

 [image: cover]

Third-Party JavaScript

 Ben Vinegar & Anton Kovalyov

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	
 [image:]

 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Renae Gregoire
Technical proofreaders: Alex Sexton, John J. Ryan III
Copyeditor: Benjamin Berg
Proofreader: Katie Tennant
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 Chapter 1. Introduction to third-party JavaScript

 Chapter 2. Distributing and loading your application

 Chapter 3. Rendering HTML and CSS

 Chapter 4. Communicating with the server

 Chapter 5. Cross-domain iframe messaging

 Chapter 6. Authentication and sessions

 Chapter 7. Security

 Chapter 8. Developing a third-party JavaScript SDK

 Chapter 9. Performance

 Chapter 10. Debugging and testing

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 Chapter 1. Introduction to third-party JavaScript

 1.1. Defining third-party JavaScript

 1.2. The many uses of third-party JavaScript

 1.2.1. Embedded widgets

 1.2.2. Analytics and metrics

 1.2.3. Web service API wrappers

 1.3. Developing a bare-bones widget

 1.3.1. Server-side JavaScript generation

 1.3.2. Distributing widgets as iframes

 1.4. Challenges of third-party development

 1.4.1. Unknown context

 1.4.2. Shared environment

 1.4.3. Browser restrictions

 1.5. Summary

 Chapter 2. Distributing and loading your application

 2.1. Configuring your environment for third-party development

 2.1.1. Publisher test page

 2.1.2. The web server

 2.1.3. Simulating multiple domains

 2.2. Loading the initial script

 2.2.1. Blocking script includes

 2.2.2. Nonblocking scripts with async and defer

 2.2.3. Dynamic script insertion

 2.3. The initial script file

 2.3.1. Aliasing window and undefined

 2.3.2. Basic application flow

 2.4. Loading additional files

 2.4.1. JavaScript files

 2.4.2. Libraries

 2.5. Passing script arguments

 2.5.1. Using the query string

 2.5.2. Using the fragment identifier

 2.5.3. Using custom data attributes

 2.5.4. Using global variables

 2.6. Fetching application data

 2.7. Summary

 Chapter 3. Rendering HTML and CSS

 3.1. Outputting HTML

 3.1.1. Using document.write

 3.1.2. Appending to a known location

 3.1.3. Appending multiple widgets

 3.1.4. Decoupling render targets

 3.2. Styling your HTML

 3.2.1. Using inline styles

 3.2.2. Loading CSS files

 3.2.3. Embedding CSS in JavaScript

 3.3. Defensive HTML and CSS

 3.3.1. Namespaces

 3.3.2. CSS specificity

 3.3.3. Overspecifying CSS

 3.4. Embedding content in iframes

 3.4.1. Src-less iframes

 3.4.2. External iframes

 3.4.3. Inheriting styles

 3.4.4. When to refrain from using iframes?

 3.5. Summary

 Chapter 4. Communicating with the server

 4.1. AJAX and the browser same-origin policy

 4.1.1. Rules for determining same origin

 4.1.2. Same-origin policy and script loading

 4.2. JSON with padding (JSONP)

 4.2.1. Loading JSON via script elements

 4.2.2. Dynamic callback functions

 4.2.3. Limitations and security concerns

 4.3. Subdomain proxies

 4.3.1. Changing a document’s origin using document.domain

 4.3.2. Cross-origin messaging using subdomain proxies

 4.3.3. Combining subdomain proxies with JSONP

 4.3.4. Internet Explorer and subdomain proxies

 4.3.5. Security implications

 4.4. Cross-origin resource sharing

 4.4.1. Sending simple HTTP requests

 4.4.2. Transferring cookies with CORS

 4.4.3. Sending preflight requests

 4.4.4. Browser support

 4.5. Summary

 Chapter 5. Cross-domain iframe messaging

 5.1. HTML5 window.postMessage API

 5.1.1. Sending messages using window.postMessage

 5.1.2. Receiving messages sent to a window

 5.1.3. Browser support

 5.2. Fallback techniques

 5.2.1. Sending messages using window.name

 5.2.2. Sending messages using the URL fragment identifier

 5.2.3. Sending messages using Flash

 5.3. Simple cross-domain messaging with easyXDM

 5.3.1. Loading and initializing easyXDM

 5.3.2. Sending simple messages using easyXDM.Socket

 5.3.3. Defining JSON-RPC interfaces using easyXDM.Rpc

 5.4. Summary

 Chapter 6. Authentication and sessions

 6.1. Third-party cookies

 6.1.1. Setting and reading sessions

 6.1.2. Disabling third-party cookies

 6.1.3. Internet Explorer and P3P headers

 6.1.4. Detecting when cookies are unavailable

 6.2. Setting third-party cookies

 6.2.1. Using dedicated windows

 6.2.2. Iframe workaround (Safari only)

 6.2.3. Single-page sessions for Chrome and Firefox

 6.3. Securing sessions

 6.3.1. HTTPS and secure cookies

 6.3.2. Multilevel authentication

 6.4. Summary

 Chapter 7. Security

 7.1. Cookies, sessions, and session theft

 7.2. Cross-site scripting

 7.2.1. XSS attacks

 7.2.2. XSS vulnerabilities in CSS

 7.2.3. Defending your application against XSS attacks

 7.3. Cross-site request forgery

 7.3.1. XSRF attacks

 7.3.2. JSON hijacking

 7.3.3. Defending your application against XSRF attacks

 7.4. Publisher vulnerabilities

 7.4.1. Publisher impersonation

 7.4.2. Clickjacking

 7.4.3. Denial of service

 7.5. Summary

 Chapter 8. Developing a third-party JavaScript SDK

 8.1. Implementing a bare-bones SDK

 8.1.1. Initialization

 8.1.2. Asynchronous loading

 8.1.3. Exposing public functions

 8.1.4. Event listeners

 8.2. Versioning

 8.2.1. URL versioning

 8.2.2. Versioned initialization

 8.3. Wrapping web service APIs

 8.3.1. Accessing web service APIs on the client

 8.3.2. Wrapping the Camera Stork API

 8.3.3. Identifying publishers

 8.3.4. User authorization and OAuth

 8.4. Summary

 Chapter 9. Performance

 9.1. Optimizing payload

 9.1.1. Combining and minifying source code

 9.1.2. Reducing image requests

 9.1.3. Caching files

 9.1.4. Deferring HTTP requests

 9.2. Optimizing JavaScript

 9.2.1. Inside the browser: UI thread, repaint, and reflow

 9.2.2. Controlling expensive calls: throttle and debounce

 9.2.3. Deferring computation with setTimeout

 9.3. Perceived performance

 9.3.1. Optimistic user actions

 9.3.2. Rendering before document ready

 9.4. Summary

 Chapter 10. Debugging and testing

 10.1. Debugging

 10.1.1. Serving development code in production

 10.1.2. Stepping through the code

 10.2. Testing

 10.2.1. Unit, integration, and regression tests

 10.2.2. Writing regression tests using QUnit

 10.2.3. Writing regression tests using Hiro

 10.3. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 You, as a third-party JavaScript developer, have a multitude of concerns you need to manage to ship code across a number of
 sites and platform combinations. Never before have the details and best practices of making solid distributable JavaScript
 been codified in such depth as they are in this book. This can be a tricky business, so allow me to illustrate the potential
 for unintended consequences by telling you a story about Douglas Crockford, who created one of the most widely distributed
 third-party scripts, and a site called OnlineBootyCall.

 JSON (JavaScript Object Notation) is a subset of JavaScript that was codified by Douglas. Back in 2005, he wrote json.js,
 a small library that could parse JSON into JavaScript objects and stringify back in the other direction. It enjoyed significant
 adoption immediately, but it added the Object.prototype.toJSONString and String.prototype.parseJSON methods which threw many folks for a loop.

 In October 2007, Douglas put out json2.js. It’s not uncommon for developers to hotlink existing JavaScript versions, and Douglas’s
 own copy got its fair share. Soon, his hosting company emailed him asking about the unusually high traffic from a site called
 OnlineBootyCall.com. Douglas had included in the json2.js code a message that warned: “Use your own copy. It is extremely
 unwise to load code from servers you do not control.” He added a browser-locking, synchronous, and JavaScript-freezing modal
 alert(). The result? A pop-up on every page load of OnlineBootyCall. Ouch.

 In this case, Doug was a third-party script developer protecting himself from his users. But more often, it’s the other way
 around. For example, json2.js came about partly because Doug’s Object.prototype augment wasn’t friendly.

 This book, written by two of the most expert developers on the subject, takes inventory of all the current techniques and
 unveils them one by one to help you write battle-hardened script for the first deployment. I hope this book will serve you
 well, and that you’ll be as excited about the next generation of the web as I am.

 PAUL IRISH
DEVELOPER RELATIONS:
GOOGLE CHROME, JQUERY
LEAD DEVELOPER:
MODERNIZR AND HTML5 BOILERPLATE

Preface

 In February of 2010, I was on the phone with Jason Yan, CTO and cofounder of a web startup called Disqus. At the time, Disqus
 was a tiny company behind a fast-growing commenting application, distributed as a third-party script and popular with bloggers
 and a handful of large media companies. Jason was interviewing me for a JavaScript engineering role—their first hire dedicated
 to working on a fast-growing client codebase.

 After a handful of standard JavaScript interview questions involving classes, prototypes, and scopes, Jason took a different
 tack. He asked me the following (roughly paraphrased) question: “Let’s say I’ve taken a native function prototype—like Array.prototype.indexOf and assigned it a new value. How would you get the original value back?”

 I was dumbstruck. This was a problem I had never encountered before, and I didn’t know the answer. Jason explained to me that
 the Disqus application executes in environments they don’t control. And in those environments, native properties are sometimes
 overwritten or mangled, properties that they depend on.

 I wasn’t about to give up on the question. So in the middle of the interview, I opened up my browser’s JavaScript console,
 and started fiddling around with function prototypes. In a few short minutes, I made the startling discovery that you could
 use JavaScript’s delete operator on a modified native property, and the browser would restore the original value.

 Jason, as it turns out, was unaware of this solution. He tried out the technique himself and, sure enough, it worked. We were
 equally excited at this new discovery. We began talking, discussing Disqus’ current solution to this problem, and the interview
 changed from a serious interrogation into an excited conversation about iframes, browser hacks, and other scripting gotchas.

 I didn’t know it at the time, but this was my first taste of Third-party JavaScript; of solving problems that only affect client applications running in other people’s web environments; of discovering techniques
 and practices that some web developers may never be aware of. And I was hooked.

 Several more interviews and two months later, I joined the Disqus team, which only had seven employees at the time, in San
 Francisco. That was where I met Anton Kovalyov, my new coworker, fellow JavaScripter, and future coauthor. For the next two-plus
 years, Anton and I were responsible for maintaining and developing Disqus’ client-side code. Disqus continued to grow—rapidly.
 By 2012, it was installed on hundreds of thousands of web pages, and received over 5 billion page views per month. Its customers
 included CNN, MLB, IGN, Time.com, Rolling Stone, and dozens of other major web and media properties.

 During that period of time, Anton and I learned dozens of helpful tricks, tips, and hacks for third-party scripters, most
 of which we learned the hard way, and some of which we kept under wraps intentionally, because they gave us a technological
 edge.

 In this book, we’ve pooled our collective knowledge about third-party JavaScript. Not only do we think our book will help
 third-party scripters everywhere, we also think that the practices we discuss may help make the web a better place for everybody.
 We hope that by the end of reading it, you’ll agree.

 BEN VINEGAR

Acknowledgments

 We found writing this book a daunting and challenging experience, and we recognize that there’s no way we could have done
 it on our own. We want to take a moment and acknowledge the folks who have contributed to this work, both directly and indirectly.

 First of all, we’d like to thank Daniel Ha, Jason Yan, and the team at Disqus, not only for employing us, but for building
 and maintaining the amazing platform from which most of the material in this book derives.

 Secondly, we’d like to thank the fine folks at Manning for taking a chance on what many felt was a niche topic. Without them,
 this book wouldn’t exist. We especially want to thank our editor Renae Gregoire, for helping us through the writing process
 and holding our hands from beginning to end. We’d also like to thank the editing and production team at Manning for their
 help tweaking our text and improving the many figures and diagrams that dot this work.

 We’d especially like to thank our technical reviewer, Alex Sexton, for lending his experience on this topic and for sharing
 his own treasure trove of third-party JavaScript tricks; John Ryan III for his review of the final manuscript during production,
 shortly before we went to press; and Paul Irish for contributing the foreword and for agreeing to lend his name to a couple
 of unworthy amateurs.

 Last but not least, we’d like to thank the many reviewers and advisors who read our manuscript at the different stages of
 its development and who so generously shared their feedback, pointed out errors, and/or sanity-checked our ideas: Øyvind Sean
 Kinsey, Kyle Simpson, Henri d’Orgeval, Mike Pennisi, Peter DeHaan, Brian Arnold, Brian Chiasson, Brian Dillard, Brian Forester,
 David Vedder, Jake McCrary, Jeffrey Yustman, Jonas Bandi, Justin Pope, Margriet Bruggeman, Nikander Bruggeman, and Sopan Shewale.

 Finally, thanks to everyone who commented on the manning.com forums, shouted at us on Twitter, or commented to us about the
 book in person—every little bit helped and we’re grateful.

 BEN VINEGAR

 I would like to dedicate this book to my parents, David and Wendy. Beginning with the Commodore 64 you bought me as a child,
 you’ve always fostered my interest in computing and I’d have never gotten here without you. Special thanks also to my partner,
 Esther, for her encouragement and patience during what has been a challenging project.

 ANTON KOVALYOV

 I would like to dedicate this book (even the parts that Ben wrote) to my parents, who were very supportive when I decided
 to spend most of my time staring at my computer screen, waiting for Gentoo to compile. And thanks to Pamela Fox for inspiring
 me to actually work on this book instead of hacking on my side projects or watching Doctor Who.

About this Book

 Third-party JavaScript is independent client code executing on a publisher’s website, but served from a remote web address.
 It’s used in the creation of highly distributed web applications, from social widgets to analytics trackers to full-featured
 embedded applications.

 This book serves as an introduction to third-party JavaScript application development. It teaches readers not only how to
 write JavaScript code that executes in third-party contexts, but also third-party web development techniques that involve
 HTML, CSS, and even HTTP. It is intended for developers who already have experience with these technologies in a first-party
 context (such as your own website) and who want to explore how these technologies can be executed in a foreign web environment
 (somebody else’s website).

 This book does not include a primer on JavaScript programming language. Nor does it teach readers the fundamentals of HTML
 and CSS. The book does, however, include introductory material on dynamic script loading, cookies, HTTPS, and other intermediate
 and advanced web development topics as they are encountered in the text.

Roadmap

 The book consists of ten chapters, as follows:

 Chapter 1 is an introduction to Third-party JavaScript. It teaches readers what third-party JavaScript is, and also describes common
 real-world use-cases. It finishes with a quick sample third-party application, and highlights some of the difficulties of
 third-party web development.

 Chapter 2 instructs readers on how to actually load and execute their code on a content provider’s website. It starts by describing
 how to set up a local development environment to simulate a third-party development. It then moves into script loading best
 practices, and how to extract configuration variables from a content provider’s website.

 Chapter 3 focuses on DOM rendering. It teaches readers best practices for rendering on the content provider’s DOM, an environment they
 don’t control. It also covers strategies for avoiding conflicting styles using CSS and iframe elements.

 Chapter 4 goes over communication between your third-party script and your data servers. It begins with a discussion of the Same Origin
 Policy, and how it makes cross-domain communication difficult. It then looks at two workarounds for making cross-domain requests:
 JSONP and subdomain proxies. It finishes with a discussion of CORS (Cross Origin Resource Sharing), a new HTML5 browser feature
 that enables cross-domain requests in modern browsers.

 Chapter 5 continues with cross-window messaging—including iframes. It introduces window.postMessage, an HTML5 browser feature that
 provides a simple messaging mechanism between windows. It then introduces a series of fallback techniques for older browsers
 where window.postMessage is unavailable. It also features a tutorial of easyXDM, an open-source JavaScript library that provides
 postMessage-like features for both modern and old browsers.

 Chapter 6 is about authentication and cookies. It informs readers on the behaviour of cookies in third-party scripts, and provides
 techniques for working with browsers when third-party cookies are disabled. It also briefly covers security issues when working
 with cookies.

 Chapter 7 discusses security of third-party applications. It covers both traditional vulnerabilities for JavaScript-based applications—such
 as Cross-Site Scripting (XSS) and Cross-Site Request Forgery (XSRF) attacks—and also vulnerabilities specific to third-party
 applications.

 Chapter 8 guides the reader through the development of JavaScript SDK (Software Development Kit). It takes some of the features developed
 in the earlier chapters, and exposes them to publishers through publicly-defined functions. It also demonstrates how to provide
 a client-side JavaScript wrapper for an HTTP-based web services API.

 Chapter 9 is about performance. It covers techniques for reducing filesize and the number of HTTP requests made by your application.
 It also teaches best practices for writing JavaScript code that doesn’t block the browser or other scripts.

 Chapter 10 finishes with testing and debugging. It demonstrates how to use tools like rewriting proxies and feature switches to debug
 application code in production. It also shows how to write unit tests for third-party code.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets link to explanations that follow the listing.

 The companion source code for this book is distributed under the MIT License. It is freely available from the publisher’s
 website at www.manning.com/Third-PartyJavaScript. You can also view the source code on GitHub at http://github.com/thirdpartyjs.

Author Online

 The purchase of Third-Party JavaScript includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/Third-PartyJavaScript. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 [image:]

 BEN VINEGAR is a software engineer at Disqus, a third-party comments platform served on over 1,000,000 blogs, online publications, and
 other web properties, including CNN, MLB, Time Magazine, and IGN. Before joining Disqus, Ben was a Development Team Lead and
 go-to JavaScript developer at FreshBooks, a leading web-based invoicing service.

 [image:]

 ANTON KOVALYOV is a software engineer at Mozilla, where he helps write developer tools for the Firefox web browser. He is also responsible
 for JSHint, an open source tool that detects errors in JavaScript source code. Before joining Mozilla, Anton was a software
 engineer at Disqus, where he wrote JavaScript for their embedded commenting application.

About the Cover Illustration

 The figure on the cover of Third-Party JavaScript is captioned “Un Commandant,” which means commanding officer. The illustration is taken from a 19th-century edition of Sylvain
 Maréchal’s four-volume compendium of regional dress customs and militray uniforms published in France. Each illustration is
 finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the
 world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages.
 In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was
 just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Chapter 1. Introduction to third-party JavaScript

 This chapter covers

 	Explaining third-party JavaScript

 	Real-world examples of third-party applications

 	Walk-through implementation of a simple embedded widget

 	Identifying third-party development challenges

 Third-party JavaScript is a pattern of JavaScript programming that enables the creation of highly distributable web applications.
 Unlike regular web applications, which are accessed at a single web address (http://yourapp.com), these applications can be arbitrarily loaded on any web page using simple JavaScript includes.

 You’ve probably encountered third-party JavaScript before. For example, consider ad scripts, which generate and display targeted
 ads on publisher websites. Ad scripts might not be a hit with users, but they help web publishers earn revenue and stay in
 business. They’re visible on millions of websites, and yet nearly all of them are third-party scripts, served from separate
 ad servers.

 Ad scripts are just one use case; developers look to third-party scripts to solve a number of problems. Some use them to create
 standalone products that serve the needs of publishers. For example, Disqus, a web startup from San Francisco—and the employer
 of the fine authors of this book—develops a third-party commenting application that gives web publishers an instant commenting
 system. Others develop third-party scripts to extend their traditional web applications to reach audiences on other websites.
 For example, Facebook and Twitter have developed dozens of social widgets that are loaded on publisher websites. These widgets
 help social networks engage their users outside of their applications’ normal ecosystems.

 Small companies can benefit from third-party JavaScript too. Let’s say you’re the owner of a B2B (business-to-business) web
 application that hosts web forms to collect information from your customers’ clients. You have potential customers out there
 who’d love to use your application, but are hesitant to redirect their users to an external website. With third-party JavaScript,
 you can have customers load your form application directly on their own web pages, solving their redirect concerns.

 Third-party JavaScript isn’t all gravy. Writing these applications is far from trivial. There are plenty of pitfalls and hackery
 you’ll need to overcome before you can ship third-party JavaScript that will hold its own in the wild. Luckily, this book
 will show you how by guiding you through the complete development of a full-featured third-party application.

 But before we dive into the bowels of third-party JavaScript, you need to learn the fundamentals. In this chapter, we’ll better
 define third-party JavaScript, look at real-world implementations from a number of companies, go over a simple implementation
 of a third-party application, and discuss the numerous challenges facing third-party development.

 Let’s start with trying to get a better handle on what third-party JavaScript is and what we can do with it.

1.1. Defining third-party JavaScript

 In a typical software exchange, there are two parties. There’s the consumer, or first party, who is operating the software.
 The second party is the provider or author of that software.

 On the web, you might think of the first party as a user who’s operating a web browser. When they visit a web page, the browser
 makes a request from a content provider. That provider, the second party, transmits the web page’s HTML, images, stylesheets,
 and scripts from their servers back to the user’s web browser.

 For a particularly simple web exchange like this one, there might only be two parties. But most website providers today also
 include content from other sources, or third parties. As illustrated in figure 1.1, third parties might provide anything from article content (Associated Press), to avatar hosting (Gravatar), to embedded
 videos (YouTube). In the strictest sense, anything served to the client that’s provided by an organization that’s not the
 website provider is considered to be third-party.

 Figure 1.1. Websites today make use of a large number of third-party services.

 [image:]

 When you try to apply this definition to JavaScript, things become muddy. Many developers have differing opinions on what
 exactly constitutes third-party JavaScript. Some classify it as any JavaScript code that providers don’t author themselves.
 This would include popular libraries like jQuery and Backbone.js. It would also include any code you copied and pasted from
 a programming solutions website like Stack Overflow. Any and all code you didn’t write would come under this definition.

 Others refer to third-party JavaScript as code that’s being served from third-party servers, not under the control of the
 content provider. The argument is that code hosted by content providers is under their control: content providers choose when
 and where the code is served, they have the power to modify it, and they’re ultimately responsible for its behavior. This
 differs from code served from separate third-party servers, the contents of which can’t be modified by the provider, and can
 even change without notice. The following listing shows an example content provider HTML page that loads both local and externally
 hosted JavaScript files.

 Listing 1.1. Sample content provider web page loads both local and external scripts

 [image:]

 There’s no right or wrong answer; you can make an argument for both interpretations. But for the purposes of this book, we’re
 particularly interested in the latter definition. When we refer to third-party JavaScript, we mean code that is

 	Not authored by the content provider

 	Served from external servers that aren’t controlled by the content provider

 	Written with the intention that it’s to be executed as part of a content provider’s website

 	

 Where’s Type=“Text/Javascript”?

 You might have noticed that the <script> tag declarations in this example don’t specify the type attribute. For an “untyped” <script> tag, the default browser behavior is to treat the contents as JavaScript, even in older browsers. In order to keep the examples
 in this book as concise as possible, we’ve dropped the type attribute from most of them.

 	

 So far we’ve been looking at third-party scripts from the context of a content provider. Let’s change perspectives. As developers of third-party JavaScript, we author scripts that we intend to execute on a content provider’s website. In order to get our
 code onto the provider’s website, we give them HTML code snippets to insert into their pages that load JavaScript files from
 our servers (see figure 1.2). We aren’t affiliated with the website provider; we’re merely loading scripts on their pages to provide them with helpful
 libraries or useful self-contained applications.

 Figure 1.2. A script-loading snippet placed on the publisher’s web page loads third-party JavaScript code.

 [image:]

 If you’re scratching your head, don’t worry. The easiest way to understand what third-party scripts are is to see how they’re
 used in practice. In the next section, we’ll go over some real-world examples of third-party scripts in the wild. If you don’t
 know what they are by the time we’re finished, then our status as third-rate technical authors will be cemented. Onward!

1.2. The many uses of third-party JavaScript

 We’ve established that third-party JavaScript is code that’s being executed on someone else’s website. This gives third-party
 code access to that website’s HTML elements and JavaScript context. You can then manipulate that page in a number of ways,
 which might include creating new elements on the DOM (Document Object Model), inserting custom stylesheets, and registering
 browser events for capturing user actions. For the most part, third-party scripts can perform any operation you might use
 JavaScript for on your own website or application, but instead, on someone else’s.

 Armed with the power of remote web page manipulation, the question remains: what is it good for? In this section, we’ll look
 at some real-world use cases of third-party scripts:

 	
Embedded widgets— Small interactive applications embedded on the publisher’s web page

 	
Analytics and metrics— For gathering intelligence about visitors and how they interact with the publisher’s website

 	
Web service API wrappers— For developing client-side applications that communicate with external web services

 This isn’t a complete list, but should give you a solid idea of what third-party JavaScript is capable of. We’ll start with
 an in-depth look at the first item: embedded widgets.

 1.2.1. Embedded widgets

 Embedded widgets (often third-party widgets) are perhaps the most common use case of third-party scripts. These are typically small, interactive applications that are
 rendered and made accessible on a publisher’s website, but load and submit resources to and from a separate set of servers.
 Widgets can vary widely in complexity; they can be as simple as a graphic that displays the weather in your geographic location,
 or as complex as a full-featured instant messaging client.

 Widgets enable website publishers to embed applications into their web pages with little effort. They’re typically easy to
 install; more often than not publishers need only insert a small HTML snippet into their web page source code to get started.
 Since they’re entirely JavaScript-based, widgets don’t require the publisher to install and maintain any software that executes
 on their servers, which means less maintenance and upkeep.

 Some businesses are built entirely on the development and distribution of embedded widgets. Earlier we mentioned Disqus, a
 web startup based in San Francisco. Disqus develops a commenting widget (see figure 1.3) that serves as a drop-in commenting section for blogs, online publications, and other websites. Their product is driven
 almost entirely by third-party JavaScript. It uses JavaScript to fetch commenting data from the server, render the comments
 as HTML on the page, and capture form data from other commenters—in other words, everything. It’s installed on websites using
 a simple HTML snippet that totals five lines of code.

 Figure 1.3. An example commenting section on a publisher’s website, powered by the Disqus commenting widget

 [image:]

 Disqus is an example of a product that’s only usable in its distributed form; you’ll need to visit a publisher’s page to use
 it. But widgets aren’t always standalone products like this. Often they’re “portable” extensions of larger, more traditional
 stay-at-home web applications.

 For example, consider Google Maps, arguably the web’s most popular mapping application. Users browse to https://maps.google.com to view interactive maps of locations all over the world. Google Maps also provides directions by car and public transit,
 satellite imagery, and even street views using on-location photography.

 Incredibly, all of this magic also comes in a widget flavor. Publishers can embed the maps application on their own web pages
 using some simple JavaScript code snippets obtained from the Google Maps website. On top of this, Google provides a set of
 public functions for publishers to modify the map contents.

 Let’s see how simple it is to embed an interactive map on your web page using Google Maps (listing 1.2). This code example begins by first pointing to the Maps JavaScript library using a simple script include. Then, when the
 body’s onload handler fires, you check whether the current browser is compatible, and if so, initialize a new map and center it at the
 given coordinates[1] We’re done, and all it took was roughly 10 lines of code—powerful stuff!

 1 Not everyone knows latitude and longitude by heart. Luckily, Google has additional functions for converting street addresses
 to geographical coordinates. Learn more at http://code.google.com/apis/maps.

 Listing 1.2. Initializing the Google Maps widget

 <!DOCTYPE html>
<html>
 <head>
 <title>Google Maps Example</title>
 <script src="
 https://maps.googleapis.com/maps/api/js?v=3.exp&sensor=false">
 </script>
 <script>
 var map;
 function initialize() {
 var mapOptions = {
 zoom: 8,
 center: new google.maps.LatLng(43.6481, -79.4042),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 map = new google.maps.Map(document.getElementById('map_canvas'),
 mapOptions);
 }
 </script>
 </head>
 <body onload="initialize()">
 <div id="map_canvas" style="width: 500px; height: 300px"></div>
 </body>
</html>

 We just looked at two examples of embedded widgets. But really, any application idea is fair game for embedding on a publisher’s
 page. In our own travels, we’ve come across a wide variety of widgets: content management widgets, widgets that play realtime
 video, widgets that let you chat in real time with a customer support person, and so on. If you can dream it, you can embed
 it.

 1.2.2. Analytics and metrics

 Third-party JavaScript isn’t used exclusively in the creation of embedded widgets. There are other uses that don’t necessarily
 involve graphical, interactive web page elements. Often they’re silent scripts that process information on the publisher’s
 page without the user ever knowing they’re there. The most common such use case is in analytics and metrics gathering.

 One of JavaScript’s most powerful features is that it enables developers to capture and respond to user events as they occur
 on a web page. For example, you can write JavaScript to respond to a website visitor’s mouse movements and/or mouse clicks.
 Third-party scripts are no exception: they too can observe browser events and capture data about how the visitor interacts
 with the publisher’s page. This might include tracking how long a visitor stays on a page before moving on, what content they
 saw while they were reading the page, and where they went afterward. There are dozens of browser events your JavaScript code
 can hook into from which you could derive hundreds of different insights.

Passive Scripts

 Crazy Egg, another web startup, is one example of an organization that uses third-party scripts in this way. Their analytics
 product generates visualizations of user activity on your web page (see figure 1.4). To obtain this data, Crazy Egg distributes a script to publishers that captures the mouse and scroll events of web page
 visitors. This data is submitted back to Crazy Egg’s servers, all in the same script. The visualizations Crazy Egg generates
 help publishers identify which parts of their website are being accessed frequently, and which are being ignored. Publishers
 use this information to improve their web design and optimize their content.

 Figure 1.4. Crazy Egg’s heat map visualization highlights trafficked areas of publishers’ websites.

 [image:]

 Crazy Egg’s third-party script is considered a passive script; it records statistical data without any interaction from the publisher. The publisher is solely responsible for including
 the script on the page. The rest happens automatically.

Active scripts

 Not all analytics scripts behave passively. Mixpanel is an analytics company whose product tracks publisher-defined user actions
 to generate statistics about website visitors or application users. Instead of generic web statistics, like page views or
 visitors, Mixpanel has publishers define key application events they want to track. Some example events might be “user clicked
 the signup button,” or “user played a video.” Publishers write simple JavaScript code (see listing 1.3) to identify when the action takes place and then call a tracking method provided by Mixpanel’s third-party scripts to register
 the event with their service. Mixpanel then assembles this data into interesting funnel statistics to help answer questions
 like, “What series of steps do users take before upgrading the product?”

 Listing 1.3. Tracking user signups with the Mixpanel JS API

 [image:]

 Unlike Crazy Egg, Mixpanel’s service requires some development work by the publisher to define and trigger events. The upside
 is that the publisher can collect custom data surrounding user actions and answer questions about user activity.

 There’s something else interesting about Mixpanel’s use of third-party scripting. In actuality, Mixpanel provides a set of
 client-side functions that communicate with their web service API—a set of server HTTP endpoints that both track and report
 on events. This is a practical use case that can be extended to any number of different services. Let’s learn more.

 1.2.3. Web service API wrappers

 In case you’re not familiar with them, web service APIs are HTTP server endpoints that enable programmatic access to a web
 service. Unlike server applications that return HTML to be consumed by a web browser, these endpoints accept and respond with
 structured data—usually in JSON or XML formats—to be consumed by a computer program. This program could be a desktop application
 or an application running on a web server, or it could even be client JavaScript code hosted on a web page but executing in
 a user’s browser.

 This last use case—JavaScript code running in the browser—is what we’re most interested in. Web service API providers can
 give developers building on their platform—often called integrators—third-party scripts that simplify client-side access to their API. We like to call these scripts web service API wrappers, since they’re effectively JavaScript libraries that “wrap” the functionality of a web service API.

Example: The Facebook Graph API

 How is this useful? Let’s look at an example. Suppose there’s an independent web developer named Jill who’s tired of freelance
 work and looking to score a full-time job. Jill’s decided that in order to better appeal to potential employers, she needs
 a terrific-looking online resume hosted on her personal website. This resume is for the most part static—it lists her skills
 and her prior work experience, and even mentions her fondness for moonlight kayaking.

 Jill’s decided that, in order to demonstrate her web development prowess, there ought to be a dynamic element to her resume
 as well. And she’s got the perfect idea. What if visitors to Jill’s online resume—potential employers—could see if they had
 any friends or acquaintances in common with Jill (see figure 1.5)? Not only would this be a clever demonstration of Jill’s skills, but having a common friend could be a great way of getting
 her foot in the door.

 Figure 1.5. At the bottom of Jill’s resume, the visitor can see friends they share with Jill.

 [image:]

 To implement her dynamic resume, Jill uses Facebook’s Graph API. This is a web service API from Facebook that enables software
 applications to access or modify live Facebook user data (with permission, of course). Facebook also has a JavaScript library
 that provides functions for communicating with the API. Using this library, it’s possible for Jill to write client-side code
 that can find and display friends common to herself and a visitor to her resume. Figure 1.6 illustrates the sequence of events that occur between the browser and the two servers.

 Figure 1.6. Embedding Facebook content in a website using client-side JavaScript

 [image:]

 Listing 1.4 shows the code to implement this feature on her resume. To keep things simple, this example uses jQuery, a JavaScript library,
 to simplify DOM operations. Learn more at http://jquery.com.

 Listing 1.4. Using Facebook’s Graph API to fetch and display a list of mutual friends

 [image:]

 [image:]

 Jill managed to embed some powerful functionality in her resume, all using a small amount of client-side JavaScript. With
 this impressive piece of work, she should have no problem landing a top-flight software job.

Benefits of client-side API access

 It’s worth pointing out that this entire example could’ve been done without client-side JavaScript. Instead, Jill could’ve
 written a server application to query the Facebook Graph API for the necessary data and then render the result as HTML in
 the response to the browser. In that case, the browser downloads the HTML from Jill’s server and displays the result to the
 user—no JavaScript is executed.

 But it’s arguably better to have the website visitor perform this work in the browser, for a few reasons:

 	Code executing in the browser is code that’s not executing on the integrator’s servers, which can lead to bandwidth and CPU
 savings.

 	It’s faster—the server implementation has to wait for the response from Facebook’s API before showing any content.

 	Some websites are completely static, such that client-side JavaScript is their only means of accessing a web service API.

 	

 An API for Every Season

 This example we just covered might be regarded as a niche use case, but this is just one possible application. Facebook is
 just a single web service API provider, but the reality is that there are thousands of popular APIs, all of which provide
 access to varying data and/or functionality. Besides social networking applications like Facebook, Twitter, and LinkedIn,
 there are publishing platforms like Blogger and WordPress, or search applications like Google and Bing, all of which provide
 varying degrees of access to their data via APIs.

 	

 Many web services—large and small—offer APIs. But not all of them have gone the extra mile of providing a JavaScript library
 for client-side access. This matters because JavaScript in the browser is the single largest development platform: it’s supported
 on every website, in every browser. If you or your organization develops or maintains a web service API, and you want to reach
 the largest number of possible integrators possible, you owe it to yourself to provide developers with a client-side API wrapper—a
 topic we’ll discuss in detail later in this book.

1.3. Developing a bare-bones widget

 We’ve explored some popular uses for third-party JavaScript. You’ve seen how it can be used in the development of widgets,
 in analytics gathering, and as a client-side wrapper for web service APIs. Hopefully this has given you an idea of what’s
 possible when you’re designing your own third-party application.

 Now that you’ve walked through some real-world examples, it’s time to develop something yourself. Let’s start with something
 fairly simple: a bare-bones embedded widget.

 Pretend for a moment that you run a website that provides up-to-the-minute local weather information. Traditionally, users
 visit your website directly in order to get the latest weather news. But in order to reach a wider audience, you’ve decided
 to go a step further and give users access to your data outside of your website. You’ll do this by providing an embeddable
 widget version of your service, depicted in figure 1.7. You’ll market this widget to publishers who are interested in providing their readers with local weather information, with
 the easy installation of a third-party script.

 Figure 1.7. The weather widget as it will appear on a publisher’s page

 [image:]

 Luckily, you’ve already found a publisher who’s interested, and they’ve signed on to test-drive your widget. To get them started,
 you’ll need to provide them with an HTML snippet that will load the weather widget on their web page. The publisher will copy
 and paste this snippet into their HTML source code at the location where they want the widget to appear. The snippet itself
 is simple: it’s a <script> tag pointed to a third-party JavaScript file hosted on your servers at weathernearby.com:

 <script src="http://weathernearby.com/widget.js?zip=94105">
</script>

 You’ll notice the URL for this script element contains a single parameter, zip. This is how you’ll identify what location to render weather information for.

 Now when the browser loads the publisher’s web page, it’ll encounter this <script> tag and request widget.js from your servers at weathernearby.com. When widget.js is downloaded and executed, it’ll render
 the weather widget directly into the publisher’s page. That’s the goal, at least.

 To do this, widget.js will need to have access to the company’s weather data. This data could be published directly into the
 script file, but given that there are approximately 43,000 US ZIP codes, that’s too much data to serve in a single request.
 Unless the user is connecting from Sweden or South Korea, where 100 Mbps connections are the norm, it’s clear that the widget
 will need to make separate requests for the weather data. This is typically done using AJAX, but for simplicity we’ll use
 a different approach: server-side script generation.

 1.3.1. Server-side JavaScript generation

 Instead of serving a static JavaScript file that contains your widget code, you’ll write a server application that generates
 a JavaScript file for every request (see figure 1.8). Because your server has access to your weather database, it can inject the requested weather data into the outputted JavaScript
 file. This means that the JavaScript file will contain all the code and data necessary to render the weather widget on the
 publisher’s page, without having to make any additional requests.

 Figure 1.8. A server application dynamically generating the Weather Nearby widget code (widget.js)

 [image:]

 This server application could be written in any programming language or platform that can execute in a server environment,
 like Ruby, PHP, Java, ASP.NET—even server-side JavaScript. These are all fine choices, but we’ll walk you through an example
 written in Python, a popular scripting language. This example also uses Flask, a Python microframework for building small
 web applications. If you’re not familiar with Python, don’t sweat it—the code is easy to follow. If you’d like to try the
 example in listing 1.5 yourself, consult the companion source code, which also contains instructions for installing both Python (2.x) and Flask.

