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Preface
      

      
      
      
      Way back in 2012, some six years after Windows PowerShell was born, Jeff and I wrote Learn Windows PowerShell Toolmaking in a Month of Lunches. The word toolmaking was important to us. My first job out of high school was working as an aircraft mechanic, and one of the first trades I was
         exposed to was the machine shop. Imagine a hot, humid warehouse in Norfolk, Virginia, full of noisy machines chipping away
         at chunks of metal. Machinists would spend hours, sometimes, setting up a milling machine with various tools and dies—fancy
         drill and router bits, basically—that would carve a block of metal into a useful aircraft part. You went home with your hair
         full of metal chips, your skin covered in lubricants, and your ears ringing from all the noise. I swore I didn’t want to become
         one of these tool users. Of course someone has to wield the tools, and there’s nothing wrong with it. I just didn’t want it to be me.
      

      
      But tucked away at the back of the warehouse was a small, enclosed, air-conditioned office. The men and women there wore dress
         shirts and sat in front of computers all day, designing the tools and dies the machinists used. These tool and die makers, or toolmakers, got paid more, had a better work environment, and generally had—in my post-teenager view—better lives. I promised myself
         that in order to escape my personal hellhole of a workplace, I’d work hard to become one of them.
      

      
      That attitude served me well after I shifted into IT a few years later. As a LAN manager for a Bell Atlantic subsidiary (it’s
         part of Verizon, now), my help desk and Tier 2 guys brought me plenty of problems to solve, and my solution almost every time
         was to write a script for them. That way, those tool users could solve problems on their own, and I could act as a force multiplier, enabling them to solve problems rather than spending all my time solving them. Making tools for others is, in many ways, the highest
         IT calling for me, and I’ve devoted significant effort to making sure I was always in that kind of enabler position. Plus,
         I don’t get calls from users or late-night pages—bonus!
      

      
      Candidly, this book’s title—Learn PowerShell Scripting in a Month of Lunches—is a total search engine optimization ploy. People search for “PowerShell Scripting” a lot more than “PowerShell Toolmaking.”
         But now that you have the book in your hands, physically or digitally, know that Jeff and I are going to try and make you
         a toolmaker, not just a scripter. If you’re not sure what the difference is, don’t worry—it’ll become clearer as you go. We’ve rewritten
         this entire book, dropped content that strayed away from toolmaking, and added content—like automated testing, publishing
         your code, and so on—that sits firmly within the realm of toolmaking. We’ve taken everything we’ve learned in the last four
         or five years and brought it to this new title. Our goal is to make you the best toolmaker you can possibly be, to make you
         a force multiplier within your organization, and to put your career on the firmest footing possible. Thanks for joining us,
         and enjoy the ride.
      

      
      DON JONES
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About this Book
      

      
      
      
      In this book, we’re pretty careful to walk you through everything you need to know about PowerShell scripting and toolmaking,
         beginning with chapter 1. Don’t skip chapter 1—it’s important. But there are a few administrative details we should get out of the way:
      

      
      

      
         
         	Be prepared to follow along. If a chapter has a hands-on exercise, there’s a reason for that—it’s good for your brain to complete
            the exercise. We’ll discuss this a bit more in chapter 1.
            
         

         
         	Read the chapters in order. Again, chapter 1 explains why; for now, know that it’s in your best interests to follow the narrative we’ve constructed. We’ll expose you
            to specific problems so you’ll know more about why things are happening, and we’ll also show you how to script.
            
         

         
         	Download the code. Manning hosts a zip file with this book’s sample code, and we suggest you download it from www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches. Follow along with the code open in an editor, if possible, because it’ll look a great deal nicer than what we can print
            in a book.
            
         

         
      

      
      
      
Join the community
      

      
      We suggest that you look around and find a community of active PowerShell enthusiasts to become your new best friends. You’re
         definitely going to run into problems as you pursue your new scripting avocation, and colleagues are the best source for help.
         Find a local user group, or even make a website like PowerShell.org a regular stopping place. This will take effort on your part, and it’s far easier to ignore this important aspect of your
         career. Don’t.
      

      
      
      
      
      
Book forum
      

      
      Purchase of Learn PowerShell Scripting in a Month of Lunches includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the authors and from other users. To access the forum, go to https://forums.manning.com/forums/learn-powershell-scripting-in-a-month-of-lunches. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.
      

      
      Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
         readers and authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
         whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions,
         lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
         as long as the book is in print.
      

      
      
      

About the Authors
      

      
      
      
      DON JONES has been a Microsoft MVP Award recipient since 2003 for his work with Windows PowerShell and administrative automation. He
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Part 1. Introduction to scripting
      

      
      
      Scripting: the act of stringing together a bunch of words and phrases that you want someone (or something) to repeat, in sequence,
         every time the script is run. Think about an actual script from a play or movie—that’s what scripting is to a computer. In
         chapters 1–7, we’ll get you started with all the background information you need. This part of the book sets the stage, giving you the
         right tools and providing the right context for your scripting journey.
      

      
      
      
      
      


Chapter 1. Before you begin
      

      
      Windows PowerShell—well, we suppose just PowerShell will do these days, because it’s available on more than just Microsoft Windows—is an interesting product. It was originally
         created to solve the specific problem of automating Windows administrative tasks, but frankly a much simpler “batch file”
         language would have sufficed. PowerShell’s inventor, Jeffrey Snover, and its entire product team, had a much grander vision.
         They wanted something that could appeal to a broad, diverse audience. In their vision, administrators might start very simply,
         by running commands to quickly accomplish administrative tasks—that’s what our previous book, Learn Windows PowerShell in a Month of Lunches, focused on. They also imagined more complex tasks and processes being automated through scripts of varying complexity, which
         is what this book is all about. The PowerShell team also envisioned developers using PowerShell to create all-new units of
         functionality, which we’ll hint at throughout this book. Just as your microwave probably has buttons you’ve never pushed,
         PowerShell likely has functionality you may never touch, because it doesn’t apply to you. But with this book, you’re taking
         a step into PowerShell’s deepest functionality: scripting. Or, if you buy into our worldview, toolmaking.
      

      
      
      
1.1. What is toolmaking?
      

      
      We see a lot of people jump into PowerShell scripting much the same way they’d jump into batch files, VBScript, Python, and
         so on. Nothing wrong with that—Power-Shell is able to accommodate a lot of different styles and approaches. But you end up
         working harder than you need to unless you take a minute to understand how PowerShell really wants to work. We believe that toolmaking is the real way to use PowerShell.
      

      
      PowerShell has a strong ability to create highly reusable, context-independent tools, which it refers to as commands. Commands typically do one small thing, and they do it very well. A command might not be terribly useful by itself, but PowerShell
         is designed to make it easy to “snap” commands together. A single LEGO brick might not be much fun (if you’ve ever stepped
         on one in bare feet, you know what we mean), but a box of those bricks, when snapped together, can be amazing (hello, Death
         Star!). That’s the approach we take to scripting, and it’s why we use the word toolmaking to describe that approach. We believe that your effort is best spent making small, self-contained tools that can “snap on”
         to other tools. This approach makes your code usable across more situations, which saves you work. This approach also reduces
         debugging and maintenance overhead, which saves your sanity. And it’s the approach we’ll teach you in this book.
      

      
      
      
      
1.2. Is this book for you?
      

      
      Before you go any further, you should make sure this is the right place for you. This is an entry-level book on PowerShell
         scripting, but because we focus as much on process and approach as on the syntax, it’s fine if you’ve already been scripting
         for a while and are just looking to improve your approach or validate your skill set. That said, this isn’t an entry-level
         book on PowerShell itself. If you’re going to continue successfully with this book, you should be able to answer the following
         right off the top of your head:
      

      
      

      
         
         	What command would you use to query all instances of Win32_LogicalDisk from a remote computer? (Hint: if you answered Get-WmiObject, you’re behind the times and need to catch up if this book is going to be useful for you.)
            
         

         
         	What are the two ways PowerShell can pass data from one command to another in the pipeline?
            
         

         
         	Well-written PowerShell commands don’t output text. What do they output? What commands can you use to make that output prettier
            on the screen?
            
         

         
         	How would you figure out how to use the Get-WinEvent command, if you had never used it before?
            
         

         
         	What are the different shell execution policies, and what does each one mean?
            
         

         
      

      
      We’re not providing you with answers to these questions—if you’re unsure of any of them, then this isn’t the right book for
         you. Instead, we’d recommend Learn Windows PowerShell in a Month of Lunches from Manning (www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-second-edition). Once you’ve worked your way through that book and its many hands-on exercises, this book will be a logical next step in
         your PowerShell education.
      

      
      We also assume that you’re pretty experienced with the Windows operating system, because our examples will pertain to that.

      
      
      
      
      
1.3. Here’s what you need to have
      

      
      Let’s quickly run down some of what you’ll need to have to follow along with this book.
      

      
      
      1.3.1. PowerShell version
      

      
      We wrote this book using PowerShell 5.1, but honestly, 99% of the book applies to PowerShell version 3 and later. Download
         PowerShell from https://msdn.microsoft.com/powershell—it’s part of a technology package called Windows Management Framework (WMF). Now, look: Don’t go installing new versions
         of PowerShell on your server computers without doing some research. Many server applications (we’re looking at you, Exchange
         Server) are picky about which version of PowerShell they’ll work with, and installing the wrong one can break things. Also,
         be aware that each version of PowerShell supports only specific versions of Windows—so if you’re somehow still running Windows
         XP, you’re not going to be able to follow along with this book (we used Windows 10 for our examples). We should also note
         that although the vast majority of this book will work fine with PowerShell on Linux or macOS, we didn’t test on those operating
         systems.
      

      
      Do not sweat too much about the PowerShell version you’re using, as long as it’s at least version 3 (run $PSVersionTable in the shell to see what version you have). This book has been very carefully designed to work not only with v3, v4, and v5, but also with v6 (which, as we write this, is just around the corner)
         and even beyond. The content we’re covering is so core to PowerShell, so stable, and so mature, that it’s essentially evergreen, meaning it doesn’t really change from season to season. We use free e-books on PowerShell.org to help teach the of-the-moment, new-and-shiny stuff that relates to a specific version of PowerShell; this book is all about
         the solid core that remains stable.
      

      
      
         
            
         
         
            
               	
            

         
      

      Warning

      
      
      As of this writing, Microsoft has deprecated PowerShell v2. That means it’s no longer supported and shouldn’t be used in production.
         A lot of this book is applicable to v2, but we’re going to assume you aren’t using it, because you shouldn’t be.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      1.3.2. Administrative privileges
      

      
      You need to be able to run PowerShell “as Administrator” on your computer, mainly so that the administrative examples we’re
         sharing with you will work. If you don’t know how to run PowerShell as an Administrator of your computer, then this probably
         isn’t the right book to start with.
      

      
      
      
      1.3.3. SQL Server
      

      
      Although it isn’t required, we recommend installing SQL Server Express (the version that includes the SQL Server Management
         Studio administrative tools). It’s free, and it’ll let you follow along with the excellent chapter on managing data in PowerShell.
         As of this writing, you can start downloading at https://www.microsoft.com/en-us/sql-server/sql-server-editions-express; we recommend the With Advanced Services download option, which requires you to join Microsoft’s free Visual Studio Dev Essentials program.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      This is all “as of this writing.” Microsoft pretty famously juggles the SQL Server Express edition’s location and what you
         have to do to get it, which we’re sure will happen 10 minutes after this book goes to print! We trust in your Google Fu being
         able to locate the latest and greatest.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      1.3.4. Script editor
      

      
      Finally, you’ll need a script editor. Windows PowerShell’s Integrated Script Editor (ISE) is included on client versions of
         Windows and works great. But it’s a bit creaky and bare-bones. These days, Microsoft recommends Visual Studio Code (VS Code),
         which is free and cross-platform. Download that, and in chapter 2 we’ll show you how to set it up for use with PowerShell. Start the download at https://code.visualstudio.com.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      Visual Studio Code and PowerShell are both cross-platform (well, Power-Shell Core is, not the “full” PowerShell). Every single concept and practice in this book applies to PowerShell running on systems other
         than Windows. But the examples we use will, as of this writing, only run on Windows. We recommend sticking with Windows, unless you’re willing to be very
         patient and perhaps translate our running examples into ones that will run on other operating systems.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      
      
1.4. How to use this book
      

      
      You’re meant to read one chapter of this book per day, and it should take you under an hour to do so—except in one case, where
         we have a Special Bonus Double Chapter, which we’ll call to your attention when we get there. Spend some additional time,
         even a day or two, completing any hands-on exercises that come at the chapter’s end. Do not feel the need to press ahead and binge-read several chapters at once, even if you have an especially long lunch “hour.” Here’s
         why: We’re going to be throwing a lot of new facts at you. The human brain needs time—and sleep!—to sort through those facts,
         connect them to things you already know, and start turning them into knowledge. Cognitive science has identified some consistent limits to how much your brain can successfully digest in a day, and we’ve
         been careful to construct each chapter with those limits in mind. So, seriously—one chapter per day. Try to get in at least
         three or four chapters per week so that you can keep the narrative in mind, and absolutely make sure you’re doing the hands-on exercises we’ve provided.
      

      
      
         
            
         
         
            
               	
            

         
      

      Tip

      
      
      We’d rather see you repeat a chapter and its hands-on exercises for two or three days in a row, to make sure it’s cemented
         in your mind. Doing that, rather than trying to binge-read many chapters in just a day or two, will get this stuff into your
         brain more reliably.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      And speaking of those exercises—do not just skip ahead and read the sample solutions we’ve provided. Again, cognitive science is clear that the human brain works
         best when it learns some new facts and immediately puts them to use. Even if you find a particular exercise to be a struggle,
         the struggle itself is what forces your brain to focus and brings facts together. Before you consult the sample solution for
         an easy answer, it’s better to go back and skim through previous chapters. Constructing the answer in that fashion is what
         will make the information stick for you. It’s a bit more work for you, but it’ll pay off, we absolutely promise. If you take
         the lazy approach, you’re just cheating yourself, and we don’t want that for you.
      

      
      
      
      
1.5. Expectations
      

      
      Before you get too far into the book, we want to make sure you know what to expect. As you might imagine, the book’s topic
         is pretty big, and there’s a lot of material we could cover. But this book is designed for you to complete in a month of lunches,
         so we had to draw the line somewhere. Our goal is to provide you with fundamental information that we think everyone should
         have in order to start scripting and creating basic PowerShell tools. This book was never intended as an all-inclusive tutorial.
         If there’s a topic you were expecting us to cover, you might take a look at the follow-up book, The PowerShell and Scripting Toolmaking Book (http://bit.ly/PSToolmaking).
      

      
      
      
      
1.6. How to ask for help
      

      
      You’re welcome to ask us for help in Manning’s online author forum, which you can access through www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches. But we encourage you to instead consider an online forum like PowerShell.org. We monitor the Q&A forums there as well, but, more importantly, you’ll find hundreds of other like-minded individuals asking
         and answering questions. The thing that’s important with PowerShell is for you to engage and become part of its community,
         meeting your peers and colleagues and becoming a contributor yourself in time. PowerShell.org offers tips-and-tricks videos, free e-books, an annual in-person conference, and a ton more, and it’s a great way to start
         making PowerShell a formal part of your career path.
      

      
      
      
      
1.7. Summary
      

      
      Hopefully at this point you’re eager to dive in and start scripting—or, better yet, to start toolmaking. You should have your prerequisite software lined up and ready to go, and you should have a good idea of how much time you’ll
         need to devote to this book each week. Let’s get started.
      

      
      
      
      
      
      
      


Chapter 2. Setting up your scripting environment
      

      
      OK, it’s time to start actually doing stuff. We’ll begin by making sure you have a functioning scripting environment ready
         to go. We strongly recommend that you work through each step in this chapter, to make sure you have an environment in which
         you can follow along with us and where you can complete the hands-on exercises that appear at the end of many chapters.
      

      
      
      
2.1. The operating system
      

      
      The first thing you’re going to need, of course, is a computer running an operating system. Although the techniques we cover in this book apply equally to Linux, macOS, and Windows, the examples we’re providing—because they use Windows’ Windows Management Instrumentation (WMI) and Common Information Model (CIM) systems—will
         only work on Windows. Therefore, we think it makes sense for you to have a Windows computer handy. And we recommend that you
         use Windows 10 or later, rather than an older client operating system or a server operating system. Acquiring and installing
         Windows 10 is outside the scope of this book, of course, but they should be familiar tasks to you (if they’re not, then you’re
         probably getting a bit ahead of yourself with this book). You probably can follow along with this book using Windows 7 Service Pack 1 or Windows 8.1, but we’re not going to guarantee that you
         won’t run into some weird problems, because we didn’t test on those older operating systems.
      

      
      
      
      
      
2.2. Windows PowerShell
      

      
      You need to have Windows PowerShell 5.1 or later installed (technically, v3 or later should suffice, but we’re big believers
         in using the latest version on your client computer). We don’t recommend installing a prerelease, preview, beta, or other version of PowerShell—stick with the latest shipping version, available
         at http://microsoft.com/powershell. PowerShell is part of Windows Management Framework, so you’ll download and install the latest version. Pay close attention
         to the system requirements, because you may need to install a specific version of Microsoft .NET Framework or other prerequisites.
         Note that Windows 10 comes with the right version of PowerShell, and you can check it by opening PowerShell and running $PSVersion-Table.
      

      
      It’s also worth noting that Microsoft produces two versions of PowerShell. Windows PowerShell is the full version, and it’s what comes in the WMF package. That’s what you want. There’s also PowerShell Core, which is what runs on Linux, macOS, and so on. You don’t want or need that if you’re using a Windows client operating system.
      

      
      
      
      
2.3. Administrative privileges and execution policy
      

      
      You need to ensure that you have the ability to run PowerShell “as Administrator” on your computer. On a company-owned computer,
         that might not be possible, so it’s worth checking. First, start the PowerShell console (press Windows-R, type powershell, and press Enter). If the window title bar doesn’t say Administrator, right-click the PowerShell icon in the taskbar and
         select Run as Administrator. That should open a new window that does say Administrator in the title bar (you may get a User Access Control prompt beforehand, which you’ll need to allow). If
         that doesn’t work, stop. You’re going to have difficulty following along with the examples in this book, and you need to resolve your Administrator
         access before you proceed.
      

      
      With the shell open as Administrator, run Get-ExecutionPolicy. This needs to return something other than AllSigned, such as RemoteSigned, Unrestricted, or Bypass. If it doesn’t, you can try running Set-ExecutionPolicy RemoteSigned. If that works, you’re good to go. But if you get any errors or warnings, then your execution policy probably didn’t change,
         and you need to resolve that with your company’s IT team before you’ll be able to follow along with this book. Pop over to
         the forums on PowerShell.org if you need some help figuring this out!
      

      
      
      
      
2.4. A script editor
      

      
      Most important, you need a script editor. Since PowerShell v2, Microsoft has shipped the Integrated Script Editor (ISE) with
         Windows, and we’ve been strong advocates of using it. But in May 2017, Microsoft announced that the ISE was more or less deprecated. That means the company won’t be investing much, if at all, in further ISE feature development; Microsoft will continue to
         include it in Windows for the time being but would like everyone to move on.
      

      
      The recommended editor these days (short of buying a commercial product from a company like SAPIEN Technologies) is Microsoft’s
         free, cross-platform Visual Studio Code editor, often referred to as VS Code. Head over to https://code.visualstudio.com to download and install it. We recommend downloading and using the Stable Build instead of an Insiders Build; the Insiders
         version can contain a lot of exciting, experimental features, and also a lot of less-exciting bugs. We’re going to assume that you’re using VS Code in this book, and most of our examples and information will build from that assumption.
      

      
      Once VS Code is installed, open it. Ours looks like figure 2.1 (we’ve changed to the Light+ theme from the default Dark theme so these screenshots look better in the printed book).
      

      
      
      
      Figure 2.1. Opening VS Code
      

      
      [image: ]

      
      
      Every so often, you’ll find that VS Code has updated itself and wants to restart. Let it—the update takes only a second, and
         it’s a good way to make sure you have the most stable release.
      

      
      Right away, you’ll want to install the extension that lets VS Code understand Power-Shell. In the vertical ribbon on the left,
         the bottom icon provides access to VS Code’s extensions. Selecting that should bring up a screen somewhat like the one in figure 2.2; you’ll notice that we have several extensions already installed.
      

      
      
      
      Figure 2.2. The Extensions panel lets you install and manage VS Code add-ins.
      

      
      [image: ]

      
      
      The PowerShell extension is already installed on our system (big surprise). On a fresh system, it won’t be; type powershell in the search box to find it. On a fresh system, the extension will appear with an Install button. You can see in figure 2.2 that ours is seriously out of date and is offering an update. We’ll click the Update button, but you’d click Install to install
         the extension. Afterward, you’re likely to see the button turn into a Reload button, which will refresh the window so you
         can begin using it.
      

      
      The PowerShell extension only kicks in when you’re editing a file that has a known PowerShell filename extension, such as
         .ps1, .psm1, .ps1xml, and so on. Start by saving the empty file. Save it to your Documents folder, naming it Test.ps1. After
         doing so, you’ll notice that the screen layout has changed a bit, as shown in figure 2.3.
      

      
      
      
      Figure 2.3. VS Code’s PowerShell extension has kicked in.
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      If you’ve been paying close attention, you’ve noticed that our screenshots have all been taken on a macOS computer. Although
         VS Code is happy to run there, we don’t actually have PowerShell installed, so the VS Code PowerShell extension has returned
         an error. We wanted to demonstrate what this looks like, so you’ll know what it means if you run into this yourself sometime.
         Going forward, we’ll switch to a Windows machine. But if you’ve followed along (on Windows) to this point, then you should
         be good to go.
      

      
      
      

      
         
            
         
         
            
               	
            

         
      

      
         
         Configuring PowerShell as default
         
         If you’ll primarily use VS Code for PowerShell work, you can configure it so that every new file will be treated as a PowerShell
            file. In VS Code, choose File > Preferences > Settings. This will open a settings.json file. In the pane on the right, add
            this entry:
         

         
         "files.defaultLanguage": "powershell"

         
         The value "powershell" must be all lowercase. Each entry in the file needs to be separated by a comma. Close and save the settings.json file. Press
            Ctrl-N to create a new file; you’ll see that it’s automatically detected as a PowerShell file.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      This book isn’t intended to be a tutorial on VS Code, of course, but as we go we’ll point out useful tips and tricks for working
         more efficiently with PowerShell in this editor.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      If you’re bound and determined to use the PowerShell ISE, go ahead. You’ll have a lot less functionality (even with stellar
         add-ons like ISE Steroids), especially when it comes to debugging. At this point, VS Code is the official editor for PowerShell,
         and we don’t know why you wouldn’t want to use it, but it’s your computer!
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      
2.5. Setting up a virtual environment
      

      
      Another option you might consider is setting up a virtualized environment. You can use whatever virtualization product you’re
         comfortable with. If you have a Windows 10 system that supports virtualization and has lots of free disk space and 16 GB of
         memory, you could take advantage of an open source project called AutoLab. This project will set up a test environment, completely
         hands-free. It will even set up Hyper-V for you, download evaluation ISO images, and create all the virtual machines you might
         need.
      

      
      If you’re interested, go to https://github.com/theJasonHelmick/PS-AutoLab-Env and download the latest stable release. Take a few minutes to go through the README file to familiarize yourself with the
         process. There’s even a video you can watch. Note that even though the recommendation is for 16 GB of RAM, you can sneak by
         on 8 GB, especially for a smaller configuration.
      

      
      For this book, you can get by with the Windows 10 configuration, which will set up a single virtual machine. If you’d like
         some remote servers to test with, try using the POC-Multirole configuration. The nice thing about AutoLab is that you can
         set up and tear down lab environments with ease.
      

      
      
      
      
      
2.6. Example code
      

      
      Finally, we strongly recommend that you download this book’s sample code. Manning hosts it in a zip file on this book’s page,
         www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches. The file is organized by chapter; there’s a text file for everything formatted as a code listing in the chapter. Later in
         the book, we’ll introduce some modules. These too are organized under each chapter.
      

      
      After you download the zip file, unzip it to someplace convenient (like your Documents folder or the root of C:\), and you
         should be ready to go. As you look through the code samples, you’ll see that the module names are repeated. That’s because
         subsequent chapters build on what came before. We don’t necessarily expect you to import and use the modules, although we’ll
         provide instructions to do so.
      

      
      Finally, so there are no misunderstandings, let us be crystal clear that all the code samples in the book are for educational purposes only. Nothing should be considered ready for use in a production environment, even though you may be tempted.
      

      
      
      
      
2.7. SQL Server Express
      

      
      As we noted in chapter 1, we strongly recommend downloading and installing SQL Server Express, especially the With Advanced Services option. Again,
         that download—as of the time we’re writing this—starts at www.microsoft.com/en-us/sql-server/sql-server-editions-express.
      

      
      Later in this book, we’re going to teach you how to use SQL Server as a data store for PowerShell scripts. We can’t express how important a skill this is in today’s business world.
         If we could physically print this paragraph in bold, italicized, blinking text at 64 point, we’d do it. Watching administrators
         struggle to use Excel as a “database” by digging into its deprecated, decade-old, COM-based automation model makes us sad.
         Excel isn’t a database, and it isn’t your friend when it comes to data storage.
      

      
      We won’t run you through deep administration tasks on SQL Server Express; Don has a great book, Learn SQL Server Administration in a Month of Lunches (Manning, 2014, www.manning.com/books/learn-sql-server-administration-in-a-month-of-lunches), if SQL Server is an all-new tool for you. But we’d like to get you through a basic setup. We’ll refer you to the Microsoft
         tutorial “Getting Started with the Database Engine” at http://mng.bz/u04t, which will show you how to download the SQL Server Management Studio (also recommended) and get it up and running.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      This setup changes a bit with each new version. We’re on SQL Server Express 2016, but we’ll try to explain why we’re doing each thing here, so that you can translate that to older or newer versions as needed.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      The installer download is really, really tiny—it’s basically going to kick off the install and download everything it needs
         on demand. You’ll begin with something like figure 2.4, which shows the installer getting started.
      

      
      
      
      Figure 2.4. Starting the SQL Server Express Edition installer
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      We usually choose the Basic installation, which will handle most of the defaults for you. You’ll be asked to accept Microsoft’s
         license agreement after clicking Basic.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      Microsoft is currently loving dark themes for its user interfaces, so the screenshots in the printed book may not be easy
         to read. They’re better in the e-book version, which is included with your print book purchase. Refer to the voucher inside
         the front cover of your print book for instructions on obtaining that download.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Figure 2.5 shows the next screen, which prompts for an install location. Leave this alone. The default will work fine on almost all systems, so go with it and click Install.
      

      
      
      
      Figure 2.5. Specifying the install location for SQL Server Express Edition
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      The installation will start; keep in mind that this is when all the SQL Server Express bits are downloaded from the internet.
         That means the install time will depend a lot on your internet connection speed. You’re waiting for the big prize, which should
         look something like figure 2.6.
      

      
      
      
      Figure 2.6. SQL Server Express’s installation summary screen
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      This is really important—be sure to make a note of a few critical items for later:
      

      
      

      
         
         	In the column on the left, note the Instance ID. This is needed to physically connect to the service. For example, you could connect to localhost\SQLEXPRESS, but you won’t
            be able to connect to just localhost. SQLEXPRESS is the default Instance ID; if you performed a Basic installation, this is
            what it will be.
            
         

         
         	
On the right, the Connection String is what you’ll end up feeding to PowerShell to create a connection to SQL Server. It’d be a great idea to copy that now and
            paste it into a text file or a note for easy future reference.
            
         

         
         	Also note the SQL Administrators item at left. This should default to making local Administrators, as well as your user account, administrators on SQL Server.
            You’ll need to connect as a SQL Server admin to create new databases, although it’s possible to set up those databases so
            that non-admins can read from, and write to, them.
            
         

         
      

      
      SQL Server Management Studio, which is SQL Server’s graphical administrative tool, is a separate download. You might start
         at http://mng.bz/3Y7Q to find it. It’s pretty much a no-brains-required installer, with zero options other than “install me.” Boston University
         has a great tutorial at http://mng.bz/QBk9 that will help you connect to your new instance and create a new database, once SQL Server and Management Studio are installed.
      

      
      
      
      
2.8. Your turn
      

      
      Take some time to make sure you’ve downloaded the sample code and successfully installed VS Code and its PowerShell extension.
         If VS Code is working, you should be able to save an empty file with a .ps1 filename extension and then, in the editor, type something like Get-P. VS Code’s IntelliSense should kick in and offer to autocomplete command names like Get-Process for you. If that’s working,
         then you’re clear to proceed. If not, stop here, and get it working. Again, we’ll keep an eye on the forums at PowerShell.org for questions; you’re welcome to drop by there if you need help.
      

      
      
      
      
      
      
      


Chapter 3. WWPD: what would PowerShell do?
      

      
      Before you dive into scripting and toolmaking, it’s worth having a conversation about “The Right Way to Do Things.” One of
         PowerShell’s advantages—and also one of its biggest disadvantages—is that it’s pretty happy to let you take a variety of approaches
         when you code. If you’re an old-school VBScript person, PowerShell will let you write scripts that look a lot like VBScript.
         If you’re a C# person, PowerShell will happily run scripts that bear a strong resemblance to C#. But PowerShell is neither
         VBScript nor C#; if you want to take the best advantage of it and let it do as much heavy lifting for you as possible, you
         need to understand The PowerShell Way of doing things. We’re going to harp on this a lot in this book, and this is where we’ll start.
      

      
      Think of it this way: A car is useful for getting from point A to point B, but there are many different ways in which you
         could do so. You could, for example, put the car in neutral, get out, and push it to point B. Your ancestors were great at
         walking from place to place, and if it was good enough for them, it’s good enough for you. Or, you could hitch a horse to
         the car, and let the horse pull it. Horses have been a great approach to transportation for centuries, so why change? But
         the most efficient way is to use the car as it was meant to be used: Fill it with gas, get in, and step on the accelerator.
         You’ll go faster than the horse could, you’ll expend less effort than you would by pushing, and overall you’ll be a happier,
         healthier traveler.
      





















