greeting: &str) -> String {
 format!("{}, {}!", greeting, name)
}

macro_rules! greeting {
 ($name:literal) => {
 base_greeting_fn($name,"Hello")
 };
 ($name:literal,$greeting:literal) => {
 base_greeting_fn($name,$greeting)
 }
}

 For the first time in this chapter, our implementation is not located in the same file as our main function. Instead, it is placed in a separate file called greeting.rs. To use the macro outside the file with its definition, we have to put #[macro_use] above the module declaration that we add in main.

Listing 2.3 Example usage of our greeting macro in main.rs

 use crate::greeting::base_greeting_fn; #1

#[macro_use]
mod greeting; #2

fn main() {
 let greet = greeting!("Sam", "Heya");
 println!("{}", greet); #3
 let greet_with_default = greeting!("Sam");
 println!("{}", greet_with_default); #4
}

 #1 Imports base_greeting_fn

#2 Imports the module that contains our macro. With the annotation #[macro_use], we tell Rust that we want to import macros that are defined in that file.

#3 Prints "Heya, Sam!"

#4 Prints "Hello, Sam!"

 In a more complicated setup, with mod.rs importing and reexporting modules, you will need to put the annotation both in the “root” (your main.rs file) and any mod.rs files that do reexporting. But don’t worry: Rust will keep complaining with have you added the #[macro_use] on the module/import? until you fix all of them. It can be tedious at times, but this focus on keeping things private unless they are explicitly made public does force you to think about information hiding. But, as we previously mentioned, this is the older way of exposing macros. Instead, you should prefer a “use declaration” for reexporting the macro—for example, pub(crate) use greeting. This is the approach you’ll encounter in more recent Rust code.

 Note that we had to make our base_greeting_fn function public (and import it into our main.rs). When you consider it, the reason is once again obvious: our declarative macro is expanded in our main function. In the previous section, we already learned that we can mentally take the content of our transcriber and replace the invocation with that content. In this case, greeting!("Sam", "Heya") is replaced by base_ greeting_fn. And if base_greeting_fn is not public, you are trying to invoke an unknown function. This behavior might not be what you desire (because you might want the macro to be the entry point to all your holiday greetings), but it is a logical consequence of the way macros and visibility work in Rust.

2.2.2 More than one way to expand code

 We interrupt this broadcast to talk a bit more about expanding, a more official term for “replacing with the content of the transcriber,” because while replacing content in your mind is great, sometimes you want to see what is really going on. To help with that, Rust has a nice feature called trace macros (itself a declarative macro—turtles all the way down). They are still unstable in Rust 1.77.2, the most recent version of Rust at the time of writing, which means you have to activate them as a feature and run your code with the nightly build. You can do that with rustup default nightly, which sets nightly as your default. Or—if you would like to stay with a stable version of Rust—you can instruct Cargo to run a specific command with nightly using cargo +nightly your-command.

