

 inside front cover

 [image:]

 Documentation-driven development is an API-first development method in which you design and document the API first; then, you build the API server and the API client against the documentation; and finally, you use the API documentation to validate the server and client implementations. Documentation-driven development helps you reduce the chances of API integration failure, and it gives you more control and visibility of integration errors.

 [image:]

 REST APIs are structured around endpoints. We distinguish between singleton endpoints, such as GET /orders/8, and collection endpoints, such as GET /orders. REST APIs leverage the semantics of HTTP methods to indicate actions (such as POST to create resources), and they use HTTP status codes that signal the result of processing the request (such as 200 for successful responses).

 [image:]

 Microservice APIs

 Using Python, Flask, FastAPI, OpenAPI and more

 José Haro Peralta

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Marina Michaels

 	
 Technical development editor:

 	
 Nick Watts

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Michele Mitchell

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Al Krinker

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617298417

 dedication

 To Jiwon, without whose constant support and encouragement I wouldn’t have been able to write this book, and to Ivy, that boundless spark of joy that makes everything I do worth it.

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Introducing Microservice APIs

 1 What are microservice APIs?

 1.1 What are microservices?

 Defining microservices

 Microservices vs. monoliths

 Microservices today and how we got here

 1.2 What are web APIs?

 What is an API?

 What is a web API?

 How do APIs help us drive microservices integrations?

 1.3 Challenges of microservices architecture

 Effective service decomposition

 Microservices integration tests

 Handling service unavailability

 Tracing distributed transactions

 Increased operational complexity and infrastructure overhead

 1.4 Introducing documentation-driven development

 1.5 Introducing the CoffeeMesh application

 1.6 Who this book is for and what you will learn

 2 A basic API implementation

 2.1 Introducing the orders API specification

 2.2 High-level architecture of the orders application

 2.3 Implementing the API endpoints

 2.4 Implementing data validation models with pydantic

 2.5 Validating request payloads with pydantic

 2.6 Marshalling and validating response payloads with pydantic

 2.7 Adding an in-memory list of orders to the API

 3 Designing microservices

 3.1 Introducing CoffeeMesh

 3.2 Microservices design principles

 Database-per-service principle

 Loose coupling principle

 Single Responsibility Principle

 3.3 Service decomposition by business capability

 Analyzing the business structure of CoffeeMesh

 Decomposing microservices by business capabilities

 3.4 Service decomposition by subdomains

 What is domain-driven design?

 Applying strategic analysis to CoffeeMesh

 3.5 Decomposition by business capability vs. decomposition by subdomain

 Part 2. Designing and building REST APIs

 4 Principles of REST API design

 4.1 What is REST?

 4.2 Architectural constraints of REST applications

 Separation of concerns: The client-server architecture principle

 Make it scalable: The statelessness principle

 Optimize for performance: The cacheability principle

 Make it simple for the client: The layered system principle

 Extendable interfaces: The code-on-demand principle

 Keep it consistent: The uniform interface principle

 4.3 Hypermedia as the engine of application state

 4.4 Analyzing the maturity of an API with the Richardson maturity model

 Level 0: Web APIs à la RPC

 Level 1: Introducing the concept of resource

 Level 2: Using HTTP methods and status codes

 Level 3: API discoverability

 4.5 Structured resource URLs with HTTP methods

 4.6 Using HTTP status codes to create expressive HTTP responses

 What are HTTP status codes?

 Using HTTP status codes to report client errors in the request

 Using HTTP status codes to report errors in the server

 4.7 Designing API payloads

 What are HTTP payloads, and when do we use them?

 HTTP payload design patterns

 4.8 Designing URL query parameters

 5 Documenting REST APIs with OpenAPI

 5.1 Using JSON Schema to model data

 5.2 Anatomy of an OpenAPI specification

 5.3 Documenting the API endpoints

 5.4 Documenting URL query parameters

 5.5 Documenting request payloads

 5.6 Refactoring schema definitions to avoid repetition

 5.7 Documenting API responses

 5.8 Creating generic responses

 5.9 Defining the authentication scheme of the API

 6 Building REST APIs with Python

 6.1 Overview of the orders API

 6.2 URL query parameters for the orders API

 6.3 Validating payloads with unknown fields

 6.4 Overriding FastAPI’s dynamically generated specification

 6.5 Overview of the kitchen API

 6.6 Introducing flask-smorest

 6.7 Initializing the web application for the API

 6.8 Implementing the API endpoints

 6.9 Implementing payload validation models with marshmallow

 6.10 Validating URL query parameters

 6.11 Validating data before serializing the response

 6.12 Implementing an in-memory list of schedules

 6.14 Overriding flask-smorest’s dynamically generated API specification

 7 Service implementation patterns for microservices

 7.1 Hexagonal architectures for microservices

 7.2 Setting up the environment and the project structure

 7.3 Implementing the database models

 7.4 Implementing the repository pattern for data access

 The case for the repository pattern: What is it, and why is it useful?

 Implementing the repository pattern

 7.5 Implementing the business layer

 7.6 Implementing the unit of work pattern

 7.7 Integrating the API layer and the service layer

 Part 3. Designing and building GraphQL APIs

 8 Designing GraphQL APIs

 8.1 Introducing GraphQL

 8.2 Introducing the products API

 8.3 Introducing GraphQL’s type system

 Creating property definitions with scalars

 Modeling resources with object types

 Creating custom scalars

 8.4 Representing collections of items with lists

 8.5 Think graphs: Building meaningful connections between object types

 Connecting types through edge properties

 Creating connections with through types

 8.6 Combining different types through unions and interfaces

 8.7 Constraining property values with enumerations

 8.8 Defining queries to serve data from the API

 8.9 Altering the state of the server with mutations

 9 Consuming GraphQL APIs

 9.1 Running a GraphQL mock server

 9.2 Introducing GraphQL queries

 Running simple queries

 Running queries with parameters

 Understanding query errors

 9.3 Using fragments in queries

 9.4 Running queries with input parameters

 9.5 Navigating the API graph

 9.6 Running multiple queries and query aliasing

 Running multiple queries in the same request

 Aliasing our queries

 9.7 Running GraphQL mutations

 9.8 Running parameterized queries and mutations

 9.9 Demystifying GraphQL queries

 9.10 Calling a GraphQL API with Python code

 10 Building GraphQL APIs with Python

 10.1 Analyzing the API requirements

 10.2 Introducing the tech stack

 10.3 Introducing Ariadne

 10.4 Implementing the products API

 Laying out the project structure

 Creating an entry point for the GraphQL server

 Implementing query resolvers

 Implementing type resolvers

 Handling query parameters

 Implementing mutation resolvers

 Building resolvers for custom scalar types

 Implementing field resolvers

 Part 4. Securing, testing, and deploying microservice APIs

 11 API authorization and authentication

 11.1 Setting up the environment for this chapter

 11.2 Understanding authentication and authorization protocols

 Understanding Open Authorization

 Understanding OpenID Connect

 11.3 Working with JSON Web Tokens

 Understanding the JWT header

 Understanding JWT claims

 Producing JWTs

 Inspecting JWTs

 Validating JWTs

 11.4 Adding authorization to the API server

 Creating an authorization module

 Creating an authorization middleware

 Adding CORS middleware

 11.5 Authorizing resource access

 Updating the database to link users and orders

 Restricting user access to their own resources

 12 Testing and validating APIs

 12.1 Setting up the environment for API testing

 12.2 Testing REST APIs with Dredd

 What is Dredd?

 Installing and running Dredd’s default test suite

 Customizing Dredd’s test suite with hooks

 Using Dredd in your API testing strategy

 12.3 Introduction to property-based testing

 What is property-based testing?

 The traditional approach to API testing

 Property-based testing with Hypothesis

 Using Hypothesis to test a REST API endpoint

 12.4 Testing REST APIs with Schemathesis

 Running Schemathesis’s default test suite

 Using links to enhance Schemathesis’ test suite

 12.5 Testing GraphQL APIs

 Testing GraphQL APIs with Schemathesis

 12.6 Designing your API testing strategy

 13 Dockerizing microservice APIs

 13.1 Setting up the environment for this chapter

 13.2 Dockerizing a microservice

 13.3 Running applications with Docker Compose

 13.4 Publishing Docker builds to a container registry

 14 Deploying microservice APIs with Kubernetes

 14.1 Setting up the environment for this chapter

 14.2 How Kubernetes works: The “CliffsNotes” version

 14.3 Creating a Kubernetes cluster with EKS

 14.4 Using IAM roles for Kubernetes service accounts

 14.5 Deploying a Kubernetes load balancer

 14.6 Deploying microservices to the Kubernetes cluster

 Creating a deployment object

 Creating a service object

 Exposing services with ingress objects

 14.7 Setting up a serverless database with AWS Aurora

 Creating an Aurora Serverless database

 Managing secrets in Kubernetes

 Running the database migrations and connecting our service to the database

 14.8 Updating the OpenAPI specification with the ALB’s hostname

 14.9 Deleting the Kubernetes cluster

 Appendix A. Types of web APIs and protocols

 Appendix B. Managing an API’s life cycle

 Appendix C. API authorization using an identity provider

 index

 front matter

preface

 APIs and microservices have taken the software industry by storm. Under the pressure of increasing software complexity and the need to scale, more and more organizations are migrating from monolithic to microservices architecture. O’Reilly’s “Microservices Adoption in 2020” report found that 77% of respondents had adopted microservices, a trend that is expected to continue growing in the coming years.

 Using microservices poses the challenge of driving service integrations through APIs. According to Nordic APIs, 90% of developers work with APIs and they spend 30% of their time building APIs.1 The growth of the API economy has transformed the way we build applications. Today, it’s more and more common to build products and services that are delivered entirely over APIs, such as Twilio and Stripe. Even traditional sectors like banking and insurance are finding new lines of business by opening their APIs and integrating within the Open Banking ecosystem. The wide availability of API-first products means that we can focus on our core business capabilities when building our own applications, while using external APIs to handle common tasks such as authenticating users and sending emails.

 It’s exciting to be part of this growing ecosystem. However, before we embrace microservices and APIs, we need to know how to architect microservices, how to design APIs, how to define an API strategy, how to make sure we deliver reliable integrations, how to choose a deployment model, and how to protect our systems. In my experience, most organizations struggle with one or more of these questions, and a recent report by IBM found that 31% of businesses haven’t adopted microservices due to lack of internal expertise.2 Equally, Postman’s 2022 State of the API Report found that 14% of respondents experience API integration failures 11%–25% of the time (http://mng.bz/Xa9v), and according to Salt Security, 94% of organizations experienced API security incidents in 2022.3

 Many books address the problems mentioned in the previous paragraph, but they typically do it from a highly specific point of view: some focus on architecture, others on APIs, and yet others on security. I felt there’s a gap for a book that brings all these questions together and addresses them with a practical approach: essentially, a book that can get an average developer up and running quickly with the best practices, principles, and patterns for designing and building microservice APIs. I wrote this book with that goal in mind.

 Over the past years, I’ve had the opportunity to work with different clients helping them to architect microservices and deliver API integrations. Working on those projects gave me a vantage view into the major hurdles that development teams face when working with microservices and APIs. As it turns out, both technologies are deceivingly simple. A well-designed API is easy to navigate and consume, while well-architected microservices boost developer productivity and are easily scalable. On the other side of the spectrum, badly designed APIs are error prone and difficult to use, and badly architected microservices result in so-called distributed monoliths.

 The obvious questions arise: How do you design good APIs? And how do you architect loosely coupled microservices? This book will help you answer these questions and more. You’ll also get your hands dirty building APIs and services, and you’ll learn how to secure them, test them, and deploy them. The methods, patterns, and principles that I teach in this book are the outcome of many years of trials and experimentation, and I’m very excited about sharing them with you. I hope you find this book a valuable resource in your journey towards becoming a better software developer and architect.

acknowledgments

 Writing this book has been one of the most fascinating journeys in my career, and I couldn’t have done it without the help and support of my family and an amazing team of colleagues. The book is dedicated to my wonderful wife, Jiwon, without whose constant encouragement and understanding I wouldn’t have been able to complete this book, and to our daughter, Ivy, who made sure I never had a dull moment in my schedule.

 I have benefited enormously from the people who contributed ideas for the book, helped me better understand the tools and protocols I use in it, and provided feedback on various chapters and drafts. Special thanks go to Dmitry Dygalo, Kelvin Meeks, Sebastián Ramírez Montaño, Chris Richardson, Jean Yang, Gajendra Deshpande, Oscar Islas, Mehdi Medjaoui, Ben Hutton, Andrej Baranovskij, Alex Mystridis, Roope Hakulinen, Steve Ardagh-Walter, Kathrin Björkelund, Thomas Dean, Marco Antonio Sanz, Vincent Vandenborne, and the amazing maintainers of Ariadne at Mirumee.

 Since 2020, I’ve presented drafts and ideas from the book at various conferences, including EuroPython, PyCon India, API World, API Specifications Conference, and various podcasts and meetups. I want to thank everyone who attended my presentations and gave me valuable feedback. I also want to thank the attendants to my workshops at microapis.io for their thoughtful comments on the book.

 I want to thank my acquisitions editor, Andy Waldron. Andy did a brilliant job helping me get my book proposal in good shape and keeping the book focused on relevant topics. He also supported me tirelessly to promote the book and helped me to reach a wider audience.

 The book you now have in your hands is readable and understandable thanks to the invaluable work of my editor, Marina Michaels, who went far and beyond to help me write a better book. She did an outstanding job helping me improve my writing style, and keeping me on track and motivated.

 I want to thank my technical editor, Nick Watts, who rightly pointed out many inaccuracies and always challenged me to provide better explanations and illustrations, and my technical proofreader, Al Krinker, who diligently checked all the code listings and the GitHub repository for this book, making sure the code is correct and executes without issues.

 I also want to thank the rest of the Manning team who was involved in the production of this book, including Candace Gillhoolley, Gloria Lukos, Stjepan Jureković, Christopher Kaufmann, Radmila Ercegovac, Mihaela Batinić, Ana Romac, Aira Dučić, Melissa Ice, Eleonor Gardner, Breckyn Ely, Paul Wells, Andy Marinkovich, Katie Tennant, Michele Mitchell, Sam Wood, Paul Spratley, Nick Nason, and Rebecca Rinehart. Thanks also go to Marjan Bace for betting on me and giving this book a chance.

 While working on this book, I had the opportunity to receive detailed and outstanding feedback from the most amazing group of reviewers, including Alain Lompo, Björn Neuhaus, Bryan Miller, Clifford Thurber, David Paccoud, Debmalya Jash, Gaurav Sood, George Haines, Glenn Leo Swonk, Hartmut Palm, Ikechukwu Okonkwo, Jan Pieter Herweijer, Joey Smith, Juan Jimenez, Justin Baur, Krzysztof Kamyczek, Manish Jain, Marcus Young, Mathijs Affourtit, Matthieu Evrin, Michael Bright, Michael Rybintsev, Michal Rutka, Miguel Montalvo, Ninoslav Cerkez, Pierre-Michel Ansel, Rafael Aiquel, Robert Kulagowski, Rodney Weis, Sambasiva Andaluri, Satej Kumar Sahu, Simeon Leyzerzon, Steven K Makunzva, Stuart Woodward, Stuti Verma, and William Jamir Silva. I credit them all with much of the good content that made its way into the book.

 Since the book went into MEAP, I’ve been blessed by the words of encouragement and feedback that many of my readers sent me through various channels, such as LinkedIn and Twitter. I was also lucky to converse with a brilliant community of readers who actively participated in the book’s forum in Manning’s liveBook platform. I’m heartily grateful to all of you.

 This book wouldn’t have been possible without the tireless work of thousands of open source contributors who created and maintain the amazing libraries that I use in this book. I’m very thankful to all of you, and I hope my book helps to make your amazing work more visible.

 Finally, thank you, the reader, for acquiring a copy of my book. I can only hope that you find this book useful and informative and that you enjoy reading it as much as I enjoyed writing it. I love to hear from my readers, and I’d be delighted if you share your thoughts on the book with me.

about this book

 The goal of this book is to teach you how to build microservices and drive their integrations using APIs. You’ll learn to design a microservices platform and to build REST and GraphQL APIs to enable communication between microservices. You’ll also learn to test and validate your microservice APIs, to secure them, and to deploy and operate them in the cloud.

Who should read this book?

 This book is helpful for software developers who work with microservices and APIs. The book uses a very practical approach, and nearly every chapter illustrates the explanations with full coding examples. Therefore, hands-on developers who work directly with microservice APIs will find the book’s contents valuable.

 The coding examples are in Python; however, knowledge of the language isn’t necessary to be able to follow along with them. Before introducing new code, every concept is explained thoroughly.

 The book contains a lot of emphasis on design strategies, best practices, and development workflows, and therefore it’s also useful for CTOs, architects, and VPs of engineering who need to decide whether microservices are the right architectural solution for them, or who need to choose between different API strategies and how to make the integrations work.

How this book is organized: A roadmap

 The book is divided into four sections with a total of 14 chapters.

 Part 1 introduces the concepts of microservices and APIs, shows how to build a simple API, and explains how to design a microservices platform:

 	
 Chapter 1 introduces the main concepts of the book: microservices and APIs. It explains how microservices differ from monolithic architecture, and when it makes sense to use monoliths versus microservices. It also explains what APIs are and how they help us drive integrations between microservices.

 	
 Chapter 2 offers a step-by-step guide for implementing APIs using Python’s popular FastAPI framework. You’ll learn to read an API specification and understand its requirements. You’ll also learn to build APIs in gradual steps, and how to test your data validation models.

 	
 Chapter 3 explains how to design a microservices platform. It introduces three fundamental microservice design principles, and it explains how to decompose a system into microservices, using decomposition by business capability and decomposition by subdomains.

 Part 2 explains how to design, document, and build REST APIs, and how to build a microservice:

 	
 Chapter 4 explains the design principles of REST APIs. It introduces the six constraints of REST architecture and the Richardson Maturity Model, and then moves on to explain how we leverage the HTTP protocol to design well-structured and highly expressive REST APIs.

 	
 Chapter 5 explains how to document a REST API using the OpenAPI specification standard. You’ll learn the basics of JSON Schema syntax, how to define endpoints, how to model your data, and how to refactor your documentation with reusable schemas.

 	
 Chapter 6 explains how to build REST APIs using two popular Python frameworks: FastAPI and Flask. You’ll learn about the differences between the two frameworks, but you’ll also learn how the principles and patterns for building APIs remain the same and transcend the implementation details of any technical stack.

 	
 Chapter 7 explains fundamental principles and patterns for building microservices. It introduces the concept of hexagonal architecture, and it explains how to enforce loose coupling between the layers of an application. It also explains how to implement database models using SQLAlchemy and how to manage database migrations using Alembic.

 Part 3 explains how to design, consume, and build GraphQL APIs:

 	
 Chapter 8 explains how to design GraphQL APIs and how the Schema Definition Language works. It introduces GraphQL’s built-in types, and it explains how to define custom types. You’ll learn how to create relationships between types, and how to define queries and mutations.

 	
 Chapter 9 explains how to consume GraphQL APIs. You’ll learn to run a mock server and how to explore GraphQL documentation using GraphiQL. You’ll learn to run queries and mutations against a GraphQL server and how to parametrize your operations.

 	
 Chapter 10 explains how to build GraphQL APIs using Python’s Ariadne framework. You’ll learn to leverage the API documentation to automatically load data validation models, and also to implement resolvers for custom types, queries, and mutations.

 Part 4 explains how to test, secure, and deploy your microservice APIs:

 	
 Chapter 11 explains how to add authentication and authorization to your APIs using standard protocols such as OpenID Connect (OIDC) and Open Authorization (OAuth) 2.1. You’ll learn how to produce and validate JSON Web Tokens (JWTs) and how to create an authorization middleware for your APIs.

 	
 Chapter 12 explains how to test and validate your APIs. You’ll learn what property-based testing is and how to use it to test your APIs, and you’ll also learn to use API testing automation frameworks like Dredd and schemathesis.

 	
 Chapter 13 explains how to Dockerize your microservice APIs, how to run them locally using Docker Compose, and how to publish your Docker builds to AWS Elastic Container Registry (ECR).

 	
 Chapter 14 explains how to deploy your microservice APIs to AWS using Kubernetes. You’ll learn to create and operate a Kubernetes cluster using AWS EKS, how to launch an Aurora serverless database into a secure network, how to inject application configuration securely using envelope encryption, and how to set up your services to operate at scale.

 All chapters have a common theme: building components of a fictitious, on-demand coffee delivery platform called CoffeeMesh. We introduce CoffeeMesh in chapter 1, and in chapter 3, we break the platform down into microservices. Therefore, I recommend reading chapters 1 and 3 to get a better understanding of the examples introduced in later chapters. Otherwise, every part of the book is fairly independent, and each chapter is pretty self-contained. For example, if you want to learn how to design and build REST APIs, you can jump straight to part 2, and if your interest lies with GraphQL APIs, you can focus on part 3. Equally, if you want to learn to add authentication and authorization to your APIs, you can jump straight into chapter 11, or if you want to learn how to test APIs, you can go directly to chapter 12.

 There’re some cross-references between chapters: for example, chapter 12 references the API implementations from parts 2 and 3, but if you’re comfortable building APIs, you should be able to skip directly to chapter 12. The same is true for the other chapters in part 4.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 Except for chapters 1, 3, and 4, every chapter of the book is full of coding examples that illustrate every new concept and pattern introduced to the reader. Most of the coding examples are in Python, except in chapters 5, 8, and 9, which focus on API design, and therefore contain examples in OpenAPI/JSON Schema (chapter 5) and the Schema Definition Language (chapters 8 and 9). All the code is thoroughly explained, and therefore it should be accessible to all readers, including those who don’t know Python.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/microservice-apis. The complete code for the examples in the book is available for download from the Manning website at www.manning.com, and from a GitHub repository dedicated to this book at: https://github.com/abunuwas/microservice-apis. Every chapter has a corresponding folder in the GitHub repo, such as ch02 for chapter 2. Unless otherwise specified, all file references in each chapter are relative to their corresponding folder in GitHub. For example, in chapter 2, orders/app.py refers to the ch02/orders/app.py file in GitHub.

 The GitHub repository for this book shows the final state of the code in every chapter. Some chapters show how to build features progressively, in iterative steps. In those cases, the version of the code you’ll find on GitHub matches the final version of the code in the chapter.

 The Python code examples in the book have been tested with Python 3.10, although any version of Python upwards of 3.7 should work just the same. The code and the commands that I use throughout the book have been tested on a Mac machine, but they should work without problems on Windows and Linux as well. If you work on Windows, I recommend you use a POSIX-compatible terminal, such as Cygwin.

 I’ve used Pipenv to manage dependencies in every chapter. In each chapter’s folder, you’ll find Pipfile and Pipfile.lock files that describe the exact dependencies that I used to run the code examples. To avoid problems running the code, I recommend you download those files at the start of every chapter, and install the dependencies from them.

liveBook discussion forum

 Purchase of Microservice APIs includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/microservice-apis/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

Other online resources

 If you want to learn more about microservice APIs, you can check out my blog, https://microapis.io/blog, which contains additional resources that complement the lessons of this book. On the same website, I also keep an up-to-date list of workshops and seminars that I organize frequently, which also complement this book.

about the author

 [image:]

 José Haro Peralta is a software and architecture consultant. With over 10 years of experience, José has helped organizations big and small to build complex systems, architect microservice platforms, and deliver API integrations. He’s also the founder of microapis.io, a company that provides software consulting and training services. Recognized as a thought leader in the fields of cloud computing, DevOps, and software automation, José speaks regularly at international conferences and frequently organizes public workshops and seminars.

about the cover illustration

 The figure on the cover of Microservice APIs is captioned “L’invalide,” or “The Disabled,” and depicts a wounded French soldier who was a resident at the Hôtel national des Invalides, or National House of the Disabled. This image is taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 1 J. Simpson, “20 Impressive API Economy Statistics” (https://nordicapis.com/20-impressive-api-economy-statistics/ [accessed May 26, 2022]).

 2 “Microservices in the enterprise, 2021: Real benefits, worth the challenges,” (https://www.ibm.com/downloads/cas/OQG4AJAM [accessed 26th May 2022]).

 3 Salt Security, “State of API Security Q3 2022”, p. 4 (https://content.salt.security/state-api-report.html).

 Part 1. Introducing Microservice APIs

 Microservices are an architectural style in which components of a system are designed as standalone and independently deployable applications. The concept of microservices has been around since the early 2000s, and since the 2010s it has gained in popularity. Nowadays, microservices are a popular choice for building modern websites. As you’ll learn in chapter 1, microservices allow you to leverage the power of distributed applications, scale components more easily, and release faster.

 However, for all their benefits, microservices also come with challenges of their own. They bring a substantial infrastructure overhead, and they’re more difficult to monitor, operate, and trace. When working with microservices, the first challenge is to get their design right, and in chapter 3 you’ll learn several principles and strategies that will help you build robust microservices.

 Microservices collaborate through APIs, and in this book, you’ll learn to design and build REST and GraphQL APIs for your microservices. Chapter 2 gives you a taste of building a REST API, and in the second part of this book, you’ll learn additional patterns and principles to build robust REST APIs. The most challenging aspect of working with APIs is ensuring that both the API client and the API server follow the API specification, and in chapter 1 you’ll learn about documentation-driven development and the importance of starting the API journey with a good and well-documented design.

 The first part of this book teaches you foundational patterns and principles for building microservices and driving their integrations with APIs. In the rest of this book, we build on top of the concepts introduced here, and you’ll learn how to build robust APIs, how to test them, how to protect them, and how to deploy your microservice APIs to the cloud. Our intrepid journey is just about to begin!

1 What are microservice APIs?

 This chapter covers

 	
What microservices are and how they compare with monolithic applications

 	
What web APIs are and how they help us drive integrations between microservices

 	
The most important challenges of developing and operating microservices

 This chapter defines the most important concepts in this book: microservices and APIs. Microservices are an architectural style in which components of a system are designed as independently deployable services, and APIs are the interfaces that allow us to interact with those services. We will see the defining features of microservices architecture and how they compare with monolithic applications. Monolithic applications are structured around a single code base and deployed in a single build.

 We’ll discuss the benefits and the disadvantages of microservices architecture. The last part of this chapter talks about the most important challenges that we face when designing, implementing, and operating microservices. This discussion is not to deter you from embracing microservices, but so that you can make an informed decision about whether microservices are the right choice of architecture for you.

1.1 What are microservices?

 In this section, we define what microservices architecture is, and we analyze how microservices compare with monolithic applications. We’ll look into the benefits and challenges of each architectural pattern. Finally, we’ll also take a brief look at the historical developments that led to the emergence of modern microservices architecture.

1.1.1 Defining microservices

 So, what are microservices? Microservices can be defined in different ways, and, depending on which aspect of microservices architecture we want to emphasize, authors provide slightly different yet related definitions of the term. Sam Newman, one of the most influential authors in the field of microservices, provides a minimal definition: “Microservices are small, autonomous services that work together.”1

 This definition emphasizes the fact that microservices are applications that run independently of each other yet can collaborate in the performance of their tasks. The definition also emphasizes that microservices are “small.” In this context, “small” doesn’t refer to the size of the microservices’ code base, but to the idea that microservices are applications with a narrow and well-defined scope, following the Single Responsibility Principle of doing one thing and doing it well.

 A seminal article written by James Lewis and Martin Fowler provides a more detailed definition. They define microservices as an architectural style with “an approach to developing a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms, often an HTTP resource API” (https://martinfowler.com/articles/microservices.html). This definition emphasizes the autonomy of the services by stating that they run in independent processes. Lewis and Fowler also highlight that microservices have a narrow scope of responsibilities by saying that they are “small,” and they explicitly describe how microservices communicate through lightweight protocols, such as HTTP.

 DEFINITION A microservice is an architectural style in which components of a system are designed as independently deployable services. Microservices are designed around well-defined business subdomains, and they talk to each other using lightweight protocols, such as HTTP.

 From the previous definitions, we can see that microservices can be defined as an architectural style in which services are components that perform a small and clearly defined set of related functions. As you can see in figure 1.1, this definition means that a microservice is designed and built around a specific business subdomain, for example, processing payments, sending emails, or handling orders from a customer.

 [image:]

 Figure 1.1 In microservices architecture, every service implements a specific business subdomain and is deployed as an independent component that runs in its own process.

 Microservices are deployed as independent processes, typically running in independent environments, and expose their capabilities through well-defined interfaces. In this book, you will learn to design and build microservices that expose their capabilities through web APIs, though other types of interfaces are also possible, such as messaging queues.2

1.1.2 Microservices vs. monoliths

 Now that we know what microservices are, let’s see how they compare with the monolithic application pattern. In contrast with microservices, a monolith is a system where all functionality is deployed together as a single build and runs in the same process. For example, figure 1.2 shows a food delivery application with four services: a payments service, an orders service, a delivery service, and a customer support service. Since the application is implemented as a monolith, all functionality is deployed together. We can run multiple instances of a monolithic application and have them run in parallel for redundancy and scalability purposes, but it’s still the whole application running in each process.

 [image:]

 Figure 1.2 In a monolithic application, all functionality is deployed together as a single build to each server.

 DEFINITION A monolith is an architectural pattern in which the whole application is deployed as a single build.

 In some situations, the monolith is the right choice of architecture. For example, we’d use a monolith when our code base is small and it isn’t expected to grow very large.3 Monoliths also come with advantages. First, having the whole implementation in the same code base makes it easier to access data and logic from different subdomains. And because everything runs within the same process, it is easy to trace errors through the application: you only need to place a few breakpoints in different parts of your code, and you will get a detailed picture of what happens when something goes wrong. Besides, because all the code falls within the scope of the same project, you can leverage the productivity features of your favorite development editor when consuming functionality from a different subdomain.

 However, as the application grows and becomes more complex, this type of architecture shows limitations. This happens when the code base grows to a point where it becomes difficult to manage, and when finding your way through the code becomes arduous. Additionally, being able to reuse code from other subdomains within the same project often leads to tight coupling among components. Tight coupling happens when a component depends on the implementation details of another piece of code.

 The bigger the monolith, the longer it takes to test it. Every part of the monolith must be tested, and as we add new features to it, the test suite grows larger. Consequently, deployments become slower and encourage developers to pile up changes within the same release, which makes releases more challenging. Because many changes are released together, if a new bug is introduced in the release, it is often difficult to spot the specific change that caused the bug and roll it back. And because the whole application runs within the same process, when you scale the resources for one component, you are scaling for the whole application. Long story short, code changes become increasingly risky and deployments become more difficult to manage. How can microservices help us address these issues?

 Microservices address some of the issues associated with monolithic applications by enforcing strict boundaries separating components. When you implement an application using microservices, each microservice runs in a different process, often in different servers or virtual machines, and can have a completely different deployment model. As a matter of fact, they can be written in completely different programming languages (that does not mean they should!).

 Because microservices contain smaller code bases than a monolith, and because their logic is self-contained and defined within the scope of a specific business subdomain, it is easier to test them, and their test suites run faster. Because they do not have dependencies with other components of the platform at the code level (except perhaps for some shared libraries), their code is clearer, and it is easier to refactor them. This means the code can get better over time and become more maintainable. Consequently, we can make small changes to the code and release more often. Smaller releases are more controllable, and if we spot a bug, the releases are easier to roll back. I’d like to emphasize that microservices are not a panacea. As we will see in section 1.3, microservices also have limitations and bring challenges of their own.

 Now that we know what microservices are and how they compare with monolithic applications, let’s take a step back and see what developments led to the emergence of this type of architecture.

1.1.3 Microservices today and how we got here

 In many ways, microservices are not new.4 Companies were implementing and deploying components as independent applications well before the concept of microservices became popular. They just did not call it microservices. Werner Vogels, CTO of Amazon, explains how Amazon started to experiment with this type of architecture in the early 2000s. By that time, the code base for the Amazon website had grown into a complex system without a clear architectural pattern, where making new releases and scaling the system had become serious pain points. To combat these issues, they decided to look for independent pieces of logic within the code and separate them out into independently deployable components, with an API in front of them. As part of this process, they also identified the data that belongs to those components and made sure that other parts of the system could not access the data except through an API. They called this new type of architecture service-oriented architecture (https://vimeo.com/29719577). Netflix also pioneered this type of architectural style at scale, and they referred to it as “fine-grained Service Oriented Architecture.”5

 The term microservice grew in popularity in the early 2010s to describe this type of architecture. For example, James Lewis used this concept in a presentation at the 33rd Degree conference in Krakow in 2012, under the title “Micro-Services—Java, the Unix way” (https://vimeo.com/74452550). In 2014 the concept was consolidated with a paper written by Martin Fowler and James Lewis about the architectural features of microservices (https://martinfowler.com/articles/microservices.html), as well as the publication of Newman’s influential book Building Microservices.

 Today, microservices are a widely used architectural style. Most companies in which technology plays an important role are already using microservices or moving toward its adoption. It is also common for startups to begin implementing their platform using a microservices approach. However, microservices are not for everyone, and although they bring substantial benefits, as we have shown, they also carry considerable challenges, as we will see in section 1.3.

1.2 What are web APIs?

 In this section, we will explain web APIs. You will learn that a web API is a specific instance of the more general concept of an application programming interface (API). It is important to understand that an API is just a layer on top of an application, and that there are different types of interfaces. For this reason, we will begin this section by defining what an API is, and then we will move on to explaining how APIs help us drive integrations between microservices.

1.2.1 What is an API?

 An API is an interface that allows us to programmatically interact with an application. Programmatic interfaces are those we can use from our code or from the terminal, as opposed to graphic interfaces, in which we use a user interface to interact with the application. There are multiple types of application interfaces, such as command-line interfaces (CLIs; interfaces that allow you to use an application from a terminal), desktop UI interfaces, web UI interfaces, or web API interfaces. As you can see in figure 1.3, an application can have one or more of these interfaces.

 [image:]

 Figure 1.3 An application can have multiple interfaces, such as a web API, a CLI, a web UI, and a desktop UI.

 To illustrate this idea, think of the popular client URL (cURL). cURL is a CLI to the libcurl library. libcurl implements functionality that allows us to interact with URLs, while cURL exposes those capabilities through a CLI. For example, we can use cURL to send a GET request to a URL:

 $ curl -L http://www.google.com

 We can also use cURL with the -O option in order to download the contents of a URL to a file:

 $ curl -O http://www.gnu.org/software/gettext/manual/gettext.html

 The libcurl library sits behind the cURL CLI, and nothing prevents us from accessing it directly through the source code (if you are curious, you can pull it from Github: https://github.com/curl/curl) and building additional types of interfaces for this application.

1.2.2 What is a web API?

 Now that we understand what an API is, we will explain the defining features of a web API. A web API is an API that uses the Hypertext Transfer Protocol (HTTP) protocol to transport data. HTTP is the communication protocol that underpins the internet, and it allows us to exchange different kinds of media types, such as text, images, video, and JSON, over a network. HTTP uses the concept of a Uniform Resource Locator (i.e., URL) to locate resources on the internet, and it has features that can be leveraged by API technologies to enhance the interaction with the server, such as request methods (e.g., GET, POST, PUT) and HTTP headers. Web APIs are implemented using technologies such as SOAP, REST, GraphQL, gRPC, and others that are discussed in more detail in appendix A.

1.2.3 How do APIs help us drive microservices integrations?

 Microservices communicate with each other using APIs, and therefore APIs represent the interfaces to our microservices. APIs are documented using standard protocols. The API documentation tells us exactly what we need to do to interact with the microservice and what kind of responses we can expect from it. The better the API documentation, the clearer it is for the API consumer how the API works. In that sense, as you can see in figure 1.4, API documentation represents a contract between services: as long as both the client and the server follow the API documentation, communication will work as expected.

 [image:]

 Figure 1.4 API specifications represent a contract between the API server and the API client. As long as both the client and the server follow the specification, the API integration will work.

 Fowler and Lewis popularized the idea that the best strategy for integrating microservices is by exposing smart endpoints and communicating through dumb pipes (https://martinfowler.com/articles/microservices.html). This idea is inspired by the design principles of Unix systems, which establish that

 	
 A system should be made up of small, independent components that do only one thing.

 	
 The output for every component should be designed in such a way that it can easily become the input for another component.

 Unix programs communicate with each other using pipelines, which are simple mechanisms for passing messages from one application to another. To illustrate this process, think of the following chain of commands, which you can run from the terminal of a Unix-based machine (e.g., a Mac or Linux computer):

 $ history | less

 The history command shows you the list of all commands you have run using your Bash profile. The list of commands can be long, so you may want to paginate history’s output using the less command. To pass data from one command to the another, use the pipe character (|), which instructs the shell to capture the output from the history command and pipe it as the input of the less command. We say that this type of pipe is “dumb” because its only job is passing messages from one process to another. As you can see in figure 1.5, web APIs exchange data through HTTP. The data transport layer knows nothing about the specific API protocol we are using, and therefore it represents our “dumb pipe,” while the API itself contains all the necessary logic to process the data.

 [image:]

 Figure 1.5 Microservices communicate over APIs using a data transport layer, such as HTTP over TCP.

 APIs must be stable, and behind them you can change the internal implementations of any service provided they comply with the API documentation. This means that the consumer of an API must be able to continue calling the API in the exact way as before, and it must get the same responses. This leads to another important concept in microservices architecture: replaceability.6 The idea is that you should be able to completely replace the code base that lies behind an endpoint, yet the endpoint, and therefore communication across services, will still work. Now that we understand what APIs are and how they help us drive integrations between services, let’s look at the most important challenges posed by microservices.

1.3 Challenges of microservices architecture

 As we saw in section 1.1.2, microservices bring substantial benefits. However, they also come with significant challenges. In this section, we discuss the most important challenges that microservices pose, which we classify into five main categories:

 	
 Effective service decomposition

 	
 Microservices integration tests

 	
 Handling service unavailability

 	
 Tracing distributed transactions

 	
 Increased operational complexity and infrastructure overhead

 All the problems and difficulties that we discuss in this section can be addressed with specific patterns and strategies, some of which we detail over the course of this book. You’ll also find references to other resources that deal with these issues in depth. The idea here is to make you aware that microservices are not a magical cure for all the problems that monolithic applications present.

1.3.1 Effective service decomposition

 One of the most important challenges when designing microservices is service decomposition. We must break down a platform into loosely coupled yet sufficiently independent components with clearly defined boundaries. You can tell whether you have unreasonable coupling between your services if you find yourself changing one service whenever you change another service. In such situations, either the contract between services is not resilient, or there are enough dependencies between both components to justify merging them. Failing to break down a system into independent microservices can result in what Chris Richardson, author of Microservices Patterns, calls a distributed monolith, a situation where you combine all the problems of monolithic architectures with all the problems of microservices, without enjoying the benefits of any of them. In chapter 3, you’ll learn useful design patterns and service decomposition strategies that will help you break down a system into microservices.

1.3.2 Microservices integration tests

 In section 1.1.2, we said that microservices are usually easier to test, and that their test suites generally run faster. Microservices integration tests, however, can be significantly more difficult to run, especially in cases where a single transaction involves collaboration among several microservices. When your whole application runs within the same process, it is fairly easy to test the integration between different components, and most of it will simply require well-written unit tests. In a microservices context, to test the integration among multiple services you need to be able to run all of them with a setup similar to your production environment.

 You can use different strategies to test microservices integrations. The first step is making sure that each service has a well-documented and correctly implemented API. You can test the API implementation against the API specification using tools like Dredd and Schemathesis, as you’ll learn in chapter 12. You must also ensure that the API client is consuming the API exactly as dictated by the API documentation. You can write unit tests for the API client using the API documentation to generate mocked responses from the service.7 Finally, none of these tests will be sufficient without a full-blown end-to-end test that runs the actual microservices making calls to each other.

1.3.3 Handling service unavailability

 We have to make sure that our applications are resilient in the face of service unavailability, connections and request timeouts, erroring requests, and so on. For example, when we place an order through a food delivery application such as Uber Eats, Delivery Hero, or Deliveroo, a chain of requests between services unfolds to process and deliver the order, and any of those requests can fail at any point. Let’s take a high-level view of the process that takes place when a user places an order (see figure 1.6 for an illustration of the chain of requests):

 	
 A customer places an order and pays for it. The order is placed using the orders service, and to process the payment, the orders service works together with the payments service.

 	
 If payment is successful, the orders service makes a request to the kitchen service to schedule the order for production.

 	
 Once the order has been produced, the kitchen service makes a request to the delivery service to schedule the delivery.

 [image:]

 Figure 1.6 Microservices must be resilient to events such as service unavailability, request timeouts, and processing errors from other services and either retry the requests or come back to the user with a meaningful response.

 In this complex chain of requests, if one of the services involved fails to respond as expected, it can trigger a cascading error through the platform that leaves the order unprocessed or in an inconsistent state. For this reason, it is important to design microservices so that they can deal reliably with failing endpoints. Our end-to-end tests should consider these scenarios and test the behavior of our services in those situations.

1.3.4 Tracing distributed transactions

 Collaborating services must sometimes handle distributed transactions. Distributed transactions are those that require the collaboration of two or more services. For example, in a food delivery application, we want to keep track of the existing stock of ingredients so that our catalogue can accurately reflect product availability. When a user places an order, we want to update the stock of ingredients to reflect the new availability. Specifically, we want to update the stock of ingredients once the payment has been successfully processed. As you can see in figure 1.7, the successful processing of an order involves the following actions:

 	
 Process the payment.

 	
 If payment is successful, update the order’s status to indicate that it’s in progress.

 	
 Interface with the kitchen service to schedule the order for production.

 	
 Update the stock of ingredients to reflect their current availability.

 [image:]

 Figure 1.7 A distributed transaction involves collaboration among multiple services. If any of these services fails, we must be able to handle the failure and provide a meaningful response to the user.

 All of these operations are related, and they must be orchestrated so that they either all succeed or fail together. We can’t have an order successfully paid without correctly updating its status, and we shouldn’t schedule its production if payment fails. We may want to update the availability of the ingredients at the time of making the order, and if payment fails later on, we want to make sure we rollback the update. If all these actions happen within the same process, managing the flow is straightforward, but with microservices we must manage the outcomes of various processes. When using microservices, the challenge is ensuring that we have a robust communication process among services so that we know exactly what kind of error happens when it does, and we take appropriate measures in response to it.

 In the case of services that work collaboratively to serve certain requests, you also must be able to trace the cycle of the request as it goes across the different services to be able to spot errors during the transaction. To gain visibility of distributed transactions, you’ll need to set up distributed logging and tracing for your microservices. You can learn more about this topic from Jamie Riedesel’s Software Telemetry (Manning, 2021).

1.3.5 Increased operational complexity and infrastructure overhead

 Another important challenge that comes with microservices is the increased operational complexity and operational overhead they add to your platform. When the whole backend of your website runs within a single application build, you only need to deploy and monitor one process. When you have a dozen microservices, every service must be configured, deployed, and managed. And this includes not only the provisioning of servers to deploy the services, but also log aggregation streams, monitoring systems, alerts, self-recovery mechanisms, and so on. As you’ll learn in chapter 3, every service owns its own database, which means they also require multiple database setups with all the features needed to operate at scale. And it is not unusual that a new deployment changes the endpoint for a microservice, whether it’s the IP, the base URL, or a specific path within a generic URL, which means its consumers must be notified of the changes.

 When Amazon first started their journey toward a microservices architecture, they discovered that development teams would spend about 70% of their time managing infrastructure (https://vimeo.com/29719577 at 07:53). This is a very real risk that you face if you do not adopt best practices for infrastructure automation from the beginning. And even if you do, you are likely to spend a significant amount of time developing custom tooling to manage your services effectively and efficiently.

1.4 Introducing documentation-driven development

 As we explained in section 1.2.3, the success of an API integration depends on good API documentation, and in this section, we introduce an API development workflow that puts documentation at the forefront of API development. As you can see in figure 1.8, documentation-driven development is an approach to building APIs that works in three stages:

 	
 You design and document the API.

 	
 You build the API client and the API server following the documentation.

 	
 You test both the API client and the API server against the documentation.

 [image:]

 Figure 1.8 Documentation-driven development works in three stages: design and document, implement, and validate.

 Let’s dive into each of these points. The first step involves designing and documenting the specification. We build APIs for others to consume, so before we build the API, we must produce an API design that meets the needs of our API clients. Just as we involve users when we design an application’s user interface (UI), we must also engage with our API consumers when we design the API.

 Good API design delivers good developer experience, while good API documentation helps to deliver successful API integrations. What is API documentation? API documentation is a description of the API following a standard interface description language (IDL), such as OpenAPI for REST APIs and the Schema Definition Language (SDL) for GraphQL APIs. Standard IDLs have ecosystems of tools and frameworks that make it easier to build, test, and visualize our APIs, and therefore it’s worth investing time in studying them. In this book, you’ll learn to document your APIs with OpenAPI (chapter 5) and the SDL (chapter 8).

 Once we have produced a documented API design, we move on to the second stage, which consists of building the API server and the API client against the API documentation. In chapters 2 and 6, you’ll learn to analyze the requirements of an OpenAPI specification and to build an API application against them, and in chapter 10, we’ll apply the same approach to GraphQL APIs. API client developers can also leverage the API documentation to run API mock servers and test their code against them.8

 The final stage involves testing our implementation against the API documentation. In chapter 12, you’ll learn to use automated API testing tools such as Dredd and Schemathesis, which can generate a solid battery of tests for your API. Running Dredd and Schemathesis in combination with your application unit test suite will give you confidence that your API implementation works as it should. You should run these tests in your continuous integration server to make sure you don’t release any code that breaks the contract with the API documentation.

 By putting API documentation at the forefront of the development process, documentation-driven development helps you avoid one of the most common problems API developers face: disagreements between the client and the server development teams about how the API should work. In the absence of robust API documentation, developers often need to guess on implementation details of the API. In such cases, the API rarely succeeds its first integration test. Although documentation-driven development won’t give a 100% guarantee that your API integrations will work, it will significantly reduce the risk of API integration failure.

1.5 Introducing the CoffeeMesh application

 To illustrate the concepts and ideas that we explain throughout this book, we’ll build components of an application called CoffeeMesh. CoffeeMesh is a fictitious application that allows customers to order coffee in any location, at any time. The CoffeeMesh platform consists of a collection of microservices that implement different capabilities, such as processing orders and scheduling deliveries. We’ll undertake a formal analysis and design of the CoffeeMesh platform in chapter 3. To give you a taste of the kinds of things you’ll learn in this book, we’ll begin implementing the API of CoffeeMesh’s orders service in chapter 2. Before we close this chapter, I’d like to dedicate a section to explaining what you’ll learn from this book.

1.6 Who this book is for and what you will learn

 To make the most out of this book, you should be familiar with the basics of web development. The code examples in the book are in Python, so a basic understanding of Python is beneficial but not necessary to be able to follow along with them. You do not need to have knowledge of web APIs or microservices, as we will explain these technologies in depth. It is useful if you are familiar with the model-view-controller (MVC) pattern for web development or its variants, such as the model-template-view (MTV) pattern implemented by Python’s popular Django framework. We will draw comparisons with these patterns from time to time to illustrate certain concepts. Basic familiarity with Docker and cloud computing will be useful to get through the chapters about deployments, but I’ll do my best to explain every concept in detail.

 This book shows you how to develop API-driven microservices with Python through a hands-on approach. You will learn

 	
 Service decomposition strategies for designing microservice architectures

 	
 How to design REST APIs and how to document them using the OpenAPI specification

 	
 How to build REST APIs in Python using popular frameworks like FastAPI and Flask

 	
 How to design and consume GraphQL APIs and how to build them using Python’s Ariadne framework

 	
 How to test your APIs using property-based testing and API testing frameworks such as Dredd and Schemathesis

 	
 Useful design patterns to achieve loose coupling in your microservices

 	
 How to add authentication and authorization to your APIs using Open Authorization (OAuth) and OpenID Connect (OIDC)

 	
 How to deploy your microservices using Docker and Kubernetes to AWS

 By the end of this book, you will be familiar with the benefits that microservices architectures bring for web applications as well as the challenges and difficulties that come with them. You will know how to integrate microservices using APIs, you will know how to build and document those APIs using standards and best practices, and you will be prepared to define the domain of an API with clear application boundaries. Finally, you’ll also know how to test, deploy, and secure your microservice APIs.

Summary

 	
 Microservices are an architectural pattern in which components of a system are designed and built as independently deployed services. This results in smaller and more maintainable code bases and allows services to be optimized and scaled independently of each other.

 	
 Monoliths are an architectural pattern in which whole applications are deployed in a single build and run in the same process. This makes the application easier to deploy and monitor, but it also makes deployments more challenging when the code base grows large.

 	
 Applications can have multiple types of interfaces, such as UIs, CLIs, and APIs. An API is an interface that allows us to interact with an application programmatically from our code or terminal.

 	
 A web API is an API that runs on a web server and uses HTTP for data transport. We use web APIs to expose service capabilities through the internet.

 	
 Microservices talk to each other using smart endpoints and “dumb pipes.” A dumb pipe is a pipe that simply transfers data from one component to another. A great example of a dumb pipe for microservices is HTTP, which exchanges data between the API client and the API server without knowing anything about the API protocol being used. Therefore, web APIs are a great technology for driving integrations between microservices.

 	
 Despite their benefits, microservices also bring the following challenges:

 	
Effective service decomposition—We must design services with clear boundaries around specific subdomains; otherwise, we risk building a “distributed monolith.”

 	
Microservice integration tests—Running integration tests for all microservices is challenging, but we can reduce the risk of integration failures by ensuring APIs are correctly implemented.

 	
Handling service unavailability—Collaborating services are vulnerable to service unavailability, request timeouts, and processing errors, and therefore must be able to handle those scenarios.

 	
Tracing distributed transactions—Tracing errors across multiple services is challenging and requires software telemetry tools that allow you to centralize logs, enable API visibility, and trace requests across services.

 	
Increased operational complexity and infrastructure overhead—Each microservice requires its own infrastructure provisioning, including servers, monitoring systems, and alerts, so you need to invest additional efforts in infrastructure automation.

 	
 Documentation-driven development is an API development workflow that works in three stages:

 	
Design and document the API.

 	
Build the API against the documentation.

 	
Test the API against the documentation.

 By putting API documentation at the forefront of the development process, documentation-driven development helps you avoid many common problems that API developers face and therefore reduce the chances of API integration failure.

 1 Sam Newman, Building Microservices (O’Reilly, 2015), p. 2.

 2 For a comprehensive view of the different interfaces that can be used to enable communication between microservices, see Chris Richardson, Microservices Patterns (Manning, 2019).

 3 For a thorough analysis of strategic architectural decisions around monoliths and microservices, see Vernon, Vaughn and Tomasz Jaskula, Strategic Monoliths and Microservices (Addison-Wesley, 2021).

 4 For a more comprehensive analysis of the history of microservices architecture and its precursors, see Nicola Dragoni et al, “Microservices: Yesterday, Today, and Tomorrow,” Present and Ulterior Software Engineering (Springer, 2017), pp. 195–216.

 5 Allen Wang and Sudhir Tonse, “Announcing Ribbon: Tying the Netflix Mid-Tier Services Together,” Netflix Technology Blog, January 18, 2013, https://netflixtechblog.com/announcing-ribbon-tying-the-netflix-mid-tier-services-together-a89346910a62. For an excellent discussion of the difference between service-oriented architecture (SOA) and microservices architecture, see Richardson, Microservices Patterns, pp. 13–14.

 6 Newman, Building Microservices, pp. 7–8.

 7 To learn more about API development workflows and how to use API mock servers to build the client, check out my presentation “API Development Workflows for Successful Integrations,” Manning API Conference, August 3, 2021, https://youtu.be/SUKqmEX_uwg.

 8 To learn how API server and client developers can leverage API documentation in their software development process, check out my talk “Leveraging API Documentation to Deliver Reliable API Integrations,” API Specifications Conference, September 28–29, 2021, https://youtu.be/kAWvM-CVcnw.

2 A basic API implementation

 This chapter covers

 	
Reading and understanding the requirements of an API specification

 	
Structuring our application into a data layer, an application layer, and an interface layer

 	
Implementing API endpoints using FastAPI

 	
Implementing data validation models (schemas) using pydantic

 	
Testing the API using a Swagger UI

 In this chapter, we implement the API for the orders service, which is one of the microservices of the CoffeeMesh website, the project we introduced in section 1.5. CoffeeMesh is an application that makes and delivers coffee on demand at any time, wherever you are. The orders service allows customers to place orders with CoffeeMesh. As we implement the orders API, you will get an early look into the concepts and processes that we dissect in more detail throughout this book. The code for this chapter is available under the ch02 folder of the GitHub repository provided with this book.

2.1 Introducing the orders API specification

 Let’s begin by analyzing the requirements of the orders API. Using the orders API, we can place orders, update them, retrieve their details, or cancel them. The orders API specification is available in a file named ch02/oas.yaml in the GitHub repository for this book. OAS stands for OpenAPI specification, which is a standard format for documenting REST APIs. In chapter 5, you’ll learn to document your APIs using OpenAPI. As you can see in figure 2.1, the API specification describes a REST API with four main URL paths:

 	
 /orders—Allows us to retrieve lists of orders (GET) and create orders (POST).

 	
 /orders/{order_id}—Allows us to retrieve the details of a specific order (GET), to update an order (PUT), and to delete an order (DELETE).

 	
 /orders/{order_id}/cancel—Allows us to cancel an order (POST).

 	
 /orders/{order_id}/pay—Allows us to pay for an order (POST).

 [image:]

 Figure 2.1 The orders API exposes seven endpoints structured around four URL paths. Each endpoint implements different capabilities, such as placing and cancelling an order.

 In addition to documenting the API endpoints, the specification also includes data models that tell us what the data exchanged over those endpoints looks like. In OpenAPI, we call those models schemas, and you can find them within the components section of the orders API specification. Schemas tell us what properties must be included in a payload and what their types are.

 For example, the OrderItemSchema schema specifies that the product and the size properties are required, but the quantity property is optional. When the quantity property is missing from the payload, the default value is 1. Our API implementation must therefore enforce the presence of the product and the size properties in the payload before we try to create the order.

 Listing 2.1 Specification for OrderItemSchema

 # file: oas.yaml

OrderItemSchema:
 type: object
 required:
 - product
 - size
 properties:
 product:
 type: string
 size:
 type: string
 enum:
 - small
 - medium
 - big
 quantity:
 type: integer
 default: 1
 minimum: 1

 Now that we understand the requirements for building the orders API, let’s look at the architectural layout we will use for the implementation.

2.2 High-level architecture of the orders application

 This section offers a high-level overview of the orders API’s architectural layout. Our goal is to identify the layers of the application and to enforce clear boundaries and separation of concerns between all layers.

 As you can see in figure 2.2, we organize into three layers: the API layer, the business layer, and the data layer.

 [image:]

 Figure 2.2 To enforce separation of concerns among the different components of our service, we structure our code around three layers: the data layer knows how to interface with the source of data; the business layer implements the service’s capabilities; and the interface layer implements the service’s API.

 This way of structuring the application is an adaptation of the three-tier architecture pattern, which structures applications into a data layer, a business layer, and a presentation layer. As you can see in figure 2.3, the data layer is the part of the application that knows how to persist data so that we can retrieve it later. The data layer implements the data models required for interfacing with our source of data. For example, if our persistent storage is an SQL database, the models in the data layer will represent the tables in the database, often with the help of an object relational mapper (ORM) framework.

 [image:]

 Figure 2.3 When a user request reaches the orders service, it’s first validated by the interface layer. Then the interface layer interfaces with the business layer to process the request. After processing, the data layer persists the data contained in the request.

 The business layer implements our service’s capabilities. It controls the interactions between the API layer and the data layer. For the orders service, it’s the part that knows what to do to place, cancel, or pay for an order.

OEBPS/OEBPS/Images/01-02.png
Food delivery app

Payments service Orders service

Delivery service

Food delivery app Food delivery app

|| Orders service | || Orders service

Customer support.
service

n o ¥ . | (Customer suppor
Delivery service | | Delivery service ™" o; vice

OEBPS/OEBPS/Images/02-02.png
API Business layer Data layer

Exposes the capabiliies of the service Implements the capabilties Interfaces with the
and controls interactions with the user [of the service | source of data

8

OEBPS/OEBPS/Images/02-01.png
GET
== Returns an order
Returns alist of orders PUT
Jorders/{order__id}
Jorders — order_id) Updates an order
Places an order DELETE

Deletes an order

Torders/{order_id} POST Jordersi{order_id} | e
feancel Cancels an order Ipay. Pays for an order

OEBPS/OEBPS/Images/fm_Peralta.png
A VA

OEBPS/OEBPS/Images/01-07.png
Notify the

@ customer.

Process the payment.

Orders Payments i
senice || service

Payment successful

pdate the _

order’s state.” i

Schedule the © Update the W e
production. ! ngredients. | IMESEIE

-orderfor ---»| Kitchenservice |- stock of

OEBPS/OEBPS/Images/IFC-1.png
1. API design and
documentation

%34—V&

API server developers

API client developers. '

API specification

3. Test the implementation
against the specification.

OEBPS/cover.jpeg
Flask, FastAPI, OpenAPl and more

Jose Haro Peralta

/ll MANNING

OEBPS/OEBPS/Images/01-01.png

OEBPS/OEBPS/Images/01-06.png
1. The customer places an order and pays for

Kitchen service

Handie error

3. Once the order is ready, the kitchen arranges its delivery.

E <= Kitchen service » Delivery service

Handie error

OEBPS/OEBPS/Images/IFC-2.png
Collection endpoints Singleton endpoints

Geta collection
of orders i

Place an order Pay for an order Cancel an order

POST /orders/é/pay | | POST Jorders/glcancel
{payload} {payload}
Status code: 200 ~ Status code: 200
{payload} {payload]

POST /orders.

Status code: 200 Status code: 201
{payload} ‘ {payload}

API client

Singleton endpoints

Orders
service

Retrieve an order | | Update an order ;| Delete an order |

GET /orders/8 J

DELETE /orders/8|

{payload}
Status code: 200
{payload)

Status

Status code: 204 <+~ HTTP responses

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/01-05.png
Transport layer: TCP / UDP
(packets)

I==I=I=CnI

OEBPS/OEBPS/Images/01-03.png
Web user
interface

Deskiop user
interface

| —

Command-line
interface

Web application
programming interface

OEBPS/OEBPS/Images/02-03.png
Business layer

B—— lorders ————= Service capabiliies ————»

-0
1. The user request 2. The business 3. The data layer

reaches the service layer processes persists data from

interface, which data from the the user’s request.

validates the request. user’s request.

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/01-04.png
Contract

Request Y=
GET /orders $ o

AP client
Response

OEBPS/OEBPS/Images/01-08.png
1. API design and
documentation

24,
pox) =
& API server developers

AP client developers

API specification

. Test the implementation
against the specification.

