

 [image: cover]

Learn PowerShell Scripting in a Month of Lunches

 Don Jones and Jeffery Hicks

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Frances Lefkowitz
Technical development editor: James Berkenbile
Project editor: Janet Vail
Copyeditor: Tiffany Taylor
Proofreader: Alyson Brener
Technical proofreader: James Berkenbile
Typesetter: Dennis Dalinnik
Cover designer: Leslie Haimes

 ISBN: 9781617295096

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 1. Introduction to scripting

 Chapter 1. Before you begin

 Chapter 2. Setting up your scripting environment

 Chapter 3. WWPD: what would PowerShell do?

 Chapter 4. Review: parameter binding and the PowerShell pipeline

 Chapter 5. Scripting language crash course

 Chapter 6. The many forms of scripting (and which to use)

 Chapter 7. Scripts and security

 2. Building a PowerShell script

 Chapter 8. Always design first

 Chapter 9. Avoiding bugs: start with a command

 Chapter 10. Building a basic function and script module

 Chapter 11. Going advanced with your function

 Chapter 12. Objects: the best kind of output

 Chapter 13. Using all the pipelines

 Chapter 14. Simple help: making a comment

 Chapter 15. Dealing with errors

 Chapter 16. Filling out a manifest

 3. Grown-up scripting

 Chapter 17. Changing your brain when it comes to scripting

 Chapter 18. Professional-grade scripting

 Chapter 19. An introduction to source control with git

 Chapter 20. Pestering your script

 Chapter 21. Signing your script

 Chapter 22. Publishing your script

 4. Advanced techniques

 Chapter 23. Squashing bugs

 Chapter 24. Making script output prettier

 Chapter 25. Wrapping up the .NET Framework

 Chapter 26. Storing data—not in Excel!

 Chapter 27. Never the end

 Toolmaking Best Practices Checklist

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 1. Introduction to scripting

 Chapter 1. Before you begin

 1.1. What is toolmaking?

 1.2. Is this book for you?

 1.3. Here’s what you need to have

 1.3.1. PowerShell version

 1.3.2. Administrative privileges

 1.3.3. SQL Server

 1.3.4. Script editor

 1.4. How to use this book

 1.5. Expectations

 1.6. How to ask for help

 1.7. Summary

 Chapter 2. Setting up your scripting environment

 2.1. The operating system

 2.2. Windows PowerShell

 2.3. Administrative privileges and execution policy

 2.4. A script editor

 2.5. Setting up a virtual environment

 2.6. Example code

 2.7. SQL Server Express

 2.8. Your turn

 Chapter 3. WWPD: what would PowerShell do?

 3.1. Writing single-task tools

 3.2. Naming tools

 3.3. Naming parameters

 3.4. Producing output

 3.5. Don’t assume

 3.6. Avoid innovation

 3.7. Summary

 Chapter 4. Review: parameter binding and the PowerShell pipeline

 4.1. Visualizing the pipeline

 4.2. It’s all in the parameters

 4.3. Plan A: ByValue

 4.3.1. Introducing Trace-Command

 4.3.2. Tracing ByValue parameter binding

 4.3.3. When ByValue fails

 4.4. ByPropertyName

 4.4.1. Let’s trace ByPropertyName

 4.4.2. When ByPropertyName fails

 4.4.3. Planning ahead

 4.5. Summary

 Chapter 5. Scripting language crash course

 5.1. Comparisons

 5.1.1. Wildcards

 5.1.2. Collections

 5.1.3. Troubleshooting comparisons

 5.2. The If construct

 5.3. The ForEach construct

 5.4. The Switch construct

 5.5. The Do/While construct

 5.6. The For construct

 5.7. Break

 5.8. Summary

 Chapter 6. The many forms of scripting (and which to use)

 6.1. Tools vs. controllers

 6.2. Thinking about tools

 6.3. Thinking about controllers

 6.4. Comparing tools and controllers

 6.5. Some concrete examples

 6.5.1. Emailing users whose passwords are about to expire

 6.5.2. Provisioning new users

 6.5.3. Setting file permissions

 6.5.4. Helping the help desk

 6.6. Control more

 6.7. Your turn

 Chapter 7. Scripts and security

 7.1. PowerShell’s script security goal

 7.2. Execution policy

 7.2.1. Execution scope

 7.2.2. Getting your policies

 7.2.3. Setting an execution policy

 7.3. PowerShell isn’t the default application

 7.4. Running scripts

 7.5. Recommendations

 7.6. Summary

 2. Building a PowerShell script

 Chapter 8. Always design first

 8.1. Tools do one thing

 8.2. Tools are testable

 8.3. Tools are flexible

 8.4. Tools look native

 8.5. For example

 8.6. Your turn

 8.6.1. Start here

 8.6.2. Your task

 8.6.3. Our take

 Chapter 9. Avoiding bugs: start with a command

 9.1. What you need to run

 9.2. Breaking it down, and running it right

 9.3. Running commands and digging deeper

 9.4. Process matters

 9.5. Know what you need

 9.6. Your turn

 9.6.1. Start here

 9.6.2. Your task

 9.6.3. Our take

 Chapter 10. Building a basic function and script module

 10.1. Starting with a basic function

 10.1.1. Designing the input parameters1

 10.1.2. Writing the code

 10.1.3. Designing the output

 10.2. Creating a script module

 10.3. Prereq check

 10.4. Running the command

 10.5. Your turn

 10.5.1. Start here

 10.5.2. Your task

 10.5.3. Our take

 Chapter 11. Going advanced with your function

 11.1. About CmdletBinding and common parameters

 11.1.1. Accepting pipeline input

 11.1.2. Mandatory-ness

 11.1.3. Parameter validation

 11.1.4. Parameter aliases

 11.1.5. Supporting –Confirm and –WhatIf

 11.2. Your turn

 11.2.1. Start here

 11.2.2. Your task

 11.2.3. Our take

 Chapter 12. Objects: the best kind of output

 12.1. Assembling the information

 12.2. Constructing and emitting output

 12.3. A quick test

 12.4. An object alternative

 12.5. Enriching objects

 12.6. Your turn

 12.6.1. Start here

 12.6.2. Your task

 12.6.3. Our take

 Chapter 13. Using all the pipelines

 13.1. Knowing the six channels

 13.2. Adding verbose and warning output

 13.3. Doing more with -Verbose

 13.4. Information output

 13.4.1. A detailed information example

 13.5. Your turn

 13.5.1. Start here

 13.5.2. Your task

 13.5.3. Our take

 Chapter 14. Simple help: making a comment

 14.1. Where to put your help

 14.2. Getting started

 14.3. Going further with comment-based help

 14.4. Broken help

 14.5. Beyond comments

 14.6. Your turn

 14.6.1. Start here

 14.6.2. Your task

 14.6.3. Our take

 Chapter 15. Dealing with errors

 15.1. Understanding errors and exceptions

 15.2. Bad handling

 15.3. Two reasons for exception handling

 15.4. Handling exceptions in your tool

 15.5. Capturing the exception

 15.6. Handling exceptions for non-commands

 15.7. Going further with exception handling

 15.8. Your turn

 15.8.1. Start here

 15.8.2. Your task

 15.8.3. Our take

 Chapter 16. Filling out a manifest

 16.1. Module execution order

 16.2. Creating a new manifest

 16.3. Examining the manifest

 16.3.1. Metadata

 16.3.2. The root module

 16.3.3. Prerequisites

 16.3.4. Scripts, types, and formats

 16.3.5. Exporting members

 16.4. Your turn

 16.4.1. Start here

 16.4.2. Your task

 16.4.3. Our take

 3. Grown-up scripting

 Chapter 17. Changing your brain when it comes to scripting

 17.1. Example 1

 17.1.1. The critique

 17.1.2. Our take

 17.1.3. Thinking beyond the literal

 17.2. Example 2

 17.2.1. The walkthrough

 17.2.2. Our take

 17.3. Your turn

 17.3.1. Start here

 17.3.2. Your task

 17.3.3. Our take

 Chapter 18. Professional-grade scripting

 18.1. Using source control

 18.2. Spelling it out

 18.3. Commenting your code

 18.4. Formatting your code

 18.5. Using meaningful non-Hungarian variable names

 18.6. Avoiding aliases

 18.7. Avoiding awkward pipelines

 18.8. Providing help

 18.9. Avoiding Write-Host and Read-Host

 18.10. Sticking with single quotes

 18.11. Not polluting the global scope

 18.12. Being flexible

 18.13. Being secure

 18.14. Striving for elegance

 18.15. Summary

 Chapter 19. An introduction to source control with git

 19.1. Why source control?

 19.2. What is git?

 19.2.1. Installing git

 19.2.2. Git basics

 19.3. Repository basics

 19.3.1. Creating a repository

 19.3.2. Staging a change

 19.3.3. Committing a change

 19.3.4. Rolling back a change

 19.3.5. Branching and merging

 19.4. Using git with VS Code

 19.5. Integrating with GitHub

 19.6. Summary

 Chapter 20. Pestering your script

 20.1. The vision

 20.2. Problems with manual testing

 20.3. Benefits of automated testing

 20.4. Introducing Pester

 20.5. Coding to be tested

 20.6. What do you test?

 20.6.1. Integration tests

 20.6.2. Unit tests

 20.6.3. Don’t test what isn’t yours

 20.7. Writing a basic Pester test

 20.7.1. Creating a fixture

 20.7.2. Writing the first test

 20.7.3. Creating a mock

 20.7.4. Adding more tests

 20.7.5. Code coverage

 20.8. Summary

 Chapter 21. Signing your script

 21.1. Why sign your scripts?

 21.2. A word about certificates

 21.3. Setting your policy

 21.4. Code-signing basics

 21.4.1. Getting a code-signing certificate

 21.4.2. Trusting self-signed certificates

 21.4.3. Signing your scripts

 21.4.4. Testing script signatures

 21.5. Summary

 Chapter 22. Publishing your script

 22.1. Why publish?

 22.2. Meet the PowerShell Gallery

 22.3. Other publishing targets

 22.4. Before you publish

 22.4.1. Are you reinventing the wheel?

 22.4.2. Updating your manifest

 22.4.3. Getting an API key

 22.5. Ready, set, publish

 22.5.1. Managing revisions

 22.6. Publishing scripts

 22.6.1. Using the Microsoft script repository

 22.6.2. Creating ScriptFileInfo

 22.6.3. Publishing the script

 22.6.4. Managing published scripts

 22.7. Summary

 4. Advanced techniques

 Chapter 23. Squashing bugs

 23.1. The three kinds of bugs

 23.2. Dealing with syntax bugs

 23.3. Dealing with results bugs

 23.4. Dealing with logic bugs

 23.4.1. Setting breakpoints

 23.4.2. Setting watches

 23.4.3. So much more

 23.4.4. Don’t be lazy

 23.5. Your turn

 23.5.1. Start here

 23.5.2. Your task

 23.5.3. Our take

 Chapter 24. Making script output prettier

 24.1. Our starting point

 24.2. Creating a default view

 24.2.1. Exploring Microsoft’s views

 24.2.2. Adding a custom type name to output objects

 24.2.3. Creating a new view file

 24.2.4. Adding the view file to a module

 24.3. Your turn

 24.3.1. Start here

 24.3.2. Your task

 24.3.3. Our take

 Chapter 25. Wrapping up the .NET Framework

 25.1. Why does PowerShell exist?

 25.2. A crash course in .NET

 25.3. Exploring a class

 25.4. Making a wrapper

 25.5. A more practical example

 25.6. Your turn

 25.6.1. Start here

 25.6.2. Your task

 25.6.3. Our take

 Chapter 26. Storing data—not in Excel!

 26.1. Introducing SQL Server!

 26.2. Setting up everything

 26.3. Using your database: creating a table

 26.4. Saving data to SQL Server

 26.5. Querying data from SQL Server

 26.6. Summary

 Chapter 27. Never the end

 27.1. Welcome to toolmaking

 27.2. Taking your next step

 27.3. What’s in your future?

 Toolmaking Best Practices Checklist

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Way back in 2012, some six years after Windows PowerShell was born, Jeff and I wrote Learn Windows PowerShell Toolmaking in a Month of Lunches. The word toolmaking was important to us. My first job out of high school was working as an aircraft mechanic, and one of the first trades I was
 exposed to was the machine shop. Imagine a hot, humid warehouse in Norfolk, Virginia, full of noisy machines chipping away
 at chunks of metal. Machinists would spend hours, sometimes, setting up a milling machine with various tools and dies—fancy
 drill and router bits, basically—that would carve a block of metal into a useful aircraft part. You went home with your hair
 full of metal chips, your skin covered in lubricants, and your ears ringing from all the noise. I swore I didn’t want to become
 one of these tool users. Of course someone has to wield the tools, and there’s nothing wrong with it. I just didn’t want it to be me.

 But tucked away at the back of the warehouse was a small, enclosed, air-conditioned office. The men and women there wore dress
 shirts and sat in front of computers all day, designing the tools and dies the machinists used. These tool and die makers, or toolmakers, got paid more, had a better work environment, and generally had—in my post-teenager view—better lives. I promised myself
 that in order to escape my personal hellhole of a workplace, I’d work hard to become one of them.

 That attitude served me well after I shifted into IT a few years later. As a LAN manager for a Bell Atlantic subsidiary (it’s
 part of Verizon, now), my help desk and Tier 2 guys brought me plenty of problems to solve, and my solution almost every time
 was to write a script for them. That way, those tool users could solve problems on their own, and I could act as a force multiplier, enabling them to solve problems rather than spending all my time solving them. Making tools for others is, in many ways, the highest
 IT calling for me, and I’ve devoted significant effort to making sure I was always in that kind of enabler position. Plus,
 I don’t get calls from users or late-night pages—bonus!

 Candidly, this book’s title—Learn PowerShell Scripting in a Month of Lunches—is a total search engine optimization ploy. People search for “PowerShell Scripting” a lot more than “PowerShell Toolmaking.”
 But now that you have the book in your hands, physically or digitally, know that Jeff and I are going to try and make you
 a toolmaker, not just a scripter. If you’re not sure what the difference is, don’t worry—it’ll become clearer as you go. We’ve rewritten
 this entire book, dropped content that strayed away from toolmaking, and added content—like automated testing, publishing
 your code, and so on—that sits firmly within the realm of toolmaking. We’ve taken everything we’ve learned in the last four
 or five years and brought it to this new title. Our goal is to make you the best toolmaker you can possibly be, to make you
 a force multiplier within your organization, and to put your career on the firmest footing possible. Thanks for joining us,
 and enjoy the ride.

 DON JONES

Acknowledgments

 Books simply don’t write, edit, and publish themselves. We would like to thank everyone at Manning Publications who decided
 to take a chance on a very different kind of book for Windows PowerShell, and who worked so hard to make this book happen.
 We’d like to acknowledge our peer reviewers who kept us honest, including Bruno Sonnino, Edul Chikhliwala, Foster Haines,
 Jan Vinterberg, Justin Coulston, Reka Horvath, Roman Levchenko, and Shankar Swamy.

 We’d also like to extend a big thank you to everyone who purchased a MEAP edition, which reflects your confidence in the quality
 of our work. We hope we meet your standards.

 Finally, a sincere thank you to the entire PowerShell community. You are a spirited, hard-driving bunch who keep us motivated
 and energized.

About this Book

 In this book, we’re pretty careful to walk you through everything you need to know about PowerShell scripting and toolmaking,
 beginning with chapter 1. Don’t skip chapter 1—it’s important. But there are a few administrative details we should get out of the way:

 	Be prepared to follow along. If a chapter has a hands-on exercise, there’s a reason for that—it’s good for your brain to complete
 the exercise. We’ll discuss this a bit more in chapter 1.

 	Read the chapters in order. Again, chapter 1 explains why; for now, know that it’s in your best interests to follow the narrative we’ve constructed. We’ll expose you
 to specific problems so you’ll know more about why things are happening, and we’ll also show you how to script.

 	Download the code. Manning hosts a zip file with this book’s sample code, and we suggest you download it from www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches. Follow along with the code open in an editor, if possible, because it’ll look a great deal nicer than what we can print
 in a book.

Join the community

 We suggest that you look around and find a community of active PowerShell enthusiasts to become your new best friends. You’re
 definitely going to run into problems as you pursue your new scripting avocation, and colleagues are the best source for help.
 Find a local user group, or even make a website like PowerShell.org a regular stopping place. This will take effort on your part, and it’s far easier to ignore this important aspect of your
 career. Don’t.

Book forum

 Purchase of Learn PowerShell Scripting in a Month of Lunches includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum, go to https://forums.manning.com/forums/learn-powershell-scripting-in-a-month-of-lunches. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions,
 lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the Authors

 DON JONES has been a Microsoft MVP Award recipient since 2003 for his work with Windows PowerShell and administrative automation. He
 has written dozens of books on information technology, and today he helps design the IT Ops curriculum for Pluralsight.com. Don is also president, CEO, and cofounder of The DevOps Collective (devopscollective.org), which offers IT education programs and scholarships and runs PowerShell.org and PowerShell + DevOps Global Summit (powershellsummit.org).

 Don’s other recent works include the following:

 	
Learn Windows PowerShell in a Month of Lunches (https://www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches)

 	
The DSC Book (https://leanpub.com/the-dsc-book)

 	
The PowerShell Scripting & Toolmaking Book (https://leanpub.com/powershell-scripting-toolmaking)

 	
Learn SQL Server Administration in a Month of Lunches (www.manning.com/books/learn-sql-server-administration-in-a-month-of-lunches)

 Follow Don on Twitter @concentratedDon, on Facebook at facebook.com/concentrateddon, and on LinkedIn at LinkedIn.com/in/concentrateddon. He blogs at DonJones.com.

 JEFFERY HICKS is a grizzled IT veteran with more than 25 years of experience, much of it spent as an IT infrastructure consultant specializing
 in Microsoft server technologies with an emphasis on automation and efficiency. He is a multiyear recipient of the Microsoft
 MVP Award, initially for Windows PowerShell and now for cloud and datacenter management. He works today as an independent
 author, teacher, and consultant. Jeff has taught and presented on PowerShell and the benefits of automation to IT pros worldwide
 for more than a decade. He has authored and coauthored a number of books, writes for numerous online sites and print publications,
 and is a contributing editor at Petri.com, a Pluralsight author, and a frequent speaker at technology conferences and user groups.

 You can keep up with Jeff on Twitter as @JeffHicks and on his blog at https://jdhitsolutions.com/blog.

Part 1. Introduction to scripting

 Scripting: the act of stringing together a bunch of words and phrases that you want someone (or something) to repeat, in sequence,
 every time the script is run. Think about an actual script from a play or movie—that’s what scripting is to a computer. In
 chapters 1–7, we’ll get you started with all the background information you need. This part of the book sets the stage, giving you the
 right tools and providing the right context for your scripting journey.

Chapter 1. Before you begin

 Windows PowerShell—well, we suppose just PowerShell will do these days, because it’s available on more than just Microsoft Windows—is an interesting product. It was originally
 created to solve the specific problem of automating Windows administrative tasks, but frankly a much simpler “batch file”
 language would have sufficed. PowerShell’s inventor, Jeffrey Snover, and its entire product team, had a much grander vision.
 They wanted something that could appeal to a broad, diverse audience. In their vision, administrators might start very simply,
 by running commands to quickly accomplish administrative tasks—that’s what our previous book, Learn Windows PowerShell in a Month of Lunches, focused on. They also imagined more complex tasks and processes being automated through scripts of varying complexity, which
 is what this book is all about. The PowerShell team also envisioned developers using PowerShell to create all-new units of
 functionality, which we’ll hint at throughout this book. Just as your microwave probably has buttons you’ve never pushed,
 PowerShell likely has functionality you may never touch, because it doesn’t apply to you. But with this book, you’re taking
 a step into PowerShell’s deepest functionality: scripting. Or, if you buy into our worldview, toolmaking.

1.1. What is toolmaking?

 We see a lot of people jump into PowerShell scripting much the same way they’d jump into batch files, VBScript, Python, and
 so on. Nothing wrong with that—Power-Shell is able to accommodate a lot of different styles and approaches. But you end up
 working harder than you need to unless you take a minute to understand how PowerShell really wants to work. We believe that toolmaking is the real way to use PowerShell.

 PowerShell has a strong ability to create highly reusable, context-independent tools, which it refers to as commands. Commands typically do one small thing, and they do it very well. A command might not be terribly useful by itself, but PowerShell
 is designed to make it easy to “snap” commands together. A single LEGO brick might not be much fun (if you’ve ever stepped
 on one in bare feet, you know what we mean), but a box of those bricks, when snapped together, can be amazing (hello, Death
 Star!). That’s the approach we take to scripting, and it’s why we use the word toolmaking to describe that approach. We believe that your effort is best spent making small, self-contained tools that can “snap on”
 to other tools. This approach makes your code usable across more situations, which saves you work. This approach also reduces
 debugging and maintenance overhead, which saves your sanity. And it’s the approach we’ll teach you in this book.

1.2. Is this book for you?

 Before you go any further, you should make sure this is the right place for you. This is an entry-level book on PowerShell
 scripting, but because we focus as much on process and approach as on the syntax, it’s fine if you’ve already been scripting
 for a while and are just looking to improve your approach or validate your skill set. That said, this isn’t an entry-level
 book on PowerShell itself. If you’re going to continue successfully with this book, you should be able to answer the following
 right off the top of your head:

 	What command would you use to query all instances of Win32_LogicalDisk from a remote computer? (Hint: if you answered Get-WmiObject, you’re behind the times and need to catch up if this book is going to be useful for you.)

 	What are the two ways PowerShell can pass data from one command to another in the pipeline?

 	Well-written PowerShell commands don’t output text. What do they output? What commands can you use to make that output prettier
 on the screen?

 	How would you figure out how to use the Get-WinEvent command, if you had never used it before?

 	What are the different shell execution policies, and what does each one mean?

 We’re not providing you with answers to these questions—if you’re unsure of any of them, then this isn’t the right book for
 you. Instead, we’d recommend Learn Windows PowerShell in a Month of Lunches from Manning (www.manning.com/books/learn-windows-powershell-in-a-month-of-lunches-second-edition). Once you’ve worked your way through that book and its many hands-on exercises, this book will be a logical next step in
 your PowerShell education.

 We also assume that you’re pretty experienced with the Windows operating system, because our examples will pertain to that.

1.3. Here’s what you need to have

 Let’s quickly run down some of what you’ll need to have to follow along with this book.

 1.3.1. PowerShell version

 We wrote this book using PowerShell 5.1, but honestly, 99% of the book applies to PowerShell version 3 and later. Download
 PowerShell from https://msdn.microsoft.com/powershell—it’s part of a technology package called Windows Management Framework (WMF). Now, look: Don’t go installing new versions
 of PowerShell on your server computers without doing some research. Many server applications (we’re looking at you, Exchange
 Server) are picky about which version of PowerShell they’ll work with, and installing the wrong one can break things. Also,
 be aware that each version of PowerShell supports only specific versions of Windows—so if you’re somehow still running Windows
 XP, you’re not going to be able to follow along with this book (we used Windows 10 for our examples). We should also note
 that although the vast majority of this book will work fine with PowerShell on Linux or macOS, we didn’t test on those operating
 systems.

 Do not sweat too much about the PowerShell version you’re using, as long as it’s at least version 3 (run $PSVersionTable in the shell to see what version you have). This book has been very carefully designed to work not only with v3, v4, and v5, but also with v6 (which, as we write this, is just around the corner)
 and even beyond. The content we’re covering is so core to PowerShell, so stable, and so mature, that it’s essentially evergreen, meaning it doesn’t really change from season to season. We use free e-books on PowerShell.org to help teach the of-the-moment, new-and-shiny stuff that relates to a specific version of PowerShell; this book is all about
 the solid core that remains stable.

 	

 Warning

 As of this writing, Microsoft has deprecated PowerShell v2. That means it’s no longer supported and shouldn’t be used in production.
 A lot of this book is applicable to v2, but we’re going to assume you aren’t using it, because you shouldn’t be.

 	

 1.3.2. Administrative privileges

 You need to be able to run PowerShell “as Administrator” on your computer, mainly so that the administrative examples we’re
 sharing with you will work. If you don’t know how to run PowerShell as an Administrator of your computer, then this probably
 isn’t the right book to start with.

 1.3.3. SQL Server

 Although it isn’t required, we recommend installing SQL Server Express (the version that includes the SQL Server Management
 Studio administrative tools). It’s free, and it’ll let you follow along with the excellent chapter on managing data in PowerShell.
 As of this writing, you can start downloading at https://www.microsoft.com/en-us/sql-server/sql-server-editions-express; we recommend the With Advanced Services download option, which requires you to join Microsoft’s free Visual Studio Dev Essentials program.

 	

 Note

 This is all “as of this writing.” Microsoft pretty famously juggles the SQL Server Express edition’s location and what you
 have to do to get it, which we’re sure will happen 10 minutes after this book goes to print! We trust in your Google Fu being
 able to locate the latest and greatest.

 	

 1.3.4. Script editor

 Finally, you’ll need a script editor. Windows PowerShell’s Integrated Script Editor (ISE) is included on client versions of
 Windows and works great. But it’s a bit creaky and bare-bones. These days, Microsoft recommends Visual Studio Code (VS Code),
 which is free and cross-platform. Download that, and in chapter 2 we’ll show you how to set it up for use with PowerShell. Start the download at https://code.visualstudio.com.

 	

 Note

 Visual Studio Code and PowerShell are both cross-platform (well, Power-Shell Core is, not the “full” PowerShell). Every single concept and practice in this book applies to PowerShell running on systems other
 than Windows. But the examples we use will, as of this writing, only run on Windows. We recommend sticking with Windows, unless you’re willing to be very
 patient and perhaps translate our running examples into ones that will run on other operating systems.

 	

1.4. How to use this book

 You’re meant to read one chapter of this book per day, and it should take you under an hour to do so—except in one case, where
 we have a Special Bonus Double Chapter, which we’ll call to your attention when we get there. Spend some additional time,
 even a day or two, completing any hands-on exercises that come at the chapter’s end. Do not feel the need to press ahead and binge-read several chapters at once, even if you have an especially long lunch “hour.” Here’s
 why: We’re going to be throwing a lot of new facts at you. The human brain needs time—and sleep!—to sort through those facts,
 connect them to things you already know, and start turning them into knowledge. Cognitive science has identified some consistent limits to how much your brain can successfully digest in a day, and we’ve
 been careful to construct each chapter with those limits in mind. So, seriously—one chapter per day. Try to get in at least
 three or four chapters per week so that you can keep the narrative in mind, and absolutely make sure you’re doing the hands-on exercises we’ve provided.

 	

 Tip

 We’d rather see you repeat a chapter and its hands-on exercises for two or three days in a row, to make sure it’s cemented
 in your mind. Doing that, rather than trying to binge-read many chapters in just a day or two, will get this stuff into your
 brain more reliably.

 	

 And speaking of those exercises—do not just skip ahead and read the sample solutions we’ve provided. Again, cognitive science is clear that the human brain works
 best when it learns some new facts and immediately puts them to use. Even if you find a particular exercise to be a struggle,
 the struggle itself is what forces your brain to focus and brings facts together. Before you consult the sample solution for
 an easy answer, it’s better to go back and skim through previous chapters. Constructing the answer in that fashion is what
 will make the information stick for you. It’s a bit more work for you, but it’ll pay off, we absolutely promise. If you take
 the lazy approach, you’re just cheating yourself, and we don’t want that for you.

1.5. Expectations

 Before you get too far into the book, we want to make sure you know what to expect. As you might imagine, the book’s topic
 is pretty big, and there’s a lot of material we could cover. But this book is designed for you to complete in a month of lunches,
 so we had to draw the line somewhere. Our goal is to provide you with fundamental information that we think everyone should
 have in order to start scripting and creating basic PowerShell tools. This book was never intended as an all-inclusive tutorial.
 If there’s a topic you were expecting us to cover, you might take a look at the follow-up book, The PowerShell and Scripting Toolmaking Book (http://bit.ly/PSToolmaking).

1.6. How to ask for help

 You’re welcome to ask us for help in Manning’s online author forum, which you can access through www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches. But we encourage you to instead consider an online forum like PowerShell.org. We monitor the Q&A forums there as well, but, more importantly, you’ll find hundreds of other like-minded individuals asking
 and answering questions. The thing that’s important with PowerShell is for you to engage and become part of its community,
 meeting your peers and colleagues and becoming a contributor yourself in time. PowerShell.org offers tips-and-tricks videos, free e-books, an annual in-person conference, and a ton more, and it’s a great way to start
 making PowerShell a formal part of your career path.

1.7. Summary

 Hopefully at this point you’re eager to dive in and start scripting—or, better yet, to start toolmaking. You should have your prerequisite software lined up and ready to go, and you should have a good idea of how much time you’ll
 need to devote to this book each week. Let’s get started.

Chapter 2. Setting up your scripting environment

 OK, it’s time to start actually doing stuff. We’ll begin by making sure you have a functioning scripting environment ready
 to go. We strongly recommend that you work through each step in this chapter, to make sure you have an environment in which
 you can follow along with us and where you can complete the hands-on exercises that appear at the end of many chapters.

2.1. The operating system

 The first thing you’re going to need, of course, is a computer running an operating system. Although the techniques we cover in this book apply equally to Linux, macOS, and Windows, the examples we’re providing—because they use Windows’ Windows Management Instrumentation (WMI) and Common Information Model (CIM) systems—will
 only work on Windows. Therefore, we think it makes sense for you to have a Windows computer handy. And we recommend that you
 use Windows 10 or later, rather than an older client operating system or a server operating system. Acquiring and installing
 Windows 10 is outside the scope of this book, of course, but they should be familiar tasks to you (if they’re not, then you’re
 probably getting a bit ahead of yourself with this book). You probably can follow along with this book using Windows 7 Service Pack 1 or Windows 8.1, but we’re not going to guarantee that you
 won’t run into some weird problems, because we didn’t test on those older operating systems.

2.2. Windows PowerShell

 You need to have Windows PowerShell 5.1 or later installed (technically, v3 or later should suffice, but we’re big believers
 in using the latest version on your client computer). We don’t recommend installing a prerelease, preview, beta, or other version of PowerShell—stick with the latest shipping version, available
 at http://microsoft.com/powershell. PowerShell is part of Windows Management Framework, so you’ll download and install the latest version. Pay close attention
 to the system requirements, because you may need to install a specific version of Microsoft .NET Framework or other prerequisites.
 Note that Windows 10 comes with the right version of PowerShell, and you can check it by opening PowerShell and running $PSVersion-Table.

 It’s also worth noting that Microsoft produces two versions of PowerShell. Windows PowerShell is the full version, and it’s what comes in the WMF package. That’s what you want. There’s also PowerShell Core, which is what runs on Linux, macOS, and so on. You don’t want or need that if you’re using a Windows client operating system.

2.3. Administrative privileges and execution policy

 You need to ensure that you have the ability to run PowerShell “as Administrator” on your computer. On a company-owned computer,
 that might not be possible, so it’s worth checking. First, start the PowerShell console (press Windows-R, type powershell, and press Enter). If the window title bar doesn’t say Administrator, right-click the PowerShell icon in the taskbar and
 select Run as Administrator. That should open a new window that does say Administrator in the title bar (you may get a User Access Control prompt beforehand, which you’ll need to allow). If
 that doesn’t work, stop. You’re going to have difficulty following along with the examples in this book, and you need to resolve your Administrator
 access before you proceed.

 With the shell open as Administrator, run Get-ExecutionPolicy. This needs to return something other than AllSigned, such as RemoteSigned, Unrestricted, or Bypass. If it doesn’t, you can try running Set-ExecutionPolicy RemoteSigned. If that works, you’re good to go. But if you get any errors or warnings, then your execution policy probably didn’t change,
 and you need to resolve that with your company’s IT team before you’ll be able to follow along with this book. Pop over to
 the forums on PowerShell.org if you need some help figuring this out!

2.4. A script editor

 Most important, you need a script editor. Since PowerShell v2, Microsoft has shipped the Integrated Script Editor (ISE) with
 Windows, and we’ve been strong advocates of using it. But in May 2017, Microsoft announced that the ISE was more or less deprecated. That means the company won’t be investing much, if at all, in further ISE feature development; Microsoft will continue to
 include it in Windows for the time being but would like everyone to move on.

 The recommended editor these days (short of buying a commercial product from a company like SAPIEN Technologies) is Microsoft’s
 free, cross-platform Visual Studio Code editor, often referred to as VS Code. Head over to https://code.visualstudio.com to download and install it. We recommend downloading and using the Stable Build instead of an Insiders Build; the Insiders
 version can contain a lot of exciting, experimental features, and also a lot of less-exciting bugs. We’re going to assume that you’re using VS Code in this book, and most of our examples and information will build from that assumption.

 Once VS Code is installed, open it. Ours looks like figure 2.1 (we’ve changed to the Light+ theme from the default Dark theme so these screenshots look better in the printed book).

 Figure 2.1. Opening VS Code

 [image:]

 Every so often, you’ll find that VS Code has updated itself and wants to restart. Let it—the update takes only a second, and
 it’s a good way to make sure you have the most stable release.

 Right away, you’ll want to install the extension that lets VS Code understand Power-Shell. In the vertical ribbon on the left,
 the bottom icon provides access to VS Code’s extensions. Selecting that should bring up a screen somewhat like the one in figure 2.2; you’ll notice that we have several extensions already installed.

 Figure 2.2. The Extensions panel lets you install and manage VS Code add-ins.

 [image:]

 The PowerShell extension is already installed on our system (big surprise). On a fresh system, it won’t be; type powershell in the search box to find it. On a fresh system, the extension will appear with an Install button. You can see in figure 2.2 that ours is seriously out of date and is offering an update. We’ll click the Update button, but you’d click Install to install
 the extension. Afterward, you’re likely to see the button turn into a Reload button, which will refresh the window so you
 can begin using it.

 The PowerShell extension only kicks in when you’re editing a file that has a known PowerShell filename extension, such as
 .ps1, .psm1, .ps1xml, and so on. Start by saving the empty file. Save it to your Documents folder, naming it Test.ps1. After
 doing so, you’ll notice that the screen layout has changed a bit, as shown in figure 2.3.

 Figure 2.3. VS Code’s PowerShell extension has kicked in.

 [image:]

 If you’ve been paying close attention, you’ve noticed that our screenshots have all been taken on a macOS computer. Although
 VS Code is happy to run there, we don’t actually have PowerShell installed, so the VS Code PowerShell extension has returned
 an error. We wanted to demonstrate what this looks like, so you’ll know what it means if you run into this yourself sometime.
 Going forward, we’ll switch to a Windows machine. But if you’ve followed along (on Windows) to this point, then you should
 be good to go.

 	

 Configuring PowerShell as default

 If you’ll primarily use VS Code for PowerShell work, you can configure it so that every new file will be treated as a PowerShell
 file. In VS Code, choose File > Preferences > Settings. This will open a settings.json file. In the pane on the right, add
 this entry:

 "files.defaultLanguage": "powershell"

 The value "powershell" must be all lowercase. Each entry in the file needs to be separated by a comma. Close and save the settings.json file. Press
 Ctrl-N to create a new file; you’ll see that it’s automatically detected as a PowerShell file.

 	

 This book isn’t intended to be a tutorial on VS Code, of course, but as we go we’ll point out useful tips and tricks for working
 more efficiently with PowerShell in this editor.

 	

 Note

 If you’re bound and determined to use the PowerShell ISE, go ahead. You’ll have a lot less functionality (even with stellar
 add-ons like ISE Steroids), especially when it comes to debugging. At this point, VS Code is the official editor for PowerShell,
 and we don’t know why you wouldn’t want to use it, but it’s your computer!

 	

2.5. Setting up a virtual environment

 Another option you might consider is setting up a virtualized environment. You can use whatever virtualization product you’re
 comfortable with. If you have a Windows 10 system that supports virtualization and has lots of free disk space and 16 GB of
 memory, you could take advantage of an open source project called AutoLab. This project will set up a test environment, completely
 hands-free. It will even set up Hyper-V for you, download evaluation ISO images, and create all the virtual machines you might
 need.

 If you’re interested, go to https://github.com/theJasonHelmick/PS-AutoLab-Env and download the latest stable release. Take a few minutes to go through the README file to familiarize yourself with the
 process. There’s even a video you can watch. Note that even though the recommendation is for 16 GB of RAM, you can sneak by
 on 8 GB, especially for a smaller configuration.

 For this book, you can get by with the Windows 10 configuration, which will set up a single virtual machine. If you’d like
 some remote servers to test with, try using the POC-Multirole configuration. The nice thing about AutoLab is that you can
 set up and tear down lab environments with ease.

2.6. Example code

 Finally, we strongly recommend that you download this book’s sample code. Manning hosts it in a zip file on this book’s page,
 www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches. The file is organized by chapter; there’s a text file for everything formatted as a code listing in the chapter. Later in
 the book, we’ll introduce some modules. These too are organized under each chapter.

 After you download the zip file, unzip it to someplace convenient (like your Documents folder or the root of C:\), and you
 should be ready to go. As you look through the code samples, you’ll see that the module names are repeated. That’s because
 subsequent chapters build on what came before. We don’t necessarily expect you to import and use the modules, although we’ll
 provide instructions to do so.

 Finally, so there are no misunderstandings, let us be crystal clear that all the code samples in the book are for educational purposes only. Nothing should be considered ready for use in a production environment, even though you may be tempted.

2.7. SQL Server Express

 As we noted in chapter 1, we strongly recommend downloading and installing SQL Server Express, especially the With Advanced Services option. Again,
 that download—as of the time we’re writing this—starts at www.microsoft.com/en-us/sql-server/sql-server-editions-express.

 Later in this book, we’re going to teach you how to use SQL Server as a data store for PowerShell scripts. We can’t express how important a skill this is in today’s business world.
 If we could physically print this paragraph in bold, italicized, blinking text at 64 point, we’d do it. Watching administrators
 struggle to use Excel as a “database” by digging into its deprecated, decade-old, COM-based automation model makes us sad.
 Excel isn’t a database, and it isn’t your friend when it comes to data storage.

 We won’t run you through deep administration tasks on SQL Server Express; Don has a great book, Learn SQL Server Administration in a Month of Lunches (Manning, 2014, www.manning.com/books/learn-sql-server-administration-in-a-month-of-lunches), if SQL Server is an all-new tool for you. But we’d like to get you through a basic setup. We’ll refer you to the Microsoft
 tutorial “Getting Started with the Database Engine” at http://mng.bz/u04t, which will show you how to download the SQL Server Management Studio (also recommended) and get it up and running.

 	

 Note

 This setup changes a bit with each new version. We’re on SQL Server Express 2016, but we’ll try to explain why we’re doing each thing here, so that you can translate that to older or newer versions as needed.

 	

 The installer download is really, really tiny—it’s basically going to kick off the install and download everything it needs
 on demand. You’ll begin with something like figure 2.4, which shows the installer getting started.

 Figure 2.4. Starting the SQL Server Express Edition installer

 [image:]

 We usually choose the Basic installation, which will handle most of the defaults for you. You’ll be asked to accept Microsoft’s
 license agreement after clicking Basic.

 	

 Note

 Microsoft is currently loving dark themes for its user interfaces, so the screenshots in the printed book may not be easy
 to read. They’re better in the e-book version, which is included with your print book purchase. Refer to the voucher inside
 the front cover of your print book for instructions on obtaining that download.

 	

 Figure 2.5 shows the next screen, which prompts for an install location. Leave this alone. The default will work fine on almost all systems, so go with it and click Install.

 Figure 2.5. Specifying the install location for SQL Server Express Edition

 [image:]

 The installation will start; keep in mind that this is when all the SQL Server Express bits are downloaded from the internet.
 That means the install time will depend a lot on your internet connection speed. You’re waiting for the big prize, which should
 look something like figure 2.6.

 Figure 2.6. SQL Server Express’s installation summary screen

 [image:]

 This is really important—be sure to make a note of a few critical items for later:

 	In the column on the left, note the Instance ID. This is needed to physically connect to the service. For example, you could connect to localhost\SQLEXPRESS, but you won’t
 be able to connect to just localhost. SQLEXPRESS is the default Instance ID; if you performed a Basic installation, this is
 what it will be.

 	
On the right, the Connection String is what you’ll end up feeding to PowerShell to create a connection to SQL Server. It’d be a great idea to copy that now and
 paste it into a text file or a note for easy future reference.

 	Also note the SQL Administrators item at left. This should default to making local Administrators, as well as your user account, administrators on SQL Server.
 You’ll need to connect as a SQL Server admin to create new databases, although it’s possible to set up those databases so
 that non-admins can read from, and write to, them.

 SQL Server Management Studio, which is SQL Server’s graphical administrative tool, is a separate download. You might start
 at http://mng.bz/3Y7Q to find it. It’s pretty much a no-brains-required installer, with zero options other than “install me.” Boston University
 has a great tutorial at http://mng.bz/QBk9 that will help you connect to your new instance and create a new database, once SQL Server and Management Studio are installed.

2.8. Your turn

 Take some time to make sure you’ve downloaded the sample code and successfully installed VS Code and its PowerShell extension.
 If VS Code is working, you should be able to save an empty file with a .ps1 filename extension and then, in the editor, type something like Get-P. VS Code’s IntelliSense should kick in and offer to autocomplete command names like Get-Process for you. If that’s working,
 then you’re clear to proceed. If not, stop here, and get it working. Again, we’ll keep an eye on the forums at PowerShell.org for questions; you’re welcome to drop by there if you need help.

Chapter 3. WWPD: what would PowerShell do?

 Before you dive into scripting and toolmaking, it’s worth having a conversation about “The Right Way to Do Things.” One of
 PowerShell’s advantages—and also one of its biggest disadvantages—is that it’s pretty happy to let you take a variety of approaches
 when you code. If you’re an old-school VBScript person, PowerShell will let you write scripts that look a lot like VBScript.
 If you’re a C# person, PowerShell will happily run scripts that bear a strong resemblance to C#. But PowerShell is neither
 VBScript nor C#; if you want to take the best advantage of it and let it do as much heavy lifting for you as possible, you
 need to understand The PowerShell Way of doing things. We’re going to harp on this a lot in this book, and this is where we’ll start.

 Think of it this way: A car is useful for getting from point A to point B, but there are many different ways in which you
 could do so. You could, for example, put the car in neutral, get out, and push it to point B. Your ancestors were great at
 walking from place to place, and if it was good enough for them, it’s good enough for you. Or, you could hitch a horse to
 the car, and let the horse pull it. Horses have been a great approach to transportation for centuries, so why change? But
 the most efficient way is to use the car as it was meant to be used: Fill it with gas, get in, and step on the accelerator.
 You’ll go faster than the horse could, you’ll expend less effort than you would by pushing, and overall you’ll be a happier,
 healthier traveler.

