

 OCA Java SE 8 Programmer I Certification Guide

 Mala Gupta

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:]Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Cynthia Kane
Technical development editor: Francesco Bianchi
Copy editor: Linda Recktenwald
Proofreader: Katie Tennant
Technical proofreader: Jean-François Morin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617293252

 Printed in the United States of America

Dedication

 To Dheeraj, my pillar of strength

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter Introduction

 Chapter 1. Java basics

 Chapter 2. Working with Java data types

 Chapter 3. Methods and encapsulation

 Chapter 4. Selected classes from the Java API and arrays

 Chapter 5. Flow control

 Chapter 6. Working with inheritance

 Chapter 7. Exception handling

 Chapter 8. Full mock exam

 Answers to Twist in the Tale exercises

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter Introduction

 1. Disclaimer

 2. Introduction to OCA Java SE 8 Programmer I Certification

 3. The importance of OCA Java SE 8 Programmer I Certification

 4. Comparing OCA Java exam versions

 5. Next step: OCP Java SE 8 Programmer II (1Z0-809) exam

 6. Complete exam objectives, mapped to book chapters, and readiness checklist

 7. FAQs

 7.1. FAQs on exam preparation

 7.2. FAQs on taking the exam

 8. The testing engine used in the exam

 Chapter 1. Java basics

 1.1. The structures of a Java class and a source code file

 1.1.1. Structure of a Java class

 1.1.2. Structure and components of a Java source code file

 1.2. Executable Java applications

 1.2.1. Executable Java classes versus non-executable Java classes

 1.2.2. The main method

 1.2.3. Run a Java program from the command line

 1.3. Java packages

 1.3.1. The need for packages

 1.3.2. Defining classes in a package using the package statement

 1.3.3. Using simple names with import statements

 1.3.4. Using packaged classes without using the import statement

 1.3.5. Importing a single member versus all members of a package

 1.3.6. The import statement doesn’t import the whole package tree

 1.3.7. Importing classes from the default package

 1.3.8. Static imports

 1.4. Java access modifiers

 1.4.1. Access modifiers

 1.4.2. Public access modifier

 1.4.3. Protected access modifier

 1.4.4. Default access (package access)

 1.4.5. private access modifier

 1.4.6. Access modifiers and Java entities

 1.5. Nonaccess modifiers

 1.5.1. abstract modifier

 1.5.2. final modifier

 1.5.3. static modifier

 1.6. Features and components of Java

 1.6.1. Valid features and components of Java

 1.6.2. Irrelevant features and components of Java

 1.7. Summary

 1.8. Review notes

 1.9. Sample exam questions

 1.10. Answers to sample exam questions

 Chapter 2. Working with Java data types

 2.1. Primitive variables

 2.1.1. Category: Boolean

 2.1.2. Category: signed numeric

 2.1.3. Category: character (unsigned integer)

 2.1.4. Confusion with the names of the primitive data types

 2.2. Identifiers

 2.2.1. Valid and invalid identifiers

 2.3. Object reference variables

 2.3.1. What are object reference variables?

 2.3.2. Differentiating between object reference variables and primitive variables

 2.4. Operators

 2.4.1. Assignment operators

 2.4.2. Arithmetic operators

 2.4.3. Relational operators

 2.4.4. Logical operators

 2.4.5. Operator precedence

 2.5. Wrapper classes

 2.5.1. Class hierarchy of wrapper classes

 2.5.2. Creating objects of the wrapper classes

 2.5.3. Retrieving primitive values from the wrapper classes

 2.5.4. Parsing a string value to a primitive type

 2.5.5. Difference between using the valueOf method and constructors of wrapper classes

 2.5.6. Comparing objects of wrapper classes

 2.5.7. Autoboxing and unboxing

 2.6. Summary

 2.7. Review notes

 2.8. Sample exam questions

 2.9. Answers to sample exam questions

 Chapter 3. Methods and encapsulation

 3.1. Scope of variables

 3.1.1. Local variables

 3.1.2. Method parameters

 3.1.3. Instance variables

 3.1.4. Class variables

 3.1.5. Overlapping variable scopes

 3.2. Object’s life cycle

 3.2.1. An object is born

 3.2.2. Object is accessible

 3.2.3. Object is inaccessible

 3.2.4. Garbage collection

 3.3. Create methods with arguments and return values

 3.3.1. Return type of a method

 3.3.2. Method parameters

 3.3.3. Return statement

 3.4. Create an overloaded method

 Rules to remember for defining overloaded methods

 3.4.2. Return type

 3.4.3. Access level

 3.5. Constructors of a class

 3.5.1. User-defined constructors

 3.5.2. Default constructor

 3.5.3. Overloaded constructors

 3.6. Accessing object fields

 3.6.1. What is an object field?

 3.6.2. Read and write object fields

 3.6.3. Calling methods on objects

 3.7. Apply encapsulation principles to a class

 3.7.1. Need for encapsulation

 3.7.2. Apply encapsulation

 3.8. Passing objects and primitives to methods

 3.8.1. Passing primitives to methods

 3.8.2. Passing object references to methods

 3.9. Summary

 3.10. Review notes

 3.11. Sample exam questions

 3.12. Answers to sample exam questions

 Chapter 4. Selected classes from the Java API and arrays

 4.1. Welcome to the world of the String class

 4.1.1. Creating String objects

 4.1.2. The class String is immutable

 4.1.3. Methods of the class String

 4.1.4. String objects and operators

 4.1.5. Determining equality of Strings

 4.2. Mutable strings: StringBuilder

 4.2.1. The StringBuilder class is mutable

 4.2.2. Creating StringBuilder objects

 4.2.3. Methods of class StringBuilder

 4.2.4. A quick note on the class StringBuffer

 4.3. Arrays

 4.3.1. What is an array?

 4.3.2. Array declaration

 4.3.3. Array allocation

 4.3.4. Array initialization

 4.3.5. Combining array declaration, allocation, and initialization

 4.3.6. Asymmetrical multidimensional arrays

 4.3.7. Arrays of type interface, abstract class, and class Object

 4.3.8. Members of an array

 4.4. ArrayList

 4.4.1. Creating an ArrayList

 4.4.2. Adding elements to an ArrayList

 4.4.3. Accessing elements of an ArrayList

 4.4.4. Modifying the elements of an ArrayList

 4.4.5. Deleting the elements of an ArrayList

 4.4.6. Other methods of ArrayList

 4.5. Comparing objects for equality

 4.5.1. The method equals in the class java.lang.Object

 4.5.2. Comparing objects of a user-defined class

 4.5.3. Incorrect method signature of the equals method

 4.5.4. Contract of the equals method

 4.6. Working with calendar data

 4.6.1. LocalDate

 4.6.2. LocalTime

 4.6.3. LocalDateTime

 4.6.4. Period

 4.6.5. DateTimeFormatter

 4.7. Summary

 4.8. Review notes

 4.9. Sample exam questions

 4.10. Answers to sample exam questions

 Chapter 5. Flow control

 5.1. The if, if-else, and ternary constructs

 5.1.1. The if construct and its flavors

 5.1.2. Missing else blocks

 5.1.3. Implications of the presence and absence of {} in if-else constructs

 5.1.4. Appropriate versus inappropriate expressions passed as arguments to an if statement

 5.1.5. Nested if constructs

 5.1.6. Ternary construct

 5.2. The switch statement

 5.2.1. Create and use a switch statement

 5.2.2. Comparing a switch statement with multiple if-else constructs

 5.2.3. Arguments passed to a switch statement

 5.2.4. Values passed to the label case of a switch statement

 5.2.5. Use of break statements within a switch statement

 5.3. The for loop

 5.3.1. Initialization block

 5.3.2. Termination condition

 5.3.3. The update clause

 5.3.4. Optional parts of a for statement

 5.3.5. Nested for loop

 5.4. The enhanced for loop

 5.4.1. Iteration with enhanced for loop

 5.4.2. Limitations of the enhanced for loop

 5.4.3. Nested enhanced for loop

 5.5. The while and do-while loops

 5.5.1. The while loop

 5.5.2. The do-while loop

 5.5.3. while and do-while block, expression, and nesting rules

 5.6. Comparing loop constructs

 5.6.1. Comparing do-while and while loops

 5.6.2. Comparing for and enhanced for loops

 5.6.3. Comparing for and while loops

 5.7. Loop statements: break and continue

 5.7.1. The break statement

 5.7.2. The continue statement

 5.7.3. Labeled statements

 5.8. Summary

 5.9. Review notes

 5.10. Sample exam questions

 5.11. Answers to sample exam questions

 Chapter 6. Working with inheritance

 6.1. Inheritance with classes

 6.1.1. The need to inherit classes

 6.1.2. Benefits

 6.1.3. A derived class contains within it an object of its base class

 6.1.4. Which base class members are inherited by a derived class?

 6.1.5. Which base class members aren’t inherited by a derived class?

 6.1.6. Derived classes can define additional properties and behaviors

 6.1.7. Abstract base class versus concrete base class

 6.2. Use interfaces

 6.2.1. Need for using interfaces

 6.2.2. Defining interfaces

 6.2.3. Types of methods in an interface

 6.2.4. Implementing a single interface

 6.2.5. A class can’t extend multiple classes

 6.2.6. A class can implement multiple interfaces

 6.2.7. Extending interfaces

 6.2.8. Modifying existing methods of an interface

 6.2.9. Properties of members of an interface

 6.3. Reference variable and object types

 6.3.1. Using a variable of the derived class to access its own object

 6.3.2. Using a variable of a superclass to access an object of a derived class

 6.3.3. Using a variable of an implemented interface to access a derived class object

 6.3.4. The need for accessing an object using the variables of its base class or implemented interfaces

 6.4. Casting

 6.4.1. How to cast a variable to another type

 6.4.2. Need for casting

 6.5. Use this and super to access objects and constructors

 6.5.1. Object reference: this

 6.5.2. Object reference: super

 6.6. Polymorphism

 6.6.1. Polymorphism with classes

 6.6.2. Binding of variables and methods at compile time and runtime

 6.6.3. Polymorphism with interfaces

 6.7. Simple lambda expressions

 6.7.1. Comparing passing values with passing code to methods

 6.7.2. Syntax of lambda expressions

 6.7.3. Interface Predicate

 6.8. Summary

 6.9. Review notes

 6.10. Sample exam questions

 6.11. Answers to sample exam questions

 Chapter 7. Exception handling

 7.1. Exceptions in Java

 7.1.1. A taste of exceptions

 7.1.2. Why handle exceptions separately?

 7.1.3. Does exception handling offer any other benefits?

 7.2. Categories of exceptions

 7.2.1. Identifying exception categories

 7.2.2. Class hierarchy of exception classes

 7.2.3. Checked exceptions

 7.2.4. Runtime exceptions

 7.2.5. Errors

 7.3. Creating a method that throws an exception

 7.3.1. Create a method that throws a checked exception

 7.3.2. Handle-or-declare rule

 7.3.3. Creating a method that throws runtime exceptions or errors

 7.3.4. A method can declare to throw all types of exceptions, even if it doesn’t

 7.4. What happens when an exception is thrown?

 7.4.1. Creating try-catch-finally blocks

 7.4.2. Using a method that throws a checked exception

 7.4.3. Using a method that throws a runtime exception

 7.4.4. Using a method that throws an error

 7.4.5. Will a finally block execute even if the catch block defines a return statement?

 7.4.6. What happens if both a catch and a finally block define return statements?

 7.4.7. What happens if a finally block modifies the value returned from a catch block?

 7.4.8. Can a try block be followed only by a finally block?

 7.4.9. Does the order of the exceptions caught in the catch blocks matter?

 7.4.10. Can I rethrow an exception or the error I catch?

 7.4.11. Can I declare my methods to throw a checked exception instead of handling it?

 7.4.12. I can create nested loops, so can I create nested try-catch blocks too?

 7.4.13. Should I handle errors?

 7.5. Common exception classes and categories

 7.5.1. ArrayIndexOutOfBoundsException and IndexOutOfBoundsException

 7.5.2. ClassCastException

 7.5.3. IllegalArgumentException

 7.5.4. NullPointerException

 7.5.5. ArithmeticException

 7.5.6. NumberFormatException

 7.5.7. ExceptionInInitializerError

 7.5.8. StackOverflowError

 7.5.9. NoClassDefFoundError

 7.5.10. OutOfMemoryError

 7.6. Summary

 7.7. Review notes

 7.8. Sample exam questions

 7.9. Answers to sample exam questions

 Chapter 8. Full mock exam

 8.1. Mock exam

 8.2. Answers to mock exam questions

 Answers to Twist in the Tale exercises

 A.1 Chapter 1: Java basics

 A.1.1 Twist in the Tale 1.1

 A.1.2 Twist in the Tale 1.2

 A.1.3 Twist in the Tale 1.3

 A.1.4 Twist in the Tale 1.4

 A.2 Chapter 2: Working with Java data types

 A.2.1 Twist in the Tale 2.1 (part 1)

 A.2.2 Twist in the Tale 2.1 (part 2)

 A.2.3 Twist in the Tale 2.2

 A.2.4 Twist in the Tale 2.3

 A.2.5 Twist in the Tale 2.4

 A.3 Chapter 3: Methods and encapsulation

 A.3.1 Twist in the Tale 3.1

 A.3.2 Twist in the Tale 3.2

 A.3.3 Twist in the Tale 3.3

 A.4 Chapter 4: Selected classes from the Java API and arrays

 A.4.1 Twist in the Tale 4.1

 A.4.2 Twist in the Tale 4.2

 A.4.3 Twist in the Tale 4.3

 A.4.4 Twist in the Tale 4.4

 A.5 Chapter 5: Flow control

 A.5.1 Twist in the Tale 5.1

 A.5.2 Twist in the Tale 5.2

 A.5.3 Twist in the Tale 5.3

 A.5.4 Twist in the Tale 5.4

 A.6 Chapter 6: Working with inheritance

 A.6.1 Twist in the Tale 6.1

 A.6.2 Twist in the Tale 6.2

 A.6.3 Twist in the Tale 6.3

 A.6.4 Twist in the Tale 6.4

 A.7 Chapter 7: Exception handling

 A.7.1 Twist in the Tale 7.1

 A.7.2 Twist in the Tale 7.2

 A.7.3 Twist in the Tale 7.3

 A.7.4 Twist in the Tale 7.4

 A.7.5 Twist in the Tale 7.5

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Java programmer certifications are designed to tell would-be employers whether you really know your stuff, and cracking the OCA Java SE 8 Programmer Certification is not an easy task. Thorough preparation is crucial if you want to pass the exam the first time with a score that you can be proud of. You need to know Java inside-out, and you need to understand the certification process so that you’re ready for the challenging questions you’ll face in the exam.

 This book is a comprehensive guide to the 1Z0-808 exam. You’ll explore a wide range of important Java topics as you systematically learn how to pass the certification exam. Each chapter starts with a list of the exam objectives covered in that chapter. Throughout the book you’ll find sample questions and exercises designed to reinforce key concepts and prepare you for what you’ll see in the real exam, along with numerous tips, notes, and visual aids.

 Unlike many other exam guides, this book provides multiple ways to digest important techniques and concepts, including comic conversations, analogies, pictorial representations, flowcharts, UML diagrams, and, naturally, lots of well-commented code. The book also gives insight into common mistakes people make when taking the exam, and guides you in avoiding traps and pitfalls. It provides

 	Complete coverage of exam topics, all mapped to chapter and section numbers

 	Hands-on coding exercises, including particularly challenging ones that throw in a twist

 	Instruction on what’s happening behind the scenes using the actual code from the Java API source

 	Mastery of both the concepts and the exam

 This book is written for developers with a working knowledge of Java. My hope is that the book will deepen your knowledge and prepare you well for the exam and that you will pass it with flying colors!

Acknowledgments

 First and foremost, I thank Dheeraj—my pillar of strength, my best friend, and my husband. His constant guidance, encouragement, and love kept me going. He helped me to get started with this book and got me over the goal line.

 My sincere gratitude goes to Marjan Bace, publisher at Manning, for giving me the opportunity to author this book. The Manning team has been wonderful—Michael Stephens ensured that it was worth it for Manning to have a book on this subject. Cynthia Kane, my development editor, is like sunshine. Not only did she help me with the organization of individual chapters and the overall book, but she pulled me through whenever the task of writing a book became overwhelming. It’s always a pleasure to work with her. Copyeditor Linda Recktenwald not only applied her magic to sentence and language constructions but also supplemented her editing with valuable suggestions on technical content.

 Technical development editor Francesco Bianchi suggested multiple additions and modifications, improving the content of this book. Technical proofreader Jean-François Morin was outstanding in his review. He not only pointed out existing errors but also suggested multiple improvements to the organization of the contents. Proofreader Katie Tennant was extremely capable and talented. She reviewed the final manuscript with great precision.

 The technical reviewers on this book did an awesome job of reviewing the contents and sharing their valuable feedback and comments: Andrea Barisone, Andrea Consentino, Anutosh Ghosh, David Blau, Marty Henderson, Mirsad Vojnikovic, Nicola Pedot, Sanjiv Kumar, Simona Russo, Travis Nelson, and Ursin Stauss. I would also like to thank Nicole Butterfield and Donna Clements, review editors, for managing the whole review process and meticulously funneling the feedback to make this book better.

 Dennis Dalinnik did an outstanding job of converting the black-and-white hand-drawn illustrations into glorious images. It was amazing to scrutinize the page proofs. I also thank Dennis for adjusting the images in the final page proofs, which was a lot of work. Janet Vail and Mary Piergies were awesome in their expertise at turning all text, code, and images into publishable form. I am also grateful to Candace Gillhoolley for her efforts in promoting the book.

 I thank the MEAP readers for buying the book while it was being developed and for their suggestions, corrections, and encouragement.

 I would also like to thank my former colleagues Harry Mantheakis, Paul Rosenthal, and Selvan Rajan, whose names I use in coding examples throughout the book. I have always looked up to them.

 I thank my daughters, Shreya and Pavni, who often advised me on the images that I created for the book. I thank my family for their unconditional support. The book would have been not been possible without their love and encouragement.

About this Book

 This book is written for developers with a working knowledge of Java who want to earn the OCA Java SE 8 Programmer Certification. It uses powerful tools and features to make reaching your goal of certification a quick, smooth, and enjoyable experience. This section explains the features used in the book and tells you how to use the book to get the most out of it as you prepare for the certification exam. More information on the exam and on how the book is organized is available in the Introduction.

Start your preparation with the chapter-based exam objective map

 I strongly recommend a structured approach to preparing for this exam. To help you with this task, I developed a chapter-based exam objective map, as shown in figure 1. The full version is in the Introduction (table I.3).

 Figure 1. The Introduction to this book provides a list of all exam objectives and the corresponding chapter and section numbers where they are covered. See the full table in the Introduction (table I.3).

 [image:]

 The map in the Introduction shows the complete exam objective list mapped to the relevant chapter and section numbers. You can jump to the relevant section number to work on a particular exam topic.

Chapter-based objectives

 Each chapter starts with a list of the exam objectives covered in that chapter, as shown in figure 2. This list is followed by a quick comparison of the major concepts and topics covered in the chapter with real-world objects and scenarios.

 Figure 2. An example of the list of exam objectives and brief explanations at the beginning of each chapter

 [image:]

Section-based objectives

 Each main section in a chapter starts by identifying the exam objective(s) that it covers. Each listed exam topic starts with the exam objective and its subobjective number.

 In figure 3, the number “4.4” refers to section 4.4 in chapter 4 (the complete list of chapters and sections can be found in the table of contents). The number “9.4” preceding the exam objective refers to the objective’s numbering in the list of exam objectives on Oracle’s website (the complete numbered list of exam objectives is given in table I.3 in the Introduction).

 Figure 3. An example of the beginning of a section, identifying the exam objective that it covers

 [image:]

Exam tips

 Each chapter provides multiple exam tips to reemphasize the points that are the most confusing, overlooked, or frequently answered incorrectly by candidates and that therefore require special attention for the exam. Figure 4 shows an example.

 Figure 4. Example of an exam tip; they occur multiple times in a chapter

 [image:]

Notes

 All chapters also include multiple notes that draw your attention to points that should be noted while you’re preparing for the exam. Figure 5 shows an example.

 Figure 5. Example note

 [image:]

Sidebars

 Sidebars contain information that may not be directly relevant to the exam but that is related to it. Figure 6 shows an example.

 Figure 6. Example sidebar

 [image:]

Images

 I use a lot of images in the chapters for an immersive learning experience. I believe that a simple image can help you understand a concept quickly, and a little humor can help you to retain information longer.

 Simple images are used to draw your attention to a particular line of code (as shown in figure 7).

 Figure 7. An example image that draws your attention to a particular line of code

 [image:]

 I use pictorial representation of data in arrays (figure 8) and other data types to aid visualization and understanding.

 Figure 8. An example pictorial representation of data in an array

 [image:]

 To reinforce important points and help you retain them longer, a little humor has been added using comic strips (as in figure 9).

 Figure 9. An example of a little humor to help you remember that the finally block always executes

 [image:]

 I also use images to group and represent information for quick reference. Figure 10 shows an example of the protected members that can be accessed by derived or unrelated classes in the same or separate packages. I strongly recommend that you try to create a few of your own figures like these.

 Figure 10. An example of grouping and representing information for quick reference

 [image:]

 An image can also add more meaning to a sequence of steps explained in the text. For example, figure 11 seems to bring the Java compiler to life by allowing it to talk with you and convey what it does when it gets to compile a class that doesn’t define a constructor. Again, try a few of your own! It’ll be fun!

 Figure 11. An example pictorial representation of steps executed by the Java compiler when it compiles a class without a constructor

 [image:]

 The exam requires that you know multiple methods from classes such as String, StringBuilder, ArrayList, and others. The number of these methods can be overwhelming, but grouping these methods according to their functionality can make this task a lot more manageable. Figure 12 shows an example of an image that groups methods of the String class according to their functionality.

 Figure 12. An example image used to group methods of the String class according to their functionality

 [image:]

 Expressions that involve multiple operands can be hard to comprehend. Figure 13 is an example of an image that can save you from the mayhem of unary increment and decrement operators used in prefix and postfix notation.

 Figure 13. Example of values taken by the operands during execution of an expression

 [image:]

 Code snippets that define multiple points and that may result in the nonlinear execution of code can be very difficult to comprehend. These may include selection statements, loops, or exception-handling code. Figure 14 is an example of an image that clearly outlines the lines of code that will execute.

 Figure 14. An example of flow of control in a code snippet that may define multiple points of nonlinear execution of code

 [image:]

Twist in the Tale exercises

 Each chapter includes a few Twist in the Tale exercises. For these exercises, I try to use modified code from the examples already covered in a chapter, and the “Twist in the Tale” title refers to modified or tweaked code. These exercises highlight how even small code modifications can change the behavior of your code. They should encourage you to carefully examine all the code in the exam.

 My main reason for including these exercises is that on the real exam, you may get to answer more than one question that seems to define exactly the same question and answer options. But on closer inspection, you’ll realize that these questions differ slightly and that these differences change the behavior of the code and the correct answer option.

 The answers to all the Twist in the Tale exercises are given in the appendix.

Code indentation

 Some of the examples in this book show incorrect indentation of code. This has been done on purpose because on the real exam you can’t expect to see perfectly indented code. You should be able to comprehend incorrectly indented code to answer an exam question correctly.

Review notes

 When you’re ready to take your exam, don’t forget to reread the review notes a day before or on the morning of the exam. These notes contain important points from each chapter as a quick refresher.

Exam questions

 Each chapter concludes with a set of 10 or 11 exam questions. These follow the same pattern as the real exam questions. Attempt these exam questions after completing a chapter.

Answers to exam questions

 The answers to all exam questions provide detailed explanations, including why options are correct or incorrect. Mark your incorrect answers and identify the sections that you need to reread. If possible, draw a few diagrams—you’ll be amazed at how much they can help you retain the concepts. Give it a try—it’ll be fun!

Author Online

 The purchase of OCA Java SE 8 Programmer I Certification Guide includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and other users. You can access and subscribe to the forum at www.manning.com/books/oca-java-se-8-programmer-i-certification-guide. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue among individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions, lest her interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 	

 Note

 This book uses code styles that you are likely to see on the exam. It often includes practices that aren’t recommended on real projects, like poorly indented code or skipping values for brevity, among others, but this is not meant to encourage you to use obscure coding practices.

 	

About the Author

 [image:]

 Mala is passionate about making people employable by bridging the gap between their existing and required skills. In her quest to fulfill this mission, she is authoring books to help IT professionals and students succeed on industry-recognized Oracle Java certifications.

 She has master’s degrees in computer applications along with multiple other certifications from Oracle. With over 15 years of experience in IT as a developer, architect, trainer, and mentor, she has worked with international training and software services organizations on various Java projects. She is experienced in mentoring teams on technical and software development processes.

 She is the founder and lead mentor of a portal (www.ejavaguru.com) that has offered Java courses for Oracle certification since 2006.

 Mala is a firm believer in creativity as an essential life skill. To popularize the importance of creativity, innovation, and design in life, she and her daughter started KaagZevar (www.KaagZevar.com)—a platform for nurturing these values.

About the Cover Illustration

 The figure on the cover of OCA Java SE 8 Programmer I Certification Guide is captioned “Morning Habit of a Lady of Quality in Barbary—1700.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century, and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations some 200 years ago. Dress codes have changed since then and the diversity by region and country, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jefferys’ pictures.

Introduction

 This introduction covers

 	Introduction to the Oracle Certified Associate (OCA) Java SE 8 Programmer I Certification (exam number 1Z0-808)

 	Importance of the OCA Java SE 8 Programmer certification

 	Comparison of the OCA Java SE 8 Programmer I exam to the OCA Java SE 7 Programmer I exam

 	Comparison of the OCA Java SE 8 Programmer I exam (1Z0-808) to the OCP Java SE 8 Programmer II exam (1Z0-809)

 	Detailed exam objectives, mapped to book chapters

 	FAQs on exam preparation and on taking the exam

 	Introduction to the testing engine used for the exam

 This book is intended specifically for individuals who wish to earn the OCA Java SE 8 Programmer I Certification (exam number 1Z0-808). It assumes that you are familiar with Java and have some experience working with it. If you’re completely new to the Java programming language, I suggest that you start your journey with an entry-level book and then come back to this one.

1. Disclaimer

 The information in this chapter is sourced from Oracle.com, public websites, and user forums. Input has been taken from real people who have earned Java certification, including the author. All efforts have been made to maintain the accuracy of the content, but the details of the exam—including the exam objectives, pricing, exam pass score, total number of questions, maximum exam duration, and others—are subject to change per Oracle’s policies. The author and publisher of the book shall not be held responsible for any loss or damage accrued due to any information contained in this book or due to any direct or indirect use of this information.

2. Introduction to OCA Java SE 8 Programmer I Certification

 The Oracle Certified Associate (OCA) Java SE 8 Programmer I exam (1Z0-808) covers the fundamentals of Java SE 8 programming, such as the structure of classes and interfaces, variables of different data types, methods, operators, arrays, decision constructs, and loops. The exam includes handling exceptions and a few commonly used classes from the Java API like String, StringBuilder, and ArrayList. This exam doesn’t include a lot of Java 8–specific language features. It includes an introduction to functional-style programming with lambda expressions. It partially covers the new Date and Time API.

 This exam is one of two steps to earning the title of Oracle Certified Professional (OCP) Java SE 8 Programmer. It certifies that an individual possesses a strong foundation in the Java programming language. Table 1 lists the details of this exam.

 Table 1. Details for the OCA Java SE 8 Programmer I exam (1Z0-808)

 	Exam number

 	1Z0-808

 	Java version

 	Based on Java version 8

 	Number of questions

 	77

 	Passing score

 	65%

 	Time duration

 	150 minutes

 	Pricing

 	US$300

 	Type of questions

 	Multiple choice

3. The importance of OCA Java SE 8 Programmer I Certification

 The OCA Java SE 8 Programmer I exam (1Z0-808) is an entry-level exam in your Java certification roadmap, as shown in figure 1.

 Figure 1. OCA Java SE 8 Programmer certification is an entry-level certification in the Java certification roadmap.

 [image:]

 This exam is one of two steps to earn the title of OCP Java SE 8 Programmer. The dashed lines and arrows in figure 1 depict the prerequisites for certification. OCP Java Programmer certification (any Java version) is a prerequisite to earn most of the other higher-level certifications in Java.

 To earn the OCP Java SE 8 Programmer title, you must pass the following two certifications (in any order):

 	OCA Java SE 8 Programmer I (1Z0-808)

 	OCP Java SE 8 Programmer II (1Z0-809)

 	

 Note

 At the time of writing, Oracle made this exam a prerequisite for passing the 1Z0-809 exam. Earlier, Oracle allowed passing the 1Z0-808 and 1Z0-809 exams in any order. Even when this exam wasn’t a prerequisite for passing the 1Z0-809 exam, it was highly recommended to write it first. The 1Z0-808 exam covers the basics of Java, and 1Z0-809 covers advanced Java concepts.

 	

 Java Junior Associate (1Z0-811) is a newer certification, launched by Oracle in 2016. It’s a novice-level certification for students at secondary schools, two-year colleges, and four-year colleges and universities. All the other Java certifications are career-level certifications. As shown in figure 1, the Java certification tracks are offered under the categories Associate, Professional, Expert, and Master.

4. Comparing OCA Java exam versions

 This section will clear up any confusion surrounding the different versions of the OCA Java exam. As of now, Oracle offers three versions of the OCA certification in Java:

 	OCA Java SE 8 Programmer I (exam number: 1Z0-808)

 	OCA Java SE 7 Programmer I (exam number: 1Z0-803)

 	OCA Java SE 5/SE 6 (exam number: 1Z0-850)

 Table 2 compares these exams on their target audience, Java version, question count, duration, and passing score.

 Table 2. Comparing exams: OCA Java SE 8 Programmer I, OCA Java SE 7 Programmer I, and OCA Java SE 5/6

 	

 	
 OCA Java SE 8 Programmer I (1Z0-803)

 	
 OCA Java SE 7 Programmer I (1Z0-803)

 	
 OCA Java SE 5/SE 6 (1Z0-850)

 	Target audience

 	Java programmers

 	Java programmers

 	Java programmers and IT managers

 	Java version

 	8

 	7

 	6

 	Total number of questions

 	77

 	70

 	51

 	Exam duration

 	150 minutes

 	120 minutes

 	115 minutes

 	Passing score

 	65%

 	63%

 	68%

 The OCA Java SE 8 Programmer I Certification adds the following topics to the ones covered by the OCA Java SE 7 Programmer I Certification:

 	Features and components of Java

 	Wrapper classes

 	Ternary constructs

 	Some classes from the new Java 8 Date and Time API

 	Creating and using lambda expressions

 	Predicate interface

 Figure 2 shows a detailed comparison of the exam objectives of the OCA Java SE 8 and OCA Java SE 7 Programmer I exams. Here’s the legend to understand it:

 	
Light gray background— Main exam objective.

 	
Medium gray background— Covered only in the OCA Java SE 8 exam.

 	
Dark gray background— Although the text or main exam objective of this subobjective differs, it is covered by the other exam.

 Figure 2. Comparing exam objectives of the OCA Java SE 8 Programmer I and OCA Java SE 7 Programmer I certifications

 [image:]

 [image:]

 Figure 3 shows a detailed comparison of the exam objectives of OCA Java SE 5/6 (1Z0-850) and OCA Java SE 7 Programmer I (1Z0-803). It shows objectives that are exclusive to each of these exam versions and those that are common to both. The first column shows the objectives that are included only in OCA Java SE 5/6 (1Z0-850), the middle column shows common exam objectives, and the right column shows exam objectives covered only in OCA Java SE 7 Programmer I (1Z0-803).

 Figure 3. Comparing objectives of exams OCA Java SE 5/6 and OCA Java SE 7 Programmer I

 [image:]

5. Next step: OCP Java SE 8 Programmer II (1Z0-809) exam

 After successfully passing the OCA Java SE 8 Programmer I exam, the next step is to take the OCP Java SE 8 Programmer II exam. The OCP Java SE 8 Programmer II certification is designed for individuals who possess advanced skills in the Java programming language. It covers advanced Java features such as threads, concurrency, collections, the Streams API, Java file I/O, inner classes, localization, and others.

6. Complete exam objectives, mapped to book chapters, and readiness checklist

 Table 3 includes a complete list of exam objectives for the OCA Java SE 8 Programmer I exam, which was taken from Oracle’s website. All the objectives are mapped to the book’s chapters and the section numbers that cover them.

 Table 3. Exam objectives and subobjectives mapped to chapter and section numbers

 	

 	
 Exam objectives

 	
 Covered in chapter/section

 	1

 	Java basics

 	Chapters 1 and 3

 	1.1

 	Define the scope of variables

 	Section 3.1

 	1.2

 	Define the structure of a Java class

 	Section 1.1

 	1.3

 	Create executable Java applications with a main method; run a Java program from the command line, including console output

 	Section 1.2

 	1.4

 	Import other Java packages to make them accessible in your code

 	Section 1.3

 	1.5

 	Compare and contrast the features and components of Java, such as platform independence, object orientation, encapsulation, and so on

 	Section 1.6

 	2

 	Working with Java data types

 	Chapters 2 and 3

 	2.1

 	Declare and initialize variables (including casting of primitive data types)

 	
Sections 2.1 and 2.3

 	2.2

 	Differentiate between object reference variables and primitive variables

 	
Sections 2.1 and 2.3

 	2.3

 	Know how to read and write to object fields

 	Section 3.6

 	2.4

 	Explain an object’s lifecycle (creation, “dereference by reassignment,” and garbage collection)

 	Section 3.2

 	2.5

 	Develop code that uses wrapper classes such as Boolean, Double, and Integer

 	Section 2.5

 	3

 	Using 0perators and decision constructs

 	Chapters 2, 4, and 5

 	3.1

 	Use Java operators, including parentheses to override operator precedence

 	Section 2.4

 	3.2

 	Test equality between Strings and other objects using == and equals()

 	
Sections 4.1 and 4.5

 	3.3

 	Create if and if/else and ternary constructs

 	Section 5.1

 	3.4

 	Use a switch statement

 	Section 5.2

 	4

 	Creating and using arrays

 	Chapter 4

 	4.1

 	Declare, instantiate, initialize, and use a one-dimensional array

 	Section 4.3

 	4.2

 	Declare, instantiate, initialize, and use a multidimensional array

 	Section 4.3

 	5

 	Using loop constructs

 	Chapter 5

 	5.1

 	Create and use while loops

 	Section 5.5

 	5.2

 	Create and use for loops, including the enhanced for loop

 	
Sections 5.3 and 5.4

 	5.3

 	Create and use do-while loops

 	Section 5.5

 	5.4

 	Compare loop constructs

 	Section 5.6

 	5.5

 	Use break and continue

 	Section 5.7

 	6

 	Working with methods and encapsulation

 	Chapters 1 and 3

 	6.1

 	Create methods with arguments and return values, including overloaded methods

 	
Sections 3.3 and 3.4

 	6.2

 	Apply the static keyword to methods and fields

 	Section 1.5

 	6.3

 	Create and overload constructors, including impact on default constructors

 	Section 3.5

 	6.4

 	Apply access modifiers

 	Section 1.4

 	6.5

 	Apply encapsulation principles to a class

 	Section 3.7

 	6.6

 	Determine the effect on object references and primitive values when they are passed into methods that change the values

 	Section 3.8

 	7

 	Working with inheritance

 	Chapters 1 and 6

 	7.1

 	Describe inheritance and its benefits

 	
Sections 6.1 and 6.2

 	7.2

 	Develop code that demonstrates the use of polymorphism, including overriding and object type versus reference type

 	
Sections 6.3 and 6.6

 	7.3

 	Determine when casting is necessary

 	Section 6.4

 	7.4

 	Use super and this to access objects and constructors

 	Section 6.5

 	7.5

 	Use abstract classes and interfaces

 	
Sections 1.5, 6.1, 6.2, and 6.6

 	8

 	Handling exceptions

 	Chapter 7

 	8.1

 	Differentiate among checked exceptions, unchecked exceptions, and errors

 	Section 7.2

 	8.2

 	Create a try-catch block and determine how exceptions alter normal program flow

 	Section 7.4

 	8.3

 	Describe the advantages of exception handling

 	Section 7.1

 	8.4

 	Create and invoke a method that throws an exception

 	
Sections 7.3 and 7.4

 	8.5

 	Recognize common exception classes (such as NullPointerException, Arithmetic-Exception, ArrayIndexOutOfBoundsException, ClassCastException)

 	Section 7.5

 	9

 	Working with selected classes from the Java API

 	Chapters 4 and 6

 	9.1

 	Manipulate data using the StringBuilder class and its methods

 	Section 4.2

 	9.2

 	Creating and manipulating Strings

 	Section 4.1

 	9.3

 	Create and manipulate calendar data using classes from java.time.Local-DateTime, java.time.LocalDate, java.time.LocalTime, java.time.format.DateTimeFormatter, and java.time.Period

 	Section 4.6

 	9.4

 	Declare and use an ArrayList of a given type

 	Section 4.4

 	9.5

 	Write a simple lambda expression that consumes a lambda predicate expression

 	Section 6.7

7. FAQs

 You might be anxious when you start your exam preparation or even when you think about getting certified. This section can help calm your nerves by answering frequently asked questions on exam preparation and taking the exam.

 7.1. FAQs on exam preparation

 This sections answers frequently asked questions on how to prepare for the exam, including the best approach, study material, preparation duration, types of questions in the exam, and more.

Will the exam details ever change for the OCA Java SE 8 Programmer I exam?

 Oracle can change the exam details for a certification even after the certification is made live. The changes can be to the exam objectives, pricing, exam duration, exam questions, and other parts. In the past, Oracle has made similar changes to certification exams. Such changes may not be major, but it’s always advisable to check Oracle’s website for the latest exam information when you start your exam preparation.

What is the best way to prepare for this exam?

 Generally, candidates use a combination of resources, such as books, online study materials, articles on the exam, free and paid mock exams, and training to prepare for the exam. Different combinations work best for different people, and there’s no one perfect formula for preparation. Depending on whether training or self-study works best for you, you can select the method that’s most appropriate for you. Combine it with a lot of code practice and mock exams.

How do I know when I am ready for the exam?

 You can be sure about your exam readiness by consistently getting a good score in the mock exams. Generally, a score of 80% and above in approximately three to five mock exams (the more the better) attempted consecutively will assure you of a similar score in the real exam.

How many mock tests should I attempt before the real exam?

 Ideally, you should attempt at least five mock exams before you attempt the real exam. The more the better!

I have two years’ experience working with Java. Do I still need t- to prepare for this certification?

 It’s important to understand that there’s a difference between the practical knowledge of having worked with Java and the knowledge required to pass this certification exam. The authors of the Java certification exams employ multiple tricks to test your knowledge. Hence, you need a structured preparation and approach to succeed in the certification exam.

What is the ideal time required to prepare for the exam?

 The preparation time frame mainly depends on your experience with Java and the amount of time that you can spend to prepare yourself. On average, you will require approximately 150 hours of study over two or three months to prepare for this exam. Again, the number of study hours required depends on individual learning curves and backgrounds.

 It’s important to be consistent with your exam preparation. You can’t study for a month and then restart after, say, a gap of a month or more.

Does this exam include any unscored questions?

 A few of the questions that you write in any Oracle exam may be marked unscored. Oracle’s policy states that while taking an exam, you won’t be informed as to whether a question will be scored. You may be surprised to learn that as many as 7 questions out of the 77 questions in the OCA Java SE 8 Programmer I exam may be unscored. Even if you answer a few questions incorrectly, you stand a chance of scoring 100%.

 Oracle regularly updates its question bank for all its certification exams. These unscored questions may be used for research and to evaluate new questions that can be added to an exam.

Can I start my exam preparation with the mock exams?

 If you are quite comfortable with the Java language features, then yes, you can start your exam preparation with the mock exams. This will also help you to understand the types of questions to expect in the real certification exam. But if you have little or no experience working with Java, or if you’re not quite comfortable with the language features of Java, I don’t advise you to start with the mock exams. The exam authors often use a lot of tricks to evaluate a candidate in the real certification exam. Starting your exam preparation with mock exams will only leave you confused about the Java concepts.

Should I really bother getting certified?

 Yes, you should, for the simple reason that employers care about the certification of employees. Organizations prefer a certified Java developer over a noncertified Java developer with similar IT skills and experience. The certification can also get you a higher paycheck than uncertified peers with comparable skills.

Do I need to make any assumptions?

 Yes, Oracle has published the following assumptions for candidates on its website (as mentioned previously, Oracle might change the exam details or assumptions, without any prior notice):

 	
Missing package and import statements—If sample code doesn’t include package or import statements, and the question doesn’t explicitly refer to these missing statements, then assume that all sample code is in the same package, and import statements exist to support them.

 	
 No file or directory path names for classes— If a question doesn’t state the filenames or directory locations of classes, then assume one of the following, whichever will enable the code to compile and run:

 	All classes are in one file.

 	Each class is contained in a separate file, and all files are in one directory.

 	
Unintended line breaks— Sample code might have unintended line breaks. If you see a line of code that looks like it has wrapped, and this creates a situation where the wrapping is significant (for example, a quoted String literal has wrapped), assume that the wrapping is an extension of the same line, and the line doesn’t contain a hard carriage return that would cause a compilation failure.

 	
Code fragments— A code fragment is a small section of source code that’s presented without its context. Assume that all necessary supporting code is present and that the supporting environment fully supports the correct compilation and execution of the code shown and its omitted environment.

 	
Descriptive comments— Take descriptive comments, such as “setter and getters go here,” at face value. Assume that correct code exists, compiles, and runs successfully to create the described effect.

What are the types or formats of questions that I can expect in the exam?

 The exam uses different formats of multiple choice questions, illustrated in this section by eight example questions with figures.

 The examples for all these types of questions show how the following set of topics might be tested using a different question format:

 	Correct declaration of the main method

 	Passing command-line parameters

 	Overloaded methods

 	Significance of method parameter names

 	Declaration of variables of varargs

 Exam question type 1 (figure 4)—Includes simple code, but tricky or confusing answer options.

 Figure 4. Exam question type 1

 [image:]

 The answer options in the following example would confuse a reader on whether the command-line values would be concatenated or added as integer values:

 [image:]

 	

 Note

 In this book, the sample exam questions at the end of each chapter and full mock exam at the end of the book show answer options as lettered (for example, a–d) for ease on discussion. In the exam, however, the answer options aren’t numbered or lettered. They’re preceded with either a radio button or a check box. Radio buttons are for questions with only one correct answer, and check boxes are for questions with multiple correct answers.

 	

 Exam question type 2 (figure 5)—Exam questions without code give you a much needed break from reading code. But it isn’t always easy to answer them.

 Figure 5. Exam question type 2

 [image:]

 An example of exam question, type 2:

 [image:]

 Exam question type 3 (figure 6)—Reading though and comprehending lots of code can be difficult. The key is to eliminate wrong answers to find the correct answers quickly.

 Figure 6. Exam question type 3

 [image:]

 An example:

 [image:]

 Exam question type 4 (figure 7)—This type of question is a classic example of “fill in the blank.”

 Figure 7. Exam question type 4

 [image:]

 An example:

 [image:]

 Exam question type 5 (figure 8)—This question type will include code, a condition, or both. The answer options will include changes and their results, when applied to the code in the question. Unless otherwise stated, changes in the answer options that you choose are applied individually to the code or the specified situation. Result of a correct answer option won’t involve changes suggested in other correct answer options.

 Figure 8. Exam question type 5

 [image:]

 An example:

 [image:]

 Exam question type 6 (figure 9)—Because your mind is programmed to select the correct options, answer this type of question very carefully. My personal tip: cross fingers in one of your hands to remind you that you need to select the incorrect statements.

 Figure 9. Exam question type 6

 [image:]

 An example:

 [image:]

 Exam question type 7 (figure 10)—This question won’t include any code in the text of the question; it will state a condition that needs to be implemented using code given in the answer options.

 Figure 10. Exam question type 7

 [image:]

 An example:

 [image:]

 Exam question type 8 (figure 11)—This question includes a pictorial representation of a single or multidimensional array, stating a situation and asking you to select code as input to get the required array formation.

 Figure 11. Exam question type 8

 [image:]

 An example:

 [image:]

 7.2. FAQs on taking the exam

 This section contains a list of frequently asked questions related to the exam registration, exam coupon, do’s and don’ts while taking the exam, and exam retakes.

Where and how do I take this exam?

 You can take this exam at an Oracle Testing Center or Pearson VUE Authorized Testing Center. To sit for the exam, you must register for the exam and purchase an exam voucher. The following options are available:

 	Register for the exam and pay Pearson VUE directly

 	Purchase an exam voucher from Oracle and register at Pearson VUE to take the exam

 	Register at an Oracle Testing Center

 Look for the nearest testing centers in your area, register yourself, and schedule an exam date and time. Most of the popular computer training institutes also have a testing center on their premises. You can locate a Pearson VUE testing site at www.pearsonvue.com/oracle/, which contains detailed information on locating testing centers and scheduling or rescheduling an exam. At the time of registration, you’ll need to provide the following details along with your name, address, and contact numbers:

 	Exam title and number (OCA Java SE 8 Programmer I, 1Z0-808)

 	Any discount code that should be applied during registration

 	Oracle Testing ID/Candidate ID, if you’ve taken any other Oracle/Sun certification exam

 	Your OPN Company ID (if your employer is in the Oracle Partner Network, you can find out the company ID and use any available discounts on the exam fee)

Should I carry my photo ID proof or any other proof?

 The examination center coordinator will ask you for at least two ID proofs, one of which must include your photograph. If in doubt, please connect with your examination center using email or phone and inquire about the ID requirements.

How long is the exam coupon valid?

 Each exam coupon is printed with an expiry date. Beware of any discounted coupons that come with an assurance that they can be used past the expiration date.

Can I refer to notes or books while taking this exam?

 You can’t refer to any books or notes while taking this exam. You’re not allowed to carry any blank paper for rough work or even your mobile phone inside the testing cubicle.

What is the purpose of marking a question while taking the exam?

 By marking a question, you can manage your time efficiently. Don’t spend a lot of time on a single question. You can mark a difficult question to defer answering it while taking your exam. The exam gives you an option to review answers to the marked questions at the end of the exam. Also, navigating from one question to another using the Back and Next buttons is usually time consuming. If you’re unsure of an answer, mark it and review it at the end.

Can I write down the exam questions and take them with me?

 No. The exam centers no longer provide sheets of paper for the rough work that you may need to do while taking the exam. The testing center will provide you with either erasable or non-erasable boards. If you’re provided with a non-erasable board, you may request another one if you need it.

 Oracle is quite particular about certification candidates distributing or circulating the memorized questions in any form. If Oracle finds out that this is happening, it may cancel a candidate’s certificate, bar that candidate forever from taking any Oracle certification, inform the employer, or take legal action.

What happens if I complete the exam before or after the total time?

 If you complete the exam before the total exam time has elapsed, revise your answers and click the Submit or Finish button. If you have not clicked the Submit button and you use up all the exam time, the exam engine will no longer allow you to modify any of the exam answers and will present the screen with the Submit button.

Will I receive my score immediately after the exam?

 No, you won’t. When you click the Submit button, the screen will request you to log in to your Oracle account (CertView) after approximately half an hour to view your score. It also includes the topics you answered incorrectly. The testing center won’t give you any hard copies of your certification score. The certificate itself will arrive via mail within six to eight weeks.

What happens if I fail? Can I retake the exam?

 It’s not the end of the world. Don’t worry if you fail. You can retake the exam after 14 days (and the world won’t know it’s a retake).

 But you can’t retake a passed exam to improve your score. Also, you can’t retake a beta exam.

8. The testing engine used in the exam

 The user interface of the testing engine used for the certification exam is quite simple. (You could even call it primitive, compared to today’s web, desktop, and smartphone applications.)

 Before you can start the exam, you will be required to accept the terms and conditions of the Oracle Certification Candidate Agreement. Your computer screen will display all these conditions and give you an option to accept the conditions. You can proceed with writing the exam only if you accept these conditions.

 Here are the features of the testing engine used by Oracle:

 	
 Engine UI is divided into three sections—The UI of the testing engine is divided into the following three segments:

 	
Static upper section—Displays question number, time remaining, and a check box to mark a question for review

 	
Scrollable middle section—Displays the question text and the answer options

 	
Static bottom section—Displays buttons to display the previous question, display the next question, end the exam, and review marked questions

 	
Each question is displayed on a separate screen—The exam engine displays one question on the screen at a time. It doesn’t display multiple questions on a single screen, like a scrollable web page. All effort is made to display the complete question and answer options without scrolling, or with little scrolling.

 	
Code Exhibit button—Many questions include code. Such questions, together with their answers, may require significant scrolling to be viewed. Because this can be quite inconvenient, such questions include a Code Exhibit button that displays the code in a separate window.

 	
Mark questions to be reviewed—The question screen displays a check box with the text “Mark for review” at the top-left corner. A question can be marked using this option. The marked questions can be quickly reviewed at the end of the exam.

 	
Buttons to display the previous and next questions— The test includes buttons to display the previous and next questions within the bottom section of the testing engine.

 	
Buttons to end the exam and review marked questions— The engine displays buttons to end the exam and to review the marked questions in the bottom section of the testing engine.

 	
Remaining time— The engine displays the time remaining for the exam at the top right of the screen.

 	
Question number— Each question displays its serial number.

 	
Correct number of answer options— Each question displays the correct number of options that should be selected from multiple options.

 On behalf of all at Manning Publications, I wish you good luck and hope that you score very well on your exam.

 Chapter 1. Java basics

 	
 Exam objectives covered in this chapter

 	
 What you need to know

 	[1.2] Define the structure of a Java class.

 	Structure of a Java class, with its components: package and import statements, class declarations, comments, variables, and methods. Difference between the components of a Java class and that of a Java source code file.

 	[1.3] Create executable Java applications with a main method; run a Java program from the command line; including console output.

 	The right method signature for the main method to create an executable Java application. The arguments that are passed to the main method.

 	[1.4] Import other Java packages to make them accessible in your code.

 	Understand packages and import statements. Get the right syntax and semantics to import classes from packages and interfaces in your own classes.

 	[6.4] Apply access modifiers.

 	Application of access modifiers (public, protected, default, and private) to a class and its members. Determine the accessibility of code with these modifiers.

 	[7.5] Use abstract classes and interfaces.

 	The implication of defining classes, interfaces, and methods as abstract entities.

 	[6.2] Apply the static keyword to methods and fields.

 	The implication of defining fields and methods as static members.

 	[1.5] Compare and contrast the features and components of Java such as: platform independence, object orientation, encapsulation, etc.

 	The features and components that are relevant or irrelevant to Java.

 Imagine you’re setting up a new IT organization that works with multiple developers. To ensure smooth and efficient working, you’ll define a structure for your organization and a set of departments with separate responsibilities. These departments will interact with each other whenever required. Also, depending on confidentiality requirements, your organization’s data will be available to employees on an as-needed basis, or you may assign special privileges to only some employees of the organization. This is an example of how organizations might work with a well-defined structure and a set of rules to deliver the best results.

 Similarly, Java has a well-defined structure and hierarchy. The organization’s structure and components can be compared with Java’s class structure and components, and the organization’s departments can be compared with Java packages. Restricting access to some data in the organization can be compared to Java’s access modifiers. An organization’s special privileges can be compared to nonaccess modifiers in Java.

 In the OCA Java SE 8 Programmer I exam, you’ll be asked questions on the structure of a Java class, packages, importing classes, and applying access and nonaccess modifiers and features and components of Java. Given that information, this chapter will cover the following:

 	The structure and components of a Java class

 	Understanding executable Java applications

 	Understanding Java packages

 	Importing Java packages into your code

 	Applying access and nonaccess modifiers

 	Features and components of Java

1.1. The structures of a Java class and a source code file

 	

 [1.2] Define the structure of a Java class

 	

 	

 Note

 When you see a certification objective callout such as the preceding one, it means that in this section we’ll cover this objective. The same objective may be covered in more than one section in this chapter or in other chapters.

 	

 This section covers the structures and components of both a Java source code file (.java file) and a Java class (defined using the keyword class). It also covers the differences between a Java source code file and a Java class.

 First things first. Start your exam preparation with a clear understanding of what’s required from you in the certification exam. For example, try to answer the following query from a certification aspirant: “I come across the term ‘class’ with different meanings: class Person, the Java source code file (Person.java), and Java bytecode stored in Person.class. Which of these structures is on the exam?” To answer this question, take a look at figure 1.1, which includes the class Person, the files Person.java and Person.class, and the relationship between them.

 Figure 1.1. Relationship between the class file Person and the files Person.java and Person.class and how one transforms into another

 [image:]

 As you can see in figure 1.1, a person can be defined as a class Person. This class should reside in a Java source code file (Person.java). Using this Java source code file, the Java compiler (javac.exe on Windows or javac on Mac OS X/Linux/UNIX) generates bytecode (compiled code for the Java Virtual Machine) and stores it in Person.class. The scope of this exam objective is limited to Java classes (class Person) and Java source code files (Person.java).

 1.1.1. Structure of a Java class

 The OCA Java SE 8 Programmer I exam will question you on the structure and components of a Java source file and the classes or interfaces that you can define in it. Figure 1.2 shows the components of a Java class file (interfaces are covered in detail in chapter 6).

 Figure 1.2. Components of a Java class

 [image:]

 In this section, I’ll discuss all Java class file components. Let’s get started with the package statement.

 	

 Note

 The code in this book doesn’t include a lot of spaces—it imitates the kind of code that you’ll see on the exam. But when you work on real projects, I strongly recommend that you use spaces or comments to make your code readable.

 	

package statement

 All Java classes are part of a package. A Java class can be explicitly defined in a named package; otherwise, it becomes part of a default package, which doesn’t have a name.

 A package statement is used to explicitly define which package a class is in. If a class includes a package statement, it must be the first statement in the class definition:

 [image:]

 	

 Note

 Packages are covered in detail in section 1.3 of this chapter.

 	

 The package statement can’t appear within a class declaration or after the class declaration. The following code will fail to compile:

 [image:]

 The following code will also fail to compile, because it places the package statement within the class definition:

 [image:]

 Also, if present, the package statement must appear exactly once in a class. The following code won’t compile:

 [image:]

import statement

 Classes and interfaces in the same package can use each other without prefixing their names with the package name. But to use a class or an interface from another package, you must use its fully qualified name, that is, packageName.anySubpackageName.ClassName. For example, the fully qualified name of class String is java.lang.String. Because using fully qualified names can be tedious and can make your code difficult to read, you can use the import statement to use the simple name of a class or interface in your code.

 Let’s look at this using an example class, AnnualExam, which is defined in the package university. Class AnnualExam is associated with the class certification.ExamQuestion, as shown using the Unified Modeling Language (UML) class diagram in figure 1.3.

 Figure 1.3. UML representation of the relationship between class AnnualExam and ExamQuestion

 [image:]

 	

 Note

 A UML class diagram represents the static view of an application. It shows entities like packages, classes, interfaces, and their attributes (fields and methods) and also depicts the relationships between them. It shows which classes and interfaces are defined in a package. It depicts the inheritance relationship between classes and interfaces. It can also depict the associations between them—when a class or an interface defines an attribute of another type. All UML representations in this chapter are class diagrams. The exam doesn’t cover UML diagrams. But using these quick and simple diagrams simplifies the relationship between Java entities—both on the exam and in your real-world projects.

 	

 	

 Note

 Throughout this book, bold font will be used to indicate specific parts of code that we’re discussing, or changes or modifications in code.

 	

 Here’s the code for class AnnualExam:

 [image:]

 Note that the import statement follows the package statement but precedes the class declaration. What happens if the class AnnualExam isn’t defined in a package? Will there be any change in the code if the classes AnnualExam and ExamQuestion are related, as depicted in figure 1.4?

 Figure 1.4. Relationship between the packageless class AnnualExam and ExamQuestion

 [image:]

 In this case, the class AnnualExam isn’t part of an explicit package, but the class ExamQuestion is part of the package certification. Here’s the code for the class AnnualExam:

 [image:]

 As you can see in the previous example code, the class AnnualExam doesn’t define the package statement, but it defines the import statement to import the class certification.ExamQuestion.

 If a package statement is present in a class, the import statement must follow the package statement. It’s important to maintain the order of the occurrence of the package and import statements. Reversing this order will result in your code failing to compile:

 [image:]

 We’ll discuss import statements in detail in section 1.3 of this chapter.

Comments

 You can also add comments to your Java code. Comments can appear at multiple places in a class. A comment can appear before and after a package statement, before and after the class definition, as well as before and within and after a method definition. Comments come in two flavors: multiline comments and end-of-line comments.

 Multiline comments span multiple lines of code. They start with /* and end with */. Here’s an example:

 [image:]

 Multiline comments can contain special characters. Here’s an example:

 [image:]

 In the preceding code, the comments don’t start with an asterisk on every line. But most of the time when you see a multiline comment in a Java source code file (.java file), you’ll notice that it uses an asterisk (*) to start the comment in the next line. Please note that this isn’t required—it’s done more for aesthetic reasons. Here’s an example:

 [image:]

 End-of-line comments start with // and, as evident by their name, they’re placed at the end of a line of code or on a blank line. The text between // and the end of the line is treated as a comment, which you’d normally use to briefly describe the line of code. Here’s an example:

 [image:]

 Though usage of multiline comments in the following code is uncommon, the exam expects you to know that the code is valid:

 [image:]

 Here’s what happens if you include multiline comments within quotes while assigning a string value:

 [image:]

 When included within double quotes, multiline comments are treated as regular characters and not as comments. So the following code won’t compile because the value assigned to variable name is an unclosed string literal value:

 [image:]

 In the earlier section on the package statement, you read that a package statement, if present, should be the first line of code in a class. The only exception to this rule is the presence of comments. A comment can precede a package statement. The following code defines a package statement, with multiline and end-of-line comments:

 [image:]

 Line [image:] defines an end-of-line code comment within multiline code. This is acceptable. The end-of-line code comment is treated as part of the multiline comment, not as a separate end-of-line comment. Lines [image:] and [image:] define end-of-line code comments. Line [image:] defines an end-of-line code comment at the start of a line, after the class definition.

 The multiline comment is placed before the package statement, which is acceptable because comments can appear anywhere in your code.

 	

 Javadoc comments

 Javadoc comments are special comments that start with /** and end with */ in a Java source file. These comments are processed by Javadoc, a JDK tool, to generate API documentation for your Java source code files. To see it in action, compare the API documentation of the class String and its source code file (String.java).

 	

Class declaration

 The class declaration marks the start of a class. It can be as simple as the keyword class followed by the name of a class:

 [image:]

 The declaration of a class is composed of the following parts:

 	Access modifiers

 	Nonaccess modifiers

 	Class name

 	
Name of the base class, if the class is extending another class

 	All implemented interfaces, if the class is implementing any interfaces

 	Class body (class fields, methods, constructors), included within a pair of curly braces, {}

 Don’t worry if you don’t understand this material at this point. We’ll go through these details as we move through the exam preparation.

 Let’s look at the components of a class declaration using an example:

 public final class Runner extends Person implements Athlete {}

 The components of the preceding class declaration can be illustrated as shown in figure 1.5.

 Figure 1.5. Components of a class declaration

 [image:]

 Table 1.1 summarizes the compulsory and optional components.

 Table 1.1. Components of a class declaration

 	
 Mandatory

 	
 Optional

 	Keyword class

 	Access modifier, such as public

 	Name of the class

 	Nonaccess modifier, such as final

 	Class body, marked by the opening and closing curly braces, {}

 	Keyword extends together with the name of the base class

 	

 	Keyword implements together with the names of the interfaces being implemented

 We’ll discuss the access and nonaccess modifiers in detail in sections 1.4 and 1.5 in this chapter.

Class definition

 A class is a design used to specify the attributes and behavior of an object. The attributes of an object are implemented using variables, and the behavior is implemented using methods. For example, consider a class as being like the design or specification of a mobile phone, and a mobile phone as being an object of that design. The same design can be used to create multiple mobile phones, just as the Java Virtual Machine (JVM) uses a class to create its objects. You can also consider a class as being like a mold that you can use to create meaningful and useful objects. A class is a design from which an object can be created.

 Let’s define a simple class to represent a mobile phone:

 class Phone {
 String model;
 String company;
 Phone(String model) {
 this.model = model;
 }
 double weight;
 void makeCall(String number) {
 // code
 }
 void receiveCall() {
 // code
 }
}

 Points to remember:

 	A class name starts with the keyword class. Watch out for the case of the keyword class. Java is cAsE-sEnSiTivE. class (lowercase c) isn’t the same as Class (uppercase C). You can’t use the word Class (uppercase C) to define a class.

 	The state of a class is defined using attributes or instance variables.

 	It isn’t compulsory to define all attributes of a class before defining its methods (the variable weight is defined after Phone’s constructor). But this is far from being optimal for readability.

 	The behavior is defined using methods, which may include method parameters.

 	A class definition may also include comments and constructors.

 	

 Note

 A class is a design from which an object can be created.

 	

Variables

 Revisit the definition of the class Phone in the previous example. Because the variables model, company, and weight are used to store the state of an object (also called an instance), they’re called instance variables or instance attributes. Each object has its own copy of the instance variables. If you change the value of an instance variable for an object, the value for the same named instance variable won’t change for another object. The instance variables are defined within a class but outside all methods in a class.

 A single copy of a class variable or static variable is shared by all the objects of a class. The static variables are covered in section 1.5.3 with a detailed discussion of the nonaccess modifier static.

Methods

 Again, revisit the previous example. The methods makeCall and receiveCall are instance methods, which are generally used to manipulate the instance variables.

 A class method or static method can be used to manipulate the static variables, as discussed in detail in section 1.5.3.

Constructors

 Class Phone in the previous example defines a single constructor. A class constructor is used to create and initialize the objects of a class. A class can define multiple constructors that accept different sets of method parameters.

 1.1.2. Structure and components of a Java source code file

 A Java source code file is used to define Java entities such as a class, interface, enum, and annotation.

 	

 Note

 Java annotations are not on the exam and so won’t be discussed in this book.

 	

 All your Java code should be defined in Java source code files (text files whose names end with .java). The exam covers the following aspects of the structure of a Java source code file:

 	Definition of a class and an interface in a Java source code file

 	Definition of single or multiple classes and interfaces within the same Java source code file

 	Application of import and package statements to all the classes in a Java source code file

 We’ve already covered the detailed structure and definition of classes in section 1.1.1. Let’s get started with the definition of an interface.

Definition of an interface in a Java source code file

 An interface specifies a contract for the classes to implement. You can compare implementing an interface to signing a contract. An interface is a grouping of related methods and constants. Prior to Java 8, interface methods were implicitly abstract. But starting with Java version 8, the methods in an interface can define a default implementation. With Java 8, interfaces can also define static methods.

 Here’s a quick example to help you understand the essence of interfaces. No matter which brand of television each of us has, every television provides the common functionality of changing the channel and adjusting the volume. You can compare the controls of a television set to an interface and the design of a television set to a class that implements the interface controls.

 Let’s define this interface:

 interface Controls {
 void changeChannel(int channelNumber);
 void increaseVolume();
 void decreaseVolume();
}

 The definition of an interface starts with the keyword interface. Remember, Java is case-sensitive, so you can’t use the word Interface (with a capital I) to define an interface. This section provides a brief overview of interfaces. You’ll work with interfaces in detail in chapter 6.

Definition of single and multiple classes in a single Java source code file

 You can define either a single class or an interface in a Java source code file or multiple such entities. Let’s start with a simple example: a Java source code file called Single-Class.java that defines a single class SingleClass:

 [image:]

 Here’s an example of a Java source code file, Multiple1.java, that defines multiple interfaces:

 [image:]

 You can also define a combination of classes and interfaces in the same Java source code file. Here’s an example:

 [image:]

 No particular order is required to define multiple classes or interfaces in a single Java source code file.

 	

 Exam Tip

 The classes and interfaces can be defined in any order of occurrence in a Java source code file.

 	

 When you define a public class or an interface in a Java source file, the names of the class or interface and Java source file must match. Also, a source code file can’t define more than one public class or interface. If you try to do so, your code won’t compile, which leads to a small hands-on exercise for you that I call Twist in the Tale, as mentioned in the preface. The answers to all these exercises are provided in the appendix.

 	

 About the Twist in the Tale exercises

 For these exercises, I’ve tried to use modified code from the examples already covered in the chapter. The Twist in the Tale title refers to modified or tweaked code.

 These exercises will help you understand how even small code modifications can change the behavior of your code. They should also encourage you to carefully examine all the code in the exam. The reason for these exercises is that in the exam, you may be asked more than one question that seems to require the same answer. But on closer inspection, you’ll realize that the questions differ slightly, and this will change the behavior of the code and the correct answer option!

 	

Twist in the Tale 1.1

 Modify the contents of the Java source code file Multiple.java, and define a public interface in it. Execute the code and see how this modification affects your code.

 Question: Examine the following content of Java source code file Multiple.java and select the correct options:

 // Contents of Multiple.java
public interface Printable {
 //.. we are not detailing this part
}
interface Movable {
 //.. we are not detailing this part
}

 Options:

 	A Java source code file can’t define multiple interfaces.

 	A Java source code file can only define multiple classes.

 	A Java source code file can define multiple interfaces and classes.

 	The previous class will fail to compile.

 If you need help getting your system set up to write Java, refer to Oracle’s “Getting Started” tutorial, http://docs.oracle.com/javase/tutorial/getStarted/.

Twist in the Tale 1.2

 Question: Examine the content of the following Java source code file, Multiple2.java, and select the correct option(s):

 // contents of Multiple2.java
interface Printable {
 //.. we are not detailing this part
}
class MyClass {
 //.. we are not detailing this part
}
interface Movable {
 //.. we are not detailing this part
}
public class Car {
 //.. we are not detailing this part
}
public interface Multiple2 {}

 Options:

 	The code fails to compile.

 	The code compiles successfully.

 	Removing the definition of class Car will compile the code.

 	Changing class Car to a nonpublic class will compile the code.

 	Changing interface Multiple2 to a nonpublic interface will compile the code.

Application of package and import statements in Java source code files

 In the previous section, I mentioned that you can define multiple classes and interfaces in the same Java source code file. When you use a package or import statement within such Java files, both the package and import statements apply to all the classes and interfaces defined in that source code file.

 For example, if you include a package and an import statement in Java source code file Multiple.java (as in the following code), Car, Movable, and Printable will be become part of the same package com.manning.code:

 [image:]

 	

 Exam Tip

 Classes and interfaces defined in the same Java source code file can’t be defined in separate packages. Classes and interfaces imported using the import statement are available to all the classes and interfaces defined in the same Java source code file.

 	

 In the next section, you’ll create executable Java applications—classes that are used to define an entry point of execution for a Java application.

1.2. Executable Java applications

 	

 [1.3] Create executable Java applications with a main method; run a Java program from the command line; including console output.

 	

 The OCA Java SE 8 Programmer I exam requires that you understand the meaning of an executable Java application and its requirements, that is, what makes a regular Java class an executable Java class. You also need to know how to execute a Java program from the command line.

 1.2.1. Executable Java classes versus non-executable Java classes

 Doesn’t the Java Virtual Machine execute all the Java classes when they are used? If so, what is a non-executable Java class?

 An executable Java class, when handed over to the JVM, starts its execution at a particular point in the class—the main method. The JVM starts executing the code that’s defined in the main method. You can’t hand over a non-executable Java class (class without a main method) to the JVM and ask it to execute it. In this case, the JVM won’t know which method to execute because no entry point is marked.

 Typically, an application consists of a number of classes and interfaces that are defined in multiple Java source code files. Of all these files, a programmer designates one of the classes as an executable class. The programmer can define the steps that the JVM should execute as soon as it launches the application. For example, a programmer can define an executable Java class that includes code to display the appropriate GUI window to a user and to open a database connection.

 In figure 1.6, the classes Window, UserData, ServerConnection, and UserPreferences don’t define a main method. Class LaunchApplication defines a main method and is an executable class.

 Figure 1.6. Class LaunchApplication is an executable Java class, but the rest of the classes—Window, UserData, ServerConnection, and UserPreferences—aren't.

 [image:]

 	

 Note

 A Java application can define more than one executable class. We choose one (and exactly one) when the time comes to start its execution by the JVM.

 	

 1.2.2. The main method

 The first requirement in creating an executable Java application is to create a class with a method whose signature (name and method arguments) matches the main method, defined as follows:

 public class HelloExam {
 public static void main(String args[]) {
 System.out.println("Hello exam");
 }
}

 This main method should comply with the following rules:

 	The method must be marked as a public method.

 	The method must be marked as a static method.

 	The name of the method must be main.

 	The return type of this method must be void.

 	The method must accept a method argument of a String array or a variable argument (varargs) of type String.

 Figure 1.7 illustrates the previous code and its related set of rules.

 Figure 1.7. Ingredients of a correct main method

 [image:]

 It’s valid to define the method parameter passed to the main method as a variable argument (varargs) of type String:

 [image:]

 To define a variable argument variable, the ellipsis (...) must follow the type of the variable and not the variable itself (a mistake made by a lot of new programmers):

 [image:]

 As mentioned previously, the name of the String array passed to the main method need not be args to qualify it as the correct main method. The following examples are also correct definitions of the main method:

 [image:]

 To define an array, the square brackets [] can follow either the variable name or its type. The following is a correct method declaration of the main method:

 [image:]

 It’s interesting to note that the placement of the keywords public and static can be interchanged, which means that the following are both correct method declarations of the main method:

 [image:]

 	

 Note

 Though both public static and static public are the valid order of keywords to declare the main method, public static is more common and thus more readable.

 	

 On execution, the code shown in figure 1.7 outputs the following:

 Hello exam

 If a class defines a main method that doesn’t match the signature of the main method, it’s referred to as an overloaded method (overloaded methods are discussed in detail in chapter 3). Overloaded methods are methods with the same name but different signatures. For a quick example, class HelloExam can define multiple methods with the method name main:

 [image:]

 On execution, JVM will execute the main method, resulting in the output Hello exam.

 1.2.3. Run a Java program from the command line

 Almost all Java developers work with an Integrated Development Environment (IDE). This exam, however, expects you to understand how to execute a Java application, or an executable Java class, using the command prompt. For this reason, I suggest you work with a simple text editor and command line (even if this might never be the approach you use in the real world).

 	

 Note

 If you need help getting your system set up to compile or execute Java applications using the command prompt, refer to Oracle’s detailed instructions at http://docs.oracle.com/javase/tutorial/getStarted/cupojava/index.html.

 	

 Let’s revisit the code shown in figure 1.7:

 public class HelloExam {
 public static void main(String args[]) {
 System.out.println("Hello exam");
 }
}

 To execute the preceding code using a command prompt, issue the command java HelloExam, as shown in figure 1.8.

 Figure 1.8. Using the command prompt to execute a Java application

 [image:]

 I mentioned that the main method accepts an array of String as the method parameter. But how and where do you pass the array to the main method? Let’s modify the previous code to access and output values from this array:

 public class HelloExamWithParameters {
 public static void main(String args[]) {
 System.out.println(args[0]);
 System.out.println(args[1]);
 }
}

 Now let’s execute the preceding code using the command prompt, as shown in figure 1.9.

 Figure 1.9. Passing command parameters to a main method

 [image:]

 As you can see from the output shown in figure 1.9, the keyword java and the name of the class aren’t passed as command parameters to the main method. The OCA Java SE 8 Programmer I exam will test you on your knowledge of whether the keyword java and the class name are passed on to the main method.

 	

 Exam Tip

 The method parameters that are passed to the main method are also called command-line parameters or command-line values. As the name implies, these values are passed to a method from the command line.

 	

 If you weren’t able to follow the code with respect to the arrays and the class String, don’t worry; we’ll cover the class String and arrays in detail in chapter 4.

 Here’s the next Twist in the Tale exercise for you. In this exercise, and in the rest of the book, you’ll see the names Shreya, Harry, Paul, and Selvan, who are hypothetical programmers also studying for this certification exam. The answer is provided in the appendix, as usual.

Twist in the Tale 1.3

 One of the programmers, Harry, executed a program that gave the output java one. Now he’s trying to figure out which of the following classes outputs these results. Given that he executed the class using the command java EJava java one one, can you help him figure out the correct option(s)?

 	

 class EJava {
 public static void main(String sun[]) {
 System.out.println(sun[0] + " " + sun[2]);
 }
}

 	

 class EJava {
 static public void main(String phone[]) {
 System.out.println(phone[0] + " " + phone[1]);
 }
}

 	

 class EJava {
 static public void main(String[] arguments[]) {
 System.out.println(arguments[0] + " " + arguments[1]);
 }
}

 	

 class EJava {
 static void public main(String args[]) {
 System.out.println(args[0] + " " + args[1]);
 }
}

 	

 Confusion with command-line parameters

 If you’ve programmed in languages like C, you might get confused by the command-line parameters. Programming languages like C pass the name of a program as a command-line argument to the main method. But Java doesn’t pass the name of the class as an argument to the main method.

 	

1.3. Java packages

 	

 [1.4] Import other Java packages to make them accessible in your code

 	

 This exam covers importing packages into other classes. But with more than a decade and a half of experience, I’ve learned that before starting to import other packages into your own code, it’s important to understand what packages are, the difference between classes that are defined in a package and the classes that aren’t defined in a package, and why you need to import packages in your code.

 In this section, you’ll learn what Java packages are and how to create them. You’ll use the import statement, which enables you to use simple names for classes and interfaces defined in separate packages.

 1.3.1. The need for packages

 Why do you think we need packages? First, answer this question: do you remember having known more than one Amit, Paul, Anu, or John in your life? Harry knows more than one Paul (six, to be precise), whom he categorizes as managers, friends, and cousins. These are subcategorized by their location and relation, as shown in figure 1.10.

 Figure 1.10. Harry knows six Pauls!

 [image:]

 Similarly, you can use a package to group together a related set of classes and interfaces (I won’t discuss enums here because they aren’t covered on this exam). Packages also provide access protection and namespace management. You can create separate packages to define classes for separate projects, such as Android games and online healthcare systems. Further, you can create subpackages within these packages, such as separate subpackages for GUIs, database access, networking, and so on.

 	

 Note

 In real-life projects, you’ll rarely work with a package-less class or interface. Almost all organizations that develop software have strict package-naming rules, which are often documented.

 	

 All classes and interfaces are defined in a package. If you don’t include an explicit package statement in a class or an interface, it’s part of a default package.

 1.3.2. Defining classes in a package using the package statement

 You can indicate that a class or an interface is defined in a package by using the package statement as the first statement in code. Here’s an example:

 [image:]

 The class in the preceding code defines an ExamQuestion class in the certification package. You can define an interface, MultipleChoice, in a similar manner:

 package certification;
interface MultipleChoice {

 void choice1();
 void choice2();
}

 Figure 1.11 shows a UML class diagram depicting the relationship of the package certification to the class ExamQuestion and the interface MultipleChoice.

 Figure 1.11. A UML class diagram showing the relationship shared by package certification, class ExamQuestion, and interface MultipleChoice

 [image:]

 The name of the package in the previous examples is certification. You may use such names for small projects that contain only a few classes and interfaces, but it’s common for organizations to use subpackages to define all their classes. For example, if the folks at Oracle were to define a class to store exam questions for a Java Associate exam, they might use the package name com.oracle.javacert.associate. Figure 1.12 shows its UML representation, together with the corresponding class definition.

 Figure 1.12. A subpackage and its corresponding class definition

 [image:]

 A package is made of multiple sections that go from the more-generic (left) to the more-specific (right). The package name com.oracle.javacert.associate follows a package-naming convention recommended by Oracle and shown in table 1.2.

 Table 1.2. Package-naming conventions used in the package name com.oracle.javacert.associate

 	
 Package or subpackage name

 	
 Its meaning

 	com

 	
 Commercial. A couple of the commonly used three-letter package abbreviations are

 	gov—for government bodies

 	edu—for educational institutions

 	oracle

 	Name of the organization

 	javacert

 	Further categorization of the project at Oracle

 	associate

 	Further subcategorization of Java certification

Rules to remember

 Here are a few of important rules about packages:

 	Per Java naming conventions, package names should all be in lowercase.

 	The package and subpackage names are separated using a dot (.).

 	Package names follow the rules defined for valid identifiers in Java.

 	For classes and interfaces defined in a package, the package statement is the first statement in a Java source file (a .java file). The exception is that comments can appear before or after a package statement.

 	There can be a maximum of one package statement per Java source code file (.java file).

 	All the classes and interfaces defined in a Java source code file are defined in the same package. They can’t be defined in separate packages.

 	

 Note

 A fully qualified name for a class or interface is formed by prefixing its package name with its name (separated by a dot). The fully qualified name of the class ExamQuestion is certification.ExamQuestion in figure 1.11 and com.oracle.javacert.associate.ExamQuestion in figure 1.12.

 	

Directory structure and package hierarchy

 The hierarchy of classes and interfaces defined in packages must match the hierarchy of the directories in which these classes and interfaces are defined in the code. For example, the class ExamQuestion in the certification package should be defined in a directory with the name “certification.” The name of the directory “certification” and its location are governed by the rules shown in figure 1.13.

 Figure 1.13. Matching directory structure and package hierarchy

 [image:]

 For the package example shown in figure 1.13, note that there isn’t any constraint on the location of the base directory in which the directory structure is defined, as shown in figure 1.14.

 Figure 1.14. There’s no constraint on the location of the base directory to define directories corresponding to package hierarchy.

 [image:]

Setting the classpath for packaged classes

 To enable the Java Runtime Environment (JRE) to find your classes, add the base directory that contains your packaged Java code to the classpath.

 For example, to enable the JRE to locate the certification.ExamQuestion class from the previous examples, add the directory C:\MyCode to the classpath. To enable the JRE to locate the class com.oracle.javacert.associate.ExamQuestion, add the directory C:\ProjectCode to the classpath.

 	

 Note

 You needn’t bother setting the classpath if you’re working with an IDE. But I strongly encourage you to learn how to work with a simple text editor and how to set a classpath. This can be helpful with your projects at work. The exam expects you to spot code with compilation errors, which isn’t easy to do if you didn’t learn how to do it without an IDE (IDEs usually include code autocorrection or autocompletion features).

 	

 1.3.3. Using simple names with import statements

 The import statement enables you to use simple names instead of using fully qualified names for classes and interfaces defined in separate packages.

 Let’s work with a real-life example. Imagine your home and your office. LivingRoom and Kitchen within your home can refer to each other without mentioning that they exist within the same home. Similarly, in an office, a Cubicle and a ConferenceHall can reference each other without explicitly mentioning that they exist within the same office. But Home and Office can’t access each other’s rooms or cubicles without stating that they exist in a separate home or office. This situation is represented in figure 1.15.

 Figure 1.15. To refer to each other’s members, Home and Office should specify that they exist in separate places.

 [image:]

 To refer to the LivingRoom in Cubicle, you must specify its complete location, as shown in the left part of the figure 1.16. As you can see in this figure, repeated references to the location of LivingRoom make the description of LivingRoom look tedious and redundant. To avoid this, you can display a notice in Cubicle that all occurrences of LivingRoom refer to LivingRoom in Home and thereafter use its simple name. Home and Office are like Java packages, and this notice is the equivalent of the import statement. Figure 1.16 shows the difference in using fully qualified names and simple names for LivingRoom in Cubicle.

 Figure 1.16. LivingRoom can be accessed in Cubicle by using its fully qualified name. It can also be accessed using its simple name if you also use the import statement.

 [image:]

 Let’s implement the preceding example in code, where classes LivingRoom and Kitchen are defined in the package home and classes Cubicle and ConferenceHall are defined in the package office. Class Cubicle uses (is associated to) class LivingRoom in the package home, as shown in figure 1.17.

 Figure 1.17. A UML representation of classes LivingRoom and Cubicle, defined in separate packages, with their associations

 [image:]

 Class Cubicle can refer to class LivingRoom without using an import statement:

 [image:]

 Class Cubicle can use the simple name for class LivingRoom by using the import statement:

 [image:]

 	

 Note

 The import statement doesn’t embed the contents of the imported class in your class, which means that importing more classes doesn’t increase the size of your own class.

 	

 1.3.4. Using packaged classes without using the import statement

 It’s possible to use a packaged class or interface without using the import statement, by using its fully qualified name:

 [image:]

 But using a fully qualified class name can clutter your code if you create multiple variables of interfaces and classes defined in other packages. Don’t use this approach in real projects.

 	

 Exam Tip

 You don’t need an explicit import statement to use members from the java.lang package. Classes and interfaces in this package are automatically imported in all other Java classes, interfaces, or enums.

 	

 For the exam, it’s important to note that you can’t use the import statement to access multiple classes or interfaces with the same names from different packages. For example, the Java API defines class Date in two commonly used packages: java.util and java.sql. To define variables of these classes in a class, use their fully qualified names with the variable declaration:

 [image:]

 An attempt to use an import statement to import both these classes in the same class will not compile:

 [image:]

 An alternate approach (which works well in real projects) is to use the import definition with the class or interface that you use more often and fully reference the one that you use just from time to time:

 [image:]

 1.3.5. Importing a single member versus all members of a package

 You can import either a single member or all members (classes and interfaces) of a package using the import statement. First, revisit the UML notation of the certification package, as shown in figure 1.18.

 Figure 1.18. A UML representation of the certification package

 [image:]

 Examine the following code for the class AnnualExam:

 [image:]

 By using the wildcard character, an asterisk (*), you can import all the public members, classes, and interfaces of a package. Compare the previous class definition with the following definition of the class AnnualExam:

 [image:]

 	

 Note

 When overused, using an asterisk to import all members of a package has a drawback. It may be harder to figure out which imported class or interface comes from which package.

 	

 When you work with an IDE, it may automatically add import statements for classes and interfaces that you reference in your code.

 1.3.6. The import statement doesn’t import the whole package tree

 You can’t import classes from a subpackage by using an asterisk in the import statement. For example, the UML notation in figure 1.19 depicts the package com.oracle.javacert with the class Schedule and two subpackages, associate and webdeveloper. Package associate contains class ExamQuestion, and package webdeveloper contains class MarkSheet.

 Figure 1.19. A UML representation of package com.oracle.javacert and its subpackages

 [image:]

 The following import statement will import only the class Schedule. It won’t import the classes ExamQuestion and MarkSheet:

 [image:]

 Similarly, the following import statement will import all the classes from the packages associate and webdeveloper:

 [image:]

 1.3.7. Importing classes from the default package

 What happens if you don’t include a package statement in your classes or interfaces? In that case, they become part of a default, no-name package. This default package is automatically imported in the Java classes and interfaces defined within the same directory on your system.

 For example, the classes Person and Office, which aren’t defined in an explicit package, can use each other if they’re defined in the same directory:

 [image:]

 A class from a default package can’t be used in any named packaged class, regardless of whether they’re defined within the same directory or not.

 	

 Exam Tip

 Members of a named package can’t access classes and interfaces defined in the default package.

 	

 1.3.8. Static imports

 You can import an individual static member of a class or all its static members by using the import static statement. Although accessible using an instance, the static members are better accessed by prefixing their name with the class or interface names. By using static import, you can drop the prefix and just use the name of the static variable or method. In the following code, class ExamQuestion defines a public static variable marks and a public static method print:

 [image:]

 The marks variable can be accessed in the class AnnualExam using the import static statement. The order of the keywords import and static can’t be reversed:

 [image:]

 	

 Exam Tip

 This feature is called static imports, but the syntax is import static.

 	

 To access all public and static members of class ExamQuestion in class AnnualExam without importing each of them individually, you can use an asterisk with the import static statement:

 [image:]

 Because the variable marks and method print are defined as public members, they’re accessible to the class AnnualExam. By using the import static statement, you don’t have to prefix them with their class name.

 	

 Note

 On real projects, avoid overusing static imports; otherwise, the code might become a bit confusing about which imported component comes from which class.

 	

 The accessibility of a class, an interface, and their methods and variables is determined by their access modifiers, which are covered in the next section.

1.4. Java access modifiers

 	

 [6.4] Apply access modifiers

 	

 In this section, we’ll cover all the access modifiers—public, protected, and private—as well as default access, which is the result when you don’t use an access modifier. We’ll also look at how you can use access modifiers to restrict the accessibility of a class and its members in the same and separate packages.

 1.4.1. Access modifiers

 Let’s start with an example. Examine the definitions of the classes House and Book in the following code and the UML representation shown in figure 1.20.

 Figure 1.20. The nonpublic class Book can’t be accessed outside the package library.

 [image:]

 package building;
class House {}
package library;
class Book {}

 With the current class definitions, the class House can’t access the class Book. Can you make the necessary changes (in terms of the access modifiers) to make the class Book accessible to the class House?

 This one shouldn’t be difficult. From the discussion of class declarations in section 1.1, you know that a top-level class can be defined only by using the public or default access modifiers. If you declare the class Book using the access modifier public, it’ll be accessible outside the package in which it is defined.

 	

 Note

 A top-level class is a class that isn’t defined within any other class. A class that is defined within another class is called a nested or inner class. Nested and inner classes aren’t on the OCA Java SE 8 Programmer I exam.

 	

What do they control?

 Access modifiers control the accessibility of a class or an interface, including its members (methods and variables), by other classes and interfaces within the same or separate packages. By using the appropriate access modifiers, you can limit access to your class or interface and their members.

OEBPS/OEBPS/Images/xxiiifig01_alt.jpg

OEBPS/OEBPS/Images/xxiiifig02_alt.jpg

OEBPS/OEBPS/Images/xxiifig01_alt.jpg

OEBPS/OEBPS/Images/xxiifig02_alt.jpg

OEBPS/OEBPS/Images/common02.jpg

OEBPS/OEBPS/Images/xxifig01_alt.jpg

OEBPS/OEBPS/Images/common01.jpg

OEBPS/OEBPS/Images/027fig04_alt.jpg

OEBPS/OEBPS/Images/028fig02_alt.jpg

OEBPS/OEBPS/Images/028fig01_alt.jpg

OEBPS/OEBPS/Images/xxiiifig03_alt.jpg

OEBPS/OEBPS/Images/028fig03_alt.jpg

OEBPS/OEBPS/Images/xxivfig01_alt.jpg

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/026fig01_alt.jpg

OEBPS/OEBPS/Images/01fig03.jpg

OEBPS/OEBPS/Images/027fig01_alt.jpg

OEBPS/OEBPS/Images/01fig04.jpg

OEBPS/OEBPS/Images/027fig03_alt.jpg

OEBPS/OEBPS/Images/027fig02_alt.jpg

OEBPS/OEBPS/Images/page_28.png

OEBPS/OEBPS/Images/029fig02_alt.jpg

OEBPS/OEBPS/Images/num-4.jpg

OEBPS/OEBPS/Images/033fig01_alt.jpg

OEBPS/OEBPS/Images/01fig05_alt.jpg

OEBPS/OEBPS/Images/033fig03_alt.jpg

OEBPS/OEBPS/Images/033fig02_alt.jpg

OEBPS/OEBPS/Images/029fig01_alt.jpg

OEBPS/OEBPS/Images/028fig05.jpg

OEBPS/OEBPS/Images/num-2.jpg

OEBPS/OEBPS/Images/num-1.jpg

OEBPS/OEBPS/Images/num-3.jpg

OEBPS/OEBPS/Images/038fig02_alt.jpg

OEBPS/OEBPS/Images/038fig04_alt.jpg

OEBPS/OEBPS/Images/038fig03_alt.jpg

OEBPS/OEBPS/Images/039fig01_alt.jpg

OEBPS/OEBPS/Images/038fig05_alt.jpg

OEBPS/OEBPS/Images/01fig09_alt.jpg

OEBPS/OEBPS/Images/01fig08_alt.jpg

OEBPS/OEBPS/Images/01fig06_alt.jpg

OEBPS/OEBPS/Images/01fig20.jpg

OEBPS/OEBPS/Images/035fig01_alt.jpg

OEBPS/OEBPS/Images/051fig02_alt.jpg

OEBPS/OEBPS/Images/038fig01_alt.jpg

OEBPS/OEBPS/Images/051fig01_alt.jpg

OEBPS/OEBPS/Images/01fig07_alt.jpg

OEBPS/OEBPS/Images/01fig13_alt.jpg

OEBPS/OEBPS/Images/01fig12_alt.jpg

OEBPS/OEBPS/Images/01fig15_alt.jpg

OEBPS/OEBPS/Images/01fig14_alt.jpg

OEBPS/OEBPS/Images/01fig17.jpg

OEBPS/OEBPS/Images/01fig16_alt.jpg

OEBPS/OEBPS/Images/047fig01_alt.jpg

OEBPS/OEBPS/Images/046fig01_alt.jpg

OEBPS/OEBPS/Images/042fig01.jpg

OEBPS/OEBPS/Images/01fig10.jpg

OEBPS/OEBPS/Images/01fig11.jpg

OEBPS/OEBPS/Images/logo.jpg

OEBPS/OEBPS/Images/048fig01_alt.jpg

OEBPS/OEBPS/Images/01fig18.jpg

OEBPS/OEBPS/Images/048fig02_alt.jpg

OEBPS/OEBPS/Images/049fig01_alt.jpg

OEBPS/OEBPS/Images/048fig03_alt.jpg

OEBPS/OEBPS/Images/049fig02_alt.jpg

OEBPS/OEBPS/Images/01fig19.jpg

OEBPS/OEBPS/Images/050fig02.jpg

OEBPS/OEBPS/Images/xxivfig02.jpg

OEBPS/OEBPS/Images/050fig01_alt.jpg

OEBPS/OEBPS/Images/047fig03_alt.jpg

OEBPS/OEBPS/Images/047fig02_alt.jpg

OEBPS/OEBPS/Images/007fig01_alt.jpg

OEBPS/OEBPS/Images/006fig01_alt.jpg

OEBPS/OEBPS/Images/xxvfig01.jpg

OEBPS/OEBPS/Images/050fig03_alt.jpg

OEBPS/OEBPS/Images/xxivfig03_alt.jpg

OEBPS/OEBPS/Images/xxvfig03_alt.jpg

OEBPS/OEBPS/Images/xxvfig02_alt.jpg

OEBPS/OEBPS/Images/xxvifig02_alt.jpg

OEBPS/OEBPS/Images/xxvifig01_alt.jpg

OEBPS/OEBPS/Images/003fig01_alt.jpg

OEBPS/OEBPS/Images/xxixfig01.jpg

OEBPS/OEBPS/Images/005fig01_alt.jpg

OEBPS/OEBPS/Images/015fig02.jpg

OEBPS/OEBPS/Images/016fig02.jpg

OEBPS/OEBPS/Images/016fig01_alt.jpg

OEBPS/OEBPS/Images/013fig01_alt.jpg

OEBPS/OEBPS/Images/012fig01.jpg

OEBPS/OEBPS/Images/013fig03_alt.jpg

OEBPS/OEBPS/Images/013fig02.jpg

OEBPS/OEBPS/Images/014fig02_alt.jpg

OEBPS/OEBPS/Images/014fig01.jpg

OEBPS/OEBPS/Images/015fig01_alt.jpg

OEBPS/OEBPS/Images/014fig03.jpg

OEBPS/OEBPS/Images/025fig02_alt.jpg

OEBPS/OEBPS/Images/025fig01_alt.jpg

OEBPS/OEBPS/Images/025fig04.jpg

OEBPS/OEBPS/Images/025fig03_alt.jpg

OEBPS/OEBPS/Images/017fig01.jpg

OEBPS/OEBPS/Images/016fig03_alt.jpg

OEBPS/OEBPS/Images/017fig03.jpg

OEBPS/OEBPS/Images/017fig02_alt.jpg

OEBPS/OEBPS/Images/01fig01_alt.jpg

OEBPS/OEBPS/Images/018fig01_alt.jpg

OEBPS/OEBPS/Images/01fig02.jpg

